JPH08150326A - Production of deionized water by electrolytic deionization method - Google Patents

Production of deionized water by electrolytic deionization method

Info

Publication number
JPH08150326A
JPH08150326A JP6319219A JP31921994A JPH08150326A JP H08150326 A JPH08150326 A JP H08150326A JP 6319219 A JP6319219 A JP 6319219A JP 31921994 A JP31921994 A JP 31921994A JP H08150326 A JPH08150326 A JP H08150326A
Authority
JP
Japan
Prior art keywords
water
chamber
layer
treated
anion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6319219A
Other languages
Japanese (ja)
Other versions
JP3273707B2 (en
Inventor
Yasutaka Shinmyo
康孝 新明
Minoru Tsunoda
実 角田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP31921994A priority Critical patent/JP3273707B2/en
Priority to PCT/JP1996/001518 priority patent/WO1997046492A1/en
Priority claimed from PCT/JP1996/001518 external-priority patent/WO1997046492A1/en
Publication of JPH08150326A publication Critical patent/JPH08150326A/en
Application granted granted Critical
Publication of JP3273707B2 publication Critical patent/JP3273707B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Treatment Of Water By Ion Exchange (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

PURPOSE: To increase the removal rate of the silica as an impurity in water to be treated by passing the water through a desalting chamber and concd. water through a concentration chamber in the opposite direction to each other and passing the water flowing into the desalting chamber initially through an anion exchanger bed. CONSTITUTION: When deionized water is produced, water to be treated is introduced into a desalting chamber 1, concd. water is introduced into a concentration chamber 2, and electrode water is allowed to flow into the anode compartment 14 and cathode compartment 15. An anion-exchange resin bed 22b and a cation-exchange resin bed 23b are arranged in the desalting chamber 1 in this order from the upper part as the ion-exchange resin bed. In this case, the water to be treated is allowed to flow down initially through an anion-exchange resin bed 22a to remove the anion in the water, and the water is then passed through a cation-exchange resin bed 23a to remove the cation. Deionization is repeated in the same way, and deionized water is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体製造工業、製薬工
業、食品工業等の各種の産業又は研究施設等において利
用される脱イオン水を電気脱イオン法により製造する方
法に関し、更に詳しくはシリカの除去に優れた脱イオン
水製造法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing deionized water by an electric deionization method, which is used in various industries such as semiconductor manufacturing industry, pharmaceutical industry, food industry, research facilities and the like, and more specifically silica. The present invention relates to a method for producing deionized water excellent in removing water.

【0002】[0002]

【従来の技術】脱イオン水を製造する方法として、従来
からイオン交換樹脂に被処理水を通して脱イオンを行な
う方法が知られているが、この方法ではイオン交換樹脂
がイオンで飽和されたときに酸及びアルカリ水溶液によ
って再生を行なう必要があり、このような処理操作上の
不利を解消すべく近年、薬剤による再生が全く不要な電
気脱イオン法による脱イオン水製造方法が確立され、実
用化に至っている。
2. Description of the Related Art As a method for producing deionized water, a method has been conventionally known in which deionized water is passed through an ion-exchange resin to be treated. In this method, when the ion-exchange resin is saturated with ions, It is necessary to regenerate with an acid and alkaline aqueous solution, and in order to eliminate such a disadvantage in processing operation, in recent years, a deionized water production method by an electric deionization method, which does not require regeneration with a chemical, has been established and put to practical use. Has arrived.

【0003】この電気脱イオン法は、カチオン交換膜と
アニオン交換膜との間にイオン交換樹脂、イオン交換繊
維等のイオン交換体を充填して脱塩室を構成し、該脱塩
室の両外側に濃縮室を設け、これら脱塩室及び濃縮室を
陽電極と陰電極の間に配置し、電圧を印加しながら脱塩
室に被処理水を、濃縮室に濃縮水をそれぞれ流入し、脱
塩室において被処理水中の不純物イオンを除去すると共
に、該不純物イオンを電気的に濃縮室に移動させて脱イ
オン水を製造するものであり、この方法によればイオン
交換体がイオンで飽和されることがないため薬剤による
再生が不要であるという利点を有する。
In this electric deionization method, an ion exchanger such as an ion exchange resin or an ion exchange fiber is filled between the cation exchange membrane and the anion exchange membrane to form a desalting chamber, and both of the desalting chambers are formed. A concentration chamber is provided on the outside, and the deionization chamber and the concentration chamber are arranged between the positive electrode and the negative electrode, and the water to be treated flows into the deionization chamber while the voltage is applied, and the concentrated water flows into the concentration chamber. Impurity ions in the water to be treated are removed in the desalination chamber, and the impurity ions are electrically moved to the concentration chamber to produce deionized water. According to this method, the ion exchanger is saturated with ions. It has the advantage that it does not need to be regenerated by a drug because it is not used.

【0004】[0004]

【発明が解決しようとする課題】しかしながら電気脱イ
オン法による脱イオン水製造方法においては、被処理水
中のシリカの除去率が小さいという問題点があり、この
問題点を解決するため本出願人は先に、被処理水が最初
に通過するイオン交換体層をアニオン交換体層とした電
気式脱イオン水製造装置を提案した(特開平4−716
24号)。
However, in the method for producing deionized water by the electric deionization method, there is a problem that the removal rate of silica in the water to be treated is small, and in order to solve this problem, the present applicant has a problem. Previously, an electric deionized water producing apparatus was proposed in which the ion exchanger layer through which the water to be treated first passed was an anion exchanger layer (Japanese Patent Laid-Open No. 4-716).
No. 24).

【0005】この装置によればシリカの除去率を向上で
きるが、本発明者等は更にシリカの除去率を高める方法
を確立すべく鋭意研究を行なった。その結果、脱塩室に
供給する被処理水の通水方向と濃縮室に供給する濃縮水
の通水方向を相互に反対方向とすると共に、脱塩室に流
入した被処理水が最初にアニオン交換体層を通過するよ
うにすればシリカの除去率を著しく向上できるという知
見を得、この知見に基づき本発明を完成するに至った。
Although this apparatus can improve the removal rate of silica, the inventors of the present invention have conducted extensive studies to establish a method for further increasing the removal rate of silica. As a result, the water flow direction of the untreated water supplied to the desalting chamber and the water flow direction of the concentrated water supplied to the concentrating chamber are opposite to each other, and the untreated water flowing into the demineralizing chamber is the first anion. The present inventors have obtained the knowledge that the removal rate of silica can be significantly improved by passing through the exchanger layer, and the present invention has been completed based on this finding.

【0006】本発明は被処理水中の不純物であるシリカ
を極めて高い除去率をもって除去することができる電気
脱イオン法による脱イオン水製造法を提供することを目
的とする。
An object of the present invention is to provide a method for producing deionized water by an electric deionization method, which can remove silica as an impurity in water to be treated with an extremely high removal rate.

【0007】[0007]

【課題を解決するための手段】本発明は、(1)カチオ
ン交換膜とアニオン交換膜との間にアニオン交換体及び
カチオン交換体を充填して脱塩室を構成し、上記カチオ
ン交換膜、アニオン交換膜を介して脱塩室の両側に濃縮
室を設け、これらの脱塩室及び濃縮室を陽極と陰極の間
に配置し、電圧を印加しながら脱塩室に被処理水を流入
すると共に、濃縮室に濃縮水を流入して被処理水中の不
純物イオンを除去し、脱イオン水を製造する電気脱イオ
ン法による脱イオン水の製造方法において、脱塩室に供
給する被処理水の通水方向と濃縮室に供給する濃縮水の
通水方向が相互に反対方向となるように被処理水、濃縮
水をそれぞれ脱塩室、濃縮室に流入すると共に、脱塩室
に流入した被処理水が最初にアニオン交換体層を通過す
るようにしたことを特徴とする電気脱イオン法による脱
イオン水の製造法、(2)脱塩室内に、被処理水入口側
より順にアニオン交換体層、カチオン交換体層を配置
し、この層配列の順番に従って被処理水が各イオン交換
体層を通過するようにした上記(1)記載の電気脱イオ
ン法による脱イオン水の製造法、(3)アニオン交換体
層、カチオン交換体層の順に配置された1組のイオン交
換体積層体を、上記層配列が繰り返される如く2組以上
配置し、これにより構成される層配列の順番に従って被
処理水が各イオン交換体層を通過するようにした上記
(2)記載の電気脱イオン法による脱イオン水の製造
法、(4)脱塩室内に、被処理水入口側より順にアニオ
ン交換体層、カチオン交換体層、アニオン交換体とカチ
オン交換体との混合イオン交換体層を配置し、この層配
列の順番に従って被処理水が各イオン交換体層を通過す
るようにした上記(1)記載の電気脱イオン法による脱
イオン水の製造法、(5)アニオン交換体層、カチオン
交換体層の順に配置された1組のイオン交換体積層体
を、上記層配列が繰り返される如く2組以上配置し、次
いで混合イオン交換体層を配置し、これにより構成され
る層配列の順番に従って被処理水が各イオン交換体層を
通過するようにした上記(4)記載の電気脱イオン法に
よる脱イオン水の製造法、(6)脱塩室内に、被処理水
入口側より順にアニオン交換体層、アニオン交換体とカ
チオン交換体との混合イオン交換体層を配置し、この層
配列の順番に従って被処理水が各イオン交換体層を通過
するようにした上記(1)記載の電気脱イオン法による
脱イオン水の製造法を要旨とする。
Means for Solving the Problems The present invention provides (1) a desalting chamber configured by filling an anion exchanger and a cation exchanger between a cation exchange membrane and an anion exchange membrane. Concentration chambers are provided on both sides of the deionization chamber via anion exchange membranes, and these deionization chamber and concentration chamber are arranged between an anode and a cathode, and water to be treated flows into the deionization chamber while applying voltage. In addition, in the method for producing deionized water by the electric deionization method, in which concentrated water flows into the concentrating chamber to remove impurity ions in the water to be treated and to produce deionized water, the water to be treated supplied to the desalting chamber is The water to be treated and the concentrated water flow into the desalting chamber and the concentrating chamber, respectively, so that the water flowing direction and the concentrated water supplied to the concentrating chamber are opposite to each other. Ensure that treated water first passes through the anion exchanger layer (2) Anion exchanger layer and cation exchanger layer are arranged in this order from the water inlet side of the water to be treated in the desalting chamber, and the deionized water is produced according to the order of the layer arrangement. A method for producing deionized water by the electric deionization method according to the above (1) in which treated water is allowed to pass through each ion exchanger layer, (3) an anion exchanger layer, and a cation exchanger layer are arranged in this order. Two or more sets of ion exchanger laminates are arranged so that the above layer arrangement is repeated, and the water to be treated passes through each ion exchanger layer according to the order of the layer arrangement constituted by the above (2). (4) A method for producing deionized water by the electric deionization method, (4) Anion exchanger layer, a cation exchanger layer, and a mixture of an anion exchanger and a cation exchanger in the desalination chamber in order from the inlet side of the water to be treated. Place the ion exchanger layer The method for producing deionized water by the electric deionization method according to (1) above, wherein the water to be treated passes through each ion-exchange layer according to the order of the layer arrangement, (5) anion-exchange layer, cation-exchange One set of ion-exchange laminates arranged in the order of body layers is arranged in two or more sets so that the above-mentioned layer arrangement is repeated, then mixed ion-exchanger layers are arranged, and according to the order of the layer arrangement constituted by this. A method for producing deionized water by the electric deionization method according to the above (4), wherein the water to be treated passes through each ion-exchange layer, and (6) anion exchange in the desalting chamber from the inlet side of the water to be treated. A body layer and a mixed ion exchanger layer of an anion exchanger and a cation exchanger are arranged, and the water to be treated is allowed to pass through each ion exchanger layer according to the order of the layer arrangement. Deionization by ion method The main point is the water production method.

【0008】電気脱イオン法による脱イオン水製造方法
において、脱塩室に被処理水を供給し且つ濃縮室に濃縮
水を供給するが、該被処理水、濃縮水の供給に当たっ
て、本発明はそれらの通水方向を相互に反対方向とする
ものである。即ち、本発明において被処理水を下向流で
脱塩室に通水する場合は、濃縮水を上向流で濃縮室に通
水し、また被処理水を上向流で脱塩室に通水する場合
は、濃縮水を下向流で濃縮室に通水する。
In the method for producing deionized water by the electric deionization method, the water to be treated is supplied to the desalting chamber and the concentrated water is supplied to the concentrating chamber. The present invention relates to the supply of the water to be treated and the concentrated water. These water flow directions are opposite to each other. That is, in the present invention, when water to be treated is passed through the desalination chamber in a downward flow, concentrated water is passed through the concentration chamber in an upward flow, and water to be treated is passed in an upward flow into the desalination chamber. When water is passed, the concentrated water is passed downflow to the concentration chamber.

【0009】更に本発明は、脱塩室に流入した被処理水
を最初にアニオン交換体層を通過せしめる。即ち、脱塩
室内にはアニオン交換体とカチオン交換体が充填され、
それらのイオン交換体層の配列の仕方にも種々の方法が
あるが、本発明においては被処理水が最初に通過するイ
オン交換体層がアニオン交換体層となるように層配列が
決定される。
Further, according to the present invention, the water to be treated which has flowed into the desalting chamber is first passed through the anion exchanger layer. That is, the anion exchanger and the cation exchanger are filled in the desalting chamber,
Although there are various methods for arranging the ion exchanger layers, in the present invention, the layer arrangement is determined so that the ion exchanger layer through which the water to be treated first passes becomes the anion exchanger layer. .

【0010】従って、被処理水の通水方式が下向流通水
である場合には脱塩室の上部にアニオン交換体層を配置
し、その下部に他のイオン交換体層を配置させ、また同
方式が上向流通水である場合には脱塩室の下部にアニオ
ン交換体層を配置し、その上部に他のイオン交換体層を
配置させる。
Therefore, when the water to be treated is of downward flow, the anion exchanger layer is arranged above the desalting chamber and the other ion exchanger layer is arranged below it. When the same system is upward flowing water, the anion exchanger layer is arranged in the lower part of the desalting chamber and the other ion exchanger layer is arranged in the upper part thereof.

【0011】本発明において、アニオン交換体層と、該
層に隣接する他のイオン交換体層との間には仕切り壁が
あってもなくてもよく、従って両層は互いに接触してい
ても或いは非接触の状態でもよい。
In the present invention, there may or may not be a partition wall between the anion-exchanger layer and another ion-exchanger layer adjacent to the anion-exchanger layer, and thus both layers may be in contact with each other. Alternatively, it may be in a non-contact state.

【0012】以下、図1に示す装置を用いて脱イオン水
を製造する場合を例にとり、本発明を詳細に説明する。
Hereinafter, the present invention will be described in detail by taking the case of producing deionized water using the apparatus shown in FIG. 1 as an example.

【0013】同図に示す装置の構造を説明すると、1は
脱塩室、2は濃縮室で、これらの脱塩室1、濃縮室2は
交互に複数設けられている。通常、脱塩室1を構成する
に当たっては1個のモジュール品として製作される。即
ち、図2に示す如き四周枠状に形成された例えば合成樹
脂からなる枠体3の両面にそれぞれカチオン交換膜4、
アニオン交換膜5を接着し、その内部空間にイオン交換
体、例えばイオン交換樹脂(カチオン交換樹脂及びアニ
オン交換樹脂)を充填して脱イオンモジュール6を製作
し、該脱イオンモジュール6内のイオン交換樹脂充填部
を脱塩室1として構成する。
Explaining the structure of the apparatus shown in FIG. 1, 1 is a desalting chamber, 2 is a concentrating chamber, and a plurality of these desalting chambers 1 and concentrating chambers 2 are alternately provided. Usually, when constructing the desalting chamber 1, it is manufactured as one module product. That is, a cation exchange membrane 4 is formed on each side of a frame body 3 made of, for example, a synthetic resin and formed in a four-circle frame shape as shown in FIG.
The anion exchange membrane 5 is adhered, and the inner space thereof is filled with an ion exchanger, for example, an ion exchange resin (cation exchange resin and anion exchange resin) to produce a deionization module 6, and the ion exchange in the deionization module 6 is performed. The resin filling part is configured as the desalting chamber 1.

【0014】上記の如くカチオン交換膜とアニオン交換
膜との間の空間部にはカチオン交換樹脂及びアニオン交
換樹脂が充填されるが、これらのイオン交換樹脂の充填
の仕方、即ちイオン交換樹脂層の配列の仕方としては、
被処理水の通水方式が下向流通水である場合には、脱塩
室1の上部にアニオン交換樹脂層が配置され、その下部
に他のイオン交換樹脂層が配置される。
As described above, the space between the cation exchange membrane and the anion exchange membrane is filled with the cation exchange resin and the anion exchange resin. The method of filling these ion exchange resins, that is, the ion exchange resin layer As a way of arrangement,
When the water to be treated is of downward flowing water, the anion exchange resin layer is arranged above the desalting chamber 1 and the other ion exchange resin layer is arranged below it.

【0015】従って、脱塩室1におけるイオン交換樹脂
層の層配列の態様としては、該脱塩室1の上部をアニオ
ン交換樹脂層とし、その下部をカチオン交換樹脂層とす
る態様、上部をアニオン交換樹脂層とし、その下部をカ
チオン交換樹脂層とし、この順番に該積層部が2組以上
繰り返し設けられる態様、上部をアニオン交換樹脂層と
し、その下部をカチオン交換樹脂層とし、この積層部を
1組設けるか或いは2組以上繰り返し設け、更にその下
部にカチオン交換樹脂とアニオン交換樹脂との混合イオ
ン交換樹脂層を設ける態様、上部をアニオン交換樹脂層
とし、その下部を混合イオン交換樹脂層とする態様があ
る。
Therefore, as a mode of the layer arrangement of the ion exchange resin layer in the desalting chamber 1, an upper part of the desalting chamber 1 is an anion exchange resin layer, a lower part thereof is a cation exchange resin layer, and an upper part thereof is anion. An exchange resin layer, a lower portion thereof is a cation exchange resin layer, and two or more sets of the laminated portions are repeatedly provided in this order, an upper portion is an anion exchange resin layer, and a lower portion thereof is a cation exchange resin layer. A mode in which one set is provided or two or more sets are repeatedly provided, and further, a mixed ion exchange resin layer of a cation exchange resin and an anion exchange resin is provided below it, an upper part is an anion exchange resin layer, and a lower part thereof is a mixed ion exchange resin layer. There is a mode.

【0016】被処理水の通水方式が上向流通水である場
合には、脱塩室1の下部にアニオン交換樹脂層が配置さ
れ、その上部に他のイオン交換樹脂層が配置される。そ
の具体的層配列の態様は、上記の下向流通水の場合の態
様と上下方向が異なるだけで同様の層構成が可能であ
る。
When the water to be treated is of upward flowing water, an anion exchange resin layer is arranged in the lower part of the desalting chamber 1 and another ion exchange resin layer is arranged in the upper part thereof. The specific layer arrangement aspect is the same as that of the above-mentioned downward flowing water, but only in the vertical direction, the same layer configuration is possible.

【0017】イオン交換樹脂の充填に当たっては枠体3
の一方の側面にカチオン交換膜4(又はアニオン交換膜
5)を接着し、次いで枠体3の内空部にイオン交換樹脂
を充填し、該樹脂の充填後に枠体3の他方の側面にアニ
オン交換膜5(又はカチオン交換膜4)を接着し、両イ
オン交換膜4、5と枠体3とで形成される空間部にイオ
ン交換樹脂を封入する。この場合、充填すべきイオン交
換樹脂の種類に応じて、それぞれのイオン交換樹脂が独
立して充填できるように、図2に示した如く枠体3内に
仕切り壁としての分割桟7を設けることが好ましい。分
割桟7の数は任意である。同図には3本の分割桟を設け
た例が示されており、それによって脱塩室1はA、B、
C、Dの4つの部屋に分割される。
The frame 3 is used for filling the ion exchange resin.
The cation exchange membrane 4 (or the anion exchange membrane 5) is adhered to one side surface of the frame body 3, then the inner space of the frame body 3 is filled with an ion exchange resin, and the other side surface of the frame body 3 is filled with anion after the resin is filled. The exchange membrane 5 (or the cation exchange membrane 4) is adhered, and the ion exchange resin is sealed in the space formed by both the ion exchange membranes 4 and 5 and the frame 3. In this case, as shown in FIG. 2, a dividing bar 7 as a partition wall is provided in the frame body 3 so that each ion exchange resin can be independently filled depending on the type of the ion exchange resin to be filled. Is preferred. The number of dividing bars 7 is arbitrary. The figure shows an example in which three division bars are provided, whereby the demineralization chamber 1 has A, B,
It is divided into four rooms, C and D.

【0018】下向流通水方式においては、部屋Aにアニ
オン交換樹脂が充填され、それ以外の部屋B、C、Dに
は例えばカチオン交換樹脂、アニオン交換樹脂、カチオ
ン交換樹脂が順次充填される。上向流通水方式の場合に
は、部屋Dにアニオン交換樹脂が充填され、それ以外の
部屋C、B、Aには例えばカチオン交換樹脂、アニオン
交換樹脂、カチオン交換樹脂が順次充填される。
In the downward circulating water system, the room A is filled with an anion exchange resin, and the other rooms B, C and D are sequentially filled with, for example, a cation exchange resin, an anion exchange resin and a cation exchange resin. In the case of the upward flowing water system, the room D is filled with the anion exchange resin, and the other rooms C, B and A are sequentially filled with the cation exchange resin, the anion exchange resin and the cation exchange resin, for example.

【0019】このように枠体3内に分割桟7を設けるこ
とにより、各イオン交換樹脂を充填する際の作業が容易
になると共に、装置の輸送中或いは運転中に両イオン交
換樹脂層が混合されることなく、充填した時のまま各イ
オン交換樹脂層の分割状態を維持することができる。
By thus providing the dividing bars 7 in the frame 3, the work of filling each ion exchange resin is facilitated, and both ion exchange resin layers are mixed during transportation or operation of the apparatus. It is possible to maintain the divided state of each ion-exchange resin layer as it is when it is filled.

【0020】尚、分割桟7には、イオン交換樹脂は通さ
ず水のみを通す通流孔8が穿設される。9は被処理水入
口(但し、上向流通水の場合は脱イオン水出口とな
る)、10は脱イオン水出口(但し、上向流通水の場合
は被処理水入口となる)である。
The split bar 7 is provided with a through hole 8 through which the ion exchange resin does not pass but only water passes. Reference numeral 9 is an inlet for treated water (however, it becomes a deionized water outlet in the case of upward flowing water), and 10 is a deionized water outlet (however, it becomes a treated water inlet in the case of upward flowing water).

【0021】上記の如く構成される脱イオンモジュール
6は離間して複数並設される。各脱イオンモジュール
6、6間には四周枠状に形成されたゴムパッキン等の水
密性部材からなるスペーサー11が介在され、このよう
にして形成される空間部を濃縮室2として構成する。濃
縮室2の内部空間には、イオン交換膜4、5同士の密着
を防止して濃縮水の流路を確保するために、通常、イオ
ン交換繊維、合成樹脂製網体等の流路形成材が充填され
る。
A plurality of deionization modules 6 constructed as described above are arranged in parallel with each other. A spacer 11 made of a watertight member such as a rubber packing formed in a four-circle frame shape is interposed between the deionization modules 6 and 6, and the space portion thus formed constitutes the concentration chamber 2. In the internal space of the concentrating chamber 2, in order to prevent the adhesion of the ion exchange membranes 4 and 5 to each other and to secure a flow path of the concentrated water, a flow path forming material such as an ion exchange fiber or a synthetic resin net body is usually used. Is filled.

【0022】上記の如き脱塩室1と濃縮室2との交互配
列体の両側部に陽極12と陰極13を配置し、特に図示
しないが陽極12、陰極13の近傍にそれぞれ仕切膜を
設け、該仕切膜と陽極12との間の空間部を陽極室14
として構成し且つ該仕切膜と陰極13との間の空間部を
陰極室15として構成する。
An anode 12 and a cathode 13 are arranged on both sides of the alternate arrangement of the desalting chamber 1 and the concentrating chamber 2 as described above. Partitioning films are provided in the vicinity of the anode 12 and the cathode 13, respectively, although not particularly shown. A space between the partition film and the anode 12 is defined as an anode chamber 14
And the space between the partition film and the cathode 13 is configured as the cathode chamber 15.

【0023】図中、16は被処理水流入ライン、17は
脱イオン水流出ライン、18は濃縮水流入ライン、19
は濃縮水流出ライン、20は電極水流入ライン、21は
電極水流出ラインである。
In the figure, 16 is a treated water inflow line, 17 is a deionized water outflow line, 18 is a concentrated water inflow line, and 19 is a concentrated water inflow line.
Is a concentrated water outflow line, 20 is an electrode water inflow line, and 21 is an electrode water outflow line.

【0024】上記の如く構成される装置を用いて脱イオ
ン水を製造するに当たっては、被処理水流入ライン16
より被処理水を脱塩室1内に流入し、濃縮水流入ライン
18より濃縮水を濃縮室2内に流入し、且つ陽極室1
4、陰極室15にそれぞれ電極水流入ライン20、20
を通して電極水を流入する。尚、濃縮水としては、通
常、脱塩室1に供給する被処理水と同じものが供給され
る。一方、陽極12、陰極13間に電圧を印加し、被処
理水、濃縮水の流れの方向に対して直角方向に直流電流
を通じる。
In producing deionized water using the apparatus constructed as described above, the treated water inflow line 16 is used.
More water to be treated flows into the desalination chamber 1, concentrated water flows into the concentration chamber 2 through the concentrated water inflow line 18, and the anode chamber 1
4, the cathode chamber 15 electrode water inflow lines 20, 20 respectively
Through the electrode water. As the concentrated water, the same water as the water to be treated which is supplied to the desalting chamber 1 is usually supplied. On the other hand, a voltage is applied between the anode 12 and the cathode 13, and a direct current is passed in a direction perpendicular to the flow directions of the water to be treated and the concentrated water.

【0025】以下、図1に示す如く、被処理水の供給を
下向流通水方式とし、且つ脱塩室1内のイオン交換樹脂
層を上から順に、アニオン交換樹脂層22a、カチオン
交換樹脂層23a、アニオン交換樹脂層22b、カチオ
ン交換樹脂層23bとして配置した場合を例にとり本発
明を詳細に説明する。
Hereinafter, as shown in FIG. 1, the water to be treated is supplied in the downward flowing water system, and the ion-exchange resin layer in the desalting chamber 1 is an anion-exchange resin layer 22a and a cation-exchange resin layer in order from the top. The present invention will be described in detail by exemplifying the case where the layers are arranged as 23a, the anion exchange resin layer 22b, and the cation exchange resin layer 23b.

【0026】脱塩室1内に下向流で供給された被処理水
は最初、アニオン交換樹脂層22a内を流下する。一
方、濃縮水の濃縮室2への供給は被処理水の通水方向と
は反対方向の上向流通水方式にて行なう。
The water to be treated supplied in a downward flow into the desalination chamber 1 first flows down in the anion exchange resin layer 22a. On the other hand, the concentrated water is supplied to the concentrating chamber 2 by an upward flowing water system in a direction opposite to the water flowing direction of the treated water.

【0027】被処理水が最初、アニオン交換樹脂層22
aを通過する際、被処理水中の不純物イオンとしてのア
ニオンが除去され、次のカチオン交換樹脂層23aを通
過する際、不純物イオンとしてのカチオンが除去され、
以下同様に脱イオンが繰り返し行なわれ、それにより脱
イオン水が得られ、この脱イオン水は脱イオン水流出ラ
イン17より流出する。
First, the water to be treated is an anion exchange resin layer 22.
When passing through a, anions as impurity ions in the water to be treated are removed, and when passing through the next cation exchange resin layer 23a, cations as impurity ions are removed.
Thereafter, deionization is repeated in the same manner to obtain deionized water, and this deionized water flows out from the deionized water outflow line 17.

【0028】脱塩室1内にて被処理水より除去された不
純物イオンはイオン交換膜を通って濃縮室2に移動す
る。即ち、アニオンは陽極12側に吸引され、アニオン
交換膜5を通って隣接する濃縮室2に移動し、またカチ
オンは陰極13側に吸引され、カチオン交換膜4を通っ
て隣接する濃縮室2に移動する。
Impurity ions removed from the water to be treated in the desalination chamber 1 move to the concentration chamber 2 through the ion exchange membrane. That is, the anions are attracted to the anode 12 side and move to the adjacent concentrating chamber 2 through the anion exchange membrane 5, and the cations are attracted to the cathode 13 side and pass through the cation exchange membrane 4 to the adjacent concentrating chamber 2. Moving.

【0029】濃縮室2を流れる濃縮水はこの移動してく
るアニオン及びカチオンを受け取り、不純物イオンを濃
縮した濃縮水として濃縮水流出ライン19より流出す
る。尚、電極水流入ライン20より陽極室14、陰極室
15に流入した電極水は電極水流出ライン21より流出
する。
The concentrated water flowing through the concentrating chamber 2 receives the moving anions and cations and flows out from the concentrated water outflow line 19 as concentrated water in which impurity ions are concentrated. The electrode water flowing into the anode chamber 14 and the cathode chamber 15 from the electrode water inflow line 20 flows out from the electrode water outflow line 21.

【0030】被処理水が脱塩室において、最初にアニオ
ン交換樹脂層22aを通過するようにすると、シリカの
除去率が向上するが、それは次のような理由によるもの
と考えられる。
When the water to be treated first passes through the anion exchange resin layer 22a in the desalting chamber, the removal rate of silica is improved, which is considered to be due to the following reason.

【0031】即ち、被処理水が最初にアニオン交換樹脂
に接触すると、不純物イオンの中で主にアニオンのみが
脱イオンされ、しかも該アニオンのみが濃縮室2に移動
し、脱塩室1の当該アニオン交換樹脂層22aにはカチ
オンが残り、このカチオンに相当する量のアルカリが一
時的に生成され、それにより被処理水が一時的にアルカ
リ性となるため、シリカの解離度が向上し、その結果、
シリカの解離したイオンが濃縮室へ移動する移動量が多
くなって、シリカの除去率を向上できるものと考えられ
る。
That is, when the water to be treated first comes into contact with the anion exchange resin, only the anion is mainly deionized among the impurity ions, and only the anion moves to the concentration chamber 2 and the deionization chamber 1 concerned. Cations remain in the anion exchange resin layer 22a, and an amount of alkali corresponding to the cations is temporarily generated, whereby the water to be treated becomes temporarily alkaline, so that the dissociation degree of silica is improved, and as a result, ,
It is considered that the dissociated ions of silica move to the concentrating chamber in a large amount and the removal rate of silica can be improved.

【0032】ここにおいて、本発明は被処理水の通水方
向と濃縮水の通水方向を相互に反対方向としていること
により、シリカの除去率を更に一段と増大できる。その
理由は次のように考えられる。
In the present invention, the removal rate of silica can be further increased by setting the water flow directions of the water to be treated and the water flow of the concentrated water to be opposite to each other. The reason is considered as follows.

【0033】即ち、脱塩室1に流入した被処理水は次第
に脱イオンされながら流下するので脱塩室の下部に行く
に従って不純物イオン濃度は小さくなる。従って脱塩室
の上部(ここにはアニオン交換樹脂層22aが配置され
ている)においてイオン濃度は最も大きい。一方、濃縮
室2に流入した濃縮水は脱塩室から移動してくるイオン
を受け取りながら上昇していくので濃縮室の上部に行く
に従ってイオン濃度は大きくなる。このように脱塩室上
部と濃縮室上部が共にイオン濃度の大きい部分となり、
脱塩室と濃縮室における、イオン濃度が最も大きく高導
電率を示す2つの部分が直流電流の流れに沿って隣接す
る状況となる。
That is, since the water to be treated which has flowed into the desalting chamber 1 flows down while being gradually deionized, the impurity ion concentration becomes smaller toward the lower part of the desalting chamber. Therefore, the ion concentration is the highest in the upper part of the desalting chamber (where the anion exchange resin layer 22a is arranged). On the other hand, the concentrated water that has flowed into the concentrating chamber 2 rises while receiving the ions moving from the desalting chamber, so that the ion concentration increases toward the upper part of the concentrating chamber. In this way, both the upper part of the desalting chamber and the upper part of the concentrating chamber have large ion concentrations,
In the desalting chamber and the concentrating chamber, the two portions having the highest ion concentration and high conductivity are adjacent to each other along the flow of the direct current.

【0034】その結果、アニオン交換樹脂層22a部分
の電流密度が高まり、アニオンの濃縮室への移動を一層
促進する作用が生じる。アニオンの移動が一層促進され
ることにより、脱塩室のアニオン交換樹脂層22a部分
における被処理水のアルカリ性がより一層強まり、その
ためシリカの解離度が更に一段と増大する。その結果、
シリカの解離イオンの濃縮室への移動量を著しく増大し
て、シリカの除去率を飛躍的に向上することができる。
As a result, the current density in the portion of the anion exchange resin layer 22a is increased, and the action of further promoting the movement of anions into the concentrating chamber occurs. By further promoting the movement of anions, the alkalinity of the water to be treated in the anion exchange resin layer 22a portion of the desalting chamber is further strengthened, so that the dissociation degree of silica is further increased. as a result,
The amount of dissociated ions of silica transferred to the concentrating chamber can be remarkably increased, and the removal rate of silica can be dramatically improved.

【0035】シリカの解離平衡式を示すと次の通りであ
る。
The dissociation equilibrium equation of silica is as follows.

【0036】[0036]

【化1】 Embedded image

【0037】ここで、pK1 、pK2 は解離定数で、p
1 =9.8、pK2 =12.16である。
Here, pK 1 and pK 2 are dissociation constants, p
K 1 = 9.8 and pK 2 = 12.16.

【0038】本発明方法によると、従来法に比べて脱塩
室のアニオン交換樹脂層22a部分における被処理水の
アルカリ性がより一層強まり、シリカがHSiO3 -
はSiO3 2-のイオン態に解離するのに必要且つ充分な
pHとなる。従って、本発明によれば、シリカをHSi
3 - の形で除去することも或いはSiO3 2-の形で除
去することもいずれも可能である。しかしながら、2価
イオンであるSiO3 2-の形で除去する場合は1価イオ
ンであるHSiO3 - の形で除去する場合に比べて2倍
の電流が必要となり、電力消費量が嵩み経済的に得策で
ないから、HSiO3 - の形で除去することが好まし
い。そのためには、脱塩室のアニオン交換樹脂層22a
部分における被処理水のpHが9.5〜11.0となる
条件で脱イオンを行なうことが好ましい。
According to the method of the present invention, the alkalinity of the water to be treated in the portion of the anion exchange resin layer 22a in the desalting chamber becomes stronger than that in the conventional method, and the silica is dissociated into the ionic state of HSiO 3 or SiO 3 2−. To obtain the necessary and sufficient pH. Therefore, according to the invention, silica is
It is possible to remove either in the form of O 3 or in the form of SiO 3 2− . However, the removal of divalent ions in the form of SiO 3 2− requires twice as much current as the removal of monovalent ions in the form of HSiO 3 , resulting in increased power consumption and economic Since it is not a good idea, it is preferable to remove it in the form of HSiO 3 . To that end, the anion exchange resin layer 22a of the desalting chamber
It is preferable to perform deionization under the condition that the pH of the water to be treated in the portion is 9.5 to 11.0.

【0039】尚、本発明によれば、一般的に、弱電解質
であるために比較的除去困難であるとされている成分の
除去に効果的であり、従ってシリカ以外に例えば炭酸
(CO2 )の除去にも極めて有効であり、その除去効率
を向上できるものである。
In addition, according to the present invention, it is effective for removing components which are generally considered to be relatively difficult to remove due to the weak electrolyte, and therefore, for example, carbonic acid (CO 2 ) other than silica can be removed. It is also extremely effective in removing the above, and can improve its removal efficiency.

【0040】[0040]

【実施例】【Example】

実施例、比較例 表1に示す水質の工業用水を逆浸透膜装置で処理して同
表に示す水質の透過水を得た。この透過水を被処理水及
び濃縮水として用い、4個の脱イオンモジュールを並設
して構成される電気式脱イオン水製造装置における脱塩
室、濃縮室にそれぞれ通水し(被処理水の線速度は約4
0m/hr)、約1Aの電流を流して脱イオンを行な
い、脱イオン水を製造した。
Examples, Comparative Examples Industrial water having the water quality shown in Table 1 was treated with a reverse osmosis membrane device to obtain permeated water having the water quality shown in the table. Using this permeated water as treated water and concentrated water, water is passed through a desalting chamber and a concentrating chamber in an electric deionized water production apparatus configured by arranging four deionization modules side by side (treated water Linear velocity is about 4
0 m / hr), a deionized water was produced by applying a current of about 1 A to produce deionized water.

【0041】この場合、脱塩室内におけるイオン交換樹
脂層の配列及び被処理水と濃縮水の通水方向に関する条
件を以下に示すように種々変えて脱イオン処理を行なっ
た。 (実施例1):脱塩室内の被処理水入口側より順に、高
さ300mmのアニオン交換樹脂層、高さ100mmの
カチオン交換樹脂層、高さ100mmのアニオン交換樹
脂層、高さ100mmのカチオン交換樹脂層を配置し、
被処理水を下向流で通水し、濃縮水を上向流で通水し
た。 (実施例2):脱塩室内の被処理水入口側より順に、高
さ300mmのアニオン交換樹脂層、高さ300mm
の、アニオン交換樹脂とカチオン交換樹脂との混合イオ
ン交換樹脂層(混合比は体積比でアニオン交換樹脂:カ
チオン交換樹脂=1:2)を配置し、被処理水を下向流
で通水し、濃縮水を上向流で通水した。 (比較例1):通水方式を除き実施例1と同様とした。
通水方式としては、被処理水、濃縮水を共に下向流で通
水した。 (比較例2):通水方式を除き実施例2と同様とした。
通水方式としては、被処理水、濃縮水を共に下向流で通
水した。 (比較例3):脱塩室内にアニオン交換樹脂とカチオン
交換樹脂との混合イオン交換樹脂(混合比は体積比でア
ニオン交換樹脂:カチオン交換樹脂=2:1)を充填し
て高さ600mmの混合イオン交換樹脂層を形成し、被
処理水を下向流で通水し、濃縮水を上向流で通水した。 (比較例4):通水方式を除き比較例3と同様とした。
通水方式としては、被処理水、濃縮水を共に下向流で通
水した。得られた脱イオン水の水質を表2に示す。
In this case, the deionization treatment was carried out by variously changing the arrangement of the ion exchange resin layers in the deionization chamber and the conditions concerning the water flow direction of the water to be treated and the concentrated water as shown below. (Example 1): Anion exchange resin layer having a height of 300 mm, a cation exchange resin layer having a height of 100 mm, an anion exchange resin layer having a height of 100 mm, and a cation having a height of 100 mm, in this order from the treated water inlet side in the desalination chamber. Place the exchange resin layer,
The water to be treated was passed in a downward flow, and the concentrated water was passed in an upward flow. (Example 2): Anion exchange resin layer having a height of 300 mm and a height of 300 mm in order from the treated water inlet side in the desalination chamber
, A mixed ion exchange resin layer of anion exchange resin and cation exchange resin (mixing ratio is a volume ratio of anion exchange resin: cation exchange resin = 1: 2) is arranged, and the water to be treated is passed in a downward flow. The concentrated water was passed in an upward flow. (Comparative Example 1): The same as Example 1 except for the water flow system.
As the water flow system, both the water to be treated and the concentrated water were flowed in a downward flow. (Comparative Example 2): The same as Example 2 except for the water flow system.
As the water flow system, both the water to be treated and the concentrated water were flowed in a downward flow. (Comparative Example 3): A desalting chamber was filled with a mixed ion exchange resin (anion exchange resin: cation exchange resin = 2: 1 by volume ratio) of an anion exchange resin and a cation exchange resin, and the height was 600 mm. A mixed ion exchange resin layer was formed, water to be treated was passed in a downward flow, and concentrated water was passed in an upward flow. (Comparative Example 4): The same as Comparative Example 3 except for the water flow system.
As the water flow system, both the water to be treated and the concentrated water were flowed in a downward flow. The water quality of the resulting deionized water is shown in Table 2.

【0042】[0042]

【表1】 [Table 1]

【0043】[0043]

【表2】 [Table 2]

【0044】上記結果から明らかなように、本発明によ
ればシリカの除去率を飛躍的に向上でき、全体として脱
イオン水の水質を純水に近い程度に良好なものとしてい
ることが判る。
As is clear from the above results, according to the present invention, the removal rate of silica can be dramatically improved, and the quality of deionized water as a whole is as good as that of pure water.

【0045】尚、表2の結果から明らかなように、本発
明によれば、脱イオン水の抵抗率も比較例1〜4に比べ
て飛躍的に向上しているが、この抵抗率向上は本発明方
法によりシリカ除去率のみでなく炭酸の除去率も向上し
ていることを示すものである。
As is clear from the results shown in Table 2, according to the present invention, the resistivity of deionized water is dramatically improved as compared with Comparative Examples 1 to 4. This shows that not only the silica removal rate but also the carbonic acid removal rate is improved by the method of the present invention.

【0046】[0046]

【発明の効果】以上説明したように、本発明は脱塩室に
供給する被処理水の通水方向と濃縮室に供給する濃縮水
の通水方向が相互に反対方向となるように被処理水、濃
縮水をそれぞれ脱塩室、濃縮室に流入すると共に、脱塩
室に流入した被処理水が最初にアニオン交換体層を通過
するようにしたので、被処理水が最初に通過するアニオ
ン交換体層部分の電流密度が高まり、アニオンの濃縮室
への移動が促進され、該アニオン交換体層部分における
被処理水のアルカリ性が強まり、それによりシリカの解
離が進行し、その結果、シリカの除去率を従来法に比べ
飛躍的に向上することができる。
As described above, according to the present invention, the treated water to be supplied to the desalting chamber and the concentrated water to be supplied to the concentrating chamber are directed in opposite directions. Since the water to be treated and the concentrated water flow into the desalting chamber and the concentrating chamber, respectively, and the treated water that has flowed into the desalting chamber first passed through the anion exchanger layer, the anions that the treated water first passed through The current density in the exchange layer portion is increased, the transfer of anions to the concentrating chamber is promoted, the alkalinity of the water to be treated in the anion exchange layer portion is strengthened, and the dissociation of silica is thereby promoted. The removal rate can be dramatically improved as compared with the conventional method.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明方法を実施するために用いる電気式脱イ
オン水製造装置の一例を示す縦断面略図である。
FIG. 1 is a schematic vertical sectional view showing an example of an electric deionized water producing apparatus used for carrying out the method of the present invention.

【図2】脱塩室を構成するための脱イオンモジュールを
示す分解斜視図である。
FIG. 2 is an exploded perspective view showing a deionization module for forming a deionization chamber.

【符号の説明】[Explanation of symbols]

1 脱塩室 2 濃縮室 4 カチオン交換膜 5 アニオン交換膜 12 陽極 13 陰極 22a アニオン交換樹脂層 1 Desalination chamber 2 Concentration chamber 4 Cation exchange membrane 5 Anion exchange membrane 12 Anode 13 Cathode 22a Anion exchange resin layer

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 カチオン交換膜とアニオン交換膜との間
にアニオン交換体及びカチオン交換体を充填して脱塩室
を構成し、上記カチオン交換膜、アニオン交換膜を介し
て脱塩室の両側に濃縮室を設け、これらの脱塩室及び濃
縮室を陽極と陰極の間に配置し、電圧を印加しながら脱
塩室に被処理水を流入すると共に、濃縮室に濃縮水を流
入して被処理水中の不純物イオンを除去し、脱イオン水
を製造する電気脱イオン法による脱イオン水の製造方法
において、脱塩室に供給する被処理水の通水方向と濃縮
室に供給する濃縮水の通水方向が相互に反対方向となる
ように被処理水、濃縮水をそれぞれ脱塩室、濃縮室に流
入すると共に、脱塩室に流入した被処理水が最初にアニ
オン交換体層を通過するようにしたことを特徴とする電
気脱イオン法による脱イオン水の製造法。
1. A desalting chamber is formed by filling an anion exchanger and a cation exchanger between a cation exchange membrane and an anion exchange membrane, and both sides of the desalting chamber are formed through the cation exchange membrane and the anion exchange membrane. A concentrating chamber is provided in the demineralizing chamber, and the demineralizing chamber and the concentrating chamber are arranged between the anode and the cathode. While applying voltage, the water to be treated flows into the demineralizing chamber and the concentrated water flows into the concentrating chamber. In the method of producing deionized water by the electric deionization method, which removes impurity ions in the water to be treated and produces deionized water, the water flow direction of the treated water to be supplied to the desalting chamber and the concentrated water to be supplied to the concentration chamber. The untreated water and the concentrated water flow into the desalting chamber and the concentrating chamber, respectively, so that the water flows in the opposite directions, and the untreated water that flows into the desalting chamber first passes through the anion exchanger layer. By the electrodeionization method characterized by Method for producing deionized water.
【請求項2】 脱塩室内に、被処理水入口側より順にア
ニオン交換体層、カチオン交換体層を配置し、この層配
列の順番に従って被処理水が各イオン交換体層を通過す
るようにした請求項1記載の電気脱イオン法による脱イ
オン水の製造法。
2. An anion exchange layer and a cation exchange layer are arranged in this order from the treated water inlet side in the desalting chamber, and the treated water passes through each ion exchange layer in the order of the layer arrangement. The method for producing deionized water by the electric deionization method according to claim 1.
【請求項3】 アニオン交換体層、カチオン交換体層の
順に配置された1組のイオン交換体積層体を、上記層配
列が繰り返される如く2組以上配置し、これにより構成
される層配列の順番に従って被処理水が各イオン交換体
層を通過するようにした請求項2記載の電気脱イオン法
による脱イオン水の製造法。
3. A set of ion exchanger laminates in which an anion exchanger layer and a cation exchanger layer are arranged in this order, and two or more sets are arranged so that the above layer arrangement is repeated. The method for producing deionized water by the electric deionization method according to claim 2, wherein the water to be treated is allowed to pass through each ion exchanger layer in order.
【請求項4】 脱塩室内に、被処理水入口側より順にア
ニオン交換体層、カチオン交換体層、アニオン交換体と
カチオン交換体との混合イオン交換体層を配置し、この
層配列の順番に従って被処理水が各イオン交換体層を通
過するようにした請求項1記載の電気脱イオン法による
脱イオン水の製造法。
4. An anion exchanger layer, a cation exchanger layer, and a mixed ion exchanger layer of an anion exchanger and a cation exchanger are arranged in this order from the treated water inlet side in the desalting chamber, and the order of the layer arrangement is set. The method for producing deionized water by the electric deionization method according to claim 1, wherein the water to be treated is allowed to pass through the respective ion-exchange layers according to the method.
【請求項5】 アニオン交換体層、カチオン交換体層の
順に配置された1組のイオン交換体積層体を、上記層配
列が繰り返される如く2組以上配置し、次いで混合イオ
ン交換体層を配置し、これにより構成される層配列の順
番に従って被処理水が各イオン交換体層を通過するよう
にした請求項4記載の電気脱イオン法による脱イオン水
の製造法。
5. One set of ion exchanger laminates in which an anion exchanger layer and a cation exchanger layer are arranged in this order are arranged in two or more sets so that the above layer arrangement is repeated, and then a mixed ion exchanger layer is arranged. The method for producing deionized water by the electric deionization method according to claim 4, wherein the water to be treated passes through each of the ion-exchange layers according to the order of the layer arrangement constituted by the above.
【請求項6】 脱塩室内に、被処理水入口側より順にア
ニオン交換体層、アニオン交換体とカチオン交換体との
混合イオン交換体層を配置し、この層配列の順番に従っ
て被処理水が各イオン交換体層を通過するようにした請
求項1記載の電気脱イオン法による脱イオン水の製造
法。
6. An anion exchanger layer and a mixed ion exchanger layer of an anion exchanger and a cation exchanger are arranged in this order from the treated water inlet side in the demineralization chamber, and the treated water is treated according to the order of the layer arrangement. The method for producing deionized water by the electric deionization method according to claim 1, wherein the deionized water is passed through each ion exchanger layer.
JP31921994A 1994-11-29 1994-11-29 Production method of deionized water by electrodeionization method Expired - Lifetime JP3273707B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP31921994A JP3273707B2 (en) 1994-11-29 1994-11-29 Production method of deionized water by electrodeionization method
PCT/JP1996/001518 WO1997046492A1 (en) 1994-11-29 1996-06-03 Process for producing deionized water by electrical deionization technique

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP31921994A JP3273707B2 (en) 1994-11-29 1994-11-29 Production method of deionized water by electrodeionization method
PCT/JP1996/001518 WO1997046492A1 (en) 1994-11-29 1996-06-03 Process for producing deionized water by electrical deionization technique

Publications (2)

Publication Number Publication Date
JPH08150326A true JPH08150326A (en) 1996-06-11
JP3273707B2 JP3273707B2 (en) 2002-04-15

Family

ID=18107745

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31921994A Expired - Lifetime JP3273707B2 (en) 1994-11-29 1994-11-29 Production method of deionized water by electrodeionization method

Country Status (1)

Country Link
JP (1) JP3273707B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997046492A1 (en) * 1994-11-29 1997-12-11 Organo Corporation Process for producing deionized water by electrical deionization technique
EP1068901A2 (en) * 1999-07-13 2001-01-17 Kurita Water Industries Ltd. Electrodeionization apparatus
US6248226B1 (en) 1996-06-03 2001-06-19 Organo Corporation Process for producing deionized water by electrodeionization technique
JP2001327971A (en) * 2000-05-19 2001-11-27 Kurita Water Ind Ltd Electro-deionizing apparatus
US6451419B1 (en) 1996-08-12 2002-09-17 Jsp Corporation Shock absorbing material
JP2003071456A (en) * 2001-08-30 2003-03-11 Kurita Water Ind Ltd Electric deionizing apparatus
JP2004033977A (en) * 2002-07-05 2004-02-05 Kurita Water Ind Ltd Operation method of electrically deionizing apparatus
KR100465580B1 (en) * 2000-07-13 2005-01-13 쿠리타 고교 가부시키가이샤 Electro-deionization device and method for operating the same
WO2008078945A1 (en) * 2006-12-27 2008-07-03 Lumiwell Engineering Inc. Apparatus for physically separating polar substance
JP2009541032A (en) * 2006-06-22 2009-11-26 シーメンス ウォーター テクノロジース コーポレイション Water treatment with low scale generation capacity
US7666288B2 (en) 2002-07-08 2010-02-23 Kurita Water Industries Ltd. Apparatus for electrodeionization of water
JP2010089093A (en) * 2003-04-11 2010-04-22 Millipore Corp Electrodeionization device
KR20140074896A (en) * 2011-09-16 2014-06-18 제너럴 일렉트릭 캄파니 Electrodialysis method and apparatus for passivating scaling species
US9011660B2 (en) 2007-11-30 2015-04-21 Evoqua Water Technologies Llc Systems and methods for water treatment
JP2015080765A (en) * 2013-10-23 2015-04-27 オルガノ株式会社 Pure water production apparatus
US9023185B2 (en) 2006-06-22 2015-05-05 Evoqua Water Technologies Llc Low scale potential water treatment

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997046492A1 (en) * 1994-11-29 1997-12-11 Organo Corporation Process for producing deionized water by electrical deionization technique
US6248226B1 (en) 1996-06-03 2001-06-19 Organo Corporation Process for producing deionized water by electrodeionization technique
US6451419B1 (en) 1996-08-12 2002-09-17 Jsp Corporation Shock absorbing material
EP1068901A2 (en) * 1999-07-13 2001-01-17 Kurita Water Industries Ltd. Electrodeionization apparatus
EP1068901A3 (en) * 1999-07-13 2003-06-04 Kurita Water Industries Ltd. Electrodeionization apparatus
JP2001327971A (en) * 2000-05-19 2001-11-27 Kurita Water Ind Ltd Electro-deionizing apparatus
KR100465580B1 (en) * 2000-07-13 2005-01-13 쿠리타 고교 가부시키가이샤 Electro-deionization device and method for operating the same
JP2003071456A (en) * 2001-08-30 2003-03-11 Kurita Water Ind Ltd Electric deionizing apparatus
JP2004033977A (en) * 2002-07-05 2004-02-05 Kurita Water Ind Ltd Operation method of electrically deionizing apparatus
US7666288B2 (en) 2002-07-08 2010-02-23 Kurita Water Industries Ltd. Apparatus for electrodeionization of water
JP2010089093A (en) * 2003-04-11 2010-04-22 Millipore Corp Electrodeionization device
JP2014004586A (en) * 2003-04-11 2014-01-16 E M D Millipore Corp Electric deionization device
JP2009541032A (en) * 2006-06-22 2009-11-26 シーメンス ウォーター テクノロジース コーポレイション Water treatment with low scale generation capacity
KR101495328B1 (en) * 2006-06-22 2015-02-25 에보쿠아 워터 테크놀로지스 엘엘씨 Electrodeionization apparatus and low scale potential water treatment
US9023185B2 (en) 2006-06-22 2015-05-05 Evoqua Water Technologies Llc Low scale potential water treatment
US9586842B2 (en) 2006-06-22 2017-03-07 Evoqua Water Technologies Llc Low scale potential water treatment
WO2008078945A1 (en) * 2006-12-27 2008-07-03 Lumiwell Engineering Inc. Apparatus for physically separating polar substance
US9011660B2 (en) 2007-11-30 2015-04-21 Evoqua Water Technologies Llc Systems and methods for water treatment
US9637400B2 (en) 2007-11-30 2017-05-02 Evoqua Water Technologies Llc Systems and methods for water treatment
KR20140074896A (en) * 2011-09-16 2014-06-18 제너럴 일렉트릭 캄파니 Electrodialysis method and apparatus for passivating scaling species
JP2015080765A (en) * 2013-10-23 2015-04-27 オルガノ株式会社 Pure water production apparatus

Also Published As

Publication number Publication date
JP3273707B2 (en) 2002-04-15

Similar Documents

Publication Publication Date Title
KR100409416B1 (en) Manufacturing method of deionized water by electric deionization method
JP3385553B2 (en) Electric deionized water production apparatus and deionized water production method
CA2459840C (en) Apparatus for electrodeionization of water
US4636296A (en) Process and apparatus for treatment of fluids, particularly desalinization of aqueous solutions
JP2865389B2 (en) Electric deionized water production equipment and frame used for it
JP4778664B2 (en) Apparatus and method for electrodialysis
JP3273707B2 (en) Production method of deionized water by electrodeionization method
JP3864891B2 (en) Electric deionizer
US3761386A (en) Novel membrane spacer
WO1997046492A1 (en) Process for producing deionized water by electrical deionization technique
JP3305139B2 (en) Method for producing deionized water by electrodeionization method
JP2007516056A (en) Electric desalination module and apparatus equipped with the module
WO1997046491A1 (en) Process for producing deionized water by electrical deionization technique
JP3900666B2 (en) Deionized water production method
JP3781352B2 (en) Electric deionized water production apparatus and deionized water production method
JP4597388B2 (en) Electric deionized water production apparatus and deionized water production method
JP2001259646A (en) Electric deionized water producer
US8529759B2 (en) Electric deionized water production apparatus
JP3188511B2 (en) Electrodialysis machine
JP4497388B2 (en) Electric deionized water production apparatus and deionized water production method
JP2000061271A (en) Pure water production and device therefor
JP4453972B2 (en) Electrodeionization apparatus and operation method of electrodeionization apparatus
JPH0221855B2 (en)
JP2002136971A (en) Electrodeionizing apparatus
JPH02180620A (en) Desalting apparatus

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080201

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090201

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100201

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100201

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110201

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120201

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120201

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130201

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140201

Year of fee payment: 12

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term