JP2003145162A - Electrode for electrodialysis and electrodialysis method using the electrode - Google Patents

Electrode for electrodialysis and electrodialysis method using the electrode

Info

Publication number
JP2003145162A
JP2003145162A JP2001342322A JP2001342322A JP2003145162A JP 2003145162 A JP2003145162 A JP 2003145162A JP 2001342322 A JP2001342322 A JP 2001342322A JP 2001342322 A JP2001342322 A JP 2001342322A JP 2003145162 A JP2003145162 A JP 2003145162A
Authority
JP
Japan
Prior art keywords
electrodialysis
electrode
anode
diamond
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001342322A
Other languages
Japanese (ja)
Other versions
JP3914032B2 (en
Inventor
Yoshinori Nishiki
善則 錦
Miwako Nara
美和子 奈良
Tsuneto Furuta
常人 古田
Kuniaki Yamada
邦晃 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
De Nora Permelec Ltd
Original Assignee
Permelec Electrode Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Permelec Electrode Ltd filed Critical Permelec Electrode Ltd
Priority to JP2001342322A priority Critical patent/JP3914032B2/en
Publication of JP2003145162A publication Critical patent/JP2003145162A/en
Application granted granted Critical
Publication of JP3914032B2 publication Critical patent/JP3914032B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an electrode for electrodialysis which has corrosion resistance and can be operated over a long time of period without replacement even when used for electrodialysis generating corrosive substances of high concentration, and an electrodialysis vessel. SOLUTION: An anode 7 supporting conductive diamond on the surface is used in the electrodialysis vessel 1. As the anode has high resistance against fluoride ions, it hardly deteriorates even when the fluoride ions in water 10 to be treated are moved to an anode chamber 4 and concentrated therein.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、電気透析用、特に
フッ化物イオンを含む被処理水の電気透析用として有用
な電極、該電極を装着した電気透析槽及び前記電極を電
気透析用として使用する方法に関する。
TECHNICAL FIELD The present invention relates to an electrode useful for electrodialysis, particularly for electrodialysis of water to be treated containing fluoride ions, an electrodialysis tank equipped with the electrode, and the electrode used for electrodialysis. On how to do.

【0002】[0002]

【従来の技術】産業、生活廃棄物に起因する大気汚染、
河川、湖沼の水質悪化の、環境や人体への影響が憂慮さ
れ、その問題解決のための技術的対策が急務になってい
る。半導体製造工場では基盤及び回路製造プロセスにお
いて、所要の元素材料として、又表面洗浄を目的として
種々のフッ素化合物を多量に消費し、フッ化物或いはそ
のイオンを多く排出する。又樹脂工業、医薬、農薬分野
でのフッ素化合物は重要な合成製品であり、これらのフ
ッ素化合物に起因するフッ化物イオンの排出量は多くな
る。これらのフッ化物又はフッ化物イオンは環境負荷が
大きく、その排出規制値を厳守するための対策が急がれ
ている。
2. Description of the Related Art Air pollution caused by industry and household waste,
There is a concern that the deterioration of water quality in rivers and lakes will affect the environment and the human body, and there is an urgent need for technical measures to solve the problem. In a semiconductor manufacturing plant, various fluorine compounds are consumed in large amounts as a required elemental material and for the purpose of surface cleaning in a substrate and circuit manufacturing process, and a large amount of fluoride or its ion is discharged. Fluorine compounds are important synthetic products in the fields of resin industry, medicine, and agrochemicals, and the emission amount of fluoride ions due to these fluorine compounds increases. These fluorides or fluoride ions have a large environmental load, and there is an urgent need for measures to strictly adhere to the emission control values.

【0003】フッ素化合物が高濃度であれば、水酸化カ
ルシウムとフッ酸を反応させて、CaF2の沈殿として
回収できるが、フッ素含有回収物にはシリコン金属が混
入しやすく、再生原材料としての価値が乏しいという問
題点がある。現状のフッ素系排ガス成分の除去は、燃焼
分解し、バグフィルターで一部回収後、スクラバーでフ
ッ化水素を吸収させ、あるいはその回収効率を向上させ
るために水酸化ナトリウムなどのアルカリを添加して、
100〜1000ppmのフッ素を含む排水とし、この排水から凝
集及び凝沈によりスラリーを回収することにより行われ
る。この回収方法では回収濃度が低いため電気透析を用
いて10〜100倍程度に濃縮することが好ましいが、フッ
化物イオンの存在下では特に陽極側でフッ酸が生成する
ため、安定な電極及びセル材料が存在しないという問題
があった。一般に酸化を行う電極である陽極として、フ
ェライト、酸化鉛、酸化錫、白金、DSA、黒鉛、アモ
ルファスカーボン(grassy carbon:GC)等があり、
還元を行う電極である陰極としては、鉛、鉄、白金、チ
タン、カーボン等がある。電極基体として使用しうる材
料は、寿命の長期化を達成しかつ処理表面の汚染を防止
するために耐食性を有することが好ましく、陽極給電体
としてはチタン等の弁金属又はその合金の使用が望まし
く、陽極触媒としては白金やイリジウム等の貴金属及び
それらの酸化物の使用が望ましい。
If the concentration of the fluorine compound is high, it can be recovered as CaF 2 precipitate by reacting calcium hydroxide with hydrofluoric acid, but silicon metal is easily mixed in the fluorine-containing recovered material, which makes it valuable as a recycled raw material. There is a problem that is scarce. The current fluorine-based exhaust gas components are removed by combustion decomposition and partial recovery with a bag filter, followed by absorption of hydrogen fluoride with a scrubber, or addition of alkali such as sodium hydroxide to improve the recovery efficiency. ,
It is carried out by collecting wastewater containing 100 to 1000 ppm of fluorine and collecting the slurry from this wastewater by coagulation and coagulation. In this recovery method, the concentration of recovery is low, so it is preferable to concentrate it to about 10 to 100 times by using electrodialysis, but in the presence of fluoride ions, hydrofluoric acid is generated especially on the anode side, so that a stable electrode and cell are used. There was a problem that the material did not exist. Generally, there are ferrite, lead oxide, tin oxide, platinum, DSA, graphite, amorphous carbon (grassy carbon: GC), etc. as an anode that is an electrode for oxidation.
Examples of the cathode that is an electrode for reduction include lead, iron, platinum, titanium, carbon and the like. The material that can be used as the electrode substrate preferably has corrosion resistance in order to achieve a long life and prevent contamination of the treated surface, and it is desirable to use a valve metal such as titanium or its alloy as the anode power feeder. As the anode catalyst, it is desirable to use precious metals such as platinum and iridium and their oxides.

【0004】しかしながらこれらの高価な材料を使用し
ても、通電を行うと電流密度や通電時間に応じて触媒や
基体材料が消耗し、電解液中に溶出することが知られて
おり、より耐食性の優れた電極が望まれている。特にフ
ッ素化合物やそのイオンが存在する場合は、耐性のある
電極材料が非常に少なく安定な操業を行うことが困難で
あった。白金などの貴金属は比較的安定であるが、収率
及び選択性の面で不十分で、更に高価であることが実用
化の障害となっている。
However, even if these expensive materials are used, it is known that when electricity is applied, the catalyst and substrate materials are consumed in accordance with the current density and the duration of the application, and are eluted into the electrolytic solution. An excellent electrode is desired. In particular, when a fluorine compound or its ion is present, it is difficult to perform stable operation because there are very few resistant electrode materials. Precious metals such as platinum are relatively stable, but they are insufficient in terms of yield and selectivity, and are expensive, which is an obstacle to practical use.

【0005】ダイヤモンドは、熱伝導性、光学的透過
性、高温かつ酸化に対する耐久性に優れており、特にド
ーピングにより電気伝導性の制御も可能であることか
ら、半導体デバイス、エネルギー変換素子等として有望
視されている。電気化学用電極としては、Swainらはダ
イヤモンドの酸性電解液中での安定性を報告し[Journal
ofElectrochemical Society, Vol.141, p.3382 (199
4)]、他のカーボン材料に比較して遥かに優れているこ
とを示唆した。米国特許第5,399,247号明細書は、ダイ
ヤモンドを陽極材料に用いて有機廃水が分解できること
を示唆している。Fotiは、有機物の電解酸化分解におい
て白金と異なる分解機構により有機物の二酸化炭素への
分解が促進されることを報告している[Electrochemical
and Solid-State Letters, Vol.2, p.228-230 (199
9)]。更に特開2000−204492号公報では、半導体ダイヤ
モンドから成る電極を使用する有機化合物のフッ素化反
応が開示されている。
Diamond is promising as a semiconductor device, an energy conversion element, etc., since it has excellent thermal conductivity, optical transparency, high temperature and durability against oxidation, and in particular, its electrical conductivity can be controlled by doping. Is being watched. As an electrode for electrochemistry, Swain et al. Reported the stability of diamond in acidic electrolyte [Journal
of Electrochemical Society, Vol.141, p.3382 (199
4)], suggesting that it is far superior to other carbon materials. US Pat. No. 5,399,247 suggests that diamond can be used as an anode material to decompose organic wastewater. Foti reported that the decomposition mechanism of organic matter into carbon dioxide is promoted by a decomposition mechanism different from platinum in the electrolytic oxidation decomposition of organic matter [Electrochemical
and Solid-State Letters, Vol.2, p.228-230 (199
9)]. Further, Japanese Patent Application Laid-Open No. 2000-204492 discloses a fluorination reaction of an organic compound using an electrode made of semiconductor diamond.

【0006】[0006]

【発明が解決しようとする課題】しかしながら電気透析
や電解めっき等の分野では、電解液中に不純物が存在す
ることが多く、前述の通り特にフッ化物イオンの存在す
る電気透析では陽極側でフッ酸が生成するため、安定な
電極が存在しないという問題があった。本発明は、従来
の電気透析、特に低濃度のフッ化物イオンを含有する電
気透析において該イオン回収を安定的かつ高い収率で行
える電気透析用電極及びこの電極を使用する電気透析法
を提供することを目的とする。
However, in the fields such as electrodialysis and electroplating, impurities are often present in the electrolytic solution. As described above, particularly in electrodialysis in which fluoride ions are present, hydrofluoric acid is present on the anode side. However, there is a problem that a stable electrode does not exist. The present invention provides an electrodialysis electrode capable of stably recovering the ions in a conventional electrodialysis, particularly an electrodialysis containing a low concentration of fluoride ions, and an electrodialysis method using the electrode. The purpose is to

【0007】[0007]

【課題を解決するための手段】本発明は、導電性ダイヤ
モンドを電極物質として含有する電気透析用電極及び電
気透析槽であり、更にフッ化物イオンを含む被処理水か
らフッ化物を電気透析により濃縮する方法において、電
気透析用電極として導電性ダイヤモンドを使用すること
を特徴とする方法である。
The present invention provides an electrodialysis electrode and electrodialysis tank containing conductive diamond as an electrode material, and further concentrates fluoride from electrolyzed water containing fluoride ions by electrodialysis. In the above method, conductive diamond is used as an electrode for electrodialysis.

【0008】以下本発明を詳細に説明する。本発明で
は、導電性ダイヤモンドを電気透析用として使用し、そ
の結果セル安定性の改善や高収率での目的反応生成物の
取得が達成できる。導電性ダイヤモンドは耐食性でそれ
自身がフッ化物イオン等の腐食性物質に対しても安定で
あり更に製造法にも依るが通常は緻密な層として基材上
に被覆されるため、腐食性の液体の浸透による基材の腐
食がほぼ完全に防止できる。電気透析は海水からの塩分
濃縮、飲料水の精製、廃液濃縮等、工業的に汎用されて
いる。電気透析槽では、陽イオン交換膜と陰イオン交換
膜を交互に設置し、直流電流を流すと、電解液中のイオ
ンの移動方向が反対になり、電解質の濃縮、電解液から
の脱塩が可能になる。
The present invention will be described in detail below. In the present invention, conductive diamond is used for electrodialysis, and as a result, improvement of cell stability and acquisition of the target reaction product in high yield can be achieved. Conductive diamond is corrosion resistant and stable by itself against corrosive substances such as fluoride ions, and usually depends on the manufacturing method, but it is usually coated on the substrate as a dense layer, so it is a corrosive liquid. It is possible to almost completely prevent the corrosion of the substrate due to the permeation of. Electrodialysis is industrially used for concentration of salt from seawater, purification of drinking water, concentration of waste liquid, and the like. In an electrodialysis tank, cation exchange membranes and anion exchange membranes are installed alternately, and when a direct current is applied, the movement directions of ions in the electrolyte solution are reversed, and the electrolyte is concentrated and desalted from the electrolyte solution. It will be possible.

【0009】電極間に複数のイオン交換膜を配置できる
が、電極間のセル電圧が高くなるにつれてリーク電流に
よる腐食などの問題が発生するため、10〜100対ごとに
区切り、バイポーラー板を設置することが多い。限界電
流が濃度や供給速度に応じて存在し、この限界電流を越
えた運転は電流効率の低下を招くため、脱塩率は10〜90
%の範囲に調節することが好ましい。又膜や電極の接触
を防止するために開口率の大きいスペーサーを挟み込む
ことが望ましい。このような電気透析槽でフッ化物イオ
ンを含む溶液の電気透析を行うと、陰イオンであるフッ
化物イオンが陽極に引き寄せられて陽極室内でのフッ化
物イオン濃度が上昇し、このフッ化物イオンにより従来
の電気透析槽で汎用されているフェライトや酸化鉛等の
陽極が劣化しやすくなる。従って従来の電気透析槽では
フッ化物イオンを含む溶液の処理は陽極の消耗を前提と
し、陽極を頻繁に交換しながら行うこと以外の手段がな
かった。
A plurality of ion exchange membranes can be arranged between the electrodes, but problems such as corrosion due to leak current occur as the cell voltage between the electrodes increases, so a bipolar plate is installed every 10 to 100 pairs. I often do it. There is a limiting current depending on the concentration and supply speed, and operation exceeding this limiting current causes a decrease in current efficiency, so the desalination rate is 10 to 90%.
It is preferable to adjust to the range of%. Further, it is desirable to sandwich a spacer having a large aperture ratio in order to prevent contact between the film and the electrode. When electrodialyzing a solution containing fluoride ions in such an electrodialysis tank, the fluoride ions, which are anions, are attracted to the anode and the concentration of fluoride ions in the anode chamber rises. Anodes such as ferrite and lead oxide that are commonly used in conventional electrodialysis tanks are likely to deteriorate. Therefore, in the conventional electrodialysis tank, the treatment of the solution containing the fluoride ion is premised on the consumption of the anode, and there is no means other than frequent replacement of the anode.

【0010】これに対し、本発明の一態様では、フッ化
物イオンに対して耐性を有する導電性ダイヤモンドを電
極物質として含有する陽極を使用でき、フッ化物イオン
を含む排水等の被処理水の電気透析による処理を行って
も陽極の劣化は殆ど起こらず、長期に渡って陽極を交換
することなく電気透析を実施できる。本発明におけるフ
ッ化物としては、MF、M〔BF4〕、M3〔AlF4
及びM2〔SiF6〕(ここでMはメタルカチオン又はプ
ロトンである)等があり、これらのフッ化物から少なく
とも1個のMが脱離したアニオンがフッ化物イオンであ
る。又電気透析法は汚染度の高いフッ化物イオン以外の
腐食性物質を含む溶液の処理に使用されることがあり、
その場合にも導電性ダイヤモンドを陽極とする本発明の
電気透析槽や電気透析方法は有効である。電極物質であ
る導電性ダイヤモンドは、金属などの集電体上に形成す
ることが望ましい。該集電体は導電性材料であれば問題
はないが、チタン、ニオブ、タンタル、シリコン、カー
ボン、ニッケル、タングステンカーバイド等の板、打抜
き板、金網、粉末焼結体、金属繊維焼結体等を好ましく
使用できる。
On the other hand, according to one embodiment of the present invention, an anode containing conductive diamond having resistance to fluoride ions as an electrode material can be used, and electricity of treated water such as wastewater containing fluoride ions can be used. Even if the treatment by dialysis is performed, deterioration of the anode hardly occurs, and electrodialysis can be performed for a long period of time without replacing the anode. Examples of the fluoride in the present invention include MF, M [BF 4 ], M 3 [AlF 4 ]
And M 2 [SiF 6 ] (where M is a metal cation or a proton) and the like, and an anion in which at least one M is eliminated from these fluorides is a fluoride ion. In addition, electrodialysis may be used to treat solutions containing corrosive substances other than highly contaminated fluoride ions,
Even in that case, the electrodialysis tank and electrodialysis method of the present invention using conductive diamond as an anode are effective. Conductive diamond, which is an electrode material, is preferably formed on a current collector such as a metal. There is no problem if the current collector is a conductive material, but plates such as titanium, niobium, tantalum, silicon, carbon, nickel, and tungsten carbide, punched plates, wire nets, powder sintered bodies, metal fiber sintered bodies, etc. Can be preferably used.

【0011】集電体と導電性ダイヤモンドの密着性向上
及び集電体保護のため、中間層を設けても良く、中間層
の材料は集電体の材料の炭化物や酸化物を使用できる。
集電体や中間層の表面を研磨すると密着性と反応面積増
大に寄与する。このときにダイヤモンド粉末を核として
集電体表面や中間層表面に付着させると均一なダイヤモ
ンド層を成長させる効果がある。ダイヤモンド電極は、
熱フィラメントCVD法、マイクロ波プラズマCVD
法、プラズマアークジェット法及びPVD法等により形
成できる。この他に超高圧による合成ダイヤモンド粉末
を使用する場合は、樹脂やセラミクスなどの結合材を使
用しあるいは焼成により酸化物を形成させながら前記粉
末を固定することも可能である。
An intermediate layer may be provided in order to improve the adhesion between the current collector and the conductive diamond and to protect the current collector. As the material for the intermediate layer, a carbide or oxide of the current collector material can be used.
Polishing the surface of the current collector or the intermediate layer contributes to the adhesion and increase of the reaction area. At this time, if diamond powder is used as nuclei to adhere to the surface of the current collector or the surface of the intermediate layer, it has the effect of growing a uniform diamond layer. Diamond electrode
Hot filament CVD method, microwave plasma CVD
Method, plasma arc jet method, PVD method, or the like. In addition to this, when using synthetic diamond powder under ultrahigh pressure, it is also possible to use a binder such as resin or ceramics, or fix the powder while forming an oxide by firing.

【0012】代表的なダイヤモンド電極製造方法である
熱フィラメント法について説明する。炭素源となるアル
コール等の有機化合物を水素ガス等の還元雰囲気に保
ち、フィラメントを炭素ラジカルが生成する温度1800〜
2400℃に加熱する。そして前記雰囲気内に、ダイヤモン
ドが析出する温度領域(750〜950℃)になるように給電
体や電極基体を配置する。このときの水素に対する有機
化合物濃度は0.1〜10容量%、供給速度は反応容器のサ
イズにも依るが0.01〜10リットル/分、圧力が2kPa
〜100kPaであることが好ましい。前記電極基体上に
は通常0.01〜1μmの粒径のダイヤモンド微粒子が析出
する。このダイヤモンドの層の厚さは操作時間の増減に
より調節すれば良く、該厚さは電極基体への電解液の浸
入を防ぐ目的のために0.1〜50μmとすることが好まし
く、1〜10μmとすることが特に好ましい。前記マイク
ロ波プラズマCVD法では、周波数が2〜3GHzのマ
イクロ波により、原料をラジカル化する。
The hot filament method, which is a typical diamond electrode manufacturing method, will be described. Keeping organic compounds such as alcohol, which is a carbon source, in a reducing atmosphere such as hydrogen gas, the temperature at which filaments are generated by carbon radicals 1800-
Heat to 2400 ° C. Then, the power supply body and the electrode base body are arranged in the atmosphere so that the temperature range (750 to 950 ° C.) in which diamond is deposited is reached. At this time, the concentration of the organic compound with respect to hydrogen is 0.1 to 10% by volume, the supply rate is 0.01 to 10 liter / min, and the pressure is 2 kPa, depending on the size of the reaction vessel.
It is preferably -100 kPa. Diamond fine particles having a particle size of 0.01 to 1 μm are usually deposited on the electrode substrate. The thickness of the diamond layer may be adjusted by increasing or decreasing the operating time, and the thickness is preferably 0.1 to 50 μm, and preferably 1 to 10 μm for the purpose of preventing the electrolyte solution from entering the electrode substrate. Is particularly preferred. In the microwave plasma CVD method, the raw material is converted into radicals by a microwave having a frequency of 2 to 3 GHz.

【0013】粉末触媒層として構成する導電性ダイヤモ
ンドの体積率は、電気抵抗を小さくし有効な電極面積を
増加させるためには30%以上とすることが好ましい。又
電極表面にフッ素樹脂等の疎水性成分を被覆すると被処
理物質を捕捉しやすくなるため反応効率を向上させるこ
とができる。良好な導電性を得るためには、原子価の異
なる元素を微量添加することが不可欠であり、ホウ素や
リンの好ましい含有率は1〜100000ppmであり、より好
ましい含有率は100〜10000ppmである。具体的な原料化
合物としては、毒性の低い酸化ホウ素や五酸化二リンな
どがある。無定形酸化珪素との複合物質であるDLN
(diamond-like nano-composite)なども使用できる。
The volume ratio of the conductive diamond constituting the powder catalyst layer is preferably 30% or more in order to reduce the electric resistance and increase the effective electrode area. Further, if the surface of the electrode is coated with a hydrophobic component such as a fluororesin, the substance to be treated can be easily captured, so that the reaction efficiency can be improved. In order to obtain good conductivity, it is indispensable to add trace amounts of elements having different valences, and the preferable content of boron or phosphorus is 1 to 100000 ppm, and the more preferable content is 100 to 10,000 ppm. Specific raw material compounds include boron oxide and diphosphorus pentoxide, which have low toxicity. DLN, a composite material with amorphous silicon oxide
(Diamond-like nano-composite) etc. can also be used.

【0014】ダイヤモンドの合成法によっては一部が非
ダイヤモンド成分を生成し、ダイヤモンド成分中に含有
されることがある。これら非ダイヤモンド成分等の耐食
性のない炭素成分は電解液中に溶液して消耗するため実
用的な影響は小さいが、使用前に酸洗浄などにより除去
しておくことが望ましい。このようにして製造したダイ
ヤモンド粒子は前述の通り基体や給電体上に担持させて
通常の電極として使用しても良いが、流動床や固定床で
三次元電極として使用すると、反応面積が増大して処理
能力が向上する。
Depending on the method of synthesizing diamond, a part of the non-diamond component is generated and may be contained in the diamond component. These non-diamond components and other non-corrosion resistant carbon components are consumed by being dissolved in the electrolytic solution and have little practical effect, but it is desirable to remove them by acid washing or the like before use. The diamond particles thus produced may be used as a normal electrode by supporting them on a substrate or a power feeding body as described above, but when used as a three-dimensional electrode in a fluidized bed or a fixed bed, the reaction area increases. The processing capacity is improved.

【0015】電解槽やスペーサーの材料としては、有機
化合物、そしてフッ化物イオンを使用する場合はフッ化
物イオンに対する耐久性、安定性の観点から、ガラスラ
イニング材料、カーボン、チタン、ステンレス、塩化ビ
ニル樹脂、ポリエチレン樹脂、ポリプロピレン樹脂及び
PTFE樹脂などが好ましく使用できる。ダイヤモンド
電極は水電解の過電圧が他の電極よりかなり高いため、
電力原単位が問題になる場合がある。この問題を改善す
る目的で、基材や集電体上にダイヤモンドを形成した
後、更に触媒を担持しても良い。陽極触媒としては、P
bO 2、SnO2及びIrO2などがあり、陰極触媒とし
ては白金、RuO2、銅及び鉄などがある。陰極として
は、白金、導電性ダイヤモンド、イリジウム、カーボン
等が使用できる。電解により析出したCa、Mgイオン
を含む沈殿物を除去するために、逆電流を流す場合に
は、陽分極に対しても安定であることが好ましいので、
白金やダイヤモンド、イリジウムが適している。
The material of the electrolytic cell and the spacer is organic.
Compound, and fluorinated if fluoride ion is used
From the viewpoint of durability and stability against substance ions, glass
Inning material, carbon, titanium, stainless steel, vinyl chloride
Nyl resin, polyethylene resin, polypropylene resin and
A PTFE resin or the like can be preferably used. diamond
Electrodes have much higher electrolysis voltage of water electrolysis than other electrodes,
Electric power consumption may be a problem. Improve this problem
For the purpose of forming a diamond on the substrate or current collector
After that, a catalyst may be further supported. As the anode catalyst, P
bO 2, SnO2And IrO2As a cathode catalyst
Is platinum, RuO2, Copper and iron. As cathode
Is platinum, conductive diamond, iridium, carbon
Etc. can be used. Ca and Mg ions deposited by electrolysis
When a reverse current is applied to remove precipitates containing
Is preferably stable against anodic polarization, so
Platinum, diamond and iridium are suitable.

【0016】電解条件は、温度が5〜40℃、三次元電極
以外の通常の電極を使用する場合の電流密度が0.01〜10
A/dm2であることが好ましい。電気透析を継続する
と陰極室で水酸化アルカリ等が生成してカルシウムやマ
グネシウムの水酸化物の沈殿が生じることがある。又陽
極液の酸性度が高くなると(pHが低くなると)フッ化
水素ガスが発生することがある。これらの現象を防止す
るには、陽極液と陰極液を混合し、pHを3以上の弱酸
性又は中性領域に維持すれば良い。
The electrolysis condition is that the temperature is 5 to 40 ° C. and the current density is 0.01 to 10 when a normal electrode other than the three-dimensional electrode is used.
It is preferably A / dm 2 . When electrodialysis is continued, alkali hydroxide or the like is generated in the cathode chamber, and calcium or magnesium hydroxide may be precipitated. Further, when the acidity of the anolyte becomes high (pH becomes low), hydrogen fluoride gas may be generated. To prevent these phenomena, the anolyte and the catholyte may be mixed to maintain the pH in the weakly acidic or neutral region of 3 or more.

【0017】本発明の導電性ダイヤモンドを電極物質と
して含有する電解用電極は陽極として好ましく使用でき
るが、陰極として使用しても良く、セル電圧や価格等を
勘案して選択すれば良い。
The electrode for electrolysis containing the conductive diamond of the present invention as an electrode substance can be preferably used as an anode, but it may be used as a cathode and may be selected in consideration of cell voltage, price and the like.

【0018】[0018]

【発明の実施の形態】次に添付図面に基づいて本発明の
導電性ダイヤモンド陽極を使用する電気透析槽の一実施
形態を説明するが、本発明はこれに限定されるものでは
ない。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of an electrodialysis cell using the conductive diamond anode of the present invention will be described below with reference to the accompanying drawings, but the present invention is not limited thereto.

【0019】図1は、本発明に係る電気透析槽を例示す
る概略断面図である。箱型の電気透析槽本体1は、交互
に位置する陽イオン交換膜2と陰イオン交換膜3(図示
の例では各3枚)により、図の左端の陽極室4と右端の
陰極室5及び両極室間の計3個の脱塩室6A及び2個の
濃縮室6Bとに区画されている。なお脱塩室と濃縮室を
総称して中間室ということがある。前記陽極室4内には
導電性ダイヤモンドを電極物質として被覆した陽極7
が、又前記陰極室5内には白金板等からなる陰極8がそ
れぞれ設置されている。又各イオン交換膜2、3と電極
7、8の間には多孔性のスペーサー9が設置されてこれ
ら相互の接触を防止し、かつ液流水を均一化するよう制
御している。電気透析槽本体1の下方には、水平方向に
延びる円筒状の被処理水供給管10が設置され、該被処理
水供給管10から前記電気透析槽本体1内の脱塩室6Aに
フッ化ナトリウム等を含む排水である被処理水を供給す
るための連結管11が分岐し、前記槽本体1の対応する底
面に連結されている。又前記被処理水供給管10と平行し
て濃縮水循環管21が設置され、この濃縮水循環管21から
後述する濃縮水取出管からの濃縮水を前記濃縮室6Bに
連結管23を介して循環させる。
FIG. 1 is a schematic sectional view illustrating an electrodialysis tank according to the present invention. The box-shaped electrodialysis cell main body 1 includes a cation exchange membrane 2 and an anion exchange membrane 3 (three in the illustrated example) that are alternately located, and an anode chamber 4 at the left end and a cathode chamber 5 at the right end in the figure and It is divided into a total of three desalting chambers 6A and two concentrating chambers 6B between the two polar chambers. The desalting chamber and the concentrating chamber may be collectively referred to as an intermediate chamber. An anode 7 coated with conductive diamond as an electrode material is provided in the anode chamber 4.
However, in the cathode chamber 5, cathodes 8 made of platinum plates or the like are installed. Further, a porous spacer 9 is installed between each ion exchange membrane 2 and 3 and the electrodes 7 and 8 so as to prevent these from contacting each other and to control the flowing water to be uniform. Below the electrodialysis tank body 1, a horizontally extending cylindrical treated water supply pipe 10 is installed, and the treated water supply pipe 10 fluorinated into the desalination chamber 6A in the electrodialysis tank body 1. A connection pipe 11 for supplying water to be treated, which is waste water containing sodium or the like, is branched and connected to the corresponding bottom surface of the tank body 1. Further, a concentrated water circulation pipe 21 is installed in parallel with the untreated water supply pipe 10, and concentrated water from a concentrated water take-out pipe described later is circulated from the concentrated water circulation pipe 21 to the concentrating chamber 6B through a connecting pipe 23. .

【0020】前記陽極室4内には陽極液取出管12が挿入
され、陽極液を取り出して陽極室用気液分離器13に供給
するようにしている。該気液分離器13には酸素ガス回収
管14と陽極液回収管15が接続されている。又前記陰極室
5内には陰極液取出管16が挿入され、陰極液を取り出し
て陰極室用気液分離器17に供給するようにしている。該
気液分離器17には水素ガス回収管18と陰極液回収管19が
接続されている。前記脱塩室6Aの上面には脱塩水取出
口20が、又前記濃縮室6Bの上面には濃縮水取出口22が
形成されている。このような構成から成る電気透析槽を
使用してフッ化物イオンを含む排水の処理を行うには、
導電性ダイヤモンド陽極7と白金陰極8間に通電しなが
ら、被処理水供給管10にフッ化ナトリウム等のフッ化物
イオン含有排水を供給し、連結管11を介して脱塩室6A
に前記排水を供給し、脱塩水取出口20から処理済の脱塩
水を回収する。
An anolyte extraction pipe 12 is inserted into the anode chamber 4 so that the anolyte is taken out and supplied to the gas-liquid separator 13 for the anode chamber. An oxygen gas recovery pipe 14 and an anolyte recovery pipe 15 are connected to the gas-liquid separator 13. Further, a catholyte extraction pipe 16 is inserted into the cathode chamber 5 so that the catholyte is taken out and supplied to the gas-liquid separator 17 for the cathode chamber. A hydrogen gas recovery pipe 18 and a catholyte recovery pipe 19 are connected to the gas-liquid separator 17. A desalted water outlet 20 is formed on the upper surface of the desalination chamber 6A, and a concentrated water outlet 22 is formed on the upper surface of the concentration chamber 6B. In order to treat wastewater containing fluoride ions using the electrodialysis tank having such a configuration,
While energizing between the conductive diamond anode 7 and the platinum cathode 8, a waste water containing fluoride ions such as sodium fluoride is supplied to the treated water supply pipe 10, and the desalination chamber 6A is supplied through the connecting pipe 11.
The waste water is supplied to and the treated desalted water is collected from the desalted water outlet 20.

【0021】各脱塩室6A内の被処理水(排水)は両極
間に印加される電場に置かれ、前記被処理水中の陽イオ
ンであるナトリウムイオンは陰極8方向に引かれ、陽イ
オン交換膜2を透過して隣接する濃縮室6Bや陰極室5
に移動する。他方前記被処理水中の陰イオンであるフッ
化物イオンは陽極7方向に引かれ、陰イオン交換膜3を
透過して隣接する濃縮室6Bや陽極室4に移動する。濃
縮室6B内では電気透析により、電解液が濃縮される。
濃縮水は連結管23から濃縮室6Bに供給され、濃縮水取
出口22と通して濃縮室6B外に取り出されて、一部が回
収され、残りが前記濃縮水循環管21に循環する。陰極室
5内の陰極液は陽イオン交換膜2を浸透して来るナトリ
ウムイオンの濃度が高くなって水酸化ナトリウムが生成
してアルカリ性になり、この陰極液は陰極液取出管16か
ら陰極室用気液分離器17に導かれ、この気液分離器17で
気液分離された水素ガスは水素ガス取出管18から系外に
取り出され、水酸化ナトリウム水溶液は、陰極液回収管
19から系外に取り出される。この水酸化ナトリウム水溶
液は陽極室4に供給して陽極液のpHを3以上に維持す
るために使用しても良い。
The water to be treated (drainage) in each desalting chamber 6A is placed in an electric field applied between both electrodes, and sodium ions, which are cations in the water to be treated, are drawn toward the cathode 8 to exchange cations. The concentrating chamber 6B and the cathode chamber 5 that are adjacent to each other through the membrane 2
Move to. On the other hand, the fluoride ions, which are anions in the water to be treated, are drawn toward the anode 7, pass through the anion exchange membrane 3 and move to the concentrating chamber 6B and the anode chamber 4 adjacent to each other. In the concentration chamber 6B, the electrolytic solution is concentrated by electrodialysis.
The concentrated water is supplied from the connecting pipe 23 to the concentrating chamber 6B, is discharged to the outside of the concentrating chamber 6B through the concentrated water outlet 22 and is partially recovered, and the rest is circulated to the concentrated water circulating pipe 21. The catholyte in the catholyte compartment 5 has a high concentration of sodium ions penetrating the cation-exchange membrane 2 to form sodium hydroxide and become alkaline. The hydrogen gas introduced into the gas-liquid separator 17 and gas-liquid separated by the gas-liquid separator 17 is taken out of the system through the hydrogen gas take-out pipe 18, and the sodium hydroxide aqueous solution is taken as a catholyte recovery pipe.
It is taken out of the system from 19. This aqueous sodium hydroxide solution may be supplied to the anode chamber 4 and used to maintain the pH of the anolyte solution at 3 or higher.

【0022】他方陽極室4内の陽極液は陰イオン交換膜
3を浸透して来るフッ化物イオンの濃度が高くなってフ
ッ酸が生成して酸性になり、この陽極液は陽極液取出管
12から陽極液用気液分離器13に導かれ、この気液分離器
13で気液分離された酸素ガスは酸素ガス取出管14から系
外に取り出され、フッ酸水溶液は、陽極液回収管15から
系外に取り出される。その電気透析処理により脱塩室6
A内の被処理水中の陽イオン濃度及び陰イオン濃度が実
質的にゼロになり、清澄な水として回収できる。又濃縮
室6Bからは電解液が濃縮された少量かつ高濃度の廃液
が得られる。そしてこの電気透析処理において陽極室4
に高濃度のフッ酸が生成するが、陽極7としてフッ化物
イオンに対して高耐性を有する導電性ダイヤモンド電極
を使用しているため消耗が殆どなく、交換することなく
長期に渡って電解処理を継続できる。
On the other hand, the anolyte in the anolyte compartment 4 has a high concentration of fluoride ions penetrating the anion exchange membrane 3 to generate hydrofluoric acid and become acidic.
From 12 to the anolyte gas-liquid separator 13, this gas-liquid separator
The oxygen gas that has been gas-liquid separated in 13 is taken out of the system through an oxygen gas take-out pipe 14, and the hydrofluoric acid aqueous solution is taken out of the system through an anolyte recovery pipe 15. Desalination chamber 6 by the electrodialysis treatment
The cation concentration and the anion concentration in the water to be treated in A become substantially zero and can be recovered as clear water. Also, a small amount of highly concentrated waste liquid in which the electrolytic solution is concentrated can be obtained from the concentrating chamber 6B. In this electrodialysis treatment, the anode chamber 4
Although a high concentration of hydrofluoric acid is generated, the use of a conductive diamond electrode having high resistance to fluoride ions as the anode 7 causes almost no wear and allows electrolytic treatment for a long time without replacement. I can continue.

【0023】次に本発明に係る電気透析用陽極及びこれ
を使用する電気透析方法の実施例及び比較例を記載する
が、これらは本発明を限定するものではない。
Next, examples and comparative examples of the electrodialysis anode and the electrodialysis method using the same according to the present invention will be described, but these do not limit the present invention.

【0024】実施例1 次のようにして図1に示す電気透析用セルを組み立て
た。電極面積が200cm2、厚さ1mmのニオブ板の両面に、
10μm厚で1500ppmのホウ素をドープしたダイヤモンド
を熱フィラメントCVD法により析出させて陽極とし、
1μmの白金をめっきした厚さ1mmのニッケル板を陰極
とした。陽イオン交換膜として旭硝子株式会社製のCM
V、陰イオン交換膜として同社製のAMVを使用した。
塩化ビニル樹脂製のセル枠、ポリプロピレン製の網から
成るスペーサー、バイトンゴム製のガスケット、及び前
記陽イオン交換膜及び陰イオン交換膜を使用して、両端
の陽極室及び陰極室を除いて、脱塩室6室及び濃縮室5
室から成る電気透析用セルとした。なお陽イオン交換膜
及び陰イオン交換膜の間隔は2mmに維持した。
Example 1 The electrodialysis cell shown in FIG. 1 was assembled as follows. On both sides of a niobium plate with an electrode area of 200 cm 2 and a thickness of 1 mm,
Diamond having a thickness of 10 μm and doped with 1500 ppm of boron was deposited by a hot filament CVD method to form an anode,
A 1 mm thick nickel plate plated with 1 μm of platinum was used as the cathode. CM manufactured by Asahi Glass Co., Ltd. as a cation exchange membrane
V, AMV manufactured by the same company was used as the anion exchange membrane.
Demineralization using a cell frame made of vinyl chloride resin, a spacer made of polypropylene net, a gasket made of Viton rubber, and the cation exchange membrane and anion exchange membrane except for the anode chamber and the cathode chamber at both ends. 6 chambers and 5 concentrating chambers
The cell was an electrodialysis cell consisting of a chamber. The distance between the cation exchange membrane and the anion exchange membrane was maintained at 2 mm.

【0025】フッ化ナトリウムを200ppm含む排水溶液を
25リットル/時の速度で6個の脱塩室に供給し、電流密
度0.5A/dm2、室温で電気透析を行ったところ、濃縮室
から電流効率約60%で10000ppmのフッ化ナトリウム濃縮
液が0.5リットル/時の割合で得られた。なお酸素ガス
を分離した陽極液を陰極室下部に供給し、水素ガスを分
離した陰極液を陽極室に供給した。1000時間運転後でも
性能低下は観察されず、ダイヤモンドの消耗やセル枠等
の腐食も検出されなかった。脱塩生成水中のフッ素濃度
は50ppm未満であった。又各電解室のpHはほぼ中性に
維持された。
A drainage solution containing 200 ppm of sodium fluoride
When supplied to 6 desalting chambers at a rate of 25 liters / hour, and electrodialyzed at room temperature with a current density of 0.5 A / dm 2 , a concentration of sodium fluoride of 10000 ppm was obtained from the concentrating chamber at a current efficiency of about 60%. Was obtained at a rate of 0.5 l / h. The anolyte from which oxygen gas was separated was supplied to the lower part of the cathode chamber, and the catholyte from which hydrogen gas was separated was supplied to the anode chamber. No performance deterioration was observed even after 1000 hours of operation, and neither diamond wear nor corrosion of the cell frame was detected. The fluorine concentration in the desalted water was less than 50 ppm. The pH of each electrolysis chamber was maintained almost neutral.

【0026】実施例2(実施例2以降は加速試験) 電極面積が2cm2のニオブ板の両面に、10μm厚で1500p
pmのホウ素をドープしたダイヤモンドを熱フィラメント
CVD法により析出させた電極を陽極とし、白金板を陰
極とした。1000mlのPTFE製の容器中で3%フッ化ナ
トリウム水溶液を調製し、前記陽極及び陰極を前記フッ
化ナトリウム水溶液中に浸漬し、電流密度3A/dm2
し、極間を50mmに調節し、室温で電解を行ったところ、
セル電圧は4Vで、8000時間運転後でも電圧変化は殆ど
なかった。終了後、陽極を分析したところ、ダイヤモン
ドの消耗は殆どなく、基材の腐食も検出されなかった。
Example 2 (acceleration test after Example 2) An electrode area of 2 cm 2 was applied to both sides of a niobium plate having a thickness of 10 μm and 1500 p.
An electrode in which diamond doped with pm of boron was deposited by a hot filament CVD method was used as an anode, and a platinum plate was used as a cathode. A 3% aqueous sodium fluoride solution was prepared in a 1000 ml PTFE container, and the anode and cathode were immersed in the aqueous sodium fluoride solution to a current density of 3 A / dm 2 , and the gap between the electrodes was adjusted to 50 mm at room temperature. After electrolysis with
The cell voltage was 4 V, and there was almost no change in voltage even after 8,000 hours of operation. When the anode was analyzed after the completion, the diamond was hardly consumed and no corrosion of the substrate was detected.

【0027】実施例3 電極面積が2cm2で厚さ1mmのニオブ板の両面に、10μ
m厚で10000ppmのホウ素をドープしたダイヤモンドを熱
フィラメントCVD法により析出させた電極を陽極と
し、白金板を陰極とした。1000mlのPTFE製の容器中
で3%フッ化ナトリウム水溶液を調製し、前記陽極及び
陰極を前記フッ化ナトリウム水溶液中に浸漬し、電流密
度30A/dm2とし、極間を50mmに調節し、40Cで電解を
行ったところ、セル電圧は16Vで、2000時間運転後でも
電圧はほぼ同様であった。終了後、陽極を分析したとこ
ろ、ダイヤモンドの消耗は僅かであり、基材の腐食も検
出されなかった。
Example 3 An electrode area of 2 cm 2 and a thickness of 1 mm on both sides of a niobium plate was applied with 10 μm.
An electrode in which diamond having a thickness of 10,000 and doped with boron of 10000 ppm was deposited by a hot filament CVD method was used as an anode, and a platinum plate was used as a cathode. A 3% aqueous solution of sodium fluoride was prepared in a 1000 ml PTFE container, and the anode and cathode were immersed in the aqueous solution of sodium fluoride to a current density of 30 A / dm 2 , and the gap between the electrodes was adjusted to 50 mm, and 40 C Electrolysis was carried out at a cell voltage of 16 V, which was almost the same even after 2000 hours of operation. When the anode was analyzed after the completion, the diamond was found to be slightly consumed, and no corrosion of the substrate was detected.

【0028】実施例4 タンタル板上に10μm厚で10000ppmのホウ素をドープし
たダイヤモンドを熱フィラメントCVD法により析出さ
せた電極を陽極とし、白金板を陰極とした。1000mlの容
器中に3%フッ化ナトリウム水溶液を調製し、前記陽極
及び陰極を前記フッ化ナトリウム水溶液中に浸漬し、電
流密度30A/dm2とし、室温で電解を行ったところ、セ
ル電圧は20Vで、2000時間運転後でも電圧はほぼ同様で
あった。終了後、陽極を分析したところ、ダイヤモンド
の消耗は僅かであり、基材の腐食も検出されなかった。
Example 4 An electrode was prepared by depositing diamond having a thickness of 10 μm and doped with 10000 ppm of boron on a tantalum plate by a hot filament CVD method, and was used as an anode, and a platinum plate was used as a cathode. A 3% sodium fluoride aqueous solution was prepared in a 1000 ml container, and the anode and the cathode were immersed in the sodium fluoride aqueous solution at a current density of 30 A / dm 2 and electrolysis was carried out at room temperature. The cell voltage was 20 V. The voltage was almost the same after 2000 hours of operation. When the anode was analyzed after the completion, the diamond was found to be slightly consumed, and no corrosion of the substrate was detected.

【0029】比較例1 厚さ5μmの白金めっきを施したチタン板を陽極として
使用したこと以外は実施例2と同様にして電解を行った
ところ、初期セル電圧は8Vであったが、開始直後から
重量消耗が見られ、1000時間経過後には殆どの触媒が溶
出し、又基材のチタンの溶解が進行し、電解が不能にな
った。溶液中から白金及びチタンの沈殿が検出された。
Comparative Example 1 Electrolysis was carried out in the same manner as in Example 2 except that a titanium plate plated with platinum having a thickness of 5 μm was used as an anode. The initial cell voltage was 8 V, but immediately after the start. From the result, weight consumption was observed, and most of the catalyst was eluted after 1000 hours, and titanium was dissolved in the base material, and electrolysis was disabled. Precipitation of platinum and titanium was detected in the solution.

【0030】比較例2 厚さ5μmの白金めっきを施したニオブ板を陽極として
使用したこと以外は実施例3と同様にして電解を行った
ところ、初期セル電圧は14Vであったが、開始直後から
重量消耗が見られ、2000時間経過後には殆どの触媒が溶
出し、又基材の溶解が進行し、電解が不能になった。溶
液中から白金及ニオブの沈殿が検出された。
Comparative Example 2 Electrolysis was performed in the same manner as in Example 3 except that a niobium plate plated with platinum having a thickness of 5 μm was used as an anode. The initial cell voltage was 14 V, but immediately after the start. From the result, weight consumption was observed, and most of the catalyst was eluted after 2000 hours, and the dissolution of the base material proceeded, so that the electrolysis became impossible. Precipitation of platinum and niobium was detected in the solution.

【0031】比較例3 厚さ100μmのPbO2めっきを全面に施したニオブ板を
陽極として使用したこと以外は実施例3と同様にして電
解を行ったところ、初期セル電圧は15Vであったが、開
始直後からPb成分の消耗が見られ、電解液中のPb濃
度が増加した。2000時間経過後の電圧は初期と同じであ
ったが、液中のPb濃度が5000ppmとなり、実用上問題
が残った。電解を継続するに連れて溶液は褐色に着色し
た。
Comparative Example 3 Electrolysis was carried out in the same manner as in Example 3 except that a niobium plate having a 100 μm-thickness PbO 2 plating on the entire surface was used as the anode, but the initial cell voltage was 15 V. Immediately after the start, the Pb component was consumed, and the Pb concentration in the electrolytic solution increased. The voltage after the lapse of 2000 hours was the same as the initial voltage, but the Pb concentration in the liquid became 5000 ppm, which left a problem for practical use. The solution turned brown as the electrolysis continued.

【0032】比較例4 厚さ100μmのSnO2めっきを施した銅板を陽極として
使用したこと以外は実施例2と同様にして電解を行った
ところ、初期セル電圧は18Vであったが、開始直後から
Sn成分の消耗が見られ、電解液中のSn濃度が増加し
た。2000時間経過後の電圧は初期と同じであったが、液
中のSn濃度が2000ppmとなり、実用上問題が残った。
電解を継続するに連れて溶液は青に着色した。
Comparative Example 4 Electrolysis was carried out in the same manner as in Example 2 except that a 100 μm-thick SnO 2 plated copper plate was used as the anode. The initial cell voltage was 18 V, but immediately after the start. As a result, the Sn component was consumed, and the Sn concentration in the electrolytic solution increased. The voltage after the lapse of 2000 hours was the same as the initial voltage, but the Sn concentration in the liquid became 2000 ppm, and there was a practical problem.
The solution turned blue as the electrolysis continued.

【0033】比較例5 直径3mmで面積5cm2のグラッシーカーボン製の棒状電
極を陽極として使用したこと以外は実施例3と同様にし
て電解を行ったところ、初期セル電圧は15Vであった
が、開始直後から電極の消耗が顕著であり、1000時間経
過後には露出部が殆ど消失した。溶液中には電極の剥離
片が残った。
Comparative Example 5 Electrolysis was performed in the same manner as in Example 3 except that a glassy carbon rod electrode having a diameter of 3 mm and an area of 5 cm 2 was used as the anode. The initial cell voltage was 15 V, but Immediately after the start, the consumption of the electrode was remarkable, and the exposed part almost disappeared after 1000 hours. The peeled pieces of the electrode remained in the solution.

【0034】[0034]

【発明の効果】本発明は、導電性ダイヤモンドを電極物
質として含有し電気透析用として使用することを特徴と
する電解用電極である。電気透析は陽極室や陰極室に腐
食性物質等が浸透して高濃度となることがあり、従来の
ようにフェライト電極や炭素電極を使用すると電極が劣
化して交換が必要になるという問題点があった。しかし
本発明では電極材料として高耐食性の導電性ダイヤモン
ドを使用しているため、その電極を高濃度の腐食性物質
が存在することのある電気透析処理に使用しても劣化が
殆ど起こらず、長期に渡り交換せずに電気透析を継続で
きる。又該電極を装着した電気透析槽も同様の効果を有
する。
The present invention is an electrode for electrolysis, which is characterized by containing conductive diamond as an electrode substance and used for electrodialysis. In electrodialysis, corrosive substances may infiltrate into the anode chamber and cathode chamber, resulting in a high concentration, and when using ferrite electrodes or carbon electrodes as in the past, the electrodes deteriorate and need replacement. was there. However, in the present invention, since highly corrosive conductive diamond is used as the electrode material, even if the electrode is used for electrodialysis treatment in which a high concentration of corrosive substance may exist, deterioration does not occur for a long time. Electrodialysis can be continued without replacement. Also, an electrodialysis tank equipped with the electrode has the same effect.

【0035】更にこの電気透析槽をフッ化物イオンを含
む被処理水の電気透析に使用すると、高腐食性のフッ化
物イオンが高濃度で存在しても導電性ダイヤモンド陽極
がフッ化物イオンに対する耐性を有し安定した運転が可
能になる。又陽極液をpH3以上に維持しながら電気透
析を行うとフッ化水素ガスの発生を抑制できる。通電開
始後所定時間経過した陽極液と陰極液を混合すると、前
記したフッ化水素ガスの生成の抑制と陰極室での水酸化
物沈殿の発生防止又は沈殿の溶解が達成できる。
Further, when this electrodialysis tank is used for electrodialysis of the water to be treated containing fluoride ions, the conductive diamond anode exhibits resistance to the fluoride ions even if highly corrosive fluoride ions are present in high concentration. It has stable operation. If electrodialysis is performed while maintaining the anolyte at pH 3 or higher, generation of hydrogen fluoride gas can be suppressed. When the anolyte and the catholyte are mixed for a predetermined time after the start of energization, the above-mentioned generation of hydrogen fluoride gas can be suppressed and the precipitation of hydroxide in the cathode chamber can be prevented or the precipitation can be dissolved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る電気透析槽を例示する概略断面
図。
FIG. 1 is a schematic cross-sectional view illustrating an electrodialysis tank according to the present invention.

【符号の説明】[Explanation of symbols]

1 電気透析槽本体 2 陽イオン交換膜 3 陰イオン交換膜 4 陽極室 5 陰極室 6A 脱塩室 6B 濃縮室 7 導電性ダイヤモンド陽極 8 白金陰極 9 スペーサー 10 被処理水供給管 1 electrodialysis tank body 2 Cation exchange membrane 3 Anion exchange membrane 4 Anode chamber 5 Cathode chamber 6A desalination chamber 6B concentration room 7 Conductive diamond anode 8 Platinum cathode 9 Spacer 10 Treated water supply pipe

フロントページの続き (72)発明者 山田 邦晃 神奈川県藤沢市石川1145番地 Fターム(参考) 4D006 GA18 JA42C KE15R KE16P KE18P KE18Q KE28P KE28Q MA13 MA14 PA01 PB08 PB28 4D061 DA08 DB18 DC13 EA02 EA09 EB01 EB04 EB13 EB28 EB29 EB30 EB31 EB37 EB39 GA07 GA12 GA15 GC12 GC15 Continued front page    (72) Inventor Kuniaki Yamada             1145 Ishikawa, Fujisawa City, Kanagawa Prefecture F-term (reference) 4D006 GA18 JA42C KE15R KE16P                       KE18P KE18Q KE28P KE28Q                       MA13 MA14 PA01 PB08 PB28                 4D061 DA08 DB18 DC13 EA02 EA09                       EB01 EB04 EB13 EB28 EB29                       EB30 EB31 EB37 EB39 GA07                       GA12 GA15 GC12 GC15

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 導電性ダイヤモンドを電極物質として含
有し電気透析用として使用することを特徴とする電極。
1. An electrode comprising electroconductive diamond as an electrode substance and used for electrodialysis.
【請求項2】 槽本体を陽イオン交換膜及び陰イオン交
換膜を使用して1又は2以上の中間室と両端の陽極室及
び陰極室に区画した電気透析槽において、導電性ダイヤ
モンドを電極物質とする電極を陽極として使用すること
を特徴とする電気透析槽。
2. An electrodialysis cell in which a cell body is divided into one or more intermediate chambers and an anode chamber and a cathode chamber at both ends using a cation exchange membrane and an anion exchange membrane, and conductive diamond is used as an electrode material. An electrodialysis tank characterized by using the electrode as an anode.
【請求項3】 槽本体を陽イオン交換膜及び陰イオン交
換膜を使用して1又は2以上の中間室と両端の陽極室及
び陰極室に区画した電気透析槽にフッ化物イオンを含む
被処理水を供給し、前記フッ化物を電気透析により濃縮
する方法において、電気透析用陽極として導電性ダイヤ
モンドを使用することを特徴とする方法。
3. An electrodialysis tank whose main body is divided into one or more intermediate chambers and an anode chamber and a cathode chamber at both ends by using a cation exchange membrane and an anion exchange membrane, and which is to be treated containing fluoride ions. A method of supplying water and concentrating the fluoride by electrodialysis, wherein conductive diamond is used as an electrodialysis anode.
【請求項4】 陽極液をpH3以上に維持しながら電気
透析を行うようにした請求項3に記載の方法。
4. The method according to claim 3, wherein electrodialysis is performed while maintaining the anolyte at a pH of 3 or higher.
【請求項5】 通電開始後所定時間経過した陽極液と陰
極液を混合するようにした請求項3又は4に記載の方
法。
5. The method according to claim 3, wherein the anolyte and the catholyte are mixed for a predetermined time after the start of energization.
JP2001342322A 2001-11-07 2001-11-07 Electrodialysis electrode and electrodialysis method using the electrode Expired - Fee Related JP3914032B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001342322A JP3914032B2 (en) 2001-11-07 2001-11-07 Electrodialysis electrode and electrodialysis method using the electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001342322A JP3914032B2 (en) 2001-11-07 2001-11-07 Electrodialysis electrode and electrodialysis method using the electrode

Publications (2)

Publication Number Publication Date
JP2003145162A true JP2003145162A (en) 2003-05-20
JP3914032B2 JP3914032B2 (en) 2007-05-16

Family

ID=19156202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001342322A Expired - Fee Related JP3914032B2 (en) 2001-11-07 2001-11-07 Electrodialysis electrode and electrodialysis method using the electrode

Country Status (1)

Country Link
JP (1) JP3914032B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009054295A1 (en) * 2007-10-25 2009-04-30 Sumitomo Electric Hardmetal Corp. Diamond electrode, treatment device, and method for producing diamond electrode
EP2245214A1 (en) * 2008-07-16 2010-11-03 Calera Corporation Co2 utilization in electrochemical systems
KR20190133596A (en) * 2018-05-23 2019-12-03 포항공과대학교 산학협력단 Photo-electro-dialysis water treatment apparatus and water treatment method for simultaneous desalination and pollutants oxidation

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104591352B (en) * 2014-12-31 2017-09-12 北京京润新技术发展有限责任公司 A kind of electrode for electrodialysis plate, electrodialysis plant and application method for being used to handle high strong brine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009054295A1 (en) * 2007-10-25 2009-04-30 Sumitomo Electric Hardmetal Corp. Diamond electrode, treatment device, and method for producing diamond electrode
EP2245214A1 (en) * 2008-07-16 2010-11-03 Calera Corporation Co2 utilization in electrochemical systems
EP2245214A4 (en) * 2008-07-16 2013-04-24 Calera Corp Co2 utilization in electrochemical systems
KR20190133596A (en) * 2018-05-23 2019-12-03 포항공과대학교 산학협력단 Photo-electro-dialysis water treatment apparatus and water treatment method for simultaneous desalination and pollutants oxidation
KR102117548B1 (en) 2018-05-23 2020-06-02 포항공과대학교 산학협력단 Photo-electro-dialysis water treatment apparatus and water treatment method for simultaneous desalination and pollutants oxidation

Also Published As

Publication number Publication date
JP3914032B2 (en) 2007-05-16

Similar Documents

Publication Publication Date Title
US4707240A (en) Method and apparatus for improving the life of an electrode
KR100432971B1 (en) Electrolytic Apparatus, Methods for Purification of Aqueous Solutions and Synthesis of Chemicals
JP3913923B2 (en) Water treatment method and water treatment apparatus
US5376240A (en) Process for the removal of oxynitrogen species for aqueous solutions
AU767548B2 (en) Electrolytic apparatus, methods for purification of aqueous solutions and synthesis of chemicals
JP4473456B2 (en) Water purification process
KR100712389B1 (en) The process and the apparatus for cleansing the electronic part using functional water
US4088550A (en) Periodic removal of cathodic deposits by intermittent reversal of the polarity of the cathodes
JP3785219B2 (en) Method for producing acidic water and alkaline water
JPS5949318B2 (en) Electrolytic production method of alkali metal hypohalite salt
WO1996030130A1 (en) Process and equipment for reforming and maintaining electroless metal baths
US6827832B2 (en) Electrochemical cell and process for reducing the amount of organic contaminants in metal plating baths
JP3914032B2 (en) Electrodialysis electrode and electrodialysis method using the electrode
JP2005076103A (en) Method of treating plating waste liquid
US4578160A (en) Method for electrolyzing dilute caustic alkali aqueous solution by periodically reversing electrode polarities
JP2520674B2 (en) Method and device for recovering metal supported on carrier
JP4071980B2 (en) Method and apparatus for cleaning electronic parts
JP4053805B2 (en) Functional water, production method and production apparatus thereof
GB2113718A (en) Electrolytic cell
JP2005103498A (en) Method and apparatus for electrolytic treatment of waste chemical plating liquid
KR102492246B1 (en) Hybrid water treatment system for red tide removal and perchlorate control and water treatment method using the same
US11794147B2 (en) Wastewater treatment method and wastewater treatment apparatus
JP7232158B2 (en) Apparatus for producing acidic aqueous solution and method for producing acidic aqueous solution
JP6847477B1 (en) Electrolyzed water production equipment and method for producing electrolyzed water using this
Dermentzis et al. A new process for desalination and electrodeionization of water by means of electrostatic shielding zones-ionic current sinks.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040806

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061102

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070201

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100209

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110209

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120209

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120209

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130209

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees