JP2003142240A - Heating element for resistance furnace - Google Patents

Heating element for resistance furnace

Info

Publication number
JP2003142240A
JP2003142240A JP2001333793A JP2001333793A JP2003142240A JP 2003142240 A JP2003142240 A JP 2003142240A JP 2001333793 A JP2001333793 A JP 2001333793A JP 2001333793 A JP2001333793 A JP 2001333793A JP 2003142240 A JP2003142240 A JP 2003142240A
Authority
JP
Japan
Prior art keywords
heating element
resistance furnace
heating
heat generating
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001333793A
Other languages
Japanese (ja)
Inventor
Hiroshi Shimamura
洋 島村
Akihiko Sato
明彦 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOKAI KONETSU KOGYO KK
Tokai Konetsu Kogyo Co Ltd
Original Assignee
TOKAI KONETSU KOGYO KK
Tokai Konetsu Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOKAI KONETSU KOGYO KK, Tokai Konetsu Kogyo Co Ltd filed Critical TOKAI KONETSU KOGYO KK
Priority to JP2001333793A priority Critical patent/JP2003142240A/en
Publication of JP2003142240A publication Critical patent/JP2003142240A/en
Pending legal-status Critical Current

Links

Landscapes

  • Resistance Heating (AREA)
  • Furnace Details (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a heating element for a resistance furnace which can extend life of a heating element by decreasing surface load density or apply large electric power without making larger outside diameter or increasing the number or the heat generating elements, in a type of a heating element set in a resistance furnace used for calcining electronic components, fusing metal, glass or the like. SOLUTION: In heating element set in a resistance furnace, at least an outer surface of a heat generating part of the heating element is formed unevenly. Forming continued wavy roughness to a peripheral direction of the heat generating part is more preferable.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、電子部品の焼成、
金属やガラスの溶解などに使用される抵抗炉において、
主として1000〜1500℃程度の熱源として配設さ
れる抵抗炉用発熱体に関する。
TECHNICAL FIELD The present invention relates to firing of electronic parts,
In resistance furnaces used for melting metals and glass,
The present invention mainly relates to a resistance furnace heating element arranged as a heat source at about 1000 to 1500 ° C.

【0002】[0002]

【従来の技術】抵抗炉の熱源としては、炭化珪素(Si
C)質発熱体が広く使用されており、使用法や用途に応
じて、棒状、U字状、W字状、コ字状など各種形状のも
のが適用され、その発熱部はロッド(中実)状またはパ
イプ(中空)状に形成されている。また、珪化モリブデ
ン(MoSi2 )からなる発熱体も用いられている。
2. Description of the Related Art As a heat source for a resistance furnace, silicon carbide (Si
C) Quality heating elements are widely used, and various shapes such as rod-shaped, U-shaped, W-shaped, and U-shaped are applied depending on the usage and application. ) Shape or a pipe (hollow) shape. A heating element made of molybdenum silicide (MoSi 2 ) is also used.

【0003】抵抗炉における発熱体の本数、形状などの
選定においては、発熱体の表面負荷密度(発熱体に加え
る電力を発熱体の表面積で割った値で、単位はW/cm
2 )が重要で、発熱体の耐久性を決定付ける大きな要因
となり、表面負荷密度が高くなるほど発熱体の寿命は短
くなる。
In selecting the number and shape of heating elements in a resistance furnace, the surface load density of the heating elements (a value obtained by dividing the electric power applied to the heating elements by the surface area of the heating elements, the unit being W / cm).
2 ) is important and becomes a major factor in determining the durability of the heating element. The higher the surface load density, the shorter the life of the heating element.

【0004】通常、発熱体の外径や本数の決定は、経済
性の観点から、表面負荷密度が5W/cm2 程度となる
よう、必要電力に基づいて発熱部の総表面積を計算する
ことにより行われ、発熱体の本数が少ない場合や外径が
小さい場合は、発熱体に対するイニシャルコストは少な
くなるが、発熱体の寿命は短くランニングコストが増大
し、発熱体の本数が多い場合や外径が大きい場合は、発
熱体の寿命が長くなってランニングコストは小さくなる
反面、発熱体に対するイニシャルコストは高くなり、設
備費が嵩むこととなる。
Usually, from the viewpoint of economy, the outer diameter and the number of heating elements are determined by calculating the total surface area of the heating portion based on the required power so that the surface load density will be about 5 W / cm 2. If the number of heating elements is small or the outer diameter is small, the initial cost for the heating element is low, but the life of the heating element is short and the running cost increases, and if the number of heating elements is large or the outer diameter is small. Is large, the life of the heating element is long and the running cost is low, but the initial cost for the heating element is high and the equipment cost is high.

【0005】抵抗炉の設計上、抵抗炉の熱源として配設
される発熱体の外径や本数の決定はきわめて重要である
が、抵抗炉を設計する場合、もう少し電力を印加したと
いう要求やもう少し発熱体の寿命を延ばしたいという要
求が多く生じるが、従来、このような要求に対処するた
めには、発熱体の外径を大きくするか、発熱体の本数を
増加させなければならず、炉体のスペースの面で困難で
あったり、炉を改造しなければならないという問題点が
あった。
In designing a resistance furnace, it is very important to determine the outer diameter and the number of heating elements arranged as a heat source of the resistance furnace. However, when designing a resistance furnace, the requirement that a little more electric power is applied and a little more Although there are many demands for extending the life of heating elements, conventionally, in order to meet such requirements, the outer diameter of the heating elements must be increased or the number of heating elements must be increased. There was a problem that it was difficult in terms of body space and that the furnace had to be modified.

【0006】[0006]

【発明が解決しようとする課題】本発明は、抵抗炉に配
設される発熱体の本数、外径の選定における上記従来の
問題点を解消するためになされたものであり、その目的
は、抵抗炉において、発熱体の外径を大きくしたり、発
熱体の本数を増加させることなく、表面負荷密度を下げ
て発熱体の寿命を延ばし、または大きな電力を印加する
ことを可能とする抵抗炉用発熱体を提供することにあ
る。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned conventional problems in the selection of the number of heating elements and the outer diameter of the heating elements arranged in the resistance furnace. In a resistance furnace, it is possible to reduce the surface load density to extend the life of the heating element or to apply a large amount of power without increasing the outer diameter of the heating element or increasing the number of heating elements. To provide a heating element for use.

【0007】[0007]

【課題を解決するための手段】上記の目的を達成するた
めの本発明の請求項1による抵抗炉用発熱体は、抵抗炉
に配設される発熱体において、該発熱体の少なくとも発
熱部の外表面を凹凸に形成したことを特徴とする。
A heating element for a resistance furnace according to claim 1 of the present invention for achieving the above object is a heating element disposed in a resistance furnace, wherein at least a heating portion of the heating element is provided. It is characterized in that the outer surface is formed to be uneven.

【0008】請求項2による抵抗炉用発熱体は、抵抗炉
に配設される発熱体において、該発熱体の少なくとも発
熱部の外表面を、発熱部の周方向に連続する波状の凹凸
に形成したことを特徴とする。
According to a second aspect of the present invention, there is provided a resistance heating element for a resistance furnace, wherein at least the outer surface of the heating portion of the heating element disposed in the resistance furnace is formed into wavy concavities and convexities continuous in the circumferential direction of the heating portion. It is characterized by having done.

【0009】また、請求項3による抵抗炉用発熱体は、
請求項1または2において、前記発熱体が炭化珪素質発
熱体であることを特徴とする。
A heating element for a resistance furnace according to claim 3 is
In Claim 1 or 2, The said heat generating body is a silicon carbide type heat generating body, It is characterized by the above-mentioned.

【0010】[0010]

【発明の実施の形態】本発明においては、図1に示すよ
うに、発熱体1の少なくとも発熱部2の外表面を凹凸に
形成したことを特徴とする。凹凸は、少なくとも発熱部
2の外表面に形成するが、発熱体の全体に形成してもよ
い。また、凹凸は、発熱部2の外表面全体に形成しても
よく、発熱部の一部に形成することもできる。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention is characterized in that, as shown in FIG. 1, at least the outer surface of the heat generating portion 2 of the heat generating element 1 is formed to be uneven. Although the unevenness is formed on at least the outer surface of the heat generating portion 2, it may be formed on the entire heating element. The unevenness may be formed on the entire outer surface of the heat generating portion 2, or may be formed on a part of the heat generating portion.

【0011】凹凸の形態は、ランダムなものでも良い
が、連続する波状の凹凸に形成するのが好ましい。波状
の凹凸の形態としては、発熱部の長手方向に連続する波
状の凹凸に形成することもできるが、製作上の点から、
発熱部の周方向に連続する波状の凹凸に形成するのが好
ましい。例えば、発熱部がパイプ(中空)状に形成され
た発熱体の場合には、図2に示すような波状外表面3を
有する断面形状をそなえたものが好ましい。発熱部がロ
ッド(中実)状に形成された発熱体においても、同様の
外表面に形成することができる。なお、図1において、
4は発熱体1の電極部、5は端部である。
The shape of the irregularities may be random, but it is preferable that the irregularities are formed in a continuous wavy pattern. As the form of the wavy unevenness, it is possible to form a wavy unevenness that is continuous in the longitudinal direction of the heat generating portion, but from the viewpoint of manufacturing,
It is preferable to form wavy concavities and convexities continuous in the circumferential direction of the heat generating portion. For example, in the case of a heating element having a pipe (hollow) heating portion, it is preferable that the heating element has a cross-sectional shape having a wavy outer surface 3 as shown in FIG. A heating element having a rod-shaped (solid) heating portion can also be formed on the same outer surface. In addition, in FIG.
Reference numeral 4 is an electrode portion of the heating element 1, and 5 is an end portion.

【0012】波状の凹凸は、図2に示すような曲面状の
凹凸、尖った形状の山部と谷部とをそなえた凹凸、台形
状の山部と谷部とをそなえた凹凸、矩形状の山部と谷部
とをそなえた凹凸、その他外表面の表面積を増大させる
あらゆる凹凸、またはこれら凹凸の組合わせからなるも
のが適用できる。
The wavy irregularities are curved irregularities as shown in FIG. 2, irregularities having sharp peaks and troughs, trapezoidal irregularities having peaks and troughs, and rectangular shapes. Irregularities having peaks and troughs, other irregularities that increase the surface area of the outer surface, or a combination of these irregularities can be applied.

【0013】発熱部がパイプ(中空)状に形成された発
熱体の場合、従来は、図3に示すように、円形状外表面
6をそなえ、発熱部の外径をd、発熱部の長さをlとす
ると、発熱部の表面積は、π×d×lで与えられる。
In the case of a heating element having a pipe (hollow) shape, the heating portion has a circular outer surface 6 as shown in FIG. 3, the outer diameter of the heating portion is d, and the length of the heating portion is long. When the length is l, the surface area of the heat generating portion is given by π × d × l.

【0014】これに対して、図2に示すような周方向に
形成された波状外表面3を有する断面形状をそなえた本
発明の発熱体においては、外表面が波状に形成されてい
るため、例えば、従来の1.3〜1.6倍の表面積
(1.3〜1.6×π×d×l)となり、30〜60%
程度発熱表面積が増大することとなる。すなわち、同一
の表面負荷密度の場合には、電力を30〜60%多く印
加することができ、同一の電力を印加した場合には、表
面負荷密度の低下が可能となり、発熱体の長寿命化が達
成できる。
On the other hand, in the heating element of the present invention having the cross-sectional shape having the wavy outer surface 3 formed in the circumferential direction as shown in FIG. 2, the outer surface is wavy, so that For example, the surface area is 1.3 to 1.6 times that of the conventional one (1.3 to 1.6 × π × d × l), and 30 to 60%.
The heating surface area is increased to some extent. That is, in the case of the same surface load density, 30 to 60% more power can be applied, and in the case of applying the same power, the surface load density can be reduced and the life of the heating element can be extended. Can be achieved.

【0015】[0015]

【実施例】以下、本発明の実施例を比較例と対比して説
明する。これらの実施例は本発明の一実施態様を示すも
のであり、本発明はこれに限定されるものではない。
EXAMPLES Examples of the present invention will be described below in comparison with comparative examples. These examples show one embodiment of the present invention, and the present invention is not limited thereto.

【0016】実施例1、比較例1 外径20mm、発熱部長さ300mm、端部長さ300
mm、全長900mmの炭化珪素質発熱体に、図1〜2
に示すように、発熱部の周方向に連続する局面状の凹凸
を形成した。
Example 1, Comparative Example 1 Outer diameter 20 mm, heat generating portion length 300 mm, end portion length 300
mm to a 900 mm long silicon carbide heating element,
As shown in FIG. 5, the unevenness in the shape of a continuous surface was formed in the circumferential direction of the heat generating portion.

【0017】凹凸を形成した発熱部の断面積は、凹凸を
形成しない(従来の)発熱部の断面積と同一で、従っ
て、抵抗値は凹凸を形成しない(従来の)ものと同じ
1.1Ωであるが、発熱部の表面積は296cm2 であ
り、凹凸を形成しない(従来の)もの188cm2 に比
べ57%大きくなっている。
The cross-sectional area of the heat generating portion having the irregularities is the same as the cross-sectional area of the heat generating portion having no irregularities (conventional), and therefore the resistance value is the same as that of the non-convex (conventional) 1.1 Ω. although, the surface area of the heat generating portion is 296Cm 2, do not form irregularities has 57% larger than in 188cm 2 (conventional) ones.

【0018】この発熱体を抵抗炉に配設し、炉内温度:
1400℃、D.P(露点):+70℃の条件で100
0時間連続操炉を行い、抵抗増加率を測定した。結果を
表1に示す。
This heating element is placed in a resistance furnace and the temperature inside the furnace is:
1400 ° C., D.I. P (dew point): 100 at + 70 ° C
The furnace was continuously operated for 0 hours and the rate of increase in resistance was measured. The results are shown in Table 1.

【0019】[0019]

【表1】 [Table 1]

【0020】表1に示すように、本発明に従う実施例の
発熱体は、表面負荷密度が3.2W/cm2 で、比較例
の従来の発熱体の表面負荷密度5.0W/cm2 に比べ
て低下しているため、1000時間操炉後の抵抗増加率
が従来の95%から50%に減少した。このことは、発
熱体の大幅な長寿命化が達成されたことを意味するもの
である。
As shown in Table 1, the heating element of Example according to the invention, surface loading density of 3.2 W / cm 2, the surface loading density of 5.0 W / cm 2 conventional heating element of Comparative Example As compared with the conventional method, the resistance increase rate after 1000-hour furnace operation was decreased from 95% to 50%. This means that the life of the heating element has been significantly extended.

【0021】[0021]

【発明の効果】本発明によれば、電子部品の焼成、金属
やガラスの溶解などに使用される抵抗炉に配設される発
熱体において、発熱体の外径を大きくしたり、発熱体の
本数を増加させることなく、表面負荷密度を下げて発熱
体の寿命を延ばし、または大きな電力を印加することを
可能とする抵抗炉用発熱体が提供される。
According to the present invention, in a heating element disposed in a resistance furnace used for firing electronic parts, melting metal or glass, etc., the outer diameter of the heating element can be increased or Provided is a resistance furnace heating element capable of reducing the surface load density to extend the life of the heating element or applying a large electric power without increasing the number of the heating elements.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の抵抗炉用発熱体の実施例を示す正面図
である。
FIG. 1 is a front view showing an embodiment of a resistance heating element of the present invention.

【図2】図1のAーA断面図である。FIG. 2 is a sectional view taken along line AA of FIG.

【図3】従来の抵抗炉用発熱体の発熱部の断面図であ
る。
FIG. 3 is a sectional view of a heating portion of a conventional resistance heating element.

【符号の説明】[Explanation of symbols]

1 発熱体 2 発熱部 3 波状外表面 4 電極部 5 端部 6 円形状外表面 1 heating element 2 heating part 3 Wavy outer surface 4 electrode part 5 edge 6 circular outer surface

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 3K092 PP09 QA01 RD09 SS28 VV38 4K063 AA04 AA06 AA13 BA01 BA06 BA12 CA01 CA04 FA04 FA07 FA09    ─────────────────────────────────────────────────── ─── Continued front page    F term (reference) 3K092 PP09 QA01 RD09 SS28 VV38                 4K063 AA04 AA06 AA13 BA01 BA06                       BA12 CA01 CA04 FA04 FA07                       FA09

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 抵抗炉に配設される発熱体において、該
発熱体の少なくとも発熱部の外表面を凹凸に形成したこ
とを特徴とする抵抗炉用発熱体。
1. A heating element for a resistance furnace, characterized in that, in a heating element arranged in a resistance furnace, at least an outer surface of a heating portion of the heating element is formed to be uneven.
【請求項2】 抵抗炉に配設される発熱体において、該
発熱部の少なくとも外表面を、発熱部の周方向に連続す
る波状の凹凸に形成したことを特徴とする抵抗炉用発熱
体。
2. A heating element for a resistance furnace, wherein the heating element arranged in the resistance furnace has at least an outer surface of the heating portion formed into wavy irregularities continuous in the circumferential direction of the heating portion.
【請求項3】 前記発熱体が炭化珪素質発熱体であるこ
とを特徴とする請求項1または2記載の抵抗炉用発熱
体。
3. The heating element for a resistance furnace according to claim 1, wherein the heating element is a silicon carbide heating element.
JP2001333793A 2001-10-31 2001-10-31 Heating element for resistance furnace Pending JP2003142240A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001333793A JP2003142240A (en) 2001-10-31 2001-10-31 Heating element for resistance furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001333793A JP2003142240A (en) 2001-10-31 2001-10-31 Heating element for resistance furnace

Publications (1)

Publication Number Publication Date
JP2003142240A true JP2003142240A (en) 2003-05-16

Family

ID=19149007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001333793A Pending JP2003142240A (en) 2001-10-31 2001-10-31 Heating element for resistance furnace

Country Status (1)

Country Link
JP (1) JP2003142240A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007198669A (en) * 2006-01-26 2007-08-09 Ibiden Co Ltd Heating furnace

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007198669A (en) * 2006-01-26 2007-08-09 Ibiden Co Ltd Heating furnace

Similar Documents

Publication Publication Date Title
JP5989896B2 (en) Ceramic heater
CN101801124A (en) Precision strip heating element
JPH09210573A (en) Electric furnace
KR20190142384A (en) Wafer support
JP4297945B2 (en) Heat treatment equipment
JP2003142240A (en) Heating element for resistance furnace
JP4690297B2 (en) heater
JP2003007432A (en) Ceramics heater
JPWO2006011520A1 (en) Ceramic heater and heating iron using the same
JP3799195B2 (en) Ceramic heater
JP4018998B2 (en) Ceramic heater and glow plug
JP2004534370A (en) Improvements on the structure of graphite resistance furnaces.
JP2019164941A (en) Ceramic heater
JP2007146277A (en) Drum for electrodeposition
JP2008172208A (en) Ceramic heater
US2743348A (en) Engraving stylus
JP5986136B2 (en) Method for manufacturing MoSi2 heating element
JP2005522851A (en) Electric heating resistor
KR0126475B1 (en) Heat radiation tube
JPH07161725A (en) Wafer heater and electrode part member for heater
JP2001167862A (en) Heater and structure of heater terminal
JP6766101B2 (en) A heater made of a MoSi2 heating element and a method for manufacturing the heater.
JP2004319459A (en) Ceramic heating resistor and heater for oxygen probe using the same
JP3799198B2 (en) Method of measuring bending strength of ceramic heater
JP2004273383A (en) BELT-LIKE HEATING ELEMENT MADE FROM MoSi2 AND MANUFACTURING METHOD OF HEATING ELEMENT

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060907

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070306