JP2003142077A - Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same - Google Patents

Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same

Info

Publication number
JP2003142077A
JP2003142077A JP2001337425A JP2001337425A JP2003142077A JP 2003142077 A JP2003142077 A JP 2003142077A JP 2001337425 A JP2001337425 A JP 2001337425A JP 2001337425 A JP2001337425 A JP 2001337425A JP 2003142077 A JP2003142077 A JP 2003142077A
Authority
JP
Japan
Prior art keywords
negative electrode
secondary battery
electrolyte secondary
active material
electrode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001337425A
Other languages
Japanese (ja)
Inventor
Taku Aoki
卓 青木
Jo Sasaki
丈 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP2001337425A priority Critical patent/JP2003142077A/en
Publication of JP2003142077A publication Critical patent/JP2003142077A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a negative electrode having high energy density, an excellent heavy load characteristic and an excellent low-temperature characteristic and to provide a nonaqueous electrolyte secondary battery using it. SOLUTION: This negative electrode 4 is composed by disposing band-like negative electrode active material layers 19 and 20 containing a carbon material capable of storing and releasing lithium ions on both sides of a band-like negative electrode collector 17. This negative electrode is characterized in that the thickness T1 of the collector 17 and the total thickness (T2 +T3 ) of the material layers 19 and 20 satisfied relational expressions of 8.0<=(T2 +T3 )/T1 and (T2 +T3 )<=200 μm.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、非水電解質二次電
池用負極及びそれを用いた非水電解質二次電池に関す
る。
TECHNICAL FIELD The present invention relates to a negative electrode for a non-aqueous electrolyte secondary battery and a non-aqueous electrolyte secondary battery using the same.

【0002】[0002]

【従来の技術】リチウム金属は、金属の中で最も卑な電
位を示し、比重も0.534と小さいので、これを負極
に使用した非水電解質二次電池は、従来の二次電池と比
べて大きなエネルギー密度が期待できる。
2. Description of the Related Art Lithium metal has the lowest base potential among metals and has a small specific gravity of 0.534. Therefore, a non-aqueous electrolyte secondary battery using this as a negative electrode is compared with a conventional secondary battery. And large energy density can be expected.

【0003】ところが、リチウム金属は、充放電サイク
ルを繰り返すとデンドライトが生成しやすく安全性が低
かった。
However, with lithium metal, dendrites are easily generated when the charge / discharge cycle is repeated, and the safety is low.

【0004】そこで、負極活物質としてリチウムイオン
を吸蔵・放出可能な炭素材料を使用した非水電解質二次
電池が開発されている。
Therefore, a non-aqueous electrolyte secondary battery using a carbon material capable of inserting and extracting lithium ions as a negative electrode active material has been developed.

【0005】しかしながら、この非水電解質二次電池で
は、重負荷特性、及び低温特性は必ずしも十分とは言え
ず、重負荷特性、及び低温特性の向上が切望されてい
た。また、エネルギー密度の向上も望まれている。
However, in this non-aqueous electrolyte secondary battery, the heavy load characteristics and the low temperature characteristics are not always sufficient, and improvement of the heavy load characteristics and the low temperature characteristics has been earnestly desired. Further, improvement of energy density is also desired.

【0006】[0006]

【発明が解決しようとする課題】本発明は上記のような
事情に基づいて完成されたものであって、炭素材料を負
極活物質に含有するものにおいて、高いエネルギー密
度、優れた重負荷特性、及び優れた低温特性を持つ負
極、及び、これを用いた非水電解質二次電池に関する。
The present invention has been completed based on the above-mentioned circumstances, and in the case of containing a carbon material in the negative electrode active material, high energy density, excellent heavy load characteristics, The present invention also relates to a negative electrode having excellent low temperature characteristics, and a non-aqueous electrolyte secondary battery using the same.

【0007】[0007]

【課題を解決するための手段】本発明者等は、かかる問
題点を解決し得る負極、及び、これを用いた非水電解質
二次電池を開発すべく鋭意研究を重ねた。その結果、帯
状の負極集電体の両側に、リチウムイオンを吸蔵・放出
可能な炭素材料を含有する帯状の負極活物質層を配した
負極において、負極集電体の厚さT1と、負極活物質層
の厚さの合計(T2+T3)とが、8.0≦(T2+T
3)/T1、且つ(T2+T3)≦200μmの関係を
満たすことを特徴とする非水電解質二次電池用負極とす
ることにより、高いエネルギー密度、優れた重負荷特
性、及び優れた低温特性を持つ非水電解質二次電池が得
られることを見い出し、本発明を完成するに至った。
Means for Solving the Problems The inventors of the present invention have conducted extensive studies to develop a negative electrode that can solve the above problems and a non-aqueous electrolyte secondary battery using the negative electrode. As a result, in a negative electrode in which a strip-shaped negative electrode active material layer containing a carbon material capable of absorbing and releasing lithium ions is arranged on both sides of the strip-shaped negative electrode collector, the thickness T1 of the negative electrode collector and the negative electrode active material are The total thickness of the material layers (T2 + T3) is 8.0 ≦ (T2 + T
3) / T1, and (T2 + T3) ≦ 200 μm, the non-aqueous electrolyte secondary battery negative electrode is characterized by having a high energy density, excellent heavy load characteristics, and excellent low temperature characteristics. The inventors have found that a non-aqueous electrolyte secondary battery can be obtained, and completed the present invention.

【0008】即ち、請求項1の発明は、帯状の負極集電
体の両側に、リチウムイオンを吸蔵・放出可能な炭素材
料を含有する帯状の負極活物質層を配した負極におい
て、前記負極集電体の厚さT1と、前記負極活物質層の
厚さの合計(T2+T3)とが、8.0≦(T2+T
3)/T1、且つ(T2+T3)≦200μmの関係を
満たすことを特徴とする非水電解質二次電池用負極とし
た。請求項2の発明は、帯状の負極集電体の両側に、リ
チウムイオンを吸蔵・放出可能な炭素材料を含有する帯
状の負極活物質層を配した負極と、帯状の正極集電体に
正極活物質層を備えた正極と、非水電解質とを備える非
水電解質二次電池において、前記負極集電体の厚さT1
と、前記負極活物質層の厚さの合計(T2+T3)と
が、8.0≦(T2+T3)/T1、且つ(T2+T
3)≦200μmの関係を満たすことを特徴とする非水
電解質二次電池とした。
That is, the invention of claim 1 is a negative electrode in which a strip-shaped negative electrode active material layer containing a carbon material capable of absorbing and releasing lithium ions is arranged on both sides of the strip-shaped negative electrode current collector. The thickness T1 of the electric body and the total thickness (T2 + T3) of the negative electrode active material layer are 8.0 ≦ (T2 + T
3) / T1, and (T2 + T3) ≦ 200 μm was satisfied, and a negative electrode for a non-aqueous electrolyte secondary battery was obtained. According to a second aspect of the present invention, a strip-shaped negative electrode current collector is provided on both sides with a strip-shaped negative electrode active material layer containing a carbon material capable of absorbing and releasing lithium ions, and a strip-shaped positive electrode current collector is provided with a positive electrode. In a non-aqueous electrolyte secondary battery including a positive electrode having an active material layer and a non-aqueous electrolyte, a thickness T1 of the negative electrode current collector.
And the total thickness of the negative electrode active material layer (T2 + T3) is 8.0 ≦ (T2 + T3) / T1, and (T2 + T)
3) A non-aqueous electrolyte secondary battery characterized by satisfying the relation of ≦ 200 μm.

【0009】[0009]

【発明の実施の形態】以下、本発明の一実施形態につい
て、図面を参照しつつ説明する。図1は、本発明の一実
施形態にかかる角形非水電解質二次電池1の概略断面図
である。この角形非水電解質二次電池1は、正極3と、
負極4とがセパレータ5を介して巻回された扁平巻状電
極群2と、電解質塩を含有した図示しない非水電解液と
を電池ケース6に収納してなるものである。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic cross-sectional view of a prismatic non-aqueous electrolyte secondary battery 1 according to an embodiment of the present invention. The prismatic non-aqueous electrolyte secondary battery 1 includes a positive electrode 3 and
A flat wound electrode group 2 in which a negative electrode 4 is wound via a separator 5 and a non-aqueous electrolytic solution (not shown) containing an electrolyte salt are housed in a battery case 6.

【0010】そして、電池ケース6には、安全弁8を設
けた電池蓋7がレーザー溶接によって取り付けられ、正
極端子10は正極リード11を介して正極3と接続さ
れ、負極4は電池ケース6の内壁と接触により電気的に
接続されている。
A battery lid 7 provided with a safety valve 8 is attached to the battery case 6 by laser welding, the positive electrode terminal 10 is connected to the positive electrode 3 via a positive electrode lead 11, and the negative electrode 4 is an inner wall of the battery case 6. Is electrically connected by contact with.

【0011】そして、正極3は、図2に示すように例え
ばアルミニウム、ニッケル、又はステンレス製の正極集
電体13の両面にリチウムイオンを吸蔵・放出する物質
を構成要素とする正極合剤からなる正極活物質層15,
16を設けた構造となっている。この正極活物質層1
5,16は、正極活物質を含有する。正極活物質として
は、特に限定されず、公知のリチウム含有複合金属酸化
物、すなわち、リチウムを含むコバルト酸化物、リチウ
ムを含むマンガン酸化物、リチウムを含むニッケル酸化
物あるいはこれらの複合酸化物、混合物であれば特に限
定されず、例えば、LiMO(ただし、Mは一種以上
の遷移金属)で表される基本構造を有するリチウム遷移
金属複合酸化物を主体とする化合物として、LiCoO
、LiNiOが挙げられ、また、LiMnO、L
iMn、LiMMn2−y(M=Cr,C
o,Ni)等、あるいはこれらの複合酸化物、混合物を
用いることも可能である。LiMO(ただし、Mは一
種以上の遷移金属)で表される基本構造を有するリチウ
ム遷移金属複合酸化物を主体とする化合物を用いた場合
には、特に放電電圧の高さから遷移金属MとしてCo,
Ni,Mnから選択して使用することが望ましい。
As shown in FIG. 2, the positive electrode 3 is made of, for example, a positive electrode current collector 13 made of, for example, aluminum, nickel, or stainless steel. Positive electrode active material layer 15,
16 is provided. This positive electrode active material layer 1
5, 16 contain a positive electrode active material. The positive electrode active material is not particularly limited, and known lithium-containing composite metal oxides, that is, lithium-containing cobalt oxide, lithium-containing manganese oxide, lithium-containing nickel oxide or a composite oxide thereof, or a mixture thereof. There is no particular limitation as long as it is a compound mainly composed of a lithium-transition metal composite oxide having a basic structure represented by LiMO 2 (where M is one or more transition metals).
2 , LiNiO 2 , and also LiMnO 4 , L
iMn 2 O 4, LiM y Mn 2-y O 4 (M = Cr, C
It is also possible to use o, Ni) or the like, or a complex oxide or mixture thereof. When a compound mainly composed of a lithium-transition metal composite oxide having a basic structure represented by LiMO 2 (where M is one or more transition metals) is used, the transition metal M is particularly preferable because of its high discharge voltage. Co,
It is desirable to select and use from Ni and Mn.

【0012】そして、正極3は例えば以下のようにして
製造される。正極活物質をグラファイトやカーボンブラ
ック等の導電剤とポリフッ化ビニリデン等の結着剤と共
に混合して、正極合剤とする。そして、この正極合剤を
N−メチルピロリドン等の溶媒に分散させてスラリーと
する。これを正極集電体13の両面に塗布、乾燥後、ロ
ールプレス等により圧縮平滑化して正極3が製造され
る。なお、両面のみならず、片面のみ正極活物質層1
5,16を設けた構造となっていても構わない。
The positive electrode 3 is manufactured as follows, for example. A positive electrode active material is mixed with a conductive agent such as graphite or carbon black and a binder such as polyvinylidene fluoride to prepare a positive electrode mixture. Then, this positive electrode mixture is dispersed in a solvent such as N-methylpyrrolidone to obtain a slurry. This is applied to both surfaces of the positive electrode current collector 13, dried, and then compressed and smoothed by a roll press or the like to manufacture the positive electrode 3. The positive electrode active material layer 1 is formed not only on both sides but also on one side.
It does not matter even if it has a structure in which 5, 16 are provided.

【0013】負極4は、図3に示すように例えば銅、ニ
ッケル、又はステンレス製の負極集電体17の両面にリ
チウムイオンを吸蔵・放出する物質を構成要素とする負
極合剤からなる負極活物質層19,20を設けた構造と
なっている。
As shown in FIG. 3, the negative electrode 4 is composed of a negative electrode current collector 17 made of, for example, copper, nickel, or stainless steel. The structure has material layers 19 and 20.

【0014】この負極4は例えば以下のようにして製造
される。負極活物質をポリフッ化ビニリデン等の結着剤
と共に混合して、負極合剤とする。そして、この負極合
剤をN−メチルピロリドン等の溶媒に分散させてスラリ
ーとする。これを負極集電体17の両面に塗布、乾燥
後、ロールプレス等により圧縮平滑化して負極4が製造
される。
The negative electrode 4 is manufactured, for example, as follows. The negative electrode active material is mixed with a binder such as polyvinylidene fluoride to prepare a negative electrode mixture. Then, this negative electrode mixture is dispersed in a solvent such as N-methylpyrrolidone to form a slurry. This is applied on both sides of the negative electrode current collector 17, dried, and then compressed and smoothed by a roll press or the like to manufacture the negative electrode 4.

【0015】負極活物質としては、リチウムイオンを吸
蔵・放出可能な炭素材料であれば特に限定されず、例え
ば公知のコークス類、ガラス状炭素類、グラファイト
類、難黒鉛化性炭素類、熱分解炭素類、炭素繊維などを
単独でまたは二種以上を混合して使用することができ
る。
The negative electrode active material is not particularly limited as long as it is a carbon material capable of inserting and extracting lithium ions, and examples thereof include known cokes, glassy carbons, graphites, non-graphitizable carbons, and thermal decomposition. Carbons, carbon fibers, etc. can be used alone or in admixture of two or more.

【0016】ここで、負極4の負極集電体17の厚みを
T1とし、負極活物質層19,20の厚みをそれぞれ、
T2、T3とする。本実施形態では、負極集電体17の
厚さT1と、負極活物質層の厚さの合計(T2+T3)
とが、8.0≦(T2+T3)/T1、且つ(T2+T
3)≦200μmの関係を満たしている。
Here, the thickness of the negative electrode current collector 17 of the negative electrode 4 is set to T1, and the thicknesses of the negative electrode active material layers 19 and 20 are respectively set.
Let T2 and T3. In this embodiment, the total thickness T1 of the negative electrode current collector 17 and the thickness of the negative electrode active material layer (T2 + T3).
And 8.0 ≦ (T2 + T3) / T1 and (T2 + T
3) The relationship of ≦ 200 μm is satisfied.

【0017】(T2+T3)/T1の値は、8.0≦
(T2+T3)/T1であることを要し、好ましくは、
10.0≦(T2+T3)/T1、特に12.0≦(T
2+T3)/T1であることが好ましい。(T2+T
3)/T1の値が8.0未満の場合には、負極4に占め
る負極集電体17の割合が大きくなってしまいエネルギ
ー密度が低下するからである。
The value of (T2 + T3) / T1 is 8.0 ≦
(T2 + T3) / T1 is required, and preferably
10.0 ≦ (T2 + T3) / T1, especially 12.0 ≦ (T
2 + T3) / T1 is preferable. (T2 + T
This is because when the value of 3) / T1 is less than 8.0, the proportion of the negative electrode current collector 17 in the negative electrode 4 increases and the energy density decreases.

【0018】さらに(T2+T3)≦200μmである
ことを要し、好ましくは(T2+T3)≦180μm、
特に(T2+T3)≦160μmであることが好まし
い。このように、200μm以下である場合には、以下
の理由から重負荷時における放電容量の向上が図られる
と考えられる。
Further, it is necessary that (T2 + T3) ≦ 200 μm, preferably (T2 + T3) ≦ 180 μm,
It is particularly preferable that (T2 + T3) ≦ 160 μm. As described above, when the thickness is 200 μm or less, it is considered that the discharge capacity under heavy load can be improved for the following reason.

【0019】非水電解質二次電池では、放電に際し、負
極4に吸蔵されたリチウムイオンが負極活物質層19,
20の中を拡散しながら負極4の表面まで移動する。そ
して、負極4の表面から放出され、電解質中を移動して
正極3に到達する。
In the non-aqueous electrolyte secondary battery, during discharge, the lithium ions occluded in the negative electrode 4 are stored in the negative electrode active material layer 19,
It moves to the surface of the negative electrode 4 while diffusing in 20. Then, it is released from the surface of the negative electrode 4, moves in the electrolyte, and reaches the positive electrode 3.

【0020】この放電では、リチウムイオンの負極活物
質層19,20中での拡散速度が遅い。このため、負極
活物質層19,20の厚さの合計が200μmよりも厚
いと、負極集電体17近傍の負極活物質層19,20に
吸蔵されたリチウムイオンが、負極4の表面まで移動す
る距離が長くなり、その移動に非常に時間がかかると考
えられる。
In this discharge, the diffusion speed of lithium ions in the negative electrode active material layers 19 and 20 is slow. Therefore, when the total thickness of the negative electrode active material layers 19 and 20 is thicker than 200 μm, the lithium ions stored in the negative electrode active material layers 19 and 20 near the negative electrode current collector 17 move to the surface of the negative electrode 4. It is considered that it takes a long time to move and it takes a very long time to move.

【0021】この結果、重負荷時において、負極4の表
面近傍に吸蔵されたリチウムイオンのみが利用され、負
極集電体17の近傍に吸蔵されたリチウムイオンが有効
に利用できずに放電容量が低下してしまうと考えられ
る。
As a result, at the time of heavy load, only the lithium ions occluded near the surface of the negative electrode 4 are utilized, the lithium ions occluded near the negative electrode current collector 17 cannot be effectively utilized, and the discharge capacity is increased. It is thought that it will decrease.

【0022】そこで、本実施形態では、(T2+T3)
≦200μmであることとし、負極4の負極集電体17
近傍に吸蔵されたリチウムイオンが、負極4の表面に速
やかに移動するようにしている。この結果、負極集電体
17近傍の負極活物質層19,20が有効に利用され、
重負荷時における放電容量の向上が図られるのである。
Therefore, in this embodiment, (T2 + T3)
≦ 200 μm, the negative electrode current collector 17 of the negative electrode 4
The lithium ions occluded in the vicinity are quickly moved to the surface of the negative electrode 4. As a result, the negative electrode active material layers 19 and 20 near the negative electrode current collector 17 are effectively used,
It is possible to improve the discharge capacity under heavy load.

【0023】なお、(T2+T3)≦200μmとすれ
ば、負極活物質層19,20中でのリチウムイオンの拡
散速度がさらに遅い低温時においても、放電容量を確保
することができる。
If (T2 + T3) ≦ 200 μm, the discharge capacity can be ensured even at a low temperature where the diffusion rate of lithium ions in the negative electrode active material layers 19 and 20 is slower.

【0024】このように負極集電体17の厚さT1と、
正極活物質層19,20の厚さの合計(T2+T3)
が、8.0≦(T2+T3)/T1、且つ(T2+T
3)≦200μmの関係を満たす必要がある。
Thus, the thickness T1 of the negative electrode current collector 17
Total thickness of positive electrode active material layers 19 and 20 (T2 + T3)
Is 8.0 ≦ (T2 + T3) / T1, and (T2 + T
3) It is necessary to satisfy the relationship of ≦ 200 μm.

【0025】セパレータ5としては、特に限定されず、
例えば公知の織布、不織布、合成樹脂微多孔膜等を用い
ることができ、特に合成樹脂微多孔膜が好適に用いるこ
とができる。中でもポリエチレン及びポリプロピレン製
微多孔膜、又はこれらを複合した微多孔膜等のポリオレ
フィン系微多孔膜が、厚さ、膜強度、膜抵抗等の面で好
適に用いられる。
The separator 5 is not particularly limited,
For example, a known woven fabric, non-woven fabric, synthetic resin microporous film, or the like can be used, and a synthetic resin microporous film can be preferably used. Among them, a polyolefin-based microporous film such as a polyethylene and polypropylene microporous film or a composite microporous film thereof is preferably used in terms of thickness, film strength, film resistance and the like.

【0026】さらに高分子固体電解質等の固体電解質を
用いることで、セパレータを兼ねさせることもできる。
この場合、高分子固体電解質として多孔性高分子固体電
解質膜を使用する等して高分子固体電解質にさらに電解
液を含有させても良い。
Further, by using a solid electrolyte such as a polymer solid electrolyte, it can also serve as a separator.
In this case, the solid polymer electrolyte may further contain an electrolytic solution, for example, by using a porous solid polymer electrolyte membrane as the solid polymer electrolyte.

【0027】本発明の非水電解質としては、非水電解液
又は固体電解質のいずれも使用することができる。非水
電解液を用いる場合には特に限定されず、例えばエチレ
ンカーボネートとメチルエチルカーボネートとの混合溶
媒あるいはエチレンカーボネートとジメチルカーボネー
トとの混合溶媒を用いる。前記混合溶媒に、プロピレン
カーボネート、ブチレンカーボネート、ビニレンカーボ
ネート、トリフルオロプロピレンカーボネート、γ−ブ
チロラクトン、2−メチル−γ−ブチルラクトン、アセ
チル−γ−ブチロラクトン、γ−バレロラクトン、スル
ホラン、1,2−ジメトキシエタン、1,2−ジエトキ
シエタン、テトラヒドロフラン、2−メチルテトラヒド
ロフラン、3−メチル−1,3−ジオキソラン、酢酸メ
チル、酢酸エチル、プロピオン酸メチル、プロピオン酸
エチル、ジメチルカーボネート、ジエチルカーボネー
ト、メチルエチルカーボネート、ジプロピルカーボネー
ト、メチルプロピルカーボネート、エチルイソプロピル
カーボネート、ジブチルカーボネート等を単独でまたは
二種以上用いてこれを混合して使用しても良い。
As the non-aqueous electrolyte of the present invention, either a non-aqueous electrolytic solution or a solid electrolyte can be used. When the non-aqueous electrolytic solution is used, it is not particularly limited, and for example, a mixed solvent of ethylene carbonate and methyl ethyl carbonate or a mixed solvent of ethylene carbonate and dimethyl carbonate is used. In the mixed solvent, propylene carbonate, butylene carbonate, vinylene carbonate, trifluoropropylene carbonate, γ-butyrolactone, 2-methyl-γ-butyl lactone, acetyl-γ-butyrolactone, γ-valerolactone, sulfolane, 1,2-dimethoxy. Ethane, 1,2-diethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, 3-methyl-1,3-dioxolane, methyl acetate, ethyl acetate, methyl propionate, ethyl propionate, dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate , Dipropyl carbonate, methyl propyl carbonate, ethyl isopropyl carbonate, dibutyl carbonate, etc. may be used alone or in admixture of two or more.

【0028】非水電解液の溶質としての電解質塩は、特
に限定されず例えばLiClO、LiAsF、Li
PF、LiBF、LiCFSO、LiCF
SO、LiCFCFCFSO、LiN
(CFSO、LiN(CSO等を
単独でまたは二種以上を混合して使用することができ
る。電解質塩としては中でもLiPFを用いるのが好
ましい。
The electrolyte salt as a solute of the non-aqueous electrolyte is not particularly limited, and may be, for example, LiClO 4 , LiAsF 6 , Li.
PF 6 , LiBF 4 , LiCF 3 SO 3 , LiCF 3 C
F 2 SO 3 , LiCF 3 CF 2 CF 2 SO 3 , LiN
(CF 3 SO 2) 2, LiN (C 2 F 5 SO 2) 2 and the like may be used alone or as a mixture of two or more. Among them, LiPF 6 is preferably used as the electrolyte salt.

【0029】固体電解質としては、公知の固体電解質を
用いることができ、例えば無機固体電解質、ポリマー固
体電解質を用いることができる。
As the solid electrolyte, known solid electrolytes can be used, for example, inorganic solid electrolytes and polymer solid electrolytes can be used.

【0030】[0030]

【実施例】以下、本発明の実施例を示すが、本発明はこ
れに限定されるものではない。実施例1〜12、比較例
1〜6では、図1に示す角形非水電解質二次電池1を作
製した。まず、正極活物質として、炭酸リチウム1.0
モルと二酸化マンガン2.0モルを混合し、この混合物
を、空気中、温度800℃で15時間焼成した。生成物
についてX線回折測定を行ったところ、JCPDSファ
イルに登録されたLiMn2 4 のピークとよく一致し
ていた。このため生成物がLiMn2 4と確認され
た。このLiMn2 4 を粉砕し、レーザー回折法で得
られる累積50%粒径が15μmのLiMn2 4 粉末
とした。そして、LiM90重量部と、導電材の
アセチレンブラック5重量部と、結着剤のポリフッ化ビ
ニリデン5重量部とを混合し、N−メチル−2−ピロリ
ドンを適宜加えて分散させ、スラリーを調製した。この
スラリーを、厚さが、15μmのアルミ製の正極集電体
13の両面に均一に塗布、乾燥させた後、ロールプレス
で圧縮成形することにより正極3を作製した。
EXAMPLES Examples of the present invention will be shown below.
It is not limited to this. Examples 1 to 12 and comparative example
1 to 6, the prismatic non-aqueous electrolyte secondary battery 1 shown in FIG.
Made First, as a positive electrode active material, lithium carbonate 1.0
Moles and 2.0 moles of manganese dioxide are mixed to form a mixture
Was baked in air at a temperature of 800 ° C. for 15 hours. Product
X-ray diffraction measurement was performed on the JCPDS
LiMn registered in the file2OFourMatches well with the peak of
Was there. Therefore, the product is LiMn2O FourConfirmed
It was This LiMn2OFourCrushed and obtained by laser diffraction method
With a cumulative 50% particle size of 15 μm2OFourPowder
And And LiMTwoOFour90 parts by weight of conductive material
5 parts by weight of acetylene black and polyvinyl fluoride as a binder
Mix with 5 parts by weight of Nylidene to give N-methyl-2-pyrrolid
Don was appropriately added and dispersed to prepare a slurry. this
Aluminum slurry positive electrode current collector with a thickness of 15 μm
After uniformly coating and drying on both sides of 13, roll press
The positive electrode 3 was produced by compression molding with.

【0031】負極合剤は、鱗片状黒鉛90重量部と、ポ
リフッ化ビニリデン10重量部とを混合し、N−メチル
−2−ピロリドンを適宜加えて分散させ、スラリーを調
製した。このスラリーを表1に示すような所定の厚さ
(T1)の銅製の負極集電体17に均一に塗布、乾燥さ
せた後、ロールプレスで圧縮成形することにより負極4
を作製した。この負極4の作製の際、スラリーの塗布
量、ロールプレスでの圧縮圧力を調整することによっ
て、表1に示す負極活物質層19,20の厚さ(T2+
T3)、(T2+T3)/T1の値が異なる負極4を用
意した。なお、実施例1〜12、比較例1〜6では、こ
の負極4のみそれぞれ異なり他の構成要素は同一とし
た。
The negative electrode mixture was prepared by mixing 90 parts by weight of scaly graphite and 10 parts by weight of polyvinylidene fluoride and adding N-methyl-2-pyrrolidone as appropriate to disperse the slurry. The slurry is uniformly applied to a copper negative electrode current collector 17 having a predetermined thickness (T1) as shown in Table 1, dried, and then compression-molded by a roll press to form the negative electrode 4.
Was produced. When the negative electrode 4 was produced, the thickness of the negative electrode active material layers 19 and 20 (T2 +) shown in Table 1 was adjusted by adjusting the coating amount of the slurry and the compression pressure of the roll press.
Negative electrodes 4 having different values of (T3) and (T2 + T3) / T1 were prepared. In addition, in Examples 1 to 12 and Comparative Examples 1 to 6, only the negative electrode 4 is different and the other constituent elements are the same.

【0032】セパレータ5には、厚さ25μmの微多孔
性ポリエチレンフィルムを用いた。
For the separator 5, a microporous polyethylene film having a thickness of 25 μm was used.

【0033】上述の構成要素を用いて、定格容量550
mAhで幅22mm、高さ47mm、厚み7.8mmの
角形非水電解質二次電池1を作製した。
Using the above components, a rated capacity of 550
A square nonaqueous electrolyte secondary battery 1 having a width of 22 mm, a height of 47 mm, and a thickness of 7.8 mm in mAh was produced.

【0034】非水電解質としては、エチレンカーボネー
ト(EC)とジエチルカーボネート(DEC)とを容積
比30:70で混合し、この溶液にLiPFを1.2
モル/リットル溶解したものを用いた。
As the non-aqueous electrolyte, ethylene carbonate (EC) and diethyl carbonate (DEC) were mixed at a volume ratio of 30:70, and LiPF 6 was added to this solution in an amount of 1.2.
Mol / liter dissolved therein was used.

【0035】[0035]

【表1】 [Table 1]

【0036】(常温低負荷電池容量試験)上述の実施例
1〜12と比較例1〜6の角形非水電解質二次電池1を
25℃、1C電流で4.2Vの定電流定電圧充電(初期
充電)を3時間行った後に、25℃の環境下0.2Cの
電流密度で終止電圧2.5Vまで定電流放電を行う常温
低負荷電池容量試験を行った。なお、この常温低負荷電
池容量試験の容量をC1で表す。
(Normal temperature low load battery capacity test) The prismatic nonaqueous electrolyte secondary batteries 1 of Examples 1 to 12 and Comparative Examples 1 to 6 described above were charged at a constant current and constant voltage of 4.2 V at 25 ° C. and 1 C current ( After performing initial charge) for 3 hours, a room temperature low load battery capacity test was performed in which constant current discharge was performed at a current density of 0.2 C in a 25 ° C. environment to a final voltage of 2.5 V. The capacity of this room temperature low load battery capacity test is represented by C1.

【0037】(常温重負荷電池容量試験)上述の実施例
1〜12と比較例1〜6の角形非水電解質二次電池1を
25℃、1C電流で4.2Vの定電流定電圧充電(初期
充電)を3時間行った後に、25℃の環境下2Cの電流
密度で終止電圧2.5Vまで定電流放電を行う常温重負
荷電池容量試験を行った。ここで、常温重負荷電池容量
試験の放電容量をC2とし、上述の常温低負荷電池容量
試験の容量をC1とした場合に、重負荷特性は、C2/
C1で表される。
(Normal temperature heavy load battery capacity test) The rectangular non-aqueous electrolyte secondary batteries 1 of Examples 1 to 12 and Comparative Examples 1 to 6 described above were charged at a constant current and a constant voltage of 4.2 V at 25 ° C. and 1 C current ( After performing initial charge) for 3 hours, a room temperature heavy load battery capacity test was performed in which constant current discharge was performed at a current density of 2 C in a 25 ° C. environment to a final voltage of 2.5 V. Here, when the discharge capacity in the room temperature heavy load battery capacity test is C2 and the capacity in the room temperature low load battery capacity test is C1, the heavy load characteristic is C2 /
It is represented by C1.

【0038】(低温低負荷電池容量試験)上述の実施例
1〜12と比較例1〜6の角形非水電解質二次電池1を
25℃、1C電流で4.2Vの定電流定電圧充電(初期
充電)を3時間行った後に、0℃の環境下に5時間放置
後、0.2Cの電流密度で終止電圧2.5Vまで定電流
放電を行う低温低負荷電池容量試験を行った。ここで、
低温低負荷電池容量試験の放電容量をC3とし、上述の
常温低負荷電池容量試験の容量をC1とした場合に、低
温負荷特性は、C3/C1で表される。
(Low-temperature low-load battery capacity test) The prismatic nonaqueous electrolyte secondary batteries 1 of Examples 1 to 12 and Comparative Examples 1 to 6 described above were charged at a constant current and a constant voltage of 4.2 V at 25 ° C. and 1 C current ( After performing the initial charging) for 3 hours, the battery was left in an environment of 0 ° C. for 5 hours, and then a low temperature low load battery capacity test was performed in which constant current discharge was performed at a current density of 0.2 C to a final voltage of 2.5 V. here,
When the discharge capacity of the low temperature low load battery capacity test is C3 and the capacity of the room temperature low load battery capacity test is C1, the low temperature load characteristic is represented by C3 / C1.

【0039】(試験結果)常温低負荷電池容量試験、常
温重負荷電池容量試験、及び低温低負荷電池容量試験の
試験結果を表2に示す。
(Test Results) Table 2 shows the test results of the room temperature low load battery capacity test, the room temperature heavy load battery capacity test, and the low temperature low load battery capacity test.

【0040】[0040]

【表2】 [Table 2]

【0041】まず、(T2+T3)/T1の値が、常温
低負荷電池容量試験の容量C1に与える影響について検
討する。ここで、8.0≦(T2+T3)/T1である
実施例1〜7は、8.0>(T2+T3)/T1の比較
例1〜2と比べて、エネルギー密度が増加したため放電
容量C1が大きいことが分かった。また、実施例3のC
1が、実施例1〜2のC1よりも大きいことから、1
0.0≦(T2+T3)/T1であることが好ましいこ
とが分かった。さらに、実施例5〜7のC1が、実施例
1〜4のC1よりも大きいことから、特に12.0≦
(T2+T3)/T1であることが好ましいことが分か
った。
First, the influence of the value of (T2 + T3) / T1 on the capacity C1 in the room temperature low load battery capacity test will be examined. Here, in Examples 1 to 7 in which 8.0 ≦ (T2 + T3) / T1, the energy density increased and the discharge capacity C1 was larger than in Comparative Examples 1 to 2 in which 8.0> (T2 + T3) / T1. I found out. In addition, C of Example 3
Since 1 is larger than C1 of Examples 1 and 2, 1
It has been found that 0.0 ≦ (T2 + T3) / T1 is preferable. Furthermore, since C1 of Examples 5 to 7 is larger than C1 of Examples 1 to 4, in particular, 12.0 ≦
It has been found that (T2 + T3) / T1 is preferable.

【0042】次に、(T2+T3)の値が、重負荷特性
C2/C1、低温負荷特性C3/C1に与える影響につ
いて検討する。ここで、(T2+T3)≦200μmで
ある実施例8〜12のC2/C1は、(T2+T3)>
200μmである比較例3〜6のC2/C1と比べて大
きいことが分かった。また、実施例11のC2/C1
が、実施例12のC2/C1よりも大きいことから、
(T2+T3)≦180μmであることが好ましいこと
が分かった。さらに、実施例8〜10のC2/C1が、
実施例11のC2/C1よりも大きいことから、特に
(T2+T3)≦160μmであることが好ましいこと
が分かった。
Next, the influence of the value of (T2 + T3) on the heavy load characteristic C2 / C1 and the low temperature load characteristic C3 / C1 will be examined. Here, C2 / C1 of Examples 8 to 12 in which (T2 + T3) ≦ 200 μm is (T2 + T3)>
It was found to be larger than C2 / C1 of Comparative Examples 3 to 6 having a size of 200 μm. In addition, C2 / C1 of Example 11
Is larger than C2 / C1 of Example 12,
It has been found that it is preferable that (T2 + T3) ≦ 180 μm. Furthermore, C2 / C1 of Examples 8 to 10
Since it was larger than C2 / C1 of Example 11, it was found that (T2 + T3) ≦ 160 μm is particularly preferable.

【0043】低温負荷特性C3/C1については、(T
2+T3)≦200μmである実施例8〜12のC3/
C1は、(T2+T3)>200μmである比較例3〜
6のC3/C1と比べて大きいことが分かった。
Regarding the low temperature load characteristic C3 / C1, (T
2 + T3) ≦ 200 μm C3 / of Examples 8-12
C1 is (T2 + T3)> 200 μm Comparative Example 3 to
6 was found to be larger than C3 / C1.

【0044】このような結果が得られたのは、(T2+
T3)≦200μmであると、負極4の負極集電体17
近傍に吸蔵されたリチウムイオンが、負極4の表面に速
やかに移動し、この結果、負極集電体17近傍の負極活
物質層19,20が有効に利用され、重負荷時における
放電容量が向上したものと考えられる。また、(T2+
T3)≦200μmとすることによって、負極活物質層
19,20中でのリチウムイオンの拡散速度がさらに遅
い低温時においても、放電容量が確保されたものと考え
られる。
Such a result is obtained by (T2 +
T3) ≦ 200 μm, the negative electrode current collector 17 of the negative electrode 4
Lithium ions occluded in the vicinity quickly move to the surface of the negative electrode 4, and as a result, the negative electrode active material layers 19 and 20 in the vicinity of the negative electrode current collector 17 are effectively used, and the discharge capacity under heavy load is improved. It is thought that it was done. In addition, (T2 +
By setting T3) ≦ 200 μm, it is considered that the discharge capacity was secured even at a low temperature where the diffusion rate of lithium ions in the negative electrode active material layers 19 and 20 was even slower.

【0045】以上の結果から、負極集電体の厚さT1
と、負極活物質層の厚さの合計(T2+T3)とが、
8.0≦(T2+T3)/T1、且つ(T2+T3)≦
200μmの関係を満たすことによって、高いエネルギ
ー密度、優れた重負荷特性、及び優れた低温特性を持つ
非水電解質二次電池を得ることができることがわかる。
From the above results, the thickness T1 of the negative electrode current collector is
And the total thickness (T2 + T3) of the negative electrode active material layer,
8.0 ≦ (T2 + T3) / T1, and (T2 + T3) ≦
By satisfying the relationship of 200 μm, it can be seen that a non-aqueous electrolyte secondary battery having high energy density, excellent heavy load characteristics, and excellent low temperature characteristics can be obtained.

【0046】なお、本実施例においては、正極活物質と
してLiMn2 4 を用いたが、正極活物質として、公
知のリチウム含有複合金属酸化物、すなわち、リチウム
を含むコバルト酸化物、リチウムを含むマンガン酸化
物、リチウムを含むニッケル酸化物あるいはこれらの複
合酸化物、混合物を用いても同様の効果が得られること
は明らかである。
In this example, LiMn 2 O 4 was used as the positive electrode active material, but as the positive electrode active material, a known lithium-containing composite metal oxide, that is, cobalt oxide containing lithium or lithium was contained. It is clear that the same effect can be obtained by using a manganese oxide, a nickel oxide containing lithium, a composite oxide thereof, or a mixture thereof.

【0047】<他の実施形態>本発明は上記記述及び図
面によって説明した実施形態に限定されるものではな
く、例えば次のような実施形態も本発明の技術的範囲に
含まれ、さらに、下記以外にも要旨を逸脱しない範囲内
で種々変更して実施することができる。
<Other Embodiments> The present invention is not limited to the embodiments described above and illustrated in the drawings. For example, the following embodiments are also included in the technical scope of the present invention. In addition to the above, various modifications can be made without departing from the scope of the invention.

【0048】上記した実施形態では、角形非水電解質二
次電池1として説明したが、電池構造は特に限定され
ず、円筒形、リチウムポリマー電池等としてもよいこと
は勿論である。
In the above embodiment, the prismatic non-aqueous electrolyte secondary battery 1 has been described, but the battery structure is not particularly limited, and it is needless to say that it may be a cylindrical battery, a lithium polymer battery or the like.

【0049】[0049]

【発明の効果】本発明による非水電解質二次電池用負極
及びそれを用いた非水電解質二次電池によれば、高いエ
ネルギー密度、優れた重負荷特性、及び優れた低温特性
を得ることができる。
According to the negative electrode for a non-aqueous electrolyte secondary battery and the non-aqueous electrolyte secondary battery using the same according to the present invention, it is possible to obtain a high energy density, an excellent heavy load characteristic, and an excellent low temperature characteristic. it can.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施形態の角形非水電解質二次電池
の縦断面図
FIG. 1 is a vertical cross-sectional view of a prismatic nonaqueous electrolyte secondary battery according to an embodiment of the present invention.

【図2】本発明の一実施形態の正極の縦断面図FIG. 2 is a vertical sectional view of a positive electrode according to an embodiment of the present invention.

【図3】本発明の一実施形態の負極の縦断面図FIG. 3 is a vertical sectional view of a negative electrode according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

4…負極 17…負極集電体 19…負極活物質層 20…負極活物質層 4 ... Negative electrode 17 ... Negative electrode current collector 19 ... Negative electrode active material layer 20 ... Negative electrode active material layer

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5H029 AJ02 AJ03 AK03 AL06 AL07 AL08 AL18 AM02 AM03 AM04 AM05 AM07 AM16 BJ02 BJ14 DJ07 EJ04 EJ12 HJ04 5H050 AA02 AA06 AA08 BA17 CA08 CA09 CB07 CB08 CB09 CB29 DA03 DA04 EA10 EA24 FA05 HA04    ─────────────────────────────────────────────────── ─── Continued front page    F term (reference) 5H029 AJ02 AJ03 AK03 AL06 AL07                       AL08 AL18 AM02 AM03 AM04                       AM05 AM07 AM16 BJ02 BJ14                       DJ07 EJ04 EJ12 HJ04                 5H050 AA02 AA06 AA08 BA17 CA08                       CA09 CB07 CB08 CB09 CB29                       DA03 DA04 EA10 EA24 FA05                       HA04

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 帯状の負極集電体の両側に、リチウムイ
オンを吸蔵・放出可能な炭素材料を含有する帯状の負極
活物質層を配した負極において、 前記負極集電体の厚さT1と、前記負極活物質層の厚さ
の合計(T2+T3)とが、8.0≦(T2+T3)/
T1、且つ(T2+T3)≦200μmの関係を満たす
ことを特徴とする非水電解質二次電池用負極。
1. A negative electrode comprising a strip-shaped negative electrode current collector and a strip-shaped negative electrode active material layer containing a carbon material capable of absorbing and desorbing lithium ions, disposed on both sides of the strip negative electrode current collector. And the total thickness (T2 + T3) of the negative electrode active material layer is 8.0 ≦ (T2 + T3) /
A negative electrode for a non-aqueous electrolyte secondary battery, which satisfies T1 and (T2 + T3) ≦ 200 μm.
【請求項2】 帯状の負極集電体の両側に、リチウムイ
オンを吸蔵・放出可能な炭素材料を含有する帯状の負極
活物質層を配した負極と、帯状の正極集電体に正極活物
質層を備えた正極と、非水電解質とを備える非水電解質
二次電池において、 前記負極集電体の厚さT1と、前記負極活物質層の厚さ
の合計(T2+T3)とが、8.0≦(T2+T3)/
T1、且つ(T2+T3)≦200μmの関係を満たす
ことを特徴とする非水電解質二次電池。
2. A negative electrode in which a negative electrode active material layer containing a carbon material capable of absorbing and desorbing lithium ions is arranged on both sides of a negative electrode current collector, and a positive electrode active material on the positive electrode current collector. In a non-aqueous electrolyte secondary battery including a positive electrode including a layer and a non-aqueous electrolyte, the thickness T1 of the negative electrode current collector and the total thickness (T2 + T3) of the negative electrode active material layer are 8. 0 ≦ (T2 + T3) /
A non-aqueous electrolyte secondary battery characterized by satisfying a relationship of T1 and (T2 + T3) ≦ 200 μm.
JP2001337425A 2001-11-02 2001-11-02 Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same Pending JP2003142077A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001337425A JP2003142077A (en) 2001-11-02 2001-11-02 Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001337425A JP2003142077A (en) 2001-11-02 2001-11-02 Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same

Publications (1)

Publication Number Publication Date
JP2003142077A true JP2003142077A (en) 2003-05-16

Family

ID=19152065

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001337425A Pending JP2003142077A (en) 2001-11-02 2001-11-02 Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same

Country Status (1)

Country Link
JP (1) JP2003142077A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103700808A (en) * 2013-06-09 2014-04-02 洛阳月星新能源科技有限公司 Lithium ion battery composite anode pole piece, preparation method and lithium ion battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103700808A (en) * 2013-06-09 2014-04-02 洛阳月星新能源科技有限公司 Lithium ion battery composite anode pole piece, preparation method and lithium ion battery

Similar Documents

Publication Publication Date Title
US7198871B2 (en) Non-aqueous electrolyte secondary battery
JP5061497B2 (en) Nonaqueous electrolyte secondary battery
JP4910243B2 (en) Nonaqueous electrolyte secondary battery
US20130280600A1 (en) Secondary battery
US20030170549A1 (en) Non-aqueous electrolyte battery
US20070072081A1 (en) Non-aqueous electrolyte secondary battery
JP2002042889A (en) Nonaqueous electrolyte secondary battery
US8980482B2 (en) Nonaqueous electrolyte lithium ion secondary battery
JP3580209B2 (en) Lithium ion secondary battery
JP2004185931A (en) Nonaqueous electrolyte secondary battery
JPH09147863A (en) Nonaqueous electrolyte battery
US20230094242A1 (en) Nonaqueous electrolyte secondary battery
JP2006216510A (en) Positive electrode and nonaqueous electrolyte secondary battery using the same
JP4573098B2 (en) Nonaqueous electrolyte secondary battery
JP7122653B2 (en) Non-aqueous electrolyte secondary battery
JP4984390B2 (en) Non-aqueous electrolyte secondary battery charging method
JP2008021538A (en) Nonaqueous electrolyte secondary battery
JP2010033998A (en) Nonaqueous electrolyte secondary battery
JP7182198B2 (en) Nonaqueous electrolyte secondary battery, electrolyte solution, and method for manufacturing nonaqueous electrolyte secondary battery
JP2002025626A (en) Aging method for lithium secondary battery
JP2002260726A (en) Nonaqueous electrolyte secondary battery
JPH1145710A (en) Lithium ion secondary battery
JP2003331914A (en) Nonaqueous electrolyte secondary cell
KR20140116448A (en) Positive electrode active material
US20230014664A1 (en) Nonaqueous electrolyte secondary battery positive electrode, and nonaqueous electrolyte secondary battery