JP2003142639A - Radiator and manufacturing method therefor - Google Patents

Radiator and manufacturing method therefor

Info

Publication number
JP2003142639A
JP2003142639A JP2001342418A JP2001342418A JP2003142639A JP 2003142639 A JP2003142639 A JP 2003142639A JP 2001342418 A JP2001342418 A JP 2001342418A JP 2001342418 A JP2001342418 A JP 2001342418A JP 2003142639 A JP2003142639 A JP 2003142639A
Authority
JP
Japan
Prior art keywords
substrate
base end
radiator
end portion
radiation fin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001342418A
Other languages
Japanese (ja)
Other versions
JP3918517B2 (en
Inventor
Hisashi Hori
久司 堀
Motoji Hotta
元司 堀田
Shinya Makita
慎也 牧田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Light Metal Co Ltd
Original Assignee
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Light Metal Co Ltd filed Critical Nippon Light Metal Co Ltd
Priority to JP2001342418A priority Critical patent/JP3918517B2/en
Publication of JP2003142639A publication Critical patent/JP2003142639A/en
Application granted granted Critical
Publication of JP3918517B2 publication Critical patent/JP3918517B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a radiator where a radiation fin is directly joined to a metallic or ceramic substrate, and to provide the manufacturing method of the radiator which can inexpensively join the radiator. SOLUTION: The radiator 1 includes the metallic substrate 2 and the metallic radiation fin 4 where a base end 6 is joined to the surface 2b of the substrate 2 through a junction face S by friction vibration junction. The manufacturing method of the radiator includes a process for bringing the base end 6 of the radiation fin 4 into contact with the surface of the metallic substrate 2, and moving the radiator while the peripheral face of a rotating disk-like tool main body in a friction vibration junction tool is pressed from the outside of the base end part 6.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、例えば半導体素子
を実装する回路基板(配線基板)などから発生する熱を外
部に放散させる放熱器およびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a radiator for dissipating heat generated from, for example, a circuit board (wiring board) on which a semiconductor element is mounted to the outside, and a manufacturing method thereof.

【0002】[0002]

【従来の技術】内部に所定パターンの配線層を有するセ
ラミックまたは樹脂製の回路基板や上面にICチップな
どの半導体素子を実装した回路基板は、その動作に伴っ
て発熱する。このため、係る回路基板などの熱を放散す
るため、回路基板に放熱器が取り付けられている。係る
放熱器は、上記回路基板をロウ材などで固着する平坦な
基板と係る基板から直角に曲折する多数の放熱フィンと
から構成されている。上記放熱器の基板と放熱フィンと
は、これまでロウ材または接着剤を介して接合されてい
る(例えば特開平8−31990号公報参照)。
2. Description of the Related Art A circuit board made of ceramic or resin having a wiring layer of a predetermined pattern inside or a circuit board having a semiconductor element such as an IC chip mounted on the upper surface thereof generates heat as it operates. Therefore, in order to dissipate the heat of the circuit board and the like, a radiator is attached to the circuit board. Such a radiator is composed of a flat substrate to which the circuit board is fixed with a brazing material or the like, and a large number of heat radiation fins bent at right angles from the substrate. The substrate of the radiator and the radiation fin have heretofore been bonded to each other via a brazing material or an adhesive (see, for example, JP-A-8-31990).

【0003】ところで、平坦な基板に断面が連続する凹
凸形やU字形の放熱フィンをロウ材や接着剤で接合する
ため、基板の表面全体または放熱フィンにおける所定の
接合面に予めロウ材や接着剤を被覆する工程が必要とな
る。特に、ロウ付けする場合は、基板と放熱フィンとを
ロウ材を介して積層した後、真空炉中などで所定時間に
わたり加熱および保持する工程が必要となり、コスト高
になるという問題があった。また、ロウ付けによる場
合、基板が金属製でなくセラミック製の場合には、放熱
フィンとの接合ができない、という問題もあった。係る
問題は、電子ビーム溶接やレーザ溶接の場合も共通であ
った。更に、接着剤により接合する場合、係る接着剤は
樹脂製であるため、基板と放熱フィンとの間における熱
伝達量を低下させると共に、経年変化により接着剤が劣
化するため、放熱フィンが基板から剥がれる、という問
題があった。
By the way, since the radiating fins having an uneven or U-shaped cross-section are joined to a flat substrate with a brazing material or an adhesive, the brazing material or the adhesive is preliminarily attached to the entire surface of the substrate or a predetermined joining surface of the radiating fins. A step of coating the agent is required. In particular, in the case of brazing, there is a problem in that a step of heating and holding the substrate and the heat radiation fins for a predetermined time in a vacuum furnace or the like after laminating the substrate and the heat radiation fins with each other through the brazing material becomes a problem of high cost. Further, in the case of brazing, when the substrate is made of ceramic instead of metal, there is a problem that it cannot be joined to the radiation fin. This problem was common to electron beam welding and laser welding. Further, in the case of joining with an adhesive, since the adhesive is made of resin, the heat transfer amount between the substrate and the radiation fin is reduced, and the adhesive is deteriorated due to aging, so that the radiation fin is removed from the substrate. There was a problem of peeling.

【0004】[0004]

【発明が解決すべき課題】本発明は、以上に説明した従
来の技術における問題点を解決し、金属またはセラミッ
クの基板に対して放熱フィンを直に接合した放熱器およ
びこれを安価に接合できる放熱器の製造方法を提供す
る、ことを課題とする。
DISCLOSURE OF THE INVENTION The present invention solves the problems in the prior art described above, and a radiator in which a radiation fin is directly joined to a metal or ceramic substrate, and this can be inexpensively joined. It is an object to provide a method for manufacturing a radiator.

【0005】[0005]

【課題を解決するための手段】本発明は、上記課題を解
決するため、金属またはセラミックからなる基板の表面
に面接触する放熱フィンの基端部を固相状態で可塑(流
動)化することにより、当該放熱フィンを基板に直に接
合させる、ことに着想して成されたものである。即ち、
本発明の放熱器(請求項1)は、金属またはセラミックか
らなる基板と、上記基板の少なくとも一方の表面に摩擦
振動接合による接合部を介して基端部を接合した金属製
の放熱フィンと、を含む、ことを特徴とする。
SUMMARY OF THE INVENTION In order to solve the above problems, the present invention is to plasticize (fluidize) the base end portion of a radiation fin in surface contact with the surface of a substrate made of metal or ceramic in a solid state. The present invention is based on the idea that the radiation fin is directly bonded to the substrate. That is,
A radiator of the present invention (claim 1) is a substrate made of metal or ceramic, and a metal radiation fin having a base end portion joined to at least one surface of the substrate via a joining portion by friction vibration joining, It is characterized by including.

【0006】これによれば、基板と放熱フィンとは、両
者の接合面で直に接合されているため、熱伝達性が向上
する。この結果、ICチップなどを実装した回路基板か
らの発熱を、上記基板を介して放熱フィンから速やかに
放散することができるため、回路基板やICチップの動
作も正確で支障なく行わしめることが可能となる。尚、
基板の金属には、銅、アルミニウム、チタン、または鋼
など、あるいはこれらの何れかをベースとする合金が含
まれ、基板のセラミックには、窒化アルミニウム(Al
N)、アルミナ(Al)、SiO、ZrO、S
iCなどが含まれる。また、摩擦振動接合による接合面
は、基板が金属である場合、係る基板およぴ放熱フィン
の各金属が、固相状態で可塑(流動)化した互いに入れ子
状になる凹凸面となり、基板がセラミックの場合、放熱
フィンの可塑化した金属が基板のセラミックにおける結
晶粒界に進入するアンカー部を複数有する非平面とな
る。
According to this, since the substrate and the radiation fin are directly bonded at the bonding surface between them, the heat transfer property is improved. As a result, the heat generated from the circuit board on which the IC chip and the like are mounted can be quickly dissipated from the heat radiation fins through the board, so that the operation of the circuit board and the IC chip can be performed accurately and without any trouble. Becomes still,
The metal of the substrate includes copper, aluminum, titanium, steel, or the like, or an alloy based on any of these, and the ceramic of the substrate includes aluminum nitride (Al
N), alumina (Al 2 O 3 ), SiO 2 , ZrO 2 , S
iC etc. are included. In addition, when the substrate is a metal, the joint surface by frictional vibration joining is an uneven surface in which the metal of the substrate and the heat dissipation fins are plasticized (fluidized) in a solid state and become nested, and the substrate is In the case of ceramics, the plasticized metal of the radiation fin is a non-planar surface having a plurality of anchor portions that enter crystal grain boundaries in the ceramic of the substrate.

【0007】更に、前記放熱フィンには、熱伝導性に優
れたアルミニウムや銅、あるいはこれらの合金からなる
薄板を折り曲げ加工したものが用いられる。加えて、前
記摩擦(微)振動接合(Friction Acoust
ic Bonding)は、少なくとも一方が金属から
なる一対の重ね合わせた部材のうち、金属製の部材の外
側面に対して、円盤形の回転盤を押圧および回転させつ
つ移動することにより、上記部材の金属素材を固相状態
で可塑化し且つ固化することにより、他方の部材と直に
接合する接合方法である。
Further, the heat radiation fin is formed by bending a thin plate made of aluminum, copper, or an alloy thereof having excellent heat conductivity. In addition, the friction (micro) vibration joining (Friction Acoustic)
ic Bonding) is a pair of superposed members, at least one of which is made of metal, and is moved by pressing and rotating a disc-shaped turntable against the outer surface of the metal member, thereby This is a joining method for directly joining the other material by plasticizing and solidifying the metal material in the solid state.

【0008】また、本発明には、前記放熱フィンは、前
記基板の表面に接触する基端部と、かかる基端部からほ
ぼ直角に曲折する放熱面とを含み、断面形状がほぼU字
形、連続する凹凸形、またはほぼL字形の何れかであ
る、放熱器(請求項2)も含まれる。これによれば、回路
基板などの発熱源を取り付ける基板の表面に、放熱面積
の大きな放熱面を有する放熱フィンを高密度で接合した
放熱器とすることが可能となる。尚、放熱フィンの放熱
面は、平坦面に限らず、エンボス加工などによる微細な
凹凸部などをその平面方向に沿って多数形成した形態も
含まれる。
Further, in the present invention, the heat radiation fin includes a base end portion that contacts the surface of the substrate and a heat radiation surface that is bent at a substantially right angle from the base end portion, and has a substantially U-shaped cross section, A radiator (claim 2) which is either continuous concavo-convex shape or substantially L-shaped is also included. According to this, it becomes possible to provide a radiator in which a radiation fin having a radiation surface with a large radiation area is joined at a high density to the surface of a substrate such as a circuit board on which a heat source is mounted. The heat radiation surface of the heat radiation fin is not limited to a flat surface, and may include a form in which a large number of fine uneven portions formed by embossing or the like are formed along the plane direction.

【0009】一方、本発明の放熱器の製造方法(請求項
3)は、金属またはセラミックからなる基板の表面に金
属製の放熱フィンの基端部を接触させた後、かかる基端
部の外側から摩擦振動接合ツールにおける回転する円盤
形のツール本体の周面を押し付けつつ移動することによ
り、放熱フィンの基端部を基板の表面に摩擦振動接合す
る工程を、含む、ことを特徴とする。これによれば、上
記接合ツールは、そのツール本体の周面を放熱フィンの
基端部に押圧し且つ回転しつつ移動するため、放熱フィ
ンの基端部の金属は、ツール本体との摩擦熱により可塑
化し且つ流動状態となる。この際、基板が金属である場
合、放熱フィンの基端部に隣接する当該基板の金属部分
も上記摩擦熱により可塑化する。このため、面接触した
放熱フィンの基端部と基板とは、両者の接触面付近にお
いて固相状態で可塑化した後に固化する。この結果、互
いに入れ子状になる凹凸面の接合面を介して、放熱フィ
ンと基板とが直に接合される。一方、基板がセラミック
である場合、放熱フィンの可塑化した基端部の金属が上
記基板のセラミックにおける結晶粒界に進入して固化す
るため、アンカー部を複数有する非平面の接合面を介し
て、放熱フィンと基板とが直に接合される。
On the other hand, according to the method for manufacturing a radiator of the present invention (claim 3), after the base end of the metal heat radiation fin is brought into contact with the surface of the substrate made of metal or ceramic, the outside of the base end is contacted. From the friction vibration welding tool, the step of frictionally welding the base end portion of the heat radiation fin to the surface of the substrate by moving while pressing the peripheral surface of the rotating disk-shaped tool body. According to this, the welding tool presses the peripheral surface of the tool body against the base end portion of the heat radiation fin and moves while rotating, so that the metal at the base end portion of the heat radiation fin causes friction heat with the tool body. It plasticizes and becomes fluid. At this time, when the substrate is made of metal, the metal portion of the substrate adjacent to the base end of the radiation fin is also plasticized by the friction heat. Therefore, the base end portion of the heat radiation fin and the substrate, which are in surface contact with each other, solidify in the solid state and then solidify in the vicinity of their contact surfaces. As a result, the radiating fins and the substrate are directly joined to each other via the joining surfaces of the concave and convex surfaces that nest with each other. On the other hand, when the substrate is a ceramic, the metal of the plasticized base end portion of the heat dissipation fin enters the crystal grain boundaries in the ceramic of the substrate and solidifies, so that the non-planar joint surface having a plurality of anchor portions is used. The radiation fin and the substrate are directly joined.

【0010】しかも、従来のような接着剤やロウ材を事
前に被覆する工程が不要であり、且つ簡単な構造の摩擦
振動接合ツールにより容易且つ迅速に接合できるため、
設備コストおよび製造コストを低減することも可能とな
る。尚、単数または複数の放熱フィンにおける複数の基
端部に対し、上記接合ツールを同じ回転軸に複数固定し
たものを用いることにより、同時に摩擦振動接合を施す
ことが可能となる。また、上記接合ツールのツール本体
は、高速度鋼や熱間工具鋼などの工具鋼や、セラミック
(Al、Al−TiC、Si)から形
成され、あるいは、工具鋼からなるツール本体における
周面付近のみを硬質の超硬(WC)、サーメット(cer
met)、またはサイアロン(SIALON)で形成した
ものが用いられる。
Moreover, the conventional step of coating the adhesive or the brazing material in advance is not required, and the frictional vibration welding tool having a simple structure enables easy and quick welding.
It also becomes possible to reduce equipment costs and manufacturing costs. It is possible to perform friction vibration welding at the same time by using a plurality of welding tools fixed to the same rotary shaft for a plurality of base end portions of one or a plurality of heat radiation fins. In addition, the tool body of the welding tool is made of tool steel such as high-speed steel or hot work tool steel, or ceramic.
(Al 2 O 3 , Al 2 O 3 —TiC, Si 3 N 4 ) or made of tool steel, only in the vicinity of the peripheral surface of the tool body is hard cemented carbide (WC), cermet (cer).
What was formed by the (met) or sialon (SIALON) is used.

【0011】また、本発明には、前記ツール本体の周面
には、当該ツール本体の厚み方向にほぼ沿った多数の平
行な細条、または上記ツール本体の径方向に突出する多
数の突起が形成されている、放熱器の製造方法(請求項
4)も含まれる。これによれば、上記接合ツールのツー
ル本体が回転し且つ放熱フィンの基端部を押圧しつつ移
動する際、上記細条または突起により基端部の金属との
摩擦面を増やすため、係る金属の可塑化および流動化を
更に迅速に生じさせる。この結果、接合ツールの移動速
度を高められるため、摩擦振動接合する工程の効率を向
上させることが可能となる。
Further, according to the present invention, on the peripheral surface of the tool main body, a large number of parallel strips substantially along the thickness direction of the tool main body or a large number of projections protruding in the radial direction of the tool main body are provided. Also included is a method of manufacturing a radiator that is formed (claim 4). According to this, when the tool body of the welding tool rotates and moves while pressing the base end portion of the heat radiation fin, the frictional surface with the metal of the base end portion is increased by the strips or protrusions. More rapidly plasticize and fluidize. As a result, since the moving speed of the welding tool can be increased, the efficiency of the friction vibration welding process can be improved.

【0012】[0012]

【発明の実施の形態】以下において、本発明の実施に好
適な形態を図面と共に説明する。図1(A)は、本発明の
放熱器1およびその使用状態を示す。放熱器1は、図1
(A)に示すように、平坦な基板2と、係る基板2の一方
の表面2bに接合した断面が連続する凹凸形の放熱フィ
ン4と、からなる。基板2は、アルミニウム合金または
銅合金からなる。また、放熱フィン4は、図1(A)に示
すように、アルミニウム合金からなる厚さ約0.5mm
の薄板を折り曲げ加工したもので、基板2の表面2bに
面接触する複数の基端部6,6,…と、これらの基端部
6からほぼ直角に曲折する複数の放熱面8,8,…と、
係る放熱面8,8間を接続する先端部7,7,…とを備
えている。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, preferred embodiments for carrying out the present invention will be described with reference to the drawings. FIG. 1 (A) shows a radiator 1 of the present invention and a usage state thereof. The radiator 1 is shown in FIG.
As shown in (A), it is composed of a flat substrate 2 and a radiating fin 4 having a concavo-convex shape with a continuous cross section joined to one surface 2b of the substrate 2. The substrate 2 is made of an aluminum alloy or a copper alloy. Further, as shown in FIG. 1 (A), the radiation fin 4 is made of an aluminum alloy and has a thickness of about 0.5 mm.
Is a bent thin plate, and has a plurality of base end portions 6, 6, ... Which are in surface contact with the front surface 2b of the substrate 2, and a plurality of heat dissipation surfaces 8, 8, which are bent at a substantially right angle from these base end portions 6. …When,
.. for connecting the heat radiating surfaces 8 and 8.

【0013】図1(A)に示すように、基板2の放熱フィ
ン4が接合されていない他方の表面2a上には、ロウ材
または接着剤12を介して、内部に図示しない所定パタ
ーンの配線層を有するセラミック製または樹脂製の回路
基板10が固着されている。係る回路基板10の表面
(第1主面)上には、ロウ材16を介してICチップなど
の半導体素子14が実装されている。図示しない電源か
らの通電により、回路基板10内の配線層や半導体素子
14を動作させると、これらは発熱する。係る熱が速や
かに外部に放出されないと、回路基板10などが所定の
動作をしなくなったり、誤動作を招くおそれがある。こ
のため、回路基板10の底面を、放熱器における基板2
の表面2aに固着している。
As shown in FIG. 1A, on the other surface 2a of the substrate 2 to which the heat radiation fins 4 are not joined, wiring of a predetermined pattern (not shown) is internally provided via a brazing material or an adhesive 12. A circuit board 10 made of ceramic or resin having layers is fixed. Surface of the circuit board 10
A semiconductor element 14 such as an IC chip is mounted on the (first main surface) via a brazing material 16. When a wiring layer in the circuit board 10 or the semiconductor element 14 is operated by energization from a power source (not shown), these generate heat. If the heat is not quickly released to the outside, the circuit board 10 or the like may not perform a predetermined operation or may malfunction. Therefore, the bottom surface of the circuit board 10 is connected to the board 2 in the radiator.
Is fixed to the surface 2a of the.

【0014】図1(B)に拡大して示すように、基板2の
表面2bと放熱フィン4の基端部6とは、断面が凹凸形
で互いに入れ子状となった接合面Sを介して直に接触し
且つ接合されている。放熱フィン4の基端部6は、後述
する摩擦振動接合ツール20のツール本体22における
周面24によって押圧され且つ該ツール本体22との境
界面に沿って長手方向に沿った一対の浅い段部9,9を
両側に有している。以上のような接合面Sを介して、基
板2の表面2bと放熱フィン4の基端部6,6,…が直
に接合されているため、図1(A)に示すように、回路基
板10や半導体素子14から発生した熱は、基板2を介
して放熱フィン4の放熱面8,8,…から迅速に外部に
放散される。この結果、回路基板10などが所定の動作
を正確に行うように維持することが容易となる。
As shown in an enlarged view in FIG. 1B, the surface 2b of the substrate 2 and the base end portion 6 of the heat radiation fin 4 have a joint surface S which has a concave and convex cross section and is nested with each other. Direct contact and splicing. The base end portion 6 of the heat radiation fin 4 is pressed by the peripheral surface 24 of the tool body 22 of the friction vibration welding tool 20 to be described later, and a pair of shallow step portions along the longitudinal direction along the boundary surface with the tool body 22. It has 9 and 9 on both sides. Since the surface 2b of the substrate 2 and the base end portions 6, 6, ... Of the radiation fins 4 are directly joined via the joining surface S as described above, as shown in FIG. The heat generated from the semiconductor device 10 and the semiconductor element 14 is quickly dissipated to the outside from the heat dissipation surfaces 8, 8, ... Of the heat dissipation fin 4 via the substrate 2. As a result, it becomes easy to maintain the circuit board 10 or the like so as to accurately perform a predetermined operation.

【0015】次に、前記放熱器1の製造方法について、
図2および図3により説明する。先ず、図2(A),(B)
に示すように、例えば銅合金からなる基板2の表面2b
に、放熱フィン4をその基端部6,6,…が面接触する
ように配置する。係る放熱フィンは、厚さ0.5mmの
アルミニウム合金(純アルミニウム系)の薄板を断面凹凸
形に折り曲げ加工したものであり、基端部6および先端
部7の各幅が5mmで、放熱面8の高さが15mmであ
る。図2(B)に示す状態で、放熱フィン4の周囲を図示
しない治具により拘束する。
Next, regarding the manufacturing method of the radiator 1,
This will be described with reference to FIGS. 2 and 3. First, FIG. 2 (A), (B)
, The surface 2b of the substrate 2 made of, for example, a copper alloy
, The heat dissipating fins 4 are arranged so that their base end portions 6, 6, ... The radiating fins are obtained by bending a thin plate of aluminum alloy (pure aluminum) having a thickness of 0.5 mm into a concave and convex shape in cross section. Has a height of 15 mm. In the state shown in FIG. 2 (B), the periphery of the radiation fin 4 is restrained by a jig (not shown).

【0016】次に、図2(B),(C)に示すように、放熱
フィン4の隣接する放熱面8,8間から、摩擦振動接合
ツール20における円盤形のツール本体22を垂直に挿
入する。係るツール本体22は、例えばJIS:SKD
61などの工具鋼からなり、直径50mm、厚み3mm
のサイズであって、回転軸26の先端部に固定されてい
る。このツール本体22の周面(円周面)24を放熱フィ
ン4の基端部6に外側から押圧し、且つ当該基端部6の
厚み方向に0.2mmの深さで押し込む。ツール本体2
2は、上記押し込み量を保った状態で、図示しないモー
タにより駆動される回転軸26に固定され且つ1000
〜6000rpmの回転数で高速回転されると共に、図
2(C)中の直線形の矢印で示すように、基端部6の長手
方向に沿って100〜1000mm/分の速度で移動す
る。
Next, as shown in FIGS. 2B and 2C, the disc-shaped tool body 22 of the friction vibration welding tool 20 is vertically inserted from between the adjacent heat radiation surfaces 8 of the heat radiation fin 4. To do. The tool body 22 is, for example, JIS: SKD.
Made of tool steel such as 61, diameter 50 mm, thickness 3 mm
And is fixed to the tip of the rotary shaft 26. The peripheral surface (circumferential surface) 24 of the tool body 22 is pressed from the outside to the base end portion 6 of the heat dissipation fin 4, and is pushed in at a depth of 0.2 mm in the thickness direction of the base end portion 6. Tool body 2
2 is fixed to the rotating shaft 26 driven by a motor (not shown) and is 1000
While being rotated at a high rotation speed of up to 6000 rpm, it moves at a speed of 100 to 1000 mm / min along the longitudinal direction of the base end portion 6 as shown by the straight line arrow in FIG. 2 (C).

【0017】ここで、基板2と基端部6との摩擦振動接
合について、図3を基に説明する。図3(A)に示すよう
に、ツール本体22の周面24は、放熱フィン4の基端
部6を外側から0.2mmの押し込み量tが得られるよ
うに径方向に沿って加圧しつつ高速回転し、且つ図示で
前後方向に沿って移動する。係るツール本体22の周面
24の押し込みおよび高速回転により、図3(B)に示す
ように、放熱フィン4の基端部6において、ツール本体
22に隣接する基端部6におけるほぼ全体のアルミニウ
ム合金6aと、これに隣接する基板2の表面2b寄りの
銅合金2cとは、当該ツール本体22との摩擦熱により
加熱され、且つそれぞれ固相状態のまま可塑化および流
動化する。このように、可塑(流動)化した基端部6のア
ルミニウム合金6aと基板2の銅合金2cとは、互いの
境界面でも流動化し、それぞれ当初の表面から変形す
る。
Friction vibration joining between the substrate 2 and the base end portion 6 will now be described with reference to FIG. As shown in FIG. 3 (A), the peripheral surface 24 of the tool body 22 presses the base end portion 6 of the heat dissipation fin 4 in the radial direction so as to obtain a pushing amount t of 0.2 mm from the outside. It rotates at high speed and moves along the front-back direction in the figure. By pushing the peripheral surface 24 of the tool body 22 and rotating at high speed, as shown in FIG. 3 (B), in the base end portion 6 of the radiation fin 4, almost the entire aluminum of the base end portion 6 adjacent to the tool body 22 is aluminum. The alloy 6a and the copper alloy 2c adjacent to the surface 2b of the substrate 2 adjacent to the alloy 6a are heated by frictional heat with the tool main body 22 and are plasticized and fluidized in the solid state. In this way, the plasticized (fluidized) aluminum alloy 6a of the base end portion 6 and the copper alloy 2c of the substrate 2 are also fluidized at their boundary surfaces and are respectively deformed from the original surface.

【0018】そして、摩擦振動接合ツール20のツール
本体22が移動した跡は、図3(C)に示すように、当初
平坦であった基端部6には、ツール本体22の両側にお
ける端部の厚み方向に沿った押圧作用により、一対の浅
い段部9,9が長手方向に沿って形成される。また、そ
れらの間にアルミニウム合金6aが固化した幅広い基端
部6bと、外側の幅狭い一対の平坦部6c,6cと、が
長手方向に沿って形成される。基端部6bと基板2の表
面2bとの間には、前記可塑化したアルミニウム合金6
aと銅合金2cとが固化した断面が凹凸形の接合面Sが
形成され、係る接合面Sを介して基板2と放熱フィン4
とは直に接合される。係る接合面Sの凹凸形の断面形状
は、その長手方向に沿っても同様に形成されている。以
上のような摩擦(微)振動接合の工程を、基板2に接触す
る放熱フィン4の各基端部6,6,…に沿って行うこと
により、前記図1(A),(B)に示した放熱器1を、少な
い工程数で効率良く確実に製造することができる。
As shown in FIG. 3C, the trace of the movement of the tool main body 22 of the friction vibration welding tool 20 is shown in FIG. The pair of shallow step portions 9, 9 are formed along the longitudinal direction by the pressing action along the thickness direction. In addition, a wide base end portion 6b in which the aluminum alloy 6a is solidified and a pair of outer narrow flat portions 6c, 6c are formed along the longitudinal direction between them. The plasticized aluminum alloy 6 is provided between the base end portion 6b and the surface 2b of the substrate 2.
A joint surface S having a concavo-convex cross section in which a and the copper alloy 2c are solidified is formed, and the substrate 2 and the radiation fin 4 are interposed via the joint surface S.
And are directly joined. The concavo-convex cross-sectional shape of the joint surface S is also formed along the longitudinal direction. By performing the above-described friction (micro) vibration bonding process along each of the base end portions 6, 6, ... Of the heat radiation fin 4 which comes into contact with the substrate 2, the above-described steps shown in FIGS. The radiator 1 shown can be efficiently and reliably manufactured with a small number of steps.

【0019】ところで、図4(A)に示すように、アルミ
ナなどのセラミックからなる基板3と放熱フィン4と
を、図2,3に示した順序に従って、前記同様に接触さ
せ摩擦振動接合することもできる。係る場合も、放熱フ
ィン4の基端部6は、前記同様にツール本体22との摩
擦熱により可塑(流動)化するが、これに隣接する基板3
の表面3b付近は加熱のみされる。しかし、可塑化した
基端部6の前記アルミニウム合金6aが、基板3のセラ
ミックにおける多数の結晶粒界に進入するため、図4
(A)に示すように、可塑後に固化した基端部6bから基
板3中に細長く進入するアンカー部kが形成される。係
るアンカー部kを含む接合面Sを介して、セラミック製
の基板3と放熱フィン6とが直に接合され、前記と同様
な放熱器1aが得られる。尚、放熱器1,1aの基板
2,3における前記回路基板10を除いた他方の表面2
a,3aにも、放熱フィン6を更に接合することも可能
である。
By the way, as shown in FIG. 4 (A), the substrate 3 made of ceramic such as alumina and the radiation fins 4 are brought into contact in the same manner as described above in the order shown in FIGS. You can also In this case as well, the base end portion 6 of the heat radiation fin 4 is plasticized (fluidized) by frictional heat with the tool body 22 as described above, but the substrate 3 adjacent thereto
The surface 3b and its vicinity are heated only. However, since the aluminum alloy 6a of the plasticized base end portion 6 penetrates into a large number of grain boundaries in the ceramic of the substrate 3,
As shown in (A), an anchor portion k is formed which extends slenderly into the substrate 3 from the base end portion 6b which is solidified after being plasticized. The ceramic substrate 3 and the radiating fin 6 are directly joined via the joining surface S including the anchor portion k, and the radiator 1a similar to the above is obtained. In addition, the other surface 2 of the radiators 1 and 1a except the circuit board 10 on the boards 2 and 3
It is also possible to further join the heat radiation fins 6 to a and 3a.

【0020】図4(B)は、異なる放熱フィン4aを複数
用いた放熱器1bを示す。放熱フィン4aは、基板2の
表面2bに接触する基端部6と、係る基端部6から直角
に曲折する一対の放熱面8,8と、を有する断面ほぼU
字形を呈する。図4(B)に示すように、複数の放熱フィ
ン4aは、互いに離間した位置で基板2の表面2bに等
間隔で配置され、それらの基端部6を前記摩擦振動ツー
ル20を前記同様に用いて、各放熱フィン4aの基端部
6を基板2の表面2bに前記接合面Sを介して接合され
る。これにより、前記放熱器1と同様に放熱面8を同様
のピッチで有し且つ直に複数の放熱フィン4aを接合し
た放熱器1bとなる。
FIG. 4B shows a radiator 1b using a plurality of different radiation fins 4a. The radiating fin 4a has a base end portion 6 in contact with the surface 2b of the substrate 2 and a pair of heat radiating surfaces 8 bent at a right angle from the base end portion 6 and has a substantially U-shaped cross section.
Exhibit a glyph. As shown in FIG. 4B, the plurality of heat radiation fins 4a are arranged at equal intervals on the surface 2b of the substrate 2 at positions spaced apart from each other, and the base end portions 6 of the heat radiation fins 4a are arranged in the same manner as the friction vibration tool 20 described above. Then, the base end portion 6 of each radiation fin 4a is bonded to the surface 2b of the substrate 2 via the bonding surface S. As a result, the radiator 1b has the same radiating surface 8 as that of the radiator 1 at the same pitch and is directly joined with the plurality of radiating fins 4a.

【0021】図4(C)は、更に異なる放熱フィン4bを
複数用いた放熱器1cを示す。放熱フィン4bは、基板
2の表面2bに接触する基端部6と、係る基端部6から
直角に曲折する放熱面8とを有する断面ほぼL字形を呈
する。図4(B)に示すように、複数の放熱フィン4b
は、それぞれの基端部6を基板2の表面2bに接触させ
つつ互いに隣接して配置され、各々の基端部6を前記摩
擦振動ツール20を前記同様に用いることにより、各放
熱フィン4bの基端部6を基板2の表面2bに前記接合
面Sを介して接合される。これにより、前記放熱器1と
同様に放熱面8を同様のピッチで立設し且つ直に複数の
放熱フィン4bを接合した放熱器1cが得られる。尚、
放熱器1cにおいて、隣接する放熱フィン4,4の基端
部6,6を互いに離間して基板2に接合しても良い。ま
た、以上のような放熱器1b,1cにおいて、基板2の
他方の表面2aにも放熱フィン4a,4bを更に接合し
ても良い。更に、係る基板2を前記セラミック製の基板
3に替えることも可能である。
FIG. 4C shows a radiator 1c using a plurality of different radiation fins 4b. The heat radiation fin 4b has a substantially L-shaped cross section having a base end portion 6 that contacts the surface 2b of the substrate 2 and a heat radiation surface 8 that is bent at a right angle from the base end portion 6. As shown in FIG. 4B, a plurality of heat radiation fins 4b
Are arranged adjacent to each other with their respective base end portions 6 in contact with the surface 2b of the substrate 2, and by using the respective frictional vibration tools 20 in the same manner as described above, the respective base end portions 6 of the heat radiation fins 4b can be formed. The base end portion 6 is bonded to the surface 2b of the substrate 2 via the bonding surface S. As a result, a radiator 1c in which the radiation surfaces 8 are erected at the same pitch as in the radiator 1 and a plurality of radiation fins 4b are directly joined is obtained. still,
In the radiator 1c, the base end portions 6, 6 of the adjacent heat radiation fins 4, 4 may be separated from each other and bonded to the substrate 2. Further, in the radiators 1b and 1c as described above, the radiation fins 4a and 4b may be further joined to the other surface 2a of the substrate 2. Furthermore, it is possible to replace the substrate 2 with the ceramic substrate 3.

【0022】図5(A)〜(C)は、異なる形態の摩擦振動
接合ツール20a〜20cの一部を示す。摩擦振動接合
ツール20aは、図5(A)に示すように、その円盤形の
ツール本体22における周面(24)を、当該ツール本体
22の厚み方向に平行な多数の細条25,25,…とし
たものである。また、摩擦振動接合ツール20bは、図
5(B)に示すように、その円盤形のツール本体22にお
ける周面24に、当該ツール本体22の径方向に突出す
る多数の四角錐形状の突起28,28,…をほぼ千鳥状
に形成したものである。
5 (A) to 5 (C) show a part of different types of friction vibration welding tools 20a to 20c. In the friction vibration welding tool 20a, as shown in FIG. 5 (A), the peripheral surface (24) of the disk-shaped tool body 22 is provided with a number of strips 25, 25, which are parallel to the thickness direction of the tool body 22. … It was. Further, as shown in FIG. 5B, the friction vibration welding tool 20b has a large number of quadrangular pyramid-shaped projections 28 protruding in the radial direction of the tool body 22 on the peripheral surface 24 of the disk-shaped tool body 22. , 28, ... are formed in a substantially zigzag pattern.

【0023】更に、摩擦振動接合ツール20cは、図5
(C)に示すように、その円盤形のツール本体22におけ
る周面24に、当該ツール本体22の径方向に突出する
多数の円弧形状の突起29,29,…をほぼ千鳥状に形
成したものである。以上のような摩擦振動接合ツール2
0a〜20cによれば、ツール本体22の周面24にお
ける多数の細条25や突起28,29により、放熱フィ
ン4の基端部6における金属との接触面積が更に増加す
るため、前記放熱フィン4,4a,4bと基板2,3と
の摩擦振動接合を一層短時間で行うことが可能となる。
Further, the friction vibration welding tool 20c is shown in FIG.
As shown in (C), on the peripheral surface 24 of the disk-shaped tool main body 22, a large number of arc-shaped projections 29, 29, ... Is. Friction vibration welding tool 2 as above
0a to 20c, the contact area with the metal at the base end portion 6 of the radiating fin 4 is further increased by the large number of strips 25 and the protrusions 28 and 29 on the peripheral surface 24 of the tool main body 22. Friction vibration bonding between the substrates 4, 4a, 4b and the substrates 2, 3 can be performed in a shorter time.

【0024】図6(A)は、前記同様に基板2の表面2b
に放熱フィン4の基端部6,6,…を接触させた状態
で、回転軸26に複数(図示で3個)のツール本体22を
等間隔に固定した摩擦振動ツール20を用いて摩擦振動
接合を行う工程を示す。係る接合ツール20を用いるこ
とにより、放熱フィン4における多数の基端部6を少な
い接合工程で基板2に摩擦振動接合することができる。
また、図6(B)も、前記同様に基板2の表面2bに放熱
フィン4の基端部6,6,…を接触させた状態で、回転
軸26に複数(図示で3個)のツール本体22を等間隔に
固定した摩擦振動ツール20を用いて摩擦振動接合を行
う工程を示す。
FIG. 6A shows the surface 2b of the substrate 2 as described above.
The frictional vibration tool 20 in which a plurality of tool bodies 22 (three in the figure) are fixed to the rotating shaft 26 at equal intervals while the base end portions 6, 6, ... The process of joining is shown. By using such a welding tool 20, a large number of base end portions 6 of the heat radiation fins 4 can be frictionally vibration-welded to the substrate 2 in a small number of welding steps.
6B, the plurality of (three in the figure) tools are attached to the rotary shaft 26 in the state where the base ends 6, 6, ... Of the heat radiation fins 4 are brought into contact with the surface 2b of the substrate 2 similarly to the above. A process of performing frictional vibration joining using the frictional vibration tool 20 in which the main body 22 is fixed at equal intervals will be described.

【0025】図6(B)に示すように、上記接合ツール2
0の各ツール本体22は、放熱フィン4における1つ置
き毎の基端部6,6,6を押圧しつつ回転および移動す
るように、長尺な回転軸26の所定の位置に固定されて
いる。係る接合ツール20により摩擦振動接合されない
放熱フィン4の基端部6,6,…は、直前に行った摩擦
振動接合工程の後で、上記接合ツール20をそのツール
本体22の軸方向に沿ってずらすことにより、摩擦振動
接合を施しても良いし、係る接合を行わずに、基板2の
表面2bと面接触した当初のままの状態としても良い。
尚、図6(A),(B)における各摩擦振動接合ツール20
に替えて、ツール本体22の周面24に前記多数の細条
25や突起28,29を形成した前記摩擦振動接合ツー
ル20a〜20cを用いても良い。また、図6(A),
(B)における基板2に替えて、前記セラミック製の基板
3を適用しても良い。
As shown in FIG. 6 (B), the welding tool 2 described above is used.
Each tool body 22 of 0 is fixed to a predetermined position of the long rotary shaft 26 so as to rotate and move while pressing the base end portions 6, 6, 6 of the radiating fins 4 every other one. There is. The base end portions 6, 6, ... Of the radiation fins 4 which are not friction-vibration welded by the welding tool 20 have the welding tool 20 along the axial direction of the tool body 22 after the friction vibration welding process performed immediately before. Friction vibration welding may be performed by shifting, or may be left in the initial state of surface contact with the surface 2b of the substrate 2 without performing such welding.
It should be noted that each friction vibration welding tool 20 shown in FIGS.
Instead of the above, the friction vibration welding tools 20a to 20c in which the numerous strips 25 and the protrusions 28 and 29 are formed on the peripheral surface 24 of the tool body 22 may be used. In addition, as shown in FIG.
The substrate 3 made of ceramic may be applied instead of the substrate 2 in (B).

【0026】本発明は、以上において説明した各形態に
限定されるものではない。例えば、放熱器の基板は、平
坦な前記金属板2やセラミック板3に限らず、放熱フィ
ン4の基端部6が面接触可能な表面を有するものであれ
ば、内部に冷却媒体を循環させる中空部を有するアルミ
ニウム合金の押出形材や複数のグリーンシートなどを組
み立てて焼成した中空部を内設するセラミック部材とし
ても良い。また、放熱器の放熱フィン4,4a,4b
は、それらの基端部6と放熱面8とが直角でなく、やや
鈍角または鋭角に曲折して連続する形態としても良い。
例えば、前記放熱フィン4の基端部6,6,…と先端部
7,7,…との間に互いに逆向きに傾斜する放熱面8,
8,…を交互に配置し、基端部6または先端部7と一対
の放熱面8,8とにより、台形状の断面を形成する形態
としても良い。更に、前記摩擦振動接合ツール20,2
0a〜20cのツール本体22における周面24の厚み
方向の両側(円周)縁に一対の面取りを対称に形成しても
良い。尚、本発明の放熱器は、前記回路基板10などの
熱放散用に限らず、発熱源を含む電子・電気機器や、各
種の内燃機関、燃焼機器などにも適用可能である。
The present invention is not limited to each of the forms described above. For example, the substrate of the radiator is not limited to the flat metal plate 2 or the ceramic plate 3, but the cooling medium may be circulated inside as long as the base end portion 6 of the radiation fin 4 has a surface with which the surface contact is possible. It is also possible to use an extruded aluminum alloy material having a hollow portion, a plurality of green sheets, and the like. Also, the radiator fins 4, 4a, 4b of the radiator
In addition, the base end portion 6 and the heat dissipation surface 8 may be bent at an obtuse angle or an acute angle so as to be continuous with each other, not at a right angle.
For example, between the base end portions 6, 6, ... And the front end portions 7, 7, ..
.. may be arranged alternately, and a trapezoidal cross section may be formed by the base end portion 6 or the tip end portion 7 and the pair of heat radiation surfaces 8, 8. Further, the friction vibration welding tools 20, 2
A pair of chamfers may be formed symmetrically on both edges (circumference) in the thickness direction of the peripheral surface 24 of the tool body 22 of 0a to 20c. The radiator of the present invention is not limited to heat dissipation of the circuit board 10 and the like, but can be applied to electronic / electrical devices including a heat source, various internal combustion engines, combustion devices, and the like.

【0027】[0027]

【発明の効果】以上において説明した本発明の放熱器
(請求項1)によれば、前記基板と放熱フィンとが前記接
合面で直に接合されているため、熱伝達性が向上する。
従って、例えば回路基板などからの発熱を、上記基板を
介して放熱フィンから速やかに放散できるため、上記回
路基板などの動作を正確に成さしめることが可能とな
る。また、請求項2の放熱器によれば、前記基板の表面
に、放熱面積の大きな放熱面を有する放熱フィンを高密
度で接合した放熱器とすることが可能となる。
The radiator of the present invention described above
According to (Claim 1), since the substrate and the radiation fin are directly joined at the joining surface, the heat transfer property is improved.
Therefore, for example, heat generated from the circuit board or the like can be quickly dissipated from the heat radiation fins through the board, and thus the operation of the circuit board or the like can be accurately performed. Further, according to the heat radiator of the second aspect, it is possible to form a heat radiator in which heat radiating fins having a heat radiating surface having a large heat radiating area are bonded to the surface of the substrate at a high density.

【0028】一方、本発明の放熱器の製造方法(請求項
3)によれば、前記ツール本体の周面を放熱フィンの基
端部に押圧し且つ回転しつつ移動するため、放熱フィン
の基端部の金属は、摩擦熱により可塑化し且つ流動状態
となる。この際、金属製の基板では、放熱フィンの基端
部に隣接する当該基板の金属部分も上記摩擦熱により可
塑化する。この結果、面接触した放熱フィンの基端部と
基板とは、両者の接触面付近において固相状態で可塑化
した後に固化するため、互いに入れ子状になる凹凸面の
接合面を介して、放熱フィンと基板とが直に接合され
る。また、セラミック製の基板では、放熱フィンの可塑
化した基端部の金属が係る基板のセラミックにおける結
晶粒界に進入して固化するため、アンカー部を複数有す
る非平面の接合面を介して、放熱フィンと基板とを直に
接合することができる。
On the other hand, according to the method for manufacturing a radiator of the present invention (claim 3), the peripheral surface of the tool body is pressed against the base end portion of the heat radiation fin and moves while rotating, so that the base of the heat radiation fin is used. The metal at the ends is plasticized by frictional heat and becomes fluid. At this time, in the metal substrate, the metal portion of the substrate adjacent to the base end portion of the heat radiation fin is also plasticized by the friction heat. As a result, the base end of the heat dissipation fin and the substrate that are in surface contact with each other plasticize in the solid state in the vicinity of the contact surface between them and then solidify. The fin and the substrate are directly joined. Further, in the ceramic substrate, since the metal of the plasticized base end portion of the radiation fin enters into the crystal grain boundary in the ceramic of the substrate and is solidified, through the non-planar joint surface having a plurality of anchor portions, The heat radiation fin and the substrate can be directly joined.

【0029】また、請求項4の放熱器の製造方法によれ
ば、前記接合ツールが回転し且つ放熱フィンの基端部を
押圧しつつ移動する際、前記細条または突起により係る
基端部の金属との摩擦面が増えるため、係る金属の可塑
化および流動化を更に迅速に生じさせる。従って、前記
接合ツールの移動速度を高められるため、摩擦振動接合
する工程の効率を向上させることが可能となる。
According to the radiator manufacturing method of the fourth aspect, when the welding tool rotates and moves while pressing the base end portion of the heat radiation fin, the base end portion of the strip or projection is removed. Since the friction surface with the metal increases, the plasticization and fluidization of the metal occur more quickly. Therefore, since the moving speed of the welding tool can be increased, the efficiency of the friction vibration welding process can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】(A)は本発明の放熱器の1形態およびその使用
例を示す概略図、(B)は(A)中の一点鎖線部分Bの拡大
図。
FIG. 1A is a schematic view showing one form of a radiator of the present invention and an example of its use, and FIG. 1B is an enlarged view of a one-dot chain line portion B in FIG.

【図2】(A)〜(C)は本発明の放熱器の製造方法におけ
る工程を示す概略図。
2A to 2C are schematic views showing steps in a method for manufacturing a radiator according to the present invention.

【図3】(A)〜(C)は本発明の放熱器の製造方法におけ
る摩擦振動接合を示す概略図。
3 (A) to 3 (C) are schematic views showing friction vibration joining in the method for manufacturing a radiator of the present invention.

【図4】(A)は異なる形態の放熱器を示す部分拡大断面
図、(B),(C)は更に異なる形態の放熱器を示す概略
図。
4A is a partially enlarged cross-sectional view showing a radiator of a different form, and FIGS. 4B and 4C are schematic views showing a radiator of a different form.

【図5】(A)〜(C)は本発明の製造方法に用いる摩擦振
動接合ツールの異なる形態を示す部分概略図。
5A to 5C are partial schematic views showing different forms of the friction vibration welding tool used in the manufacturing method of the present invention.

【図6】(A),(B)は異なる形態の摩擦振動接合ツール
による製造方法を示す概略図。
6A and 6B are schematic views showing a manufacturing method using a friction vibration welding tool having different forms.

【符号の説明】[Explanation of symbols]

1,1a〜1c…………放熱器 2,3……………………基板 2a,2b,3a,3b…表面 4,4a,4b…………放熱フィン 6,6b…………………基端部 8…………………………放熱面 20,20a〜20c…摩擦振動接合ツール 22………………………ツール本体 24………………………周面 25………………………細条 28,29………………突起 S…………………………接合面 1, 1a-1c ………… Heat radiator 2,3 …………………… Substrate 2a, 2b, 3a, 3b ... Surface 4,4a, 4b ............ Radiation fin 6,6b …………………… Base end 8 ……………………………… Heat dissipation surface 20, 20a to 20c ... Friction vibration welding tool 22 …………………………… Tool body 24 ………………………… Surface 25 ………………………… Articles 28,29 ……………… Protrusion S ……………………………… Joined surface

───────────────────────────────────────────────────── フロントページの続き (72)発明者 堀田 元司 静岡県庵原郡蒲原町蒲原1丁目34番1号 日本軽金属株式会社グループ技術センター 内 (72)発明者 牧田 慎也 静岡県庵原郡蒲原町蒲原1丁目34番1号 日本軽金属株式会社グループ技術センター 内 Fターム(参考) 5F036 AA01 BB05 BC01 BD13    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Motoji Hotta             1-34-1 Kambara, Kambara-cho, Anbara-gun, Shizuoka Prefecture             Nippon Light Metal Co., Ltd. Group Technology Center             Within (72) Inventor Shinya Makita             1-34-1 Kambara, Kambara-cho, Anbara-gun, Shizuoka Prefecture             Nippon Light Metal Co., Ltd. Group Technology Center             Within F term (reference) 5F036 AA01 BB05 BC01 BD13

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】金属またはセラミックからなる基板と、 上記基板の少なくとも一方の表面に摩擦振動接合による
接合面を介して基端部を接合した金属製の放熱フィン
と、を含む、ことを特徴とする放熱器。
1. A substrate comprising metal or ceramic, and a metal radiation fin having a base end portion joined to at least one surface of the substrate via a joining surface formed by friction vibration joining. A heat sink.
【請求項2】前記放熱フィンは、前記基板の表面に接触
する基端部と、かかる基端部からほぼ直角に曲折する放
熱面とを含み、断面形状がほぼU字形、連続する凹凸
形、またはほぼL字形の何れかである、 ことを特徴とする請求項1の放熱器。
2. The radiating fin includes a base end portion that comes into contact with the surface of the substrate, and a heat radiating surface that is bent at a substantially right angle from the base end portion, and has a substantially U-shaped cross section, a continuous concavo-convex shape, The radiator according to claim 1, wherein the radiator is substantially L-shaped.
【請求項3】金属またはセラミックからなる基板の表面
に金属製の放熱フィンの基端部を接触させた後、かかる
基端部の外側から摩擦振動接合ツールにおける回転する
円盤形のツール本体の周面を押し付けつつ移動すること
により、放熱フィンの基端部を基板の表面に摩擦振動接
合する工程を、含む、 ことを特徴とする放熱器の製造方法。
3. A circumference of a rotating disk-shaped tool body in a friction vibration welding tool from the outside of the base end of a metal radiating fin, which is brought into contact with the surface of a substrate made of metal or ceramics. A method of manufacturing a radiator, comprising the step of frictionally vibration-bonding the base end portion of the radiation fin to the surface of the substrate by moving while pressing the surface.
【請求項4】前記ツール本体の周面には、当該ツール本
体の厚み方向にほぼ沿った多数の平行な細条、または上
記ツール本体の径方向に突出する多数の突起が形成され
ている、ことを特徴とする請求項3に記載の放熱器の製
造方法。
4. A plurality of parallel strips substantially along the thickness direction of the tool body or a plurality of projections protruding in the radial direction of the tool body are formed on the peripheral surface of the tool body. The method for manufacturing a radiator according to claim 3, wherein:
JP2001342418A 2001-11-07 2001-11-07 Radiator and manufacturing method thereof Expired - Fee Related JP3918517B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001342418A JP3918517B2 (en) 2001-11-07 2001-11-07 Radiator and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001342418A JP3918517B2 (en) 2001-11-07 2001-11-07 Radiator and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2003142639A true JP2003142639A (en) 2003-05-16
JP3918517B2 JP3918517B2 (en) 2007-05-23

Family

ID=19156279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001342418A Expired - Fee Related JP3918517B2 (en) 2001-11-07 2001-11-07 Radiator and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3918517B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004020138A1 (en) * 2002-08-29 2004-03-11 Nippon Light Metal Company, Ltd. Method of joining members, method of joining metallic members, radiation member, process for manufacturing the same, jig for the manufacturing and heat sink
JP2006341279A (en) * 2005-06-09 2006-12-21 Sumitomo Light Metal Ind Ltd Method for joining edge face in superimposed material
JP2008221339A (en) * 2008-05-08 2008-09-25 Nippon Light Metal Co Ltd Metallic member joining method and manufacturing method of heat radiator
JP2011183408A (en) * 2010-03-05 2011-09-22 Nihon Univ Friction joined body of sheet obtained by using rotary disk and friction joining method
JP2012094594A (en) * 2010-10-25 2012-05-17 Toshiyuki Arai Heat dissipation structure
CN105798448A (en) * 2015-01-15 2016-07-27 日本轻金属株式会社 Manufacturing method for radiator and radiator
JP2017192979A (en) * 2016-04-22 2017-10-26 株式会社デンソー Frictional agitation joint method for dissimilar metal members

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004020138A1 (en) * 2002-08-29 2004-03-11 Nippon Light Metal Company, Ltd. Method of joining members, method of joining metallic members, radiation member, process for manufacturing the same, jig for the manufacturing and heat sink
JP2006341279A (en) * 2005-06-09 2006-12-21 Sumitomo Light Metal Ind Ltd Method for joining edge face in superimposed material
JP2008221339A (en) * 2008-05-08 2008-09-25 Nippon Light Metal Co Ltd Metallic member joining method and manufacturing method of heat radiator
JP4618327B2 (en) * 2008-05-08 2011-01-26 日本軽金属株式会社 Metal member joining method and radiator manufacturing method
JP2011183408A (en) * 2010-03-05 2011-09-22 Nihon Univ Friction joined body of sheet obtained by using rotary disk and friction joining method
JP2012094594A (en) * 2010-10-25 2012-05-17 Toshiyuki Arai Heat dissipation structure
CN105798448A (en) * 2015-01-15 2016-07-27 日本轻金属株式会社 Manufacturing method for radiator and radiator
CN105798448B (en) * 2015-01-15 2018-05-04 日本轻金属株式会社 The manufacture method and radiator of radiator
JP2017192979A (en) * 2016-04-22 2017-10-26 株式会社デンソー Frictional agitation joint method for dissimilar metal members

Also Published As

Publication number Publication date
JP3918517B2 (en) 2007-05-23

Similar Documents

Publication Publication Date Title
US6637109B2 (en) Method for manufacturing a heat sink
US20110030922A1 (en) Board-shaped heat dissipating device and method of manufacturing the same
JP2003158227A (en) Heat sink, its manufacturing method, and pressing jig
JP5136748B2 (en) Element positioning jig and mounting method
JP2003142639A (en) Radiator and manufacturing method therefor
JPH0982844A (en) Semiconductor module board and manufacture thereof
JP5665355B2 (en) Manufacturing method of joined body of ceramic member and finned heat dissipation member
JP2012227362A (en) Power module substrate unit with heat sink and manufacturing method thereof
US20050250245A1 (en) Semiconductor chip arrangement and method
JPH10270612A (en) Board for connecting heat radiation plate
JP4311303B2 (en) Power module substrate manufacturing method
US20110000645A1 (en) Heat dissipating board structure and method of manufacturing the same
JP3314028B2 (en) Aluminum heat dissipation device and method of manufacturing the same
JP3432477B2 (en) heatsink
JP4134580B2 (en) Member joining method, radiator manufacturing method and radiator manufacturing jig
JP4618327B2 (en) Metal member joining method and radiator manufacturing method
JP2007165486A (en) Heat sink and semiconductor device
JP2005116843A (en) Metallic plate circuit and ceramic circuit board
JP5146296B2 (en) Power module substrate manufacturing method
JP2005347500A (en) Heatsink member of electronic part
JP4222108B2 (en) Metal member joining method
JP2006075893A (en) Manufacturing method of projection-attached structure, manufacturing method of heat sink, and projection-attached structure
JP2001113738A (en) Thick film type thermal head
JPWO2020245975A1 (en) Warp control structure of metal base plate, semiconductor module and inverter device
JP2003230968A (en) Joining method for metal member, radiating member, and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040409

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061114

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070123

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070205

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees