JP2003144924A - Selective oxidation catalyst for hydrogen, selective oxidation method for hydrogen and dehydrogenation method for hydrocarbon - Google Patents
Selective oxidation catalyst for hydrogen, selective oxidation method for hydrogen and dehydrogenation method for hydrocarbonInfo
- Publication number
- JP2003144924A JP2003144924A JP2001344614A JP2001344614A JP2003144924A JP 2003144924 A JP2003144924 A JP 2003144924A JP 2001344614 A JP2001344614 A JP 2001344614A JP 2001344614 A JP2001344614 A JP 2001344614A JP 2003144924 A JP2003144924 A JP 2003144924A
- Authority
- JP
- Japan
- Prior art keywords
- hydrogen
- gas
- catalyst
- hydrocarbon
- dehydrogenation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Landscapes
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
- Catalysts (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、水素及び炭化水素
を含有するガス中の水素を、酸素で選択的に接触酸化す
るための触媒、その触媒を用いて水素を酸化する方法、
及びその触媒を用いて炭化水素を脱水素する方法に関す
るものである。TECHNICAL FIELD The present invention relates to a catalyst for selectively catalytically oxidizing hydrogen in a gas containing hydrogen and hydrocarbons with oxygen, a method for oxidizing hydrogen using the catalyst,
And a method for dehydrogenating hydrocarbons using the catalyst.
【従来の技術】 オレフィン性不飽和結合を有する炭化
水素を製造する方法の一つとして、炭化水素を脱水素す
る方法が挙げられる。2. Description of the Related Art One of the methods for producing a hydrocarbon having an olefinically unsaturated bond is a method for dehydrogenating a hydrocarbon.
【0002】例えば、鉄系の触媒を用いてエチルベンゼ
ンを脱水素するスチレンの製造方法が知られている。し
かしながら、この脱水素反応は平衡反応であることか
ら、生成した水素が反応の進行を阻害してしまう。ま
た、脱水素反応は吸熱反応なので、反応の進行と共に系
内の温度が低下してしまう。これらの理由から、この方
法でエチルベンゼンを脱水素しても、高い収率で、スチ
レンを製造することは困難であった。そこで、エチルベ
ンゼンからスチレンを製造する工程中で発生した水素を
選択的に酸化することにより、反応平衡をずらすと共に
反応温度の低下を補う方法が、種々、検討されてきた。For example, a method for producing styrene by dehydrogenating ethylbenzene using an iron-based catalyst is known. However, since this dehydrogenation reaction is an equilibrium reaction, the produced hydrogen hinders the progress of the reaction. In addition, since the dehydrogenation reaction is an endothermic reaction, the temperature in the system decreases as the reaction progresses. For these reasons, it was difficult to produce styrene with high yield even when dehydrogenating ethylbenzene by this method. Therefore, various methods for shifting the reaction equilibrium and compensating for the decrease in the reaction temperature by selectively oxidizing hydrogen generated in the step of producing styrene from ethylbenzene have been studied.
【0003】特開昭49−56930号公報には、A型
ゼオライト又はアルミナに白金を担持させた酸化触媒を
用いて、エチルベンゼンを脱水素して得られた未反応の
エチルベンゼン、スチレン、及び水素を含むガス中の水
素を酸化する方法が記載されている。しかしながら、こ
の方法では水素を選択的に酸化することはできず、炭化
水素の一部も酸化されていた。Japanese Unexamined Patent Publication (Kokai) No. 49-56930 discloses unreacted ethylbenzene, styrene, and hydrogen obtained by dehydrogenating ethylbenzene using an oxidation catalyst in which platinum is supported on A-type zeolite or alumina. A method for oxidizing hydrogen in a gas containing is described. However, this method cannot oxidize hydrogen selectively, and some of the hydrocarbons were also oxidised.
【0004】米国特許4,565,898号明細書に
は、アルミナに白金、スズ及びリチウムを担持させた触
媒を用いて、エチルベンゼンを脱水素して得られたガス
中の水素を酸化する方法が記載されている。しかしなが
ら、この方法でも水素を選択的に酸化することはできな
かった。水素の酸化に際して、炭化水素の酸化が併発す
ることは、炭化水素の損失となるだけでなく二酸化炭素
が生成する点でも好ましくない。なぜならば、二酸化炭
素は、脱水素触媒の活性及び水素酸化触媒の選択性を低
下させる(平野、触媒、29,(8),641(198
7)等)ので、脱水素反応と水素の選択的酸化反応を直
列で交互に行う場合、反応成績が著しく低下することに
なるからである。US Pat. No. 4,565,898 discloses a method of oxidizing hydrogen in a gas obtained by dehydrogenating ethylbenzene using a catalyst in which platinum, tin and lithium are supported on alumina. Have been described. However, even with this method, hydrogen could not be selectively oxidized. Simultaneous oxidation of hydrocarbons during the oxidation of hydrogen is not preferable not only in terms of the loss of hydrocarbons but also in the generation of carbon dioxide. Because carbon dioxide reduces the activity of the dehydrogenation catalyst and the selectivity of the hydrogen oxidation catalyst (Hirano, Catalyst, 29, (8), 641 (198).
7) and the like), the reaction results will be significantly reduced when the dehydrogenation reaction and the selective oxidation reaction of hydrogen are alternately performed in series.
【0005】また、このような脱水素と生成した水素の
選択的酸化を行うスチレンの製造工程では、脱水素触媒
にカリウム化合物が含まれているとカリウム化合物が飛
散する(B.D.Herzog et.al.,In
d.Eng.Chem.Prod.Res.Dev.2
3,(2),187(1984);早坂ら,第24日本
芳香族工業会大会要旨集,p36(1990)等)こと
が知られている。飛散したカリウム化合物が酸化触媒に
付着すると、水素の選択酸化反応の選択率を低下させ、
かつ主としてスチレンのスチームリフォーミング反応を
促進して、二酸化炭素の発生量を増加させてしまう。In addition, in the process for producing styrene in which such dehydrogenation and selective oxidation of the produced hydrogen are carried out, when the dehydrogenation catalyst contains a potassium compound, the potassium compound scatters (BD Herzog et. .al., In
d. Eng. Chem. Prod. Res. Dev. Two
3, (2), 187 (1984); Hayasaka et al., Proceedings of the 24th Japan Aromatic Industry Conference, p36 (1990), etc.). When the scattered potassium compounds adhere to the oxidation catalyst, the selectivity of the selective oxidation reaction of hydrogen is lowered,
In addition, it mainly promotes the steam reforming reaction of styrene to increase the amount of carbon dioxide generated.
【0006】特開平9−29095号公報には、酸化ニ
オブ等に白金を担持させた触媒を用いて、エチルベンゼ
ンを脱水素して得られたガス中の水素を酸化する方法が
記載されている。しかしながら、この方法は、上述した
方法よりも水素を選択的に酸化することができるもの
の、比較的高価なニオブを用いていることから、経済的
にはそれほど有利とはいえない。Japanese Unexamined Patent Publication (Kokai) No. 9-29095 discloses a method of oxidizing hydrogen in a gas obtained by dehydrogenating ethylbenzene using a catalyst in which platinum is supported on niobium oxide or the like. However, although this method can selectively oxidize hydrogen as compared with the above-mentioned method, it is not economically advantageous because it uses relatively expensive niobium.
【0007】特開平11−80045号公報には、カリ
ウム化合物をあらかじめ除去したガスを、酸化触媒と接
触させることにより水素を選択的に酸化する方法が記載
されている。しかしながら、この方法では脱水素工程と
水素酸化工程との間にカリウム吸着工程を設ける必要が
あり、装置が若干複雑になる。また、特開平11−32
2303号公報には、耐熱性無機担体に酸化ニオブ又は
酸化タンタル及び白金族金属を担持させることにより得
られる触媒を用いてエチルベンゼンを脱水素して得られ
たガス中の水素を酸化する方法が記載されている。この
触媒は、特開平9−29095号公報に記載されている
触媒よりも強度が高いが、やはり少量の炭化水素が燃焼
していた。Japanese Unexamined Patent Publication (Kokai) No. 11-80045 describes a method of selectively oxidizing hydrogen by bringing a gas from which a potassium compound has been removed in advance into contact with an oxidation catalyst. However, this method requires a potassium adsorption step between the dehydrogenation step and the hydrogen oxidation step, which complicates the apparatus. In addition, JP-A-11-32
No. 2303 describes a method of oxidizing hydrogen in a gas obtained by dehydrogenating ethylbenzene using a catalyst obtained by supporting niobium oxide or tantalum oxide and a platinum group metal on a heat-resistant inorganic carrier. Has been done. This catalyst has a higher strength than the catalyst described in JP-A-9-29095, but again a small amount of hydrocarbons burned.
【0008】[0008]
【発明が解決しようとする課題】本発明は、炭化水素の
脱水素反応で生成した水素及びオレフィン性不飽和結合
を有する炭化水素、並びに原料炭化水素を含むガス中の
水素を選択的に酸化する触媒を安価に提供することを課
題とする。DISCLOSURE OF THE INVENTION The present invention selectively oxidizes hydrogen produced in a hydrocarbon dehydrogenation reaction, a hydrocarbon having an olefinic unsaturated bond, and hydrogen in a gas containing a raw material hydrocarbon. An object is to provide a catalyst at low cost.
【0009】[0009]
【課題を解決するための手段】本発明者らは上記課題を
解決すべく鋭意検討した結果、耐熱性無機化合物を核と
して、その回りを酸化ニオブ及び/又は酸化タンタルで
被覆してなる担体に、白金族の元素を担持させた触媒
が、水素を極めて選択的に酸化することを見出し、本発
明を完成するに至った。Means for Solving the Problems As a result of intensive studies for solving the above problems, the present inventors have found that a carrier having a heat-resistant inorganic compound as a core and a surrounding area coated with niobium oxide and / or tantalum oxide is used. The inventors have found that a catalyst supporting a platinum group element oxidizes hydrogen extremely selectively, and completed the present invention.
【0010】すなわち、本発明の要旨は、耐熱性無機化
合物を酸化ニオブ及び/又は酸化タンタルで被覆してな
る担体に、白金族の元素を担持させたことを特徴とす
る、水素及び炭化水素を含有するガス中の水素を酸素で
接触酸化するための触媒;この触媒に、水素、炭化水素
及び酸素を含有するガスを接触させてガス中の水素を酸
化することを特徴とする、水素及び炭化水素を含有する
ガス中の水素の酸化方法;原料炭化水素を脱水素触媒と
接触させることにより、脱水素された炭化水素、未反応
の原料炭化水素、及び水素を含有するガスを生成させる
第1工程、第1工程で生成したガスを酸素含有ガスと混
合した後、この触媒と接触させることにより、ガス中の
水素を酸化する第2工程、及び第2工程で生成したガス
を脱水素触媒と接触させることによりガス中の原料炭化
水素を脱水素する第3工程、を含むことを特徴とする炭
化水素の脱水素方法、である。That is, the gist of the present invention is to provide hydrogen and hydrocarbons characterized in that a platinum group element is carried on a carrier obtained by coating a heat-resistant inorganic compound with niobium oxide and / or tantalum oxide. A catalyst for catalytically oxidizing hydrogen in a contained gas with oxygen; hydrogen and carbonization characterized by contacting the catalyst with a gas containing hydrogen, hydrocarbon and oxygen to oxidize hydrogen in the gas Method for oxidizing hydrogen in gas containing hydrogen; contacting raw hydrocarbon with dehydrogenation catalyst to produce dehydrogenated hydrocarbon, unreacted raw hydrocarbon, and gas containing hydrogen Step, the second step of oxidizing the hydrogen in the gas by mixing the gas generated in the first step with the oxygen-containing gas and then contacting this catalyst, and the gas generated in the second step as a dehydrogenation catalyst. contact The third step, the dehydrogenation process of hydrocarbons comprising a dehydrogenating a hydrocarbon feedstock in the gas by causing a.
【0011】[0011]
【発明の実施の形態】本発明に係る触媒は、耐熱性無機
化合物を所望の大きさに造粒し、これを酸化ニオブ及び
/又は酸化タンタルで被覆して担体とした後、この担体
に白金族の元素を担持させ、乾燥・焼成することにより
製造することができる。耐熱性無機化合物としては、酸
化アルミニウム、酸化ケイ素、酸化チタン、及び酸化ジ
ルコニウム等が挙げられる。このうち、酸化アルミニウ
ム、又は酸化ケイ素が好ましい。また、所望ならば、こ
れらを併用することもできる。BEST MODE FOR CARRYING OUT THE INVENTION The catalyst according to the present invention comprises granulating a heat-resistant inorganic compound into a desired size, coating the granule with niobium oxide and / or tantalum oxide to form a carrier, and then applying platinum to the carrier. It can be manufactured by supporting an element of the group and drying and firing. Examples of the heat-resistant inorganic compound include aluminum oxide, silicon oxide, titanium oxide, zirconium oxide and the like. Of these, aluminum oxide or silicon oxide is preferable. If desired, they can be used together.
【0012】耐熱性無機化合物は、粒度が細かい方が造
粒に際しての成形性や触媒強度の面で好ましいので、そ
の50%以上が74μm以下(200メッシュ以下)、
特に43μm以下(325メッシュ以下)であることが
好ましい。造粒は、耐熱性無機化合物と適当量の水とを
混合し、傾斜皿形造粒機、ドラム型造粒機、頭切円錐型
造粒機、振動回転造粒機等を用いた転動式造粒法などに
より、球状に造粒するのが好ましい。このとき、粒子の
結合力を高めるため成形助剤を用いることもできる。成
形助剤としては、セルロース、コーンスターチ、ポリビ
ニルアルコール、小麦粉、けい藻土、ブドウ糖、米糊、
ポリエチレングリコール、アラビアゴム等が挙げられ、
所望ならば、これらを併用することもできる。The heat-resistant inorganic compound preferably has a finer particle size in terms of moldability and catalyst strength at the time of granulation, so 50% or more thereof is 74 μm or less (200 mesh or less),
It is particularly preferably 43 μm or less (325 mesh or less). Granulation is performed by mixing a heat-resistant inorganic compound and an appropriate amount of water, and rolling using a tilting plate granulator, a drum granulator, a truncated cone granulator, a vibrating rotary granulator, etc. It is preferable to granulate into spheres by a formula granulation method or the like. At this time, a molding aid can be used to enhance the binding force of the particles. As a molding aid, cellulose, corn starch, polyvinyl alcohol, flour, diatomaceous earth, glucose, rice paste,
Examples include polyethylene glycol, gum arabic,
If desired, these can be used in combination.
【0013】造粒物は、篩分けにより所望の粒径のもの
を取得する。粒径は、この触媒を用いる設備に応じて、
適宜、定めればよい。このようにして得られた粒状の耐
熱性無機化合物と、酸化ニオブ及び/又は酸化タンタル
とを、適当量の水と共に混合し、前記転動式造粒法など
により造粒し、担体粒とする。この操作により、耐熱性
無機化合物を核として、その回りに酸化ニオブ及び/又
は酸化タンタルを被覆させることができる。このときに
も、前記成形助剤を用いてもよい。耐熱性無機化合物を
酸化ニオブ及び/又は酸化タンタルで被覆して耐熱性無
機化合物が外部に露出しないようにすることにより、脱
水素触媒から飛散してくるカリウム化合物の悪影響を回
避することができる。すなわち、本発明者らの知見によ
れば、飛散してくるカリウム化合物が耐熱性無機化合物
に付着すると、触媒の選択性が低下するが、酸化ニオブ
や酸化タンタルに付着すると、ニオブ酸カリウム又はタ
ンタル酸カリウムとして固定され、触媒活性に影響しな
くなる。The granulated product having a desired particle size is obtained by sieving. The particle size depends on the equipment that uses this catalyst.
It may be determined as appropriate. The granular heat-resistant inorganic compound thus obtained and niobium oxide and / or tantalum oxide are mixed with an appropriate amount of water and granulated by the rolling granulation method or the like to obtain carrier particles. . By this operation, niobium oxide and / or tantalum oxide can be coated around the heat-resistant inorganic compound as a nucleus. At this time also, the molding aid may be used. By covering the heat-resistant inorganic compound with niobium oxide and / or tantalum oxide to prevent the heat-resistant inorganic compound from being exposed to the outside, the adverse effect of the potassium compound scattered from the dehydrogenation catalyst can be avoided. That is, according to the knowledge of the present inventors, when the scattered potassium compound adheres to the heat-resistant inorganic compound, the selectivity of the catalyst decreases, but when it adheres to niobium oxide or tantalum oxide, potassium niobate or tantalum. It is fixed as potassium acid and does not affect the catalytic activity.
【0014】担体粒中の酸化ニオブ及び/又は酸化タン
タルは、20〜80重量%となるのが好ましい。20重
量%未満では、耐熱性無機化合物が酸化ニオブ及び/又
は酸化タンタルで完全に被覆されなかったり、酸化ニオ
ブ及び/又は酸化タンタルの厚さが薄くて耐久性に欠け
る。このため、カリウム化合物の影響を十分に回避する
ことができず、水素酸化の選択性が低下してしまう。8
0重量%を超えても、触媒活性や水素酸化の選択性に影
響はないが、触媒強度が低下したり、触媒が高価となる
ため好ましくない。The content of niobium oxide and / or tantalum oxide in the carrier particles is preferably 20 to 80% by weight. If it is less than 20% by weight, the heat-resistant inorganic compound may not be completely covered with niobium oxide and / or tantalum oxide, or the niobium oxide and / or tantalum oxide may be thin and lack durability. For this reason, the influence of the potassium compound cannot be sufficiently avoided, and the selectivity of hydrogen oxidation is reduced. 8
If it exceeds 0% by weight, it does not affect the catalytic activity or the selectivity of hydrogen oxidation, but it is not preferable because the catalyst strength is lowered and the catalyst becomes expensive.
【0015】また、担体粒は、耐熱性無機化合物を核と
し、その回りを20〜80容量%の酸化ニオブ及び/又
は酸化タンタルの層でほぼ均一に被覆されていることが
好ましい。被覆に用いる酸化ニオブ又は酸化タンタル
は、市販されているものを所望の大きさに粉砕して用い
ればよい。粒度の細かい方が成形性や触媒強度の面で適
しているので、10μm以下、特に5μm以下に粉砕し
たものを用いるのが好ましい。Further, it is preferable that the carrier particles have a heat-resistant inorganic compound as a core, and the periphery thereof is substantially uniformly covered with a layer of 20 to 80% by volume of niobium oxide and / or tantalum oxide. As niobium oxide or tantalum oxide used for coating, a commercially available product may be crushed to a desired size before use. Since finer particles are more suitable in terms of moldability and catalyst strength, it is preferable to use crushed particles of 10 μm or less, especially 5 μm or less.
【0016】酸化ニオブ、特に五酸化ニオブを用いて被
覆するのが好ましい。上記で得られた担体粒を100〜
150℃で2〜24時間乾燥後、300〜1500℃で
3〜12時間焼成し、触媒担体とする。触媒担体に白金
族の元素の塩の水溶液を含浸後、50〜1000℃の温
度で乾燥・焼成するにより白金族の元素を担持させて、
選択的水素酸化触媒を得る。It is preferable to coat with niobium oxide, especially niobium pentoxide. The carrier granules obtained above are 100-
After drying at 150 ° C for 2 to 24 hours, it is calcined at 300 to 1500 ° C for 3 to 12 hours to obtain a catalyst carrier. After impregnating the catalyst carrier with an aqueous solution of a salt of a platinum group element, the platinum group element is supported by drying and firing at a temperature of 50 to 1000 ° C.
A selective hydrogen oxidation catalyst is obtained.
【0017】得られた選択的水素化触媒に占める酸化ニ
オブ及び/又は酸化タンタルの割合は、20〜80重量
%であるのが好ましい。白金族の元素の割合は、0.0
01〜10重量%、特に0.05〜5重量%であるのが
好ましい。この割合が低いと、酸化反応の活性が低下す
る。一方、この割合が10重量%を超えても、触媒活性
や水素酸化の選択性に影響はないが、触媒が高価となる
ため好ましくない。The proportion of niobium oxide and / or tantalum oxide in the obtained selective hydrogenation catalyst is preferably 20 to 80% by weight. The ratio of platinum group elements is 0.0
It is preferably from 01 to 10% by weight, particularly from 0.05 to 5% by weight. When this ratio is low, the activity of the oxidation reaction is reduced. On the other hand, if this ratio exceeds 10% by weight, the catalytic activity and the selectivity of hydrogen oxidation are not affected, but the catalyst becomes expensive, which is not preferable.
【0018】白金族の元素としては、白金及びパラジウ
ムが挙げられる。所望ならば、これらを併用してもよ
い。また、これらの塩としては任意のものを使用できる
が、ハロゲン化物、水酸化物、硫酸塩等が挙げられる。
また、ビスアセチルアセトナト白金、シアン化第一白金
等の有機化合物を用いることもできる。本発明に係る触
媒に、水素、炭化水素及び酸素を含有するガスを接触さ
せて、ガス中の水素を選択的に酸化する。この酸化反応
は、通常300〜800℃、特に400〜700℃で行
うことが好ましい。これよりも温度が高いと、選択性が
低下し、炭化水素の燃焼率が上昇してしまう。一方、温
度が低いと、選択性には影響しないものの、触媒活性が
低下してしまう。Examples of the platinum group element include platinum and palladium. These may be used in combination if desired. Any of these salts may be used, and examples thereof include halides, hydroxides and sulfates.
Alternatively, an organic compound such as bisacetylacetonatoplatinum or platinous cyanide can be used. A gas containing hydrogen, hydrocarbons and oxygen is brought into contact with the catalyst according to the present invention to selectively oxidize hydrogen in the gas. This oxidation reaction is usually carried out at 300 to 800 ° C., preferably 400 to 700 ° C. If the temperature is higher than this, the selectivity is lowered and the combustion rate of hydrocarbons is increased. On the other hand, when the temperature is low, the selectivity is not affected, but the catalytic activity is reduced.
【0019】反応圧力は、0.05〜10気圧が好まし
い。反応に供するガスとしては、原料炭化水素を脱水素
触媒と接触させることにより生成する水素及び脱水素さ
れた炭化水素、並びに未反応の原料炭化水素を含有する
ガスと、酸素含有ガスとを混合したガスが好ましい。酸
素含有ガスとしては、酸素ガス、空気、酸素富化空気、
不活性ガスで希釈した空気等を用いればよい。また、こ
れらの酸素含有ガスに、水蒸気を含有させてもよい。The reaction pressure is preferably 0.05 to 10 atm. As the gas to be subjected to the reaction, a gas containing hydrogen and dehydrogenated hydrocarbon produced by contacting the raw material hydrocarbon with a dehydrogenation catalyst, and a gas containing an unreacted raw material hydrocarbon, and an oxygen-containing gas were mixed. Gas is preferred. As the oxygen-containing gas, oxygen gas, air, oxygen-enriched air,
Air diluted with an inert gas may be used. Further, the oxygen-containing gas may contain water vapor.
【0020】なお、酸素を全て消費させた場合には、触
媒上にコーキングが起こることがあるが、水素を選択的
に酸化する性能に影響を及ぼすことはない。本発明に係
る触媒を用いる水素の選択的酸化反応を含む炭化水素の
脱水素方法は、以下の3工程を含むものである。第1工
程では、脱水素触媒を充填した第1段反応器で、原料炭
化水素を脱水素触媒と接触させて脱水素反応を行う。第
2工程では、第1段反応器で生成したガスと酸素含有ガ
スとを混合して、本発明に係る触媒を充填した第2段反
応器に供給し、水素を選択的に酸化する。このとき、酸
化反応によりガス温度は上昇する。第3工程では、第2
段反応器で生成したガスを、脱水素触媒を充填した第3
段反応器に供給し、残存している原料炭化水素を脱水素
する。なお、第3段反応器で生成したガスを再び上記の
第2工程及び第3工程を経由させることにより、原料炭
化水素の反応率を向上させることもできる。また、脱水
素反応では、通常、水蒸気を共存させるが、このプロセ
スでも、水蒸気を共存させることができる。When all oxygen is consumed, coking may occur on the catalyst, but this does not affect the ability to selectively oxidize hydrogen. A hydrocarbon dehydrogenation method including a selective hydrogen oxidation reaction using a catalyst according to the present invention includes the following three steps. In the first step, the dehydrogenation reaction is performed by bringing the raw material hydrocarbon into contact with the dehydrogenation catalyst in the first stage reactor filled with the dehydrogenation catalyst. In the second step, the gas produced in the first-stage reactor and the oxygen-containing gas are mixed and supplied to the second-stage reactor filled with the catalyst according to the present invention to selectively oxidize hydrogen. At this time, the gas temperature rises due to the oxidation reaction. In the third step, the second
The gas produced in the three-stage reactor is charged with a third hydrogen gas filled with a dehydrogenation catalyst
The raw material hydrocarbons remaining in the stage reactor are dehydrogenated. In addition, the reaction rate of the raw material hydrocarbon can be improved by passing the gas generated in the third-stage reactor through the second step and the third step again. Further, steam is usually allowed to coexist in the dehydrogenation reaction, but steam can also be allowed to coexist in this process.
【0021】脱水素反応に供する原料炭化水素には、脱
水素によりオレフィン性不飽和結合を形成し得る任意の
ものを用いることができる。中でも、エチルベンゼン、
ジエチルベンゼン、エチルナフタレン、ジエチルナフタ
レン等の脱水素可能な炭化水素基を有する芳香族炭化水
素が好ましく、エチルベンゼンが特に好ましい。本発明
に係る脱水素方法をエチルベンゼンからスチレンを製造
するプロセスにより、具体的に説明する。鉄とアルカリ
金属を主要活性成分とした鉄系触媒を充填した第1段反
応器で、エチルベンゼンと水蒸気との混合ガスを鉄系触
媒と接触させ、500℃〜800℃、0.05〜10気
圧の圧力で脱水素反応を行う。次いで、第1段反応器か
ら流出するガスと酸素含有ガスとを混合し、本発明に係
る触媒を充填した第2段反応器に供給することにより、
ガス中の水素を選択的に酸化する。最後に、第2段反応
器から流出するガスを、鉄系触媒を充填した第3段反応
器に供給することにより、残存するエチルベンゼンを脱
水素してスチレンを得る。この方法によれば、第2段反
応器において脱水素反応の進行の障害となる水素を選択
的に酸化することができ、かつ水素酸化により高温にな
ったガスを第3段反応器に供給することができるため、
従来の脱水素反応よりも遥かに高い収率でスチレンを得
ることができる。As the raw material hydrocarbon to be subjected to the dehydrogenation reaction, any hydrocarbon which can form an olefinically unsaturated bond by dehydrogenation can be used. Among them, ethylbenzene,
Aromatic hydrocarbons having a dehydrogenatable hydrocarbon group such as diethylbenzene, ethylnaphthalene, and diethylnaphthalene are preferable, and ethylbenzene is particularly preferable. The dehydrogenation method according to the present invention will be specifically described with reference to a process for producing styrene from ethylbenzene. In a first-stage reactor filled with an iron-based catalyst containing iron and an alkali metal as main active components, a mixed gas of ethylbenzene and steam is brought into contact with the iron-based catalyst, and the temperature is 500 ° C to 800 ° C and 0.05 to 10 atm. The dehydrogenation reaction is performed at the pressure of. Then, the gas flowing out from the first-stage reactor and the oxygen-containing gas are mixed and supplied to the second-stage reactor filled with the catalyst according to the present invention,
Selectively oxidize hydrogen in gas. Finally, the gas flowing out from the second-stage reactor is supplied to the third-stage reactor filled with the iron-based catalyst to dehydrogenate the residual ethylbenzene to obtain styrene. According to this method, hydrogen, which hinders the progress of the dehydrogenation reaction in the second-stage reactor, can be selectively oxidized, and a gas whose temperature has risen due to hydrogen oxidation is supplied to the third-stage reactor. Because you can
Styrene can be obtained in a much higher yield than the conventional dehydrogenation reaction.
【0022】[0022]
【実施例】以下に示す実施例により、本発明を更に具体
的に説明するが、本発明はこれらの実施例により限定さ
れるものではない。得られた水素選択的酸化触媒の構造
は、電子線プローブマイクロアナライザー(EPMA;
島津製作所製EPMA−1600)を用いて確認した。
すなわち、触媒をエポキシ樹脂に包埋し、研磨して触媒
球の中心を通るような断面を出した後、ニオブ及びアル
ミニウムを対象元素として、電子線エネルギー;15K
V、100nA、ビームサイズ;2μm、ステップサイ
ズ;2μmでX方向、Y方向の2方面の線分析を行い、
アルミナからなる層と五酸化ニオブからなる層の断面積
を求め、それぞれが触媒全体に占める容積を算出した。The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples. The structure of the obtained hydrogen-selective oxidation catalyst was determined by electron probe microanalyzer (EPMA;
It was confirmed using Shimadzu EPMA-1600).
That is, after embedding the catalyst in epoxy resin and polishing it to obtain a cross section that passes through the center of the catalyst sphere, electron beam energy of 15 K with niobium and aluminum as the target elements.
V, 100 nA, beam size: 2 μm, step size: 2 μm, line analysis in two directions in the X and Y directions,
The cross-sectional areas of the layer made of alumina and the layer made of niobium pentoxide were determined, and the volume occupied by each of them was calculated.
【0023】また、水素選択的酸化触媒中のアルミニウ
ム及びニオブの含有量は、蛍光X線(XRF)分析によ
り求めた。すなわち、試料0.5g、融剤5g、及び剥
離剤0.05gを混合後加熱してガラスビードを作製し
た。このXRF強度を理学電機工業製ZSX100eで
測定し、検量線法により各元素の含有量を求めた。
実施例1
(触媒調製)γ−アルミナ粉末100重量部、セルロー
ル(アビセル、旭化成社製)5重量部、及び少量の水を
混練した。これを傾斜皿形転動造粒機に投入し、水を噴
霧状に振りかけながら造粒し、ふるいを用いて直径3m
m程度に整粒した。得られた粒状物を前記造粒機に投入
し、水を噴霧状に振りかけながら、平均粒径2μmの五
酸化ニオブ粉末400重量部を少量ずつ添加しながら造
粒し、ふるいを用いて直径4.5mmに整粒した。The contents of aluminum and niobium in the hydrogen selective oxidation catalyst were determined by fluorescent X-ray (XRF) analysis. That is, 0.5 g of the sample, 5 g of the flux, and 0.05 g of the release agent were mixed and heated to produce a glass bead. The XRF intensity was measured by ZSX100e manufactured by Rigaku Denki Kogyo, and the content of each element was determined by the calibration curve method. Example 1 (Catalyst preparation) 100 parts by weight of γ-alumina powder, 5 parts by weight of cellulose (Avicel, manufactured by Asahi Kasei Corporation), and a small amount of water were kneaded. This is put into a tilting plate type rolling granulator, granulated while sprinkling water in a spray form, and a diameter of 3 m is obtained using a sieve.
The size was adjusted to about m. The obtained granules were put into the above granulator, and while sprinkling water in a spray form, 400 parts by weight of niobium pentoxide powder having an average particle diameter of 2 μm was added little by little, and granulated, and a diameter of 4 was obtained using a sieve. The size was adjusted to 0.5 mm.
【0024】得られた球状物を120℃で3時間乾燥
後、マッフル炉に入れ、900℃で3時間焼成した。こ
の焼成品100gをとり、白金0.2gを含有する塩化
白金酸水溶液30mLに含浸した。これをロータリーエ
バポレーターにより、減圧下、60℃で1時間、次いで
乾燥機中、120℃で3時間乾燥した後、大気中、65
0℃で3時間焼成することにより、白金0.2重量%を
含む選択的水素酸化触媒を得た。得られた触媒をEPM
Aで分析したところ、直径3mmのアルミナ核の回りに
厚み0.75mmの五酸化ニオブの層が形成されてい
た。また、得られた触媒の重量組成は五酸化ニオブ7
2.0重量%、酸化アルミニウム27.8重量%、白金
0.2重量%であり、容量組成は五酸化ニオブ70.4
容量%、酸化アルミニウム29.6容量%であった。
(反応)内径15.75mmの石英製反応管に、触媒と
ほぼ同じ粒径の石英チップ44mLを充填し、その上に
上記で得られた選択的水素酸化触媒8mLを充填し、更
にその上に上記の石英チップ42mLを充填した後、1
0%の水素を含有する水素−窒素混合ガスを600℃で
1時間導入して、触媒の還元処理を施した。次いで、反
応管にエチルベンゼン、スチレン、水、水素、酸素及び
窒素を1:0.4:11.5:0.43:0.18:
0.69(モル比)で含むガスを、630℃で、SV=
6550hr-1(0℃、1気圧換算)、LHSV(エチ
ルベンゼン+スチレン)=3.5hr-1の空間速度で導
入して、水素を選択的に酸化した。The obtained spheres were dried at 120 ° C. for 3 hours, placed in a muffle furnace and baked at 900 ° C. for 3 hours. 100 g of this baked product was taken and impregnated with 30 mL of a chloroplatinic acid aqueous solution containing 0.2 g of platinum. This was dried by a rotary evaporator under reduced pressure at 60 ° C. for 1 hour, then in a dryer at 120 ° C. for 3 hours, and then in the air at 65 ° C.
By calcination at 0 ° C. for 3 hours, a selective hydrogen oxidation catalyst containing 0.2% by weight of platinum was obtained. The obtained catalyst is EPM
When analyzed by A, a layer of niobium pentoxide having a thickness of 0.75 mm was formed around an alumina nucleus having a diameter of 3 mm. The weight composition of the obtained catalyst was 7% niobium pentoxide.
2.0% by weight, aluminum oxide 27.8% by weight, platinum 0.2% by weight, and the volume composition is niobium pentoxide 70.4.
% By volume and 29.6% by volume of aluminum oxide. (Reaction) A quartz reaction tube having an inner diameter of 15.75 mm was filled with 44 mL of quartz chips having almost the same particle size as that of the catalyst, 8 mL of the selective hydrogen oxidation catalyst obtained above was filled therein, and further on that. After filling 42 mL of the above quartz chip, 1
A hydrogen-nitrogen mixed gas containing 0% hydrogen was introduced at 600 ° C. for 1 hour to reduce the catalyst. Then, the reaction tube was charged with ethylbenzene, styrene, water, hydrogen, oxygen and nitrogen 1: 0.4: 11.5: 0.43: 0.18:
Gas containing 0.69 (molar ratio) at 630 ° C., SV =
It was introduced at a space velocity of 6550 hr −1 (0 ° C., 1 atm conversion) and LHSV (ethylbenzene + styrene) = 3.5 hr −1 to selectively oxidize hydrogen.
【0025】反応管流出ガス及びこれを冷却して得た凝
縮液をガスクロマトグラフィーで分析した。反応開始8
時間後の分析結果は、酸素転化率100%、水素転化率
74.4%、スチレン及びエチルベンゼン燃焼率0.8
6%であった。なお、スチレン及びエチルベンゼン燃焼
率とは、反応管に供給したスチレン及びエチルベンゼン
の合計モル数に対する反応で消失したスチレン及びエチ
ルベンゼンの合計モル数の百分率である。The gas flowing out from the reaction tube and the condensate obtained by cooling the gas were analyzed by gas chromatography. Reaction start 8
After the lapse of time, the analysis results were as follows: oxygen conversion rate 100%, hydrogen conversion rate 74.4%, styrene and ethylbenzene combustion rate 0.8.
It was 6%. The styrene and ethylbenzene burning rate is the percentage of the total number of moles of styrene and ethylbenzene lost in the reaction with respect to the total number of moles of styrene and ethylbenzene supplied to the reaction tube.
【0026】比較例1
特開平11−322303号公報実施例1に記載されて
いる方法で、触媒組成が白金0.2重量%、五酸化ニオ
ブ5重量%、酸化アルミニウム94.8重量%の触媒を
調製した。この触媒を用いた以外は、実施例1と同様に
して水素の酸化反応を行った。反応開始8時間後に反応
管出口ガス及び受器の凝縮液をガスクロマトグラフィー
で分析した。その結果、、酸素転化率100%、水素転
化率68.8%、スチレン及びエチルベンゼン燃焼率
1.07%であった。Comparative Example 1 Japanese Unexamined Patent Publication No. 11-322303 DISCLOSURE OF THE INVENTION According to the method described in Example 1, a catalyst having a catalyst composition of 0.2% by weight of platinum, 5% by weight of niobium pentoxide and 94.8% by weight of aluminum oxide. Was prepared. An oxidation reaction of hydrogen was carried out in the same manner as in Example 1 except that this catalyst was used. Eight hours after the start of the reaction, the reaction tube outlet gas and the condensate of the receiver were analyzed by gas chromatography. As a result, the oxygen conversion rate was 100%, the hydrogen conversion rate was 68.8%, and the styrene and ethylbenzene combustion rate was 1.07%.
【0027】実施例2
内径21mmのSUS316製反応管に外径4mmの熱
伝対挿入管を装着し、特開平4−277030号公報実
施例6に記載されている方法で調製した酸化鉄−酸化カ
リウム系脱水素触媒23.3mL、及び実施例1の選択
的水素酸化触媒20mLを順次充填して、上流側より脱
水素触媒層と酸化触媒層からなる充填床を形成した。な
お、両触媒層の間に空間を設け、ここに空気供給管を開
口させた。この反応管を電気炉に収容し、窒素ガスを流
通させながら加熱し、脱水素触媒層の入口温度が550
℃に達したとき、窒素ガスを窒素ガスと水蒸気との混合
ガスに替え、エチルベンゼンを供給すると共に、空気供
給管から空気を供給した。酸化触媒層の温度が630
℃、酸化触媒層への供給ガスが、エチルベンゼン、スチ
レン、水、水素、酸素、及び窒素を1:0.4:11.
5:0.43:0.18:0.69(モル比)の組成、
SV=6550hr-1(0℃、1気圧換算)、LHSV
(エチルベンゼン+スチレン)=3.5hr-1の空間速
度となるように脱水素触媒層の温度、供給ガスを調節し
た。Example 2 An iron oxide-oxidation prepared by the method described in Example 6 of JP-A-4-277030 by mounting a thermocouple insertion tube having an outer diameter of 4 mm on a reaction tube made of SUS316 having an inner diameter of 21 mm. 23.3 mL of the potassium-based dehydrogenation catalyst and 20 mL of the selective hydrogen oxidation catalyst of Example 1 were sequentially charged to form a packed bed composed of the dehydrogenation catalyst layer and the oxidation catalyst layer from the upstream side. A space was provided between both catalyst layers, and an air supply pipe was opened here. This reaction tube was placed in an electric furnace and heated while circulating nitrogen gas so that the inlet temperature of the dehydrogenation catalyst layer was 550.
When the temperature reached ℃, the nitrogen gas was replaced with a mixed gas of nitrogen gas and water vapor, ethylbenzene was supplied, and air was supplied from an air supply pipe. The temperature of the oxidation catalyst layer is 630
C., the supply gas to the oxidation catalyst layer is ethylbenzene, styrene, water, hydrogen, oxygen, and nitrogen 1: 0.4: 11.
5: 0.43: 0.18: 0.69 (molar ratio) composition,
SV = 6550hr -1 (0 ° C, 1 atm conversion), LHSV
The temperature of the dehydrogenation catalyst layer and the supply gas were adjusted so that the space velocity of (ethylbenzene + styrene) = 3.5 hr −1 was obtained.
【0028】反応を770時間継続した後、エチルベン
ゼンの供給を停止し、窒素パージをしながら冷却した。
その後、酸化触媒層を10層に分け、各層から40容量
%の触媒を抜き出した。内径15.75mmの石英製反
応管に、触媒とほぼ同じ粒径の石英チップ44mLを充
填し、その上に抜き出した選択的水素酸化触媒8mLを
充填し、更にその上に上記の石英チップ42mLを充填
した後、実施例1と同様の方法で選択的水素酸化反応を
実施した。After the reaction was continued for 770 hours, the supply of ethylbenzene was stopped and the system was cooled while purging with nitrogen.
Then, the oxidation catalyst layer was divided into 10 layers, and 40% by volume of the catalyst was extracted from each layer. A quartz reaction tube having an inner diameter of 15.75 mm was filled with 44 mL of a quartz chip having almost the same particle size as that of the catalyst, 8 mL of the extracted selective hydrogen oxidation catalyst was filled thereon, and 42 mL of the above quartz chip was further placed thereon. After filling, the selective hydrogen oxidation reaction was carried out in the same manner as in Example 1.
【0029】反応開始8時間後に反応管流出ガス及びこ
れを冷却して得た凝縮液をガスクロマトグラフィーで分
析した。その結果、酸素転化率100%、水素転化率7
5.3%、スチレン及びエチルベンゼン燃焼率0.89
%であった。
比較例2
実施例2において、実施例1の選択的水素酸化触媒に代
えて比較例1で調製した触媒を用いた以外は、実施例2
と同様にして水素酸化反応を行った。Eight hours after the start of the reaction, the gas flowing out from the reaction tube and the condensate obtained by cooling the gas were analyzed by gas chromatography. As a result, the oxygen conversion rate was 100% and the hydrogen conversion rate was 7%.
5.3%, styrene and ethylbenzene burning rate 0.89
%Met. Comparative Example 2 Example 2 was repeated except that the catalyst prepared in Comparative Example 1 was used in place of the selective hydrogen oxidation catalyst of Example 1.
The hydrogen oxidation reaction was carried out in the same manner as in.
【0030】反応開始8時間後に反応管流出ガス及びこ
れを冷却して得た凝縮液をガスクロマトグラフィーで分
析した。その結果、酸素転化率100%、水素転化率3
8.4%、スチレン及びエチルベンゼン燃焼率0.78
%であった。Eight hours after the start of the reaction, the gas flowing out from the reaction tube and the condensate obtained by cooling the gas were analyzed by gas chromatography. As a result, the oxygen conversion rate was 100% and the hydrogen conversion rate was 3%.
8.4%, styrene and ethylbenzene combustion rate 0.78
%Met.
フロントページの続き (72)発明者 岩倉 具敦 三重県四日市市東邦町1番地 三菱化学株 式会社内 Fターム(参考) 4G069 AA03 BA01A BA01B BA02A BA04A BA05A BB02A BB02B BB04A BB04B BC55A BC55B BC56A BC69A BC72A BC75A BC75B CB07 CD10 FC08 4H006 AA02 AC12 BA25 BA26 BA55 BC10 BD60 BE20 BE30 4H039 CA21 CC10 Continued front page (72) Inventor Totsuru Iwakura 1 Toho-cho, Yokkaichi-shi, Mie Mitsubishi Chemical Corporation Inside the company F-term (reference) 4G069 AA03 BA01A BA01B BA02A BA04A BA05A BB02A BB02B BB04A BB04B BC55A BC55B BC56A BC69A BC72A BC75A BC75B CB07 CD10 FC08 4H006 AA02 AC12 BA25 BA26 BA55 BC10 BD60 BE20 BE30 4H039 CA21 CC10
Claims (10)
は酸化タンタルで被覆してなる担体に、白金族の元素を
担持させたことを特徴とする、水素及び炭化水素を含有
するガス中の水素を酸素で接触酸化するための触媒。1. A hydrogen in a gas containing hydrogen and hydrocarbon, characterized in that a platinum group element is supported on a carrier obtained by coating a heat-resistant inorganic compound with niobium oxide and / or tantalum oxide. A catalyst for catalytic oxidation of oxygen with oxygen.
ム、酸化ケイ素、酸化チタン、及び酸化ジルコニウムか
らなる群より選ばれたものであることを特徴とする請求
項1記載の触媒。2. The catalyst according to claim 1, wherein the heat-resistant inorganic compound is selected from the group consisting of aluminum oxide, silicon oxide, titanium oxide, and zirconium oxide.
酸化タンタルの割合が、20〜80重量%であることを
特徴とする請求項1又は2記載の触媒。3. The catalyst according to claim 1, wherein the proportion of niobium oxide and / or tantalum oxide in the whole catalyst is 20 to 80% by weight.
及び/又は酸化タンタルで被覆されていることを特徴と
する請求項1乃至3のいずれかに記載の触媒。4. The catalyst according to claim 1, wherein the support is coated with 20 to 80% by volume of niobium oxide and / or tantalum oxide.
が、0.001〜10重量%であることを特徴とする請
求項1乃至4のいずれかに記載の触媒。5. The catalyst according to claim 1, wherein the proportion of the platinum group element in the whole catalyst is 0.001 to 10% by weight.
あることを特徴とする請求項1乃至5のいずれかに記載
の触媒。6. The catalyst according to claim 1, wherein the platinum group element is platinum or palladium.
に、水素、炭化水素及び酸素を含有するガスを接触させ
てガス中の水素を酸化することを特徴とする、水素及び
炭化水素を含有するガス中の水素の酸化方法。7. A hydrogen and a hydrocarbon, wherein the catalyst according to claim 1 is contacted with a gas containing hydrogen, a hydrocarbon and oxygen to oxidize hydrogen in the gas. Method for oxidizing hydrogen in a gas containing.
び酸素を含有するガスを接触させることを特徴とする請
求項7記載の酸化方法。8. The oxidation method according to claim 7, wherein a gas containing hydrocarbon, hydrogen and oxygen is contacted at 300 to 800 ° C.
ことにより、脱水素された炭化水素、未反応の原料炭化
水素、及び水素を含有するガスを生成させる第1工程、
第1工程で生成したガスを酸素含有ガスと混合した後、
請求項1乃至6のいずれかに記載の触媒と接触させるこ
とによりガス中の水素を酸化する第2工程、及び第2工
程で生成したガスを脱水素触媒と接触させることにより
ガス中の原料炭化水素を脱水素する第3工程、を含むこ
とを特徴とする炭化水素の脱水素方法。9. A first step of producing a gas containing dehydrogenated hydrocarbon, unreacted raw material hydrocarbon, and hydrogen by contacting the raw material hydrocarbon with a dehydrogenation catalyst,
After mixing the gas generated in the first step with the oxygen-containing gas,
A second step of oxidizing hydrogen in a gas by bringing it into contact with the catalyst according to any one of claims 1 to 6, and a carbonization of raw material in the gas by bringing a gas produced in the second step into contact with a dehydrogenation catalyst. And a third step of dehydrogenating hydrogen, the method for dehydrogenating a hydrocarbon.
せることにより、スチレン、エチルベンゼン、及び水素
を含有するガスを生成させる第1工程、第1工程で生成
したガスを酸素含有ガスと混合した後、請求項1乃至6
のいずれかに記載の触媒と接触させることによりガス中
の水素を酸化する第2工程、及び第2工程で生成したガ
スを脱水素触媒と接触させることによりガス中のエチル
ベンゼンをスチレンに脱水素する第3工程、を含むこと
を特徴とするエチルベンゼンの脱水素方法。10. A first step of producing a gas containing styrene, ethylbenzene, and hydrogen by contacting ethylbenzene with a dehydrogenation catalyst; mixing the gas produced in the first step with an oxygen-containing gas; Items 1 to 6
A second step of oxidizing hydrogen in a gas by contacting it with the catalyst according to any one of 1 to 3, and dehydrogenating ethylbenzene in the gas to styrene by contacting the gas produced in the second step with a dehydrogenation catalyst. A method for dehydrogenating ethylbenzene, which comprises a third step.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001344614A JP3912077B2 (en) | 2001-11-09 | 2001-11-09 | Hydrogen selective oxidation catalyst, hydrogen selective oxidation method, and hydrocarbon dehydrogenation method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001344614A JP3912077B2 (en) | 2001-11-09 | 2001-11-09 | Hydrogen selective oxidation catalyst, hydrogen selective oxidation method, and hydrocarbon dehydrogenation method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003144924A true JP2003144924A (en) | 2003-05-20 |
JP3912077B2 JP3912077B2 (en) | 2007-05-09 |
Family
ID=19158107
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001344614A Expired - Lifetime JP3912077B2 (en) | 2001-11-09 | 2001-11-09 | Hydrogen selective oxidation catalyst, hydrogen selective oxidation method, and hydrocarbon dehydrogenation method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3912077B2 (en) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102219214A (en) * | 2010-04-15 | 2011-10-19 | 中国石油化工股份有限公司 | Method for hydrogen removal of CO mixed gas by selective oxidation |
CN102284286A (en) * | 2011-06-30 | 2011-12-21 | 中国科学院福建物质结构研究所 | Preparation method of sol-gel catalyst for deeply removing a little hydrogen in industrial CO gas |
CN102649569A (en) * | 2011-02-25 | 2012-08-29 | 中国石油化工股份有限公司 | Method for improving selective oxidation dehydrogenation rate of CO mixed gas |
CN102649568A (en) * | 2011-02-25 | 2012-08-29 | 中国石油化工股份有限公司 | Selective catalytic oxidative dehydrogenation method for CO mixed gas |
CN102649551A (en) * | 2011-02-25 | 2012-08-29 | 中国石油化工股份有限公司 | Method for CO mixed gas selection oxidized dehydrogenation |
CN102649555A (en) * | 2011-02-25 | 2012-08-29 | 中国石油化工股份有限公司 | Method for oxydehydrogenating gas material containing carbon monoxide |
CN102649560A (en) * | 2011-02-25 | 2012-08-29 | 中国石油化工股份有限公司 | Method for dehydrogenation of CO raw material in virtue of oxidation reaction |
CN102649552A (en) * | 2011-02-25 | 2012-08-29 | 中国石油化工股份有限公司 | CO gas oxydehydrogenation method |
CN102649559A (en) * | 2011-02-25 | 2012-08-29 | 中国石油化工股份有限公司 | Method for CO gas raw material dehydrogenation through catalytic oxidation reaction |
CN102649564A (en) * | 2011-02-25 | 2012-08-29 | 中国石油化工股份有限公司 | Method for dehydrogenating CO-containing mixed gas raw material by means of catalytic oxidation reaction |
CN102649570A (en) * | 2011-02-25 | 2012-08-29 | 中国石油化工股份有限公司 | Method for oxidative dehydrogenation of CO gas through catalytic reaction |
CN102649558A (en) * | 2011-02-25 | 2012-08-29 | 中国石油化工股份有限公司 | Catalytic oxidative dehydrogenation method for raw material containing CO gas |
WO2015068554A1 (en) * | 2013-11-08 | 2015-05-14 | 三菱化学株式会社 | Method for recovering oxidation catalyst and method for oxidizing hydrogen using recovered oxidation catalyst |
WO2016030834A1 (en) | 2014-08-29 | 2016-03-03 | Reliance Industries Limited | Reforming catalyst and a method of preparation thereof |
-
2001
- 2001-11-09 JP JP2001344614A patent/JP3912077B2/en not_active Expired - Lifetime
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102219214A (en) * | 2010-04-15 | 2011-10-19 | 中国石油化工股份有限公司 | Method for hydrogen removal of CO mixed gas by selective oxidation |
CN102649570A (en) * | 2011-02-25 | 2012-08-29 | 中国石油化工股份有限公司 | Method for oxidative dehydrogenation of CO gas through catalytic reaction |
CN102649568A (en) * | 2011-02-25 | 2012-08-29 | 中国石油化工股份有限公司 | Selective catalytic oxidative dehydrogenation method for CO mixed gas |
CN102649564B (en) * | 2011-02-25 | 2014-07-02 | 中国石油化工股份有限公司 | Method for dehydrogenating CO-containing mixed gas raw material by means of catalytic oxidation reaction |
CN102649551A (en) * | 2011-02-25 | 2012-08-29 | 中国石油化工股份有限公司 | Method for CO mixed gas selection oxidized dehydrogenation |
CN102649555A (en) * | 2011-02-25 | 2012-08-29 | 中国石油化工股份有限公司 | Method for oxydehydrogenating gas material containing carbon monoxide |
CN102649560A (en) * | 2011-02-25 | 2012-08-29 | 中国石油化工股份有限公司 | Method for dehydrogenation of CO raw material in virtue of oxidation reaction |
CN102649552A (en) * | 2011-02-25 | 2012-08-29 | 中国石油化工股份有限公司 | CO gas oxydehydrogenation method |
CN102649559A (en) * | 2011-02-25 | 2012-08-29 | 中国石油化工股份有限公司 | Method for CO gas raw material dehydrogenation through catalytic oxidation reaction |
CN102649551B (en) * | 2011-02-25 | 2014-07-23 | 中国石油化工股份有限公司 | Method for CO mixed gas selection oxidized dehydrogenation |
CN102649558A (en) * | 2011-02-25 | 2012-08-29 | 中国石油化工股份有限公司 | Catalytic oxidative dehydrogenation method for raw material containing CO gas |
CN102649558B (en) * | 2011-02-25 | 2015-04-08 | 中国石油化工股份有限公司 | Catalytic oxidative dehydrogenation method for raw material containing CO gas |
CN102649569A (en) * | 2011-02-25 | 2012-08-29 | 中国石油化工股份有限公司 | Method for improving selective oxidation dehydrogenation rate of CO mixed gas |
CN102649564A (en) * | 2011-02-25 | 2012-08-29 | 中国石油化工股份有限公司 | Method for dehydrogenating CO-containing mixed gas raw material by means of catalytic oxidation reaction |
CN102649569B (en) * | 2011-02-25 | 2014-10-15 | 中国石油化工股份有限公司 | Method for improving selective oxidation dehydrogenation rate of CO mixed gas |
CN102649552B (en) * | 2011-02-25 | 2015-01-07 | 中国石油化工股份有限公司 | CO gas oxydehydrogenation method |
CN102284286B (en) * | 2011-06-30 | 2015-05-13 | 中国科学院福建物质结构研究所 | Preparation method of sol-gel catalyst for deeply removing a little hydrogen in industrial CO gas |
CN102284286A (en) * | 2011-06-30 | 2011-12-21 | 中国科学院福建物质结构研究所 | Preparation method of sol-gel catalyst for deeply removing a little hydrogen in industrial CO gas |
WO2015068554A1 (en) * | 2013-11-08 | 2015-05-14 | 三菱化学株式会社 | Method for recovering oxidation catalyst and method for oxidizing hydrogen using recovered oxidation catalyst |
EP3186002B1 (en) * | 2014-08-29 | 2024-02-21 | Reliance Industries Limited | Reforming catalyst and a method of preparation thereof |
WO2016030834A1 (en) | 2014-08-29 | 2016-03-03 | Reliance Industries Limited | Reforming catalyst and a method of preparation thereof |
US20170239645A1 (en) * | 2014-08-29 | 2017-08-24 | Reliance Industries Limited | Reforming catalyst and a method of preparation thereof |
US10596551B2 (en) * | 2014-08-29 | 2020-03-24 | Reliance Industries Limited | Reforming catalyst and a method of preparation thereof |
Also Published As
Publication number | Publication date |
---|---|
JP3912077B2 (en) | 2007-05-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3912077B2 (en) | Hydrogen selective oxidation catalyst, hydrogen selective oxidation method, and hydrocarbon dehydrogenation method | |
TWI321493B (en) | A lithium aluminate layered catalyst and a selective oxidation process using the catalyst | |
TWI268920B (en) | Preparation of acrolein or acrylic acid or a mixture thereof from propane | |
TW201716542A (en) | Heat dissipating diluent in fixed bed reactors | |
JP2004283834A (en) | Catalyst and method for dehydrogenating alkane | |
JP2005512784A5 (en) | ||
JPS5826973B2 (en) | Hatsunetsu Hannouni Tokuni Yuyouna Shyokubai | |
JPH09508062A (en) | Contact method and apparatus for controlling VOC, CO and halogenated organic emissions | |
JP2003516226A (en) | Oxidation reaction using mixed conductive oxygen selective membrane | |
JP2004255343A (en) | Composite oxide catalyst, and method for manufacturing acrylic acid by using the same | |
JPS62431A (en) | Manufacture of 1,2-dichloroethane | |
JPH11179204A (en) | Catalyst for methanation of gas containing carbon monoxide and carbon dioxide and its production | |
CA2297071C (en) | Process for producing styrene | |
AU2002329462B2 (en) | Selective oxidation | |
EP0826418B1 (en) | Catalyst for oxidation of hydrogen, method for selective oxidation of hydrogen, and method for dehydrogenation of hydrocarbon | |
JP2003519105A (en) | Olefin production method | |
JP3760076B2 (en) | Adsorbent such as nitrogen oxide, method for producing the same, and method for removing nitrogen oxide and the like | |
EP1160011B1 (en) | Process for the preparation of catalytic compositions for the oxidative dehydrogenation of alkylaromatics or paraffins | |
JP3801352B2 (en) | Method for producing oxidation catalyst, oxidation catalyst, and hydrocarbon dehydrogenation method | |
JP3794235B2 (en) | Hydrogen selective oxidation catalyst, hydrogen selective oxidation method, and hydrocarbon dehydrogenation method | |
JP3985349B2 (en) | Method for producing styrene | |
JPH03106445A (en) | Catalyst for preparing ammonia | |
JP3912074B2 (en) | Hydrogen selective oxidation catalyst, hydrogen selective oxidation method, and hydrocarbon dehydrogenation method | |
JPH0321530B2 (en) | ||
JP2002161055A (en) | Method for oxidatively dehydrogenating hydrocarbon |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040623 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20061222 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070109 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070122 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 3912077 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100209 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110209 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120209 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120209 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130209 Year of fee payment: 6 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
EXPY | Cancellation because of completion of term |