JP2003145160A - Treatment method of water in cooling water system - Google Patents

Treatment method of water in cooling water system

Info

Publication number
JP2003145160A
JP2003145160A JP2001351868A JP2001351868A JP2003145160A JP 2003145160 A JP2003145160 A JP 2003145160A JP 2001351868 A JP2001351868 A JP 2001351868A JP 2001351868 A JP2001351868 A JP 2001351868A JP 2003145160 A JP2003145160 A JP 2003145160A
Authority
JP
Japan
Prior art keywords
cooling water
water
cooling
orp
electrolytic treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001351868A
Other languages
Japanese (ja)
Other versions
JP3521896B2 (en
Inventor
Akira Iimura
晶 飯村
Kazuhiko Tsunoda
和彦 角田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2001351868A priority Critical patent/JP3521896B2/en
Publication of JP2003145160A publication Critical patent/JP2003145160A/en
Application granted granted Critical
Publication of JP3521896B2 publication Critical patent/JP3521896B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F25/00Component parts of trickle coolers

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Degasification And Air Bubble Elimination (AREA)
  • Physical Water Treatments (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent corrosion in a cooling water system, thereby obtaining an excellent slime preventing effect by controlling the amount of a generated chlorine oxidizer within a proper range, in a treatment method of water in the cooling water system where slime generation in the system is prevented by supplying electrolyzed water containing the chlorine oxidizer generated by the electrolysis of cooling water. SOLUTION: In the treatment method of water in the cooling water system, the cooling water system is made to contain the electrolyzed water in which the chlorine oxidizer has been generated from chloride ions contained in the cooling water by applying a current between electrodes 4A, 4B dipped in the cooling water. The oxidation-reduction potential of the cooling water is measured, and applying current to the electrodes 4A, 4B is controlled based on the measured value.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は冷却水系の水処理方
法に係り、詳しくは、冷却水を電解処理することにより
冷却水中の塩化物イオンから次亜塩素酸等の塩素系酸化
剤を生成させ、この塩素系酸化剤により冷却水系のスラ
イム障害を防止する冷却水系の水処理方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cooling water-based water treatment method, and more specifically, to electrolytically process cooling water to produce a chlorine-based oxidizer such as hypochlorous acid from chloride ions in the cooling water. The present invention relates to a cooling water system water treatment method for preventing a slime problem of a cooling water system by this chlorine-based oxidizing agent.

【0002】[0002]

【従来の技術】冷却水系では、微生物によりスライムが
発生し易い。特に、循環冷却水系の高濃縮運転では、冷
却水の水質が悪化し、細菌、黴、藻類などの微生物群に
土砂、塵埃などが混ざり合って形成されるスライムが発
生し易くなり、熱交換器における熱効率の低下や通水の
悪化を引き起こす。また、スライム付着部において、機
器や配管の局部腐食を誘発する。
2. Description of the Related Art In a cooling water system, slimes are easily generated by microorganisms. In particular, in highly concentrated operation of the circulating cooling water system, the water quality of the cooling water is deteriorated, and slime, which is formed by mixing earth and sand and dust with microbial groups such as bacteria, mold, algae, etc., easily occurs, and the heat exchanger Cause deterioration of heat efficiency and deterioration of water flow. It also induces local corrosion of equipment and piping at the slime adhesion part.

【0003】このようなスライムによる障害を防止する
ために、スライムコントロール剤として塩素系薬剤や非
塩素系の微生物忌避剤を循環冷却水中に添加することが
行われている。また、このような薬剤添加を行うことな
くスライムを防止するための方法として、冷却水中に含
まれる塩化物イオンを電解酸化により次亜塩素酸などの
塩素系酸化剤に変換し、この塩素系酸化剤を冷却水中に
存在させる方法も行われている。
In order to prevent such damage caused by slime, a chlorine-based agent or a non-chlorine-based microbial repellent is added to the circulating cooling water as a slime control agent. Also, as a method for preventing slime without adding such chemicals, chloride ions contained in cooling water are converted to chlorine-based oxidizers such as hypochlorous acid by electrolytic oxidation, and this chlorine-based oxidation is performed. The method of making an agent exist in cooling water is also performed.

【0004】即ち、冷却水系の補給水として用いられる
水道水や工業用水には、通常数mg−Cl/L〜10
mg−Cl/L程度の塩化物イオンが含まれているこ
とから、循環冷却水系の冷却水には、6〜8倍の高濃縮
運転で、この補給水中の塩化物イオンが濃縮されてい
る。このため、この冷却水を電解処理することにより、
冷却水中の塩化物イオンからスライム防止効果のある残
留塩素(遊離塩素)を発生させることができる。この残
留塩素を含む電解処理水を冷却水系に戻すことにより、
スライム障害を防止することができる。
[0004] That is, the tap water or industrial water used as make-up water for the cooling water system, usually several mg-Cl - / L~10
Since chloride ions of about mg-Cl / L are contained, the chloride water in the makeup water is concentrated in the cooling water of the circulating cooling water system by the highly concentrated operation of 6 to 8 times. . Therefore, by electrolytically treating this cooling water,
Residual chlorine (free chlorine) having a slime preventing effect can be generated from chloride ions in cooling water. By returning the electrolytically treated water containing this residual chlorine to the cooling water system,
Slime disorders can be prevented.

【0005】この塩素系酸化剤を発生させるための電解
処理装置では、陽極と陰極との間に外部電源を用いて直
流電圧を印加すると共に、両極間に冷却水を通水する。
これにより、陽極の表面において冷却水中の塩化物イオ
ンが酸化され、次亜塩素酸などの強い酸化力を有する残
留塩素が生成する。生成した残留塩素は、スライムの原
因となる微生物を殺菌し、あるいは増殖を抑制するの
で、循環冷却水系のスライム発生を効果的に防止するこ
とができる。
In the electrolytic treatment apparatus for generating the chlorine-based oxidizing agent, a DC voltage is applied between the anode and the cathode by using an external power source, and cooling water is passed between both electrodes.
As a result, chloride ions in the cooling water are oxidized on the surface of the anode, and residual chlorine having a strong oxidizing power such as hypochlorous acid is generated. The generated residual chlorine sterilizes the microorganisms that cause slime or suppresses the growth thereof, so that the generation of slime in the circulating cooling water system can be effectively prevented.

【0006】[0006]

【発明が解決しようとする課題】冷却水系内のスライム
を確実に防止するためには、系内の残留塩素濃度をある
程度高くする必要があるが、系内の金属材の腐食の防止
のためには、系内の残留塩素濃度を過度に高くすること
は避けるべきである。
In order to surely prevent slime in the cooling water system, it is necessary to raise the residual chlorine concentration in the system to some extent, but in order to prevent corrosion of the metal material in the system. Should avoid excessively high residual chlorine concentration in the system.

【0007】このようなことから、電解処理により残留
塩素を発生させて冷却水系に添加する場合、残留塩素生
成量を適正範囲にコントロールする必要がある。
For this reason, when residual chlorine is generated by electrolytic treatment and added to the cooling water system, it is necessary to control the amount of residual chlorine produced within an appropriate range.

【0008】しかしながら、電解次亜塩素酸発生装置等
の電解処理装置による残留塩素の発生速度は水質により
大きく変化するため、電解処理により冷却水系内の残留
塩素濃度を所定の範囲に保つことは容易ではなく、残留
塩素の過剰発生による系内腐食、或いは残留塩素不足に
よるスライム防止効果の低下が生じがちであった。
However, since the generation rate of residual chlorine by an electrolytic treatment apparatus such as an electrolytic hypochlorous acid generator varies greatly depending on the water quality, it is easy to maintain the residual chlorine concentration in the cooling water system within a predetermined range by electrolytic treatment. However, the internal corrosion tends to occur due to excessive generation of residual chlorine, or the slime preventing effect tends to decrease due to insufficient residual chlorine.

【0009】本発明は上記従来の問題点を解決し、冷却
水を電解処理することにより生成させた塩素系酸化剤を
含む電解処理水を冷却水系に供給することにより系内の
スライムの発生を防止する冷却水系の水処理方法におい
て、塩素系酸化剤の発生量を適正範囲に制御することを
目的とする。
The present invention solves the above-mentioned problems of the prior art, and by supplying electrolytically treated water containing a chlorine-based oxidant produced by electrolytically treating cooling water to the cooling water system, the generation of slime in the system is prevented. In a cooling water-based water treatment method to prevent, it is an object to control the amount of chlorine-based oxidizer generated within an appropriate range.

【0010】[0010]

【課題を解決するための手段】本発明の冷却水系の水処
理方法は、冷却水中に浸漬した電極に通電して、該水中
に含まれる塩化物イオンから塩素系酸化剤を生成させた
電解処理水を冷却水系の冷却水に含有させる冷却水系の
水処理方法において、該冷却水の酸化還元電位を測定
し、この測定値に基いて、前記電極への通電を制御する
ことを特徴とする。
The cooling water-based water treatment method of the present invention is an electrolytic treatment in which an electrode immersed in cooling water is energized to generate a chlorine-based oxidizer from chloride ions contained in the water. In a cooling water system water treatment method in which water is contained in cooling water system cooling water, an oxidation-reduction potential of the cooling water is measured, and energization to the electrode is controlled based on the measured value.

【0011】水中の塩素は、水の酸化還元電位(OR
P)を上昇させる要因であり、ORPと残留塩素濃度と
には相関があり、残留塩素濃度が高いとORPは高く、
残留塩素濃度が低いとORPは低くなる。
Chlorine in water has a redox potential (OR
P) is increased, and there is a correlation between the ORP and the residual chlorine concentration. When the residual chlorine concentration is high, the ORP is high,
If the residual chlorine concentration is low, the ORP will be low.

【0012】本発明では、電解処理装置の通電を冷却水
のORPに基いて制御し、例えば、ORPが所定値を超
えた場合には通電量を減らすか通電を停止し、ORPが
所定値よりも低下した場合には通電量を増やすか、通電
を再開することにより、冷却水中の塩素系酸化剤濃度を
所定の範囲内に保つことができる。
In the present invention, the energization of the electrolytic treatment apparatus is controlled based on the ORP of the cooling water. For example, when the ORP exceeds a predetermined value, the energization amount is reduced or the energization is stopped so that the ORP is lower than the predetermined value. If it also decreases, it is possible to keep the concentration of the chlorine-based oxidant in the cooling water within a predetermined range by increasing the amount of energization or restarting energization.

【0013】ところで、電解処理時には、陽極で塩素が
生成し、陰極で水素が生成する。塩素はORPを上昇さ
せるが、水素はORPを低下させる。電解処理により生
成する塩素と水素のバランスは、水質や運転条件により
異なるため、水素が存在する状態においては、ORPと
残留塩素濃度とに相関が得られない。
By the way, during the electrolytic treatment, chlorine is produced at the anode and hydrogen is produced at the cathode. Chlorine increases ORP, while hydrogen decreases ORP. Since the balance between chlorine and hydrogen generated by electrolytic treatment differs depending on the water quality and operating conditions, a correlation cannot be obtained between ORP and residual chlorine concentration in the presence of hydrogen.

【0014】従って、本発明においては、水素を含まな
い冷却水のORPを測定することが好ましく、このため
に、水素等の溶存ガスが除去された冷却水、例えば冷却
塔における散水により溶存ガスが除去された冷却水のO
RPを測定することが好ましい。
Therefore, in the present invention, it is preferable to measure the ORP of the cooling water containing no hydrogen. For this reason, the dissolved gas such as hydrogen is dissolved by the cooling water from which the dissolved gas such as hydrogen has been removed. O of removed cooling water
It is preferred to measure RP.

【0015】本発明において、電解処理装置を冷却水の
循環ラインに設け、循環冷却水を直接電解処理すること
も可能であるが、この場合には、何らかの条件変動で残
留塩素が過剰に発生した場合に、熱交換器等が腐食する
など、冷却水系に大きな影響を及ぼすことになる。
In the present invention, it is possible to install an electrolytic treatment device in the cooling water circulation line and directly subject the circulating cooling water to electrolytic treatment. In this case, however, residual chlorine was excessively generated due to some condition change. In this case, the cooling water system is greatly affected, such as corrosion of the heat exchanger.

【0016】従って、冷却水系から冷却水を抜き出し、
系外で電解処理し、電解処理水を戻すようにすることが
好ましい。また、この場合において、電解処理水は、冷
却塔のピットに戻し、ピット内の水で希釈して濃度調整
することが好ましい。
Accordingly, the cooling water is extracted from the cooling water system,
It is preferable to perform electrolytic treatment outside the system so that electrolytically treated water is returned. Further, in this case, it is preferable that the electrolytically treated water is returned to the pit of the cooling tower and diluted with water in the pit to adjust the concentration.

【0017】一方、ORPの測定は、冷却塔における散
水で水素が放出された冷却水について行うことが好まし
く、従って、散水板の下部の冷却塔のピット内の水のO
RPを測定することが好ましいが、このORPの測定箇
所が電解処理水の導入箇所と近接していると、電解処理
水中の水素による影響を受けることとなる。従って、こ
の場合には、冷却塔への電解処理水の導入箇所から離隔
した冷却塔の散水板下部の冷却水のORPを測定するこ
とが好ましい。
On the other hand, the ORP measurement is preferably performed on the cooling water from which hydrogen has been released by water sprinkling in the cooling tower, and therefore the O in the water in the pit of the cooling tower below the water spray plate.
It is preferable to measure RP, but if this ORP measurement location is close to the location where the electrolytically treated water is introduced, it will be affected by hydrogen in the electrolytically treated water. Therefore, in this case, it is preferable to measure the ORP of the cooling water below the water spray plate of the cooling tower, which is separated from the location where the electrolytically treated water is introduced into the cooling tower.

【0018】[0018]

【発明の実施の形態】以下に図面を参照して本発明の冷
却水系の水処理方法の実施の形態を詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of a cooling water system water treatment method of the present invention will be described in detail below with reference to the drawings.

【0019】図1は本発明の冷却水系の水処理方法の実
施の形態を示す系統図である。図1において、冷却塔は
上面から見た平面図として示されている。
FIG. 1 is a system diagram showing an embodiment of a water treatment method for a cooling water system according to the present invention. In FIG. 1, the cooling tower is shown as a plan view from above.

【0020】1は冷却塔であり、散水板1A,1Bを備
える。この冷却塔1のピット内の冷却水は、ポンプP
により、配管11を経て熱交換器2に送給され、戻り水
は配管12、配管12A,12Bを経て冷却塔1に戻さ
れ、散水板1A,1Bから散水される。3は電解処理装
置であり電解槽4と、この電解槽4内に設けられた電極
4A,4Bと、電極4A,4Bに電圧を印加する電源5
とを備える。
A cooling tower 1 is provided with water spray plates 1A and 1B. The cooling water in the pit of the cooling tower 1 is pump P 1
Thus, the return water is sent to the heat exchanger 2 through the pipe 11, the return water is returned to the cooling tower 1 through the pipe 12, the pipes 12A and 12B, and is sprayed from the water spray plates 1A and 1B. Reference numeral 3 denotes an electrolytic treatment device, an electrolytic bath 4, electrodes 4A and 4B provided in the electrolytic bath 4, and a power source 5 for applying a voltage to the electrodes 4A and 4B.
With.

【0021】この電解処理装置3の電解槽4には、冷却
塔1のピット内の冷却水が、ポンプPにより配管13
を経て導入され、電解槽4内で電解処理され、電解処理
水は配管14より冷却塔1のピットの一側に戻される。
In the electrolytic cell 4 of this electrolytic treatment apparatus 3, the cooling water in the pit of the cooling tower 1 is piped by the pump P 2.
And is electrolyzed in the electrolytic bath 4, and the electrolyzed water is returned to one side of the pit of the cooling tower 1 through the pipe 14.

【0022】冷却塔1のピットの、電解処理水が導入さ
れる位置(図1中のX)と反対側の散水板1Bの下方に
は、ORP計6のORP測定用電極が設けられており、
この位置で冷却水のORPが測定される。そして、この
ORP計6の測定結果に基いて、電解処理装置3の通電
が制御されるように構成されている。
An ORP measuring electrode of an ORP meter 6 is provided below the sprinkler plate 1B in the pit of the cooling tower 1 on the side opposite to the position where the electrolytically treated water is introduced (X in FIG. 1). ,
The ORP of the cooling water is measured at this position. Then, the energization of the electrolytic treatment apparatus 3 is controlled based on the measurement result of the ORP meter 6.

【0023】図1の冷却水系では、ORP計6の測定値
に基いて、ORP測定値が所定値を超えた場合には電源
5を切り、電極4A,4Bへの通電を停止して電解処理
を中断し、ORP測定値が所定値を下回った場合には、
電源5を入れて電極4A,4Bに通電して電解処理を再
開することにより、冷却水中の残留塩素濃度を所定の範
囲内に保つ。
In the cooling water system of FIG. 1, when the ORP measurement value exceeds a predetermined value based on the measurement value of the ORP meter 6, the power source 5 is turned off, and the energization to the electrodes 4A and 4B is stopped to perform the electrolytic treatment. If the ORP measurement value is below the specified value,
The residual chlorine concentration in the cooling water is kept within a predetermined range by turning on the power source 5 and energizing the electrodes 4A and 4B to restart the electrolytic treatment.

【0024】なお、このような電源のON、OFF操作
の代りに電源5の通電量の増減を行っても良く、ORP
が所定値を超えた場合には電源5の通電量を低下させて
電解処理で生成する残留塩素量を低減し、ORPが所定
値を下回った場合には電源5の通電量を増やし、電解処
理で生成する残留塩素量を増加させるようにしても良
い。また、ORP測定値が所定値を下回った場合には、
所定時間電源5を入れて所定時間電解処理を行うように
したり、逆にORPが所定値を超えた場合には所定時間
電源5を切って所定時間電解処理を中断するようにして
も良い。
It should be noted that the amount of electricity supplied to the power source 5 may be increased or decreased instead of such an ON / OFF operation of the power source.
Is less than a predetermined value, the energization amount of the power source 5 is reduced to reduce the amount of residual chlorine generated in the electrolytic treatment, and when the ORP is less than the predetermined value, the energization amount of the power source 5 is increased to perform the electrolytic treatment. It is also possible to increase the amount of residual chlorine generated in step. In addition, when the ORP measurement value falls below a predetermined value,
The power supply 5 may be turned on for a predetermined time to carry out the electrolysis treatment for a predetermined time, or conversely, when the ORP exceeds a predetermined value, the power supply 5 may be turned off for a predetermined time to interrupt the electrolysis treatment for a predetermined time.

【0025】このようなORP所定値に基く通電制御に
おいて、図示の方法では、散水板1Bの下方の冷却水、
即ち、散水により水中の水素が放散された冷却水のOR
Pを測定するため、電解処理で発生する水素の影響を受
けることがない。しかも、このORP計6の設置位置
は、電解処理水が導入される位置Xから離隔しているた
め、電解処理で発生した水素を含む電解処理水による影
響を受けることもなく、残留塩素に相関するORP値を
的確に測定することができ、この測定値に基いて良好な
通電制御を行い、系内の残留塩素濃度を所定の範囲に保
つことができる。
In the energization control based on the ORP predetermined value, the cooling water below the sprinkler plate 1B,
That is, the OR of the cooling water in which hydrogen in the water has been diffused
Since P is measured, it is not affected by hydrogen generated by electrolytic treatment. Moreover, since the installation position of the ORP meter 6 is separated from the position X where the electrolyzed water is introduced, it is not affected by the electrolyzed water containing hydrogen generated by the electrolysis, and is correlated with the residual chlorine. It is possible to accurately measure the ORP value, and based on this measured value, it is possible to carry out good energization control and keep the residual chlorine concentration in the system within a predetermined range.

【0026】なお、電解処理装置3は、冷却水の循環配
管11等に直接設け、循環冷却水を直接電解処理するこ
とも可能であるが、この場合には、前述の如く、何らか
の条件変動で残留塩素が過剰に発生した場合に、熱交換
器2等が腐食するなど、冷却水系内に大きな影響を及ぼ
すことになる。
The electrolytic treatment device 3 may be directly provided in the cooling water circulation pipe 11 or the like to directly subject the circulating cooling water to electrolytic treatment. In this case, however, as described above, there may be some variation in conditions. When the residual chlorine is excessively generated, the heat exchanger 2 and the like are corroded, which has a great influence on the cooling water system.

【0027】従って、冷却水系から冷却水を抜き出し、
系外で電解処理し、電解処理水を戻すようにすることが
好ましい。また、この場合において、図1に示す如く、
電解処理水を冷却塔のピットに戻すことにより、ピット
内の水で電解処理水を直ちに希釈して残留塩素濃度を調
整することができ、系内残留塩素濃度の安定化等の面で
好ましい。
Therefore, the cooling water is extracted from the cooling water system,
It is preferable to perform electrolytic treatment outside the system so that electrolytically treated water is returned. In this case, as shown in FIG.
By returning the electrolytically treated water to the pit of the cooling tower, the electrolytically treated water can be immediately diluted with the water in the pit to adjust the residual chlorine concentration, which is preferable in terms of stabilizing the residual chlorine concentration in the system.

【0028】冷却水の抜き出し位置には特に制限はな
く、循環配管12から抜き出すことも可能であるが、特
に、既設の冷却水系に対して本発明を適用する場合を考
慮した場合、図1に示す如く、冷却塔1のピット内の冷
却水を抜き出して電解処理した後戻すようにするのが配
管工事等の面で好ましい。
There are no particular restrictions on the position of withdrawing the cooling water, and it is possible to withdraw it from the circulation pipe 12. In particular, when considering the case of applying the present invention to an existing cooling water system, FIG. As shown in the drawing, it is preferable from the viewpoint of piping work that the cooling water in the pit of the cooling tower 1 is extracted, electrolyzed and then returned.

【0029】電圧制御とORP測定値との関係は、冷却
水の水質、電解処理装置の能力、好適な系内残留塩素等
に応じて適宜決定されるが、一般的には、ORP測定値
が100〜600mVの範囲となるように、即ち、OR
P測定値が100mVを下回った場合には電解処理を再
開するか電解処理量を上げ、ORP測定値が600mV
を上回った場合には電解処理を停止するか電解処理量を
低下させるようにするのが好ましい。
The relationship between the voltage control and the ORP measurement value is appropriately determined according to the water quality of the cooling water, the capacity of the electrolytic treatment apparatus, the suitable residual chlorine in the system, etc. In general, the ORP measurement value is To be in the range of 100 to 600 mV, that is, OR
When the measured P value is less than 100 mV, the electrolytic treatment is restarted or the electrolytic treatment amount is increased, and the measured ORP value is 600 mV.
If it exceeds, it is preferable to stop the electrolytic treatment or reduce the electrolytic treatment amount.

【0030】前述の如く、ORPの測定は電解処理で発
生する水素の影響を受けない箇所で行うことが好まし
く、このため、図1においては、冷却塔1への電解処理
水の導入箇所から離隔した冷却塔1の散水板1B下部に
ORP計6の測定電極を設け、この部分で冷却水のOR
Pの測定を行うが、電解処理で発生する水素の影響を防
止してORPを測定する方法としては、その他、次のよ
うな方法を採用することもできる。
As described above, it is preferable to measure the ORP at a location that is not affected by hydrogen generated by the electrolytic treatment. Therefore, in FIG. 1, the ORP is separated from the location where the electrolytically treated water is introduced into the cooling tower 1. The measurement electrode of the ORP meter 6 is provided below the water spray plate 1B of the cooling tower 1, and the cooling water is ORed in this portion.
Although P is measured, the following method can also be adopted as a method for measuring ORP while preventing the influence of hydrogen generated by electrolytic treatment.

【0031】 電解処理装置の電解槽の出口において
気液分離を行う。この気液分離は、適当な気液分離器を
設ける他、貯槽に導入して電解処理水を撹拌する方法で
あっても良い。この方法によれば、水素が除去された電
解処理水が冷却水系に戻されるため、冷却塔のピットに
限らず、冷却水系のどのような箇所にORP計を設けて
も、良好な測定結果を得ることができる。
Gas-liquid separation is performed at the outlet of the electrolytic cell of the electrolytic treatment apparatus. This gas-liquid separation may be carried out by installing an appropriate gas-liquid separator, or by introducing it into a storage tank and stirring the electrolytically treated water. According to this method, the electrolytically treated water from which hydrogen has been removed is returned to the cooling water system, so that good measurement results can be obtained regardless of the location of the cooling water system, not limited to the pit of the cooling tower. Obtainable.

【0032】 電解処理水を冷却塔の散水板に戻して
散水する。この場合には、電解処理水中の水素が散水に
より放出されるため、冷却塔のピットに限らず、冷却水
系のどのような箇所にORP計を設けても、良好な測定
結果を得ることができる。
The electrolytically treated water is returned to the water spray plate of the cooling tower to spray water. In this case, since hydrogen in the electrolyzed water is released by water sprinkling, a good measurement result can be obtained not only in the pit of the cooling tower but also in any place of the cooling water system provided with the ORP meter. .

【0033】 電解処理水をORP計の測定電極に接
触させることなく、冷却塔の循環ポンプに送給し、循環
配管へ送る。この場合には、戻り水が冷却塔の散水板で
散水されることにより水素が除去されるため、冷却塔の
ピットに設けたORP計により良好な測定結果を得るこ
とができる。
The electrolyzed water is sent to the circulation pump of the cooling tower without being brought into contact with the measurement electrode of the ORP meter and sent to the circulation pipe. In this case, since the return water is sprinkled by the sprinkling plate of the cooling tower to remove hydrogen, a good measurement result can be obtained by the ORP meter provided in the pit of the cooling tower.

【0034】なお、冷却水の塩化物イオン濃度は、当該
水系の濃縮倍率等によっても異なるが、一般的には、3
0〜100mg/L程度である。従って、このような塩
化物イオン濃度の冷却水を電解処理することにより、例
えば、次亜塩素酸濃度1〜10mg/L程度の電解処理
水を得ることができる。
Although the chloride ion concentration of the cooling water varies depending on the concentration ratio of the water system, it is generally 3
It is about 0 to 100 mg / L. Therefore, by electrolytically treating the cooling water having such a chloride ion concentration, for example, electrolytically treated water having a hypochlorous acid concentration of about 1 to 10 mg / L can be obtained.

【0035】電解処理装置3で用いる電極4A,4Bの
材質には、特に制限はないが、陽極としては、例えば、
チタンなどの耐食性の材料に白金、イリジウムなどの白
金系元素の単体及び/又はその酸化物を被覆した次亜塩
素酸の生成効率が良好な材質を好適に用いることができ
る。陰極としては、例えば、ステンレス鋼、アルミニウ
ム、銀などを用いることができるが、陰極と陽極を同一
のタイプとすることもできる。また、電流の方向は特に
固定する必要はなく、電流の正負を定期的又は随意的に
逆転させ、陰極と陽極とを反転させながら電解を行うこ
とができる(極性変換)。この極性変換により、陰極に
付着した炭酸カルシウムなどのスケールを剥離しながら
運転することができるため、電解効率の低下を防ぐこと
ができる。なお、この場合、両電極を同一のタイプのも
のとすれば、一定の次亜塩素酸の発生効率が得られる。
この場合、用いる電極としては、例えば、チタンを基材
としたものに白金やイリジウムなどを被覆したものなど
が挙げられる。極性変換の頻度としては0.5〜6hr
に1回が好ましい。
The material of the electrodes 4A and 4B used in the electrolytic treatment apparatus 3 is not particularly limited, but as the anode, for example,
A material having good production efficiency of hypochlorous acid, which is obtained by coating a corrosion-resistant material such as titanium with a simple substance of a platinum-based element such as platinum or iridium and / or an oxide thereof, can be preferably used. As the cathode, for example, stainless steel, aluminum, silver or the like can be used, but the cathode and the anode can be the same type. In addition, the direction of the current does not have to be fixed in particular, and the positive and negative of the current can be periodically or arbitrarily reversed to carry out electrolysis while inverting the cathode and the anode (polarity conversion). By this polarity conversion, since it is possible to operate while peeling off the scale such as calcium carbonate attached to the cathode, it is possible to prevent a decrease in electrolysis efficiency. In this case, if both electrodes are of the same type, a constant hypochlorous acid generation efficiency can be obtained.
In this case, the electrode used may be, for example, a titanium-based material coated with platinum or iridium. The frequency of polarity conversion is 0.5 to 6 hr
Once is preferable.

【0036】本発明において、電解のために印加する直
流電圧に特に制限はないが、2〜40Vであることが好
ましく、10〜20Vであることがより好ましい。印加
する電圧が2V未満であると、残留塩素の生成効率が低
下するおそれがある。印加する電圧が40Vを超える
と、人体に対して危険性が生ずるおそれがある。本発明
方法において、電解のために通電する電流値に特に制限
はないが、導入される冷却水1L/hrに対して、0.
01〜0.1Aであることが好ましい。
In the present invention, the DC voltage applied for electrolysis is not particularly limited, but is preferably 2 to 40V, and more preferably 10 to 20V. If the applied voltage is less than 2 V, the generation efficiency of residual chlorine may decrease. If the applied voltage exceeds 40 V, there is a danger that the human body may be in danger. In the method of the present invention, there is no particular limitation on the value of the electric current supplied for electrolysis, but it is 0.
It is preferably from 01 to 0.1 A.

【0037】前述の如く、冷却水は、十分に高い塩化物
イオン濃度を有し、従って、冷却水には特に塩化物イオ
ンを補給することなく電解処理装置3で処理して十分量
の残留塩素濃度の電解処理水を得ることができるが、必
要に応じて冷却水に食塩(NaCl)等を添加して塩化
物イオン濃度を100〜300mg/L程度にまで高め
ても良い。
As described above, the cooling water has a sufficiently high chloride ion concentration. Therefore, the cooling water is treated by the electrolytic treatment apparatus 3 without supplementing the chloride ion, and a sufficient amount of residual chlorine is obtained. Although electrolytically treated water having a concentration can be obtained, salt (NaCl) or the like may be added to cooling water to increase the chloride ion concentration to about 100 to 300 mg / L, if necessary.

【0038】本発明では、冷却水系内の腐食を防止した
上で良好なスライム防止効果を得るために、電解処理装
置3で得られる残留塩素を含む電解処理水を冷却水系に
含有させることにより、冷却水系内の冷却水中の残留塩
素濃度を0.1〜1.0mg−Cl/L程度の範囲に
保つことが好ましく、このような残留塩素濃度に維持す
ることができるように、電解処理する冷却水量や電解処
理装置の通電量及びその制御条件等を適宜設定すること
が好ましい。
In the present invention, in order to prevent corrosion in the cooling water system and obtain a good slime prevention effect, the electrolytic treatment water containing residual chlorine obtained in the electrolytic treatment apparatus 3 is contained in the cooling water system. It is preferable to keep the residual chlorine concentration in the cooling water in the cooling water system in the range of about 0.1 to 1.0 mg-Cl 2 / L, and perform electrolytic treatment so that such a residual chlorine concentration can be maintained. It is preferable to appropriately set the amount of cooling water, the amount of electricity supplied to the electrolytic treatment apparatus, its control conditions, and the like.

【0039】[0039]

【実施例】以下に実施例及び比較例を挙げて本発明をよ
り具体的に説明する。
EXAMPLES The present invention will be described more specifically with reference to Examples and Comparative Examples below.

【0040】実施例1 図1に示す装置により、水道水を補給水とする循環冷却
水系の冷却塔(保有水量3000L)から、冷却水(塩
化物イオン濃度80〜110mg/L)を3000L/
hrで抜き出して、電解処理装置で電解処理し、電解処
理水を冷却塔に戻すことにより、系内のスライム防止を
行った。また、腐食の度合を確認するため、軟鋼製テス
トピース(SPCC:50mm×15mm×1mm)と
銅製テストピース(C1220P:50mm×15mm
×1mm)を冷却水中に浸漬して、腐食速度(mdd)
を測定した。冷却塔には、図1に示す如く、電解処理水
の導入箇所から離隔した位置にORP計を設け、ORP
計の測定値が300mVを下回ったときに電解処理装置
の電源をONとし、310mVを上回ったときに電解処
理装置の電源をOFFとする制御を行った。用いた電解
処理装置及びORP計の仕様は次の通りである。
Example 1 With the apparatus shown in FIG. 1, cooling water (chloride ion concentration: 80 to 110 mg / L) was added to 3000 L / liter from a circulating cooling water system cooling tower (holding water amount: 3000 L) using tap water as makeup water.
Slime in the system was prevented by extracting with hr and performing electrolytic treatment with an electrolytic treatment apparatus and returning the electrolytically treated water to the cooling tower. Moreover, in order to confirm the degree of corrosion, a mild steel test piece (SPCC: 50 mm × 15 mm × 1 mm) and a copper test piece (C1220P: 50 mm × 15 mm)
Corrosion rate (mdd)
Was measured. As shown in FIG. 1, the cooling tower is provided with an ORP meter at a position distant from the place where the electrolytically treated water is introduced.
When the measured value of the meter was lower than 300 mV, the power of the electrolytic treatment apparatus was turned on, and when it was higher than 310 mV, the power of the electrolytic treatment apparatus was turned off. The specifications of the electrolytic treatment apparatus and the ORP meter used are as follows.

【0041】電解処理装置:栗田工業(株)製「電解次
亜塩素酸ナトリウム発生装置」 電圧=15V 電流=70A 陽極=Ti材(50dm、厚み1mm)の表面にPt
を担持したもの 陰極=Ti材(50dm、厚み1mm)の表面にPt
を担持したもの 極板間距離=3mm ORP計:大倉電気株式会社製MP8801型
Electrolytic treatment device: "Electrolytic sodium hypochlorite generator" manufactured by Kurita Water Industries Ltd. Voltage = 15V Current = 70A Anode = Pt on the surface of Ti material (50 dm 2 , thickness 1 mm)
Cathode = Pt on the surface of Ti material (50 dm 2 , thickness 1 mm)
The distance between electrode plates = 3 mm ORP meter: MP8801 type manufactured by Okura Electric Co., Ltd.

【0042】その結果、30日間の運転期間中、冷却水
中の残留塩素濃度を0.1〜0.3mg−Cl/Lの
範囲内に安定に維持することができ、系内腐食を引き起
こすことなく、良好なスライム防止効果を得ることがで
きた。
As a result, during the operation period of 30 days, the residual chlorine concentration in the cooling water can be stably maintained within the range of 0.1 to 0.3 mg-Cl 2 / L, which causes system corrosion. It was possible to obtain a good anti-slime effect.

【0043】このようにして30日間運転を継続した
後、系内の散水部分に付着したスライム量からスライム
付着速度を求めたところ1mg/dmであり、スライ
ムが十分に防止されていることが確認された。また、腐
食速度は、SPCCが9mdd、C1220Pが0.5
mddであった。
After the operation was continued for 30 days in this way, the slime deposition rate was calculated from the amount of slime deposited on the water sprayed part in the system, which was 1 mg / dm 2 , which indicates that slime was sufficiently prevented. confirmed. The corrosion rate is 9 mdd for SPCC and 0.5 for C1220P.
It was mdd.

【0044】比較例1 実施例1において、ORP計のORP測定電極を、電解
処理水が冷却塔に導入される部分(図1のX個所)に設
けたこと以外は同様にして処理を行ったところ、冷却水
中の残留塩素濃度は0.1〜4.0mg−Cl/Lと
変動幅が大きかった。
Comparative Example 1 The same treatment as in Example 1 was carried out except that the ORP measuring electrode of the ORP meter was provided at the portion where the electrolytically treated water was introduced into the cooling tower (X in FIG. 1). However, the residual chlorine concentration in the cooling water had a large fluctuation range of 0.1 to 4.0 mg-Cl 2 / L.

【0045】また、実施例1と同様にしてスライム付着
速度を調べたところ、0.7mg/dmであり、スラ
イムの防止効果は十分であったが、SPCCとC122
0Pの腐食速度がそれぞれ50mdd、2mddと高い
ことが確認された。これは、電解処理水が導入される部
分でORPの測定を行ったため、電解処理水中の水素に
よる影響を受け、残留塩素濃度に相関するORP測定値
を得ることができなかったことによるものと推定され
た。
When the slime deposition rate was examined in the same manner as in Example 1, it was 0.7 mg / dm 2 , and although the slime preventing effect was sufficient, SPCC and C122 were found.
It was confirmed that the 0P corrosion rates were as high as 50 mdd and 2 mdd, respectively. It is presumed that this is because the ORP was measured at the portion where the electrolyzed water was introduced, so that it was affected by hydrogen in the electrolyzed water, and the ORP measurement value correlated with the residual chlorine concentration could not be obtained. Was done.

【0046】[0046]

【発明の効果】以上詳述した通り、本発明の冷却水系の
水処理方法によれば、冷却水を電解処理することによ
り、冷却水中の塩化物イオンから塩素系酸化剤を生成さ
せ、塩素系酸化剤を含む電解処理水を冷却水系に供給す
ることにより系内のスライムの発生を防止するに当た
り、冷却水中の塩素系酸化剤濃度が所定の範囲となるよ
うに塩素系酸化剤の生成量を適正範囲に制御することが
でき、これにより、系内の腐食を防止した上で良好なス
ライム防止効果を得ることができる。
As described in detail above, according to the cooling water-based water treatment method of the present invention, the cooling water is electrolyzed to generate a chlorine-based oxidizer from chloride ions in the cooling water to generate a chlorine-based oxidizing agent. In preventing the generation of slime in the system by supplying electrolytically treated water containing an oxidant to the cooling water system, the amount of chlorine-based oxidant produced should be adjusted so that the concentration of chlorine-based oxidant in the cooling water is within the specified range. It can be controlled within an appropriate range, whereby a good slime prevention effect can be obtained while preventing corrosion in the system.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の冷却水系の水処理方法の実施の形態を
示す系統図である。
FIG. 1 is a system diagram showing an embodiment of a water treatment method for a cooling water system according to the present invention.

【符号の説明】[Explanation of symbols]

1 冷却塔 1A,1B 散水板 2 熱交換器 3 電解処理装置 4 電解槽 4A,4B 電極 5 電源 6 ORP計 1 cooling tower 1A, 1B watering plate 2 heat exchanger 3 Electrolytic treatment equipment 4 electrolyzer 4A, 4B electrodes 5 power supplies 6 ORP meter

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C02F 1/50 531 C02F 1/50 531P 540 540B 550 550D 560 560F 1/76 1/76 A F28C 1/16 F28C 1/16 G01N 27/416 G01N 27/46 341M // F28F 19/01 F28F 19/00 501B Fターム(参考) 4D011 AA11 AB01 4D037 AA08 AB18 BA24 CA04 CA16 4D050 AA08 AB06 BB06 BD04 CA03 CA10 CA12 4D061 DA05 DB10 EA02 EB04 EB37 EB39 ED12 FA03 FA16 GA08 GC12 Front page continuation (51) Int.Cl. 7 Identification code FI theme code (reference) C02F 1/50 531 C02F 1/50 531P 540 540B 550 550D 560 560F 1/76 1/76 A F28C 1/16 F28C 1 / 16 G01N 27/416 G01N 27/46 341M // F28F 19/01 F28F 19/00 501B F Term (reference) 4D011 AA11 AB01 4D037 AA08 AB18 BA24 CA04 CA16 4D050 AA08 AB06 BB06 BD04 CA03 CA10 CA12 4D0637 EB04 EB04 DB10 DB05 DB10 DB04 ED12 FA03 FA16 GA08 GC12

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 冷却水中に浸漬した電極に通電して、該
水中に含まれる塩化物イオンから塩素系酸化剤を生成さ
せた電解処理水を冷却水系の冷却水に含有させる冷却水
系の水処理方法において、 該冷却水の酸化還元電位を測定し、この測定値に基い
て、前記電極への通電を制御することを特徴とする冷却
水系の水処理方法。
1. A water treatment of a cooling water system in which cooling water of a cooling water system contains electrolyzed water in which a chlorine-based oxidizing agent is generated from chloride ions contained in the water by energizing an electrode immersed in the cooling water. In the method, the oxidation-reduction potential of the cooling water is measured, and the energization to the electrode is controlled based on the measured value.
【請求項2】 請求項1において、溶存ガスが除去され
た冷却水の酸化還元電位を測定することを特徴とする冷
却水系の水処理方法。
2. The water treatment method for a cooling water system according to claim 1, wherein the oxidation-reduction potential of the cooling water from which the dissolved gas has been removed is measured.
【請求項3】 請求項2において、冷却塔における散水
により溶存ガスが除去された冷却水の酸化還元電位を測
定することを特徴とする冷却水系の水処理方法。
3. The water treatment method for a cooling water system according to claim 2, wherein the oxidation-reduction potential of the cooling water from which dissolved gas has been removed by water sprinkling in the cooling tower is measured.
【請求項4】 請求項3において、前記電解処理水を冷
却塔の一側に導入するようにした冷却水系の水処理方法
であって、該冷却塔への電解処理水の導入箇所と反対側
の冷却塔内の冷却水の酸化還元電位を測定することを特
徴とする冷却水系の水処理方法。
4. The cooling water system water treatment method according to claim 3, wherein the electrolytically treated water is introduced into one side of the cooling tower, the side being opposite to a location where the electrolytically treated water is introduced into the cooling tower. Measuring the oxidation-reduction potential of the cooling water in the cooling tower of 1.
JP2001351868A 2001-11-16 2001-11-16 Water treatment method for cooling water system Expired - Fee Related JP3521896B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001351868A JP3521896B2 (en) 2001-11-16 2001-11-16 Water treatment method for cooling water system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001351868A JP3521896B2 (en) 2001-11-16 2001-11-16 Water treatment method for cooling water system

Publications (2)

Publication Number Publication Date
JP2003145160A true JP2003145160A (en) 2003-05-20
JP3521896B2 JP3521896B2 (en) 2004-04-26

Family

ID=19164119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001351868A Expired - Fee Related JP3521896B2 (en) 2001-11-16 2001-11-16 Water treatment method for cooling water system

Country Status (1)

Country Link
JP (1) JP3521896B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110120956A1 (en) * 2007-08-15 2011-05-26 Ivanter Irina A Method and system for treating ballast water

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110120956A1 (en) * 2007-08-15 2011-05-26 Ivanter Irina A Method and system for treating ballast water
CN104355370A (en) * 2007-08-15 2015-02-18 伊沃夸水处理技术有限责任公司 Method and system for treating ballast water
US8968575B2 (en) * 2007-08-15 2015-03-03 Evoqua Water Technologies Llc Method and system for treating ballast water

Also Published As

Publication number Publication date
JP3521896B2 (en) 2004-04-26

Similar Documents

Publication Publication Date Title
JP3716042B2 (en) Acid water production method and electrolytic cell
JP4116949B2 (en) Electrochemical sterilization and sterilization method
AU2008236636B2 (en) Method and system of electrolytic treatment
JPS6059995B2 (en) Impure salt water electrolysis method and device
US5039383A (en) Halogen generation
KR101055990B1 (en) Descaling device by electrochemical reaction and its removal method
JP2006255653A (en) Electrolytic treatment method of water system
JP3520060B2 (en) Hypochlorous acid generation method and apparatus
JP3521896B2 (en) Water treatment method for cooling water system
JP4013486B2 (en) Cooling water slime prevention method
JP2006198583A (en) Electrolytic treatment method and apparatus for water system
JP6300252B1 (en) Water treatment system, electrode corrosion inhibiting method and electrode corrosion inhibiting device for water treatment system
JP3685384B2 (en) Slime prevention method
JP2003285064A (en) Water treatment method for cooling water system
JP2007075738A (en) Scale prevention apparatus and method
JP3806626B2 (en) Hypochlorous acid generator
JP3422366B2 (en) Cooling water slime prevention method
JPH11128938A (en) Formation of electrolyzed water
JP2006289298A (en) Water treatment method and water treatment device
JP2007260492A (en) Electrolyzing method of water
JP3928455B2 (en) Water treatment method for cooling water system
CN110697949B (en) Method for reducing residual quantity of chloride ions in diaphragm-free electrolyzed water
JP3685124B2 (en) Cooling water system water treatment apparatus and water treatment method
EP1226094A1 (en) Device for electrolysis
EP1394119A1 (en) Method and apparatus for generating ozone by electrolysis

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040202

R150 Certificate of patent or registration of utility model

Ref document number: 3521896

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080220

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090220

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090220

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100220

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110220

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110220

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140220

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees