JP2003142000A - Recycle method of anode target - Google Patents

Recycle method of anode target

Info

Publication number
JP2003142000A
JP2003142000A JP2001333726A JP2001333726A JP2003142000A JP 2003142000 A JP2003142000 A JP 2003142000A JP 2001333726 A JP2001333726 A JP 2001333726A JP 2001333726 A JP2001333726 A JP 2001333726A JP 2003142000 A JP2003142000 A JP 2003142000A
Authority
JP
Japan
Prior art keywords
emitting layer
ray emitting
anode target
ray
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001333726A
Other languages
Japanese (ja)
Other versions
JP3696148B2 (en
Inventor
Hideo Abu
秀郎 阿武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2001333726A priority Critical patent/JP3696148B2/en
Publication of JP2003142000A publication Critical patent/JP2003142000A/en
Application granted granted Critical
Publication of JP3696148B2 publication Critical patent/JP3696148B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/82Recycling of waste of electrical or electronic equipment [WEEE]

Abstract

PROBLEM TO BE SOLVED: To provide a recycle method of an anode that is capable of recycling a used anode target. SOLUTION: This is a recycle method of an anode target that comprises a base body 12 and an X-ray radiation layer 13 formed on the base body 12 and recycles the used anode target 11 actually used as a radiation source of X rays, and comprises a first process for removing a prescribed thickness 't' so as not to expose the base body 12 from the surface 13a of the X-ray radiation layer 13 formed on the base body 12 of the anode target 11 that is taken out by disassembling a used X-ray tube, a second process of padding an X-ray radiation layer 15 of the substantially same material as this X-ray radiation layer 13 on the X-ray radiation layer 13 remaining on the base body 12 after this first process, and a third process of grinding the surface of this padded X-ray radiation layer 15 after this second process.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、使用済みの回転
陽極型X線管などから取り出された陽極ターゲットを再
生する陽極ターゲットの再生処理方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of regenerating an anode target for regenerating an anode target taken out from a used rotating anode type X-ray tube.

【0002】[0002]

【従来の技術】回転陽極型X線管は、真空容器内に陽極
ターゲットを配置し、高速で回転する陽極ターゲットに
向って電子ビームを照射し、陽極ターゲットからX線を
放出させる構造になっている。
2. Description of the Related Art A rotary anode type X-ray tube has a structure in which an anode target is arranged in a vacuum container, and an electron beam is irradiated toward the anode target rotating at high speed to emit X-rays. There is.

【0003】回転陽極型X線管の陽極ターゲットは、た
とえばグラファイトやモリブデン、モリブデン合金など
で形成された基体上に、タングステンやタングステン合
金などで形成したX線放射層を設けた構造になってい
る。
The anode target of the rotary anode type X-ray tube has a structure in which an X-ray emitting layer made of tungsten, a tungsten alloy or the like is provided on a base made of graphite, molybdenum, a molybdenum alloy or the like. .

【0004】ここで、上記構造の陽極ターゲットを製造
する従来の製造方法について、その主要工程を示した図
3を参照して説明する。図3は粉末冶金法の例で、基体
およびX線放射層を形成する金属材料の粉末を用意し
(ステップS1)、陽極ターゲットの形状に成形する
(ステップS2)。その後、水素やアルゴンなどのガス
雰囲気中で約2000℃に加熱し焼結する(ステップS
3)。焼結の際、粉末成形品の粒間隙間が減少し、粉末
成形品の密度が増加する。その後、鍛造工程(ステップ
S4)を経て、機械加工を行い(ステップS5)、電子
ビームが照射する軌道面を研磨する(ステップS6)。
その後、機械的な回転バランスを調整し(ステップS
7)、検査工程(ステップS8)を経て完成する。その
後、陰極構体などとともに真空容器内に組み込まれ、回
転陽極型X線管が完成する。
Now, a conventional manufacturing method for manufacturing the anode target having the above structure will be described with reference to FIG. 3 showing the main steps thereof. FIG. 3 shows an example of the powder metallurgy method, in which powder of a metal material for forming the base and the X-ray emitting layer is prepared (step S1) and shaped into an anode target shape (step S2). After that, it is heated to about 2000 ° C. in a gas atmosphere such as hydrogen or argon and sintered (step S
3). During sintering, the intergranular spaces of the powder molded product are reduced and the density of the powder molded product is increased. Then, after a forging step (step S4), machining is performed (step S5), and the orbital surface irradiated by the electron beam is polished (step S6).
Then, adjust the mechanical rotation balance (step S
7), the inspection process (step S8) is completed. After that, the rotary anode type X-ray tube is completed by incorporating it into a vacuum container together with a cathode structure and the like.

【0005】従来の陽極ターゲットの製造方法として
は、その他、グラファイトなどの基体上に、タングステ
ン合金などのX線放射層をプラズマ溶射法で形成する方
法がある(特開平10−302624号公報参照)。
As another conventional method of manufacturing an anode target, there is a method of forming an X-ray emitting layer such as a tungsten alloy on a substrate such as graphite by a plasma spraying method (see Japanese Patent Application Laid-Open No. 10-302624). .

【0006】[0006]

【発明が解決しようとする課題】回転陽極型X線管が動
作状態に入りX線を放射すると、陽極ターゲットのX線
放射層は電子ビームの照射で数十〜数百W/cm2 の熱
入力を受ける。このとき、X線焦点が形成されるX線放
射層に温度勾配が生じ、大きな熱応力が加わる。その結
果、陽極ターゲットのX線放射層に、歪みや荒れ、クラ
ックなどの表面損傷が発生する。
When the rotating anode type X-ray tube enters an operating state and emits X-rays, the X-ray emitting layer of the anode target is irradiated with an electron beam to generate a heat of several tens to several hundreds W / cm 2 . Receive input. At this time, a temperature gradient is generated in the X-ray emitting layer where the X-ray focus is formed, and a large thermal stress is applied. As a result, surface damage such as distortion, roughness, and cracks occurs in the X-ray emitting layer of the anode target.

【0007】表面損傷が発生すると、陽極ターゲットか
ら吸蔵ガスが放出し、耐電圧不良となり、X線管が使用
できなくなる場合がある。また、X線出力が低下して使
用できなくなる場合がある。
When surface damage occurs, the occluded gas may be released from the anode target, resulting in poor withstand voltage, and the X-ray tube may become unusable. In addition, the X-ray output may be reduced and it may not be usable.

【0008】ところで、表面損傷が生じた陽極ターゲッ
トを再利用する場合、表面損傷による特性劣化を回復さ
せる必要がある。たとえば製造工程の途中で不良となっ
た陽極ターゲットは、表面損傷の程度が軽いため、研磨
加工などの方法で表面損傷を除去し、回転陽極型X線管
に組み込まれ使用されている。
By the way, when the anode target having surface damage is reused, it is necessary to recover the characteristic deterioration due to the surface damage. For example, an anode target that has become defective during the manufacturing process has a small degree of surface damage. Therefore, the surface damage is removed by a method such as polishing, and the anode target is used by being incorporated in a rotary anode X-ray tube.

【0009】一方、市場などに出荷された回転陽極型X
線管は、実使用時の電子ビームの照射で、陽極ターゲッ
トにはその表面から深部にわたって表面損傷が発生す
る。この場合、研磨加工などの方法では表面損傷が十分
に修復されない。したがって、使用済みの陽極ターゲッ
トについては、修復が困難であるなどの理由から、これ
まであまり再利用が行われていない。
On the other hand, the rotary anode type X shipped to the market etc.
When the linear tube is irradiated with an electron beam during actual use, surface damage occurs in the anode target from its surface to a deep portion. In this case, the surface damage cannot be sufficiently repaired by a method such as polishing. Therefore, a used anode target has not been reused so far because it is difficult to repair it.

【0010】しかし、近年、環境負荷低減などへの社会
的要求が高まっている。また、陽極ターゲットは、稀少
物質で製造時に環境に高い負荷を与える高融点金属を用
いており、その再利用が求められている。
However, in recent years, social demands for reducing the environmental load have been increasing. Further, the anode target uses a refractory metal which is a rare substance and exerts a high load on the environment at the time of manufacturing, and its reuse is required.

【0011】本発明は、上記した欠点を解決し、使用済
みの陽極ターゲットの再利用が可能な陽極ターゲットの
再生処理方法を提供することを目的とする。
It is an object of the present invention to solve the above-mentioned drawbacks and to provide a method of regenerating an anode target which enables reuse of a used anode target.

【0012】[0012]

【課題を解決するための手段】本発明の陽極ターゲット
の再生処理方法は、基体およびこの基体上に形成された
X線放射層を有し、X線の放射源として実使用された使
用済みの陽極ターゲットを再生する陽極ターゲットの再
生処理方法において、使用済みのX線管を分解して取り
出した陽極ターゲットの前記基体上に形成されたX線放
射層を、その表面から前記基体が露出しない所定厚さ分
だけ除去する第1工程と、この第1工程の後、前記基体
上に残った前記X線放射層上に、このX線放射層と実質
上同じ材料のX線放射層を肉盛りする第2工程と、この
第2工程の後、肉盛りした前記X線放射層の表面を研磨
する第3工程とを有している。
The method for regenerating an anode target according to the present invention has a base and an X-ray emitting layer formed on the base, and is used as an X-ray emitting source. In an anode target regenerating method for regenerating an anode target, a predetermined X-ray emission layer formed on the substrate of the anode target taken out by disassembling a used X-ray tube is not exposed from the surface thereof. The first step of removing the X-ray emitting layer of the same material as the X-ray emitting layer is deposited on the X-ray emitting layer remaining on the base after the first step. And a third step of polishing the surface of the X-ray emitting layer that has been built up after the second step.

【0013】[0013]

【発明の実施の形態】本発明の実施形態について、陽極
ターゲットの一部を断面で示した図1および図2を参照
して説明する。図1の陽極ターゲット11は、たとえば
図3で説明したと同様の粉末冶金法で製造され、その後
に、回転陽極型X線管に組み込まれてX線の放射源とし
て実使用されたもので、使用済み後の回転陽極型X線管
を分解して外に取り出した状態を示している。陽極ター
ゲット11は、たとえば基体12およびこの基体12上
に形成されたX線放射層13などから構成されている。
基体12はTZMなどのモリブデン合金、あるいは、グ
ラファイトなどで形成されている。X線放射層13は、
基体11と相違する金属たとえば10%のレニウムを含
有するタングステンなどで形成されている。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described with reference to FIGS. 1 and 2 showing a part of an anode target in section. The anode target 11 of FIG. 1 is manufactured by, for example, the same powder metallurgical method as that described with reference to FIG. 3, and then is actually used as an X-ray radiation source by being incorporated in a rotary anode X-ray tube. It shows a state in which the rotating anode type X-ray tube after use has been disassembled and taken out. The anode target 11 is composed of, for example, a base 12 and an X-ray emitting layer 13 formed on the base 12.
The base 12 is made of molybdenum alloy such as TZM or graphite. The X-ray emitting layer 13 is
It is formed of a metal different from that of the base 11, such as tungsten containing 10% rhenium.

【0014】回転陽極型X線管から取り出された陽極タ
ーゲット11は、実使用時における電子ビームの照射
で、X線放射層13に複数の表面損傷14たとえば表面
から所定深さの亀裂などが発生している。
The anode target 11 taken out from the rotating anode type X-ray tube is irradiated with an electron beam during actual use, and a plurality of surface damages 14 such as cracks of a predetermined depth from the surface are generated in the X-ray emitting layer 13. is doing.

【0015】陽極ターゲット11は、その後、X線焦点
が形成されたX線放射層13の部分が、たとえばその全
体にわたり、表面13aから点線Dで示した所定の深さ
tまでの部分が研磨や切削などの方法で除去される。こ
の場合、X線放射層13を除去する深さtは、たとえば
表面損傷14がなくなる大きさに選ばれる。また、その
深さtは、実使用前の回転陽極型X線管に組み込まれた
初期状態でのX線放射層13の厚さTよりも小さくし、
X線放射層13の一部が所定の厚さt0 で残り、基体1
1が露出しない大きさに選ばれる。
The anode target 11 is then polished or polished over the entire portion of the X-ray emitting layer 13 on which the X-ray focus is formed, for example, the portion from the surface 13a to a predetermined depth t shown by the dotted line D. It is removed by methods such as cutting. In this case, the depth t at which the X-ray emitting layer 13 is removed is selected, for example, to a size at which the surface damage 14 is eliminated. Further, the depth t is made smaller than the thickness T of the X-ray emitting layer 13 in the initial state incorporated in the rotating anode type X-ray tube before actual use,
A part of the X-ray emitting layer 13 remains with a predetermined thickness t0, and the substrate 1
The size of 1 is not exposed.

【0016】その後、図2に示すように、基体11上に
残ったX線放射層13上に、X線放射層13と実質上同
じ材料のX線放射層15をプラズマ溶射法で肉盛りす
る。プラズマ溶射法では、たとえばプラズマ銃が発生す
るプラズマビームの熱でX線放射層13と実質上同じ材
料を溶融し、この溶融した材料をX線放射層13上に吹
き付けて成膜し、X線放射層15を形成する。
Thereafter, as shown in FIG. 2, an X-ray emitting layer 15 made of substantially the same material as the X-ray emitting layer 13 is deposited on the X-ray emitting layer 13 remaining on the substrate 11 by plasma spraying. . In the plasma spraying method, substantially the same material as the X-ray emitting layer 13 is melted by the heat of a plasma beam generated by a plasma gun, and the melted material is sprayed onto the X-ray emitting layer 13 to form a film, and the X-ray emitting layer 13 is formed. The emission layer 15 is formed.

【0017】なお、溶融した材料を吹き付け成膜する前
に、プラズマビームの熱で基体11およびX線放射層1
3を予備加熱しておくことが望ましい。また、X線放射
層13上にこれと実質上同じ材料を吹き付けて成膜して
いる。X線放射層13はたとえばタングステンおよびレ
ニウムなどで形成されている。このような場合、実質上
同じ材料には、レニウムの含有率などを含めてX線放射
層13とまったく同じ構成に限らず、たとえばレニウム
の含有率が相違するような場合も含まれる。
Before the molten material is sprayed to form a film, the substrate 11 and the X-ray emitting layer 1 are heated by the heat of the plasma beam.
It is desirable to preheat 3. Further, a material substantially the same as this is sprayed on the X-ray emitting layer 13 to form a film. The X-ray emitting layer 13 is formed of, for example, tungsten and rhenium. In such a case, the substantially same material is not limited to the exact same structure as the X-ray emitting layer 13 including the content rate of rhenium, but also includes the case where the content rate of rhenium is different.

【0018】なお、プラズマ溶射法には、プラズマを誘
導加熱で発生する誘導プラズマ溶射法や、減圧の雰囲気
中で行う減圧プラズマ溶射法などが利用される。減圧し
たチャンバ内で溶射する減圧プラズマ溶射法を用いた場
合、材料がよく溶融し、良好な特性のものが得られる。
As the plasma spraying method, an induction plasma spraying method in which plasma is generated by induction heating, a reduced pressure plasma spraying method performed in a reduced pressure atmosphere, or the like is used. When the low pressure plasma spraying method in which the pressure is reduced is applied in the chamber, the material is well melted and the material having good characteristics is obtained.

【0019】その後、肉盛りしたX線放射層15の表面
たとえばX線焦点が形成される表面を研磨仕上げ加工す
る。
After that, the surface of the X-ray emitting layer 15 that has been built up, for example, the surface on which the X-ray focus is formed, is subjected to polishing finishing.

【0020】図2は、X線放射層15の表面を研磨仕上
げ加工した状態を示し、この場合、X線放射層全体の厚
さすなわち基体11上に残ったX線放射層13および肉
盛りされたX線放射層15それぞれの厚さの和、すなわ
ちX線放射層15の表面15aから基体12までの寸法
T0 が、使用前の回転陽極型X線管に組み込まれた初期
状態における陽極ターゲットのX線放射層と同じになっ
ている。
FIG. 2 shows a state in which the surface of the X-ray emitting layer 15 is finished by polishing, and in this case, the thickness of the entire X-ray emitting layer, that is, the X-ray emitting layer 13 remaining on the substrate 11 and the buildup. The sum of the thicknesses of the respective X-ray emitting layers 15, that is, the dimension T0 from the surface 15a of the X-ray emitting layer 15 to the substrate 12 is the anode target in the initial state incorporated in the rotating anode type X-ray tube before use. It is the same as the X-ray emitting layer.

【0021】上記の実施形態では、表面損傷が生じたX
線放射層の一部を除去している。この場合、除去する深
さは、たとえば実使用前の初期のX線放射層が0.5m
m〜2.0mmの範囲の厚さに粉末冶金法で形成されて
いる場合、表面から0.2mm〜1.5mmの範囲が望
ましい。たとえば、実使用前のX線放射層の厚さが1m
m程度の場合、0.5mm程度の深さで除去される。
In the above-described embodiment, the X having surface damage has occurred.
A part of the radiation layer is removed. In this case, the removal depth is, for example, 0.5 m for the initial X-ray emitting layer before actual use.
When formed by the powder metallurgy method to a thickness in the range of m to 2.0 mm, the range of 0.2 mm to 1.5 mm from the surface is desirable. For example, the thickness of the X-ray emitting layer before actual use is 1 m
In the case of about m, it is removed at a depth of about 0.5 mm.

【0022】上記した構成によれば、X線放射層に発生
した表面損傷が修復され、陽極ターゲットとしての特性
が回復し、再利用が可能となる。
According to the above structure, the surface damage generated in the X-ray emitting layer is repaired, the characteristics as the anode target are recovered, and the X-ray emitting layer can be reused.

【0023】また、X線放射層の一部を残し、その上に
実質上同じ材料のX線放射層を肉盛りする構造となって
いる。この場合、必要とされるX線放射層の厚さ分の全
体を基体上に形成する場合に比べ、肉盛りする部分の厚
さを薄くできる。したがって、その分、肉盛り層に対す
るストレスが軽減され、クラックの発生が抑えられる。
また、コストも軽減する。
Further, the structure is such that a part of the X-ray emitting layer is left and an X-ray emitting layer of substantially the same material is built up on it. In this case, the thickness of the build-up portion can be made smaller than in the case where the entire required thickness of the X-ray emitting layer is formed on the substrate. Therefore, the stress on the buildup layer is reduced accordingly, and the occurrence of cracks is suppressed.
Also, the cost is reduced.

【0024】また、肉盛りする溶射材料と肉盛りされる
X線放射層の表面は実質上同じ材料が用いられている。
したがって、熱膨張差に起因する肉盛り層のストレスが
軽減し、クラックの発生が抑えられ、肉盛り層の密着度
が向上する。
Further, the thermal spray material to be built up and the surface of the X-ray emitting layer to be built up are made of substantially the same material.
Therefore, the stress of the overlay layer due to the difference in thermal expansion is reduced, the occurrence of cracks is suppressed, and the adhesion of the overlay layer is improved.

【0025】また、肉盛りする部分をプラズマ溶射法で
形成している。通常の陽極ターゲットの製造方法たとえ
ば粉末冶金法でX線放射層を肉盛りした場合は、肉盛り
した部分のX線放射層の接合強度が弱くなる。プラズマ
溶射を用いた場合は、大きな接合強度が得られ、また、
新品とほぼ同一の特性のものが得られる。
Further, the portion to be built up is formed by the plasma spraying method. When the X-ray emitting layer is built up by a usual anode target manufacturing method, for example, powder metallurgy, the bonding strength of the X-ray emitting layer in the built-up portion becomes weak. When plasma spraying is used, a large bond strength is obtained, and
It is possible to obtain a product with almost the same characteristics as a new product.

【0026】また、修復後のX線放射層全体の厚さを、
使用前の回転陽極型X線管に組み込まれた初期状態にお
ける陽極ターゲットのX線放射層と同じにしている。こ
の場合、寸法形状などに変更がないため、これまで使用
されていたと同じ構造の回転陽極型X線管に容易に組み
込むことができる。
The total thickness of the X-ray emitting layer after restoration is
It is the same as the X-ray emitting layer of the anode target in the initial state incorporated in the rotating anode type X-ray tube before use. In this case, since there is no change in size and shape, it can be easily incorporated into a rotary anode X-ray tube having the same structure as that used so far.

【0027】上記の実施形態は、X線放射層をタングス
テン合金で形成した場合で説明している。しかし、本発
明は、X線放射層をタングステン合金に限らず、モリブ
デンやモリブデン合金、タングステンなどを使用した場
合にも適用できる。
The above embodiment has been described with respect to the case where the X-ray emitting layer is formed of a tungsten alloy. However, the present invention is applicable not only to the tungsten alloy for the X-ray emitting layer but also to the case where molybdenum, a molybdenum alloy, tungsten, or the like is used.

【0028】上記した構成によれば、使用済みの陽極タ
ーゲットの再利用が可能となる。その結果、稀少物質
で、製造時に環境に高い負荷を与える高融点金属を有効
に利用でき、環境負荷が低減され、安価なX線管の提供
が可能となる。
According to the above structure, the used anode target can be reused. As a result, it is possible to effectively use a refractory metal that is a rare substance and exerts a high load on the environment at the time of manufacturing, reduce the environmental load, and provide an inexpensive X-ray tube.

【0029】[0029]

【発明の効果】本発明によれば、使用済みの陽極ターゲ
ットの再利用が可能な陽極ターゲットの再生処理方法を
実現できる。
According to the present invention, it is possible to realize a method for regenerating an anode target which enables reuse of a used anode target.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施形態を説明するための断面図で、
実使用後の陽極ターゲットの一部を示している。
FIG. 1 is a cross-sectional view for explaining an embodiment of the present invention,
A part of the anode target after actual use is shown.

【図2】本発明の実施形態を説明するための断面図で、
表面損傷を修復した後の陽極ターゲットの一部を示して
いる。
FIG. 2 is a sectional view for explaining an embodiment of the present invention,
Figure 7 shows a portion of the anode target after repairing surface damage.

【図3】従来の陽極ターゲットの製造方法を説明するた
めの製造工程図である。
FIG. 3 is a manufacturing process diagram for explaining a conventional method of manufacturing an anode target.

【符号の説明】[Explanation of symbols]

11…陽極ターゲット 12…陽極ターゲットの基体 13…陽極ターゲットのX線放射層 13a…X線放射層の表面 14…表面損傷 15…肉盛りしたX線放射層 15a…肉盛りしたX線放射層の表面 11 ... Anode target 12 ... Base of anode target 13 ... X-ray emitting layer of anode target 13a ... Surface of X-ray emitting layer 14 ... Surface damage 15 ... X-ray emitting layer 15a ... Surface of X-ray emitting layer which is built up

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 基体およびこの基体上に形成されたX線
放射層を有し、X線の放射源として実使用された使用済
みの陽極ターゲットを再生する陽極ターゲットの再生処
理方法において、使用済みのX線管を分解して取り出し
た陽極ターゲットの前記基体上に形成されたX線放射層
を、その表面から前記基体が露出しない所定厚さ分だけ
除去する第1工程と、この第1工程の後、前記基体上に
残った前記X線放射層上に、このX線放射層と実質上同
じ材料のX線放射層を肉盛りする第2工程と、この第2
工程の後、肉盛りした前記X線放射層の表面を研磨する
第3工程とを有することを特徴とする陽極ターゲットの
再生処理方法。
1. A method for regenerating an anode target, comprising: a substrate and an X-ray emitting layer formed on the substrate; and a used anode target actually used as an X-ray radiation source. The first step of removing the X-ray emitting layer formed on the base body of the anode target taken out by disassembling the X-ray tube from the surface by a predetermined thickness such that the base body is not exposed. After that, a second step of depositing an X-ray emitting layer of substantially the same material as the X-ray emitting layer on the X-ray emitting layer remaining on the substrate, and the second step.
After the step, there is provided a third step of polishing the surface of the X-ray emitting layer that has been built up, and a method for regenerating an anode target.
【請求項2】 第2工程のX線放射層の肉盛りをプラズ
マ溶射法で行う請求項1記載の陽極ターゲットの再生処
理方法。
2. The method for regenerating an anode target according to claim 1, wherein the overlaying of the X-ray emitting layer in the second step is performed by a plasma spraying method.
【請求項3】 第3工程の研磨で、基体上のX線放射層
の厚さを、実使用前の初期状態におけるX線放射層と同
じ厚さにする請求項1記載の陽極ターゲットの再生処理
方法。
3. The regeneration of the anode target according to claim 1, wherein in the polishing in the third step, the thickness of the X-ray emitting layer on the substrate is made the same as the thickness of the X-ray emitting layer in the initial state before actual use. Processing method.
【請求項4】 実使用前の初期状態で0.5mm〜2.
0mmの範囲の厚さに粉末冶金法で形成されたX線放射
層を、第1工程において、その表面から0.2mm〜
1.5mmの範囲の厚さ分だけ除去する陽極ターゲット
の再生処理方法。
4. 0.5 mm to 2. in the initial state before actual use.
In the first step, the X-ray emitting layer formed by the powder metallurgy method to a thickness in the range of 0 mm is 0.2 mm to
A method for regenerating an anode target by removing only a thickness in the range of 1.5 mm.
JP2001333726A 2001-10-31 2001-10-31 Recycling method of anode target Expired - Fee Related JP3696148B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001333726A JP3696148B2 (en) 2001-10-31 2001-10-31 Recycling method of anode target

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001333726A JP3696148B2 (en) 2001-10-31 2001-10-31 Recycling method of anode target

Publications (2)

Publication Number Publication Date
JP2003142000A true JP2003142000A (en) 2003-05-16
JP3696148B2 JP3696148B2 (en) 2005-09-14

Family

ID=19148946

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001333726A Expired - Fee Related JP3696148B2 (en) 2001-10-31 2001-10-31 Recycling method of anode target

Country Status (1)

Country Link
JP (1) JP3696148B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101053505B1 (en) * 2009-05-11 2011-08-03 (주)제이씨이노텍 Regeneration Arc Chamber for Ion Injection Device and Regeneration Method of Arc Chamber
WO2016179615A1 (en) * 2015-05-08 2016-11-17 Plansee Se X-ray anode

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101053505B1 (en) * 2009-05-11 2011-08-03 (주)제이씨이노텍 Regeneration Arc Chamber for Ion Injection Device and Regeneration Method of Arc Chamber
WO2016179615A1 (en) * 2015-05-08 2016-11-17 Plansee Se X-ray anode
US10622182B2 (en) 2015-05-08 2020-04-14 Plansee Se X-ray anode

Also Published As

Publication number Publication date
JP3696148B2 (en) 2005-09-14

Similar Documents

Publication Publication Date Title
US4449714A (en) Turbine engine seal and method for repair thereof
RU2304633C2 (en) Method of renewal of the articles made out of the refractory metals
US7794554B2 (en) Rejuvenation of refractory metal products
US8502104B2 (en) Method of building up an aluminum alloy part
AU2002250075A1 (en) Rejuvenation of refractory metal products
US7720200B2 (en) Apparatus for x-ray generation and method of making same
US20120228131A1 (en) Method for consolidating and diffusion-bonding powder metallurgy sputtering target
JP2015183284A (en) Cylindrical sputtering target and method of manufacturing the same
EP0116385A1 (en) Method of manufacturing a rotary anode for X-ray tubes and anode thus produced
CN107552785A (en) A kind of 3D printing, heat treatment integral processing method
JP2003142000A (en) Recycle method of anode target
US20180141170A1 (en) Restoration of cast iron using iron powder
KR102248748B1 (en) Jig for fabricating target of X-ray tube, and method for fabricating target of X-ray tube using the same
JPH03264705A (en) Repairing method for gas turbine moving blade
US10325749B2 (en) Process for repairing an anode for emitting x-rays and repaired anode
KR20040015195A (en) Assemblies comprising molybdenum and aluminum and methods of utilizing interlayers in forming target/backing plate assemblies
JPH0568812B2 (en)
US5013274A (en) Process for restoring locally damaged parts, particularly anticathodes
JP2002329470A (en) Rotating anode for x-ray tube, and its manufacturing method
JP3345439B2 (en) Method for producing X-ray tube rotating anode
JP2001176435A (en) X-ray generating anode, x-ray tube and their manufacturing method
JP2001176436A (en) X-ray generating anode, x-ray tube and their manufacturing method
JP2018058086A (en) Device for manufacturing superconductive component and method for manufacturing superconductive component
KR20160067490A (en) Refurbishing method of tungsten spent target and reuse tungsten target for forming wiring and electrode prepared thereby
WO2011118403A1 (en) Method of manufacturing high-frequency acceleration cavity component

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041108

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20041115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050614

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050628

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090708

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100708

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100708

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110708

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120708

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130708

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees