JP2003139697A - Resin degree-of-curing measuring apparatus - Google Patents

Resin degree-of-curing measuring apparatus

Info

Publication number
JP2003139697A
JP2003139697A JP2001339735A JP2001339735A JP2003139697A JP 2003139697 A JP2003139697 A JP 2003139697A JP 2001339735 A JP2001339735 A JP 2001339735A JP 2001339735 A JP2001339735 A JP 2001339735A JP 2003139697 A JP2003139697 A JP 2003139697A
Authority
JP
Japan
Prior art keywords
curing
resin
degree
wavelength
photodetectors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001339735A
Other languages
Japanese (ja)
Other versions
JP3839703B2 (en
Inventor
Ryotaro Matsui
良太郎 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Priority to JP2001339735A priority Critical patent/JP3839703B2/en
Publication of JP2003139697A publication Critical patent/JP2003139697A/en
Application granted granted Critical
Publication of JP3839703B2 publication Critical patent/JP3839703B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a resin degree-of-curing measuring apparatus for accurately measuring the degree of curing in resin. SOLUTION: When reflection light is divided into two and a wavelength constituent where the change in intensity is smaller to the degree of curing in resin is used as a reference, an external factor simultaneously affects the intensity of both wavelength constituents even if the intensity of a larger wavelength constituent is changed by the external factor such as the temperature change in a target or the like, thus preventing the correlation values from being affected by the external factor other than the degree of curing in resin. An arithmetic unit 10r obtains an output signal according to the intensity of the wavelength constituents after resin coating and before the drive period of a curing-accelerating means, and after resin coating and during a drive period in the curing-accelerating means. Although the correlation values are greatly affected by the degree of curing in resin, it is not affected by other factors easily. As a result, the correlation values accurately change before resin curing and after curing, thus accurately detecting the degree of resin curing.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、樹脂硬化度測定装
置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a resin curing degree measuring device.

【0002】[0002]

【従来の技術】従来の樹脂硬化度測定装置は、特開平5
−164692号公報、特開平5−45288号公報及
び特開昭62−103540号公報に記載されている。
これらの装置においては、樹脂に測定用の赤外線を照射
し、その樹脂硬化前後の反射光に基づいて、樹脂硬化判
定を行っている。
2. Description of the Related Art A conventional resin curing degree measuring device is disclosed in Japanese Patent Laid-Open No.
It is described in JP-A-164692, JP-A-5-45288 and JP-A-62-103540.
In these devices, the resin is irradiated with infrared rays for measurement, and the resin curing determination is performed based on the reflected light before and after the resin curing.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、従来の
装置においては、測定前と測定後の光検出器の出力信号
の相対値を求めているため、樹脂を硬化させる硬化促進
手段の特性変化、樹脂の位置変化、対象物の温度変化に
よって、相対値がばらつき、正確な硬化度測定を行うこ
とができなかった。
However, in the conventional device, since the relative value of the output signal of the photodetector before and after the measurement is obtained, the characteristic change of the curing accelerating means for curing the resin, the resin Due to the change in position and the change in temperature of the object, the relative values varied, and accurate curing degree measurement could not be performed.

【0004】本発明は、かかる課題に鑑みてなされたも
のであり、適切な樹脂硬化の度合いを測定することが可
能な樹脂硬化度測定装置を提供することを特徴とする。
The present invention has been made in view of the above problems, and is characterized by providing a resin curing degree measuring device capable of measuring an appropriate degree of resin curing.

【0005】[0005]

【課題を解決するための手段】本発明は上述の課題に鑑
みてなされたものであり、対象物表面上に塗布された樹
脂の硬化を促進させる硬化促進手段と共に用いられる樹
脂硬化度測定装置を対象とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems, and provides a resin curing degree measuring apparatus used together with a curing accelerating means for accelerating the curing of a resin applied on the surface of an object. set to target.

【0006】この樹脂硬化度測定装置は、対象物表面で
反射された又はこれを透過した測定光を第1及び第2測定
光に分岐する分岐手段と、この分岐手段によって分岐し
た第1測定光の第1波長成分、第2測定光の第2波長成分を
それぞれ選択的に通過させる第1及び第2フィルタと、第
1及び第2フィルタを通過した第1及び第2波長成分をそれ
ぞれ検出する第1及び第2光検出器と、第1及び第2光検出
器の出力信号が入力される制御装置とを備える。
This resin curing degree measuring device comprises a branching means for branching the measurement light reflected by the surface of the object or transmitted through the object into first and second measurement light, and first measurement light branched by this branching means. The first wavelength component, the first and second filters for selectively passing the second wavelength component of the second measurement light, respectively,
It includes first and second photodetectors that detect the first and second wavelength components that have passed through the first and second filters, respectively, and a control device to which the output signals of the first and second photodetectors are input.

【0007】ここで、本発明においては、当該制御装置
は、(a)樹脂塗布後であって硬化促進手段の駆動期間
前に対象物表面で反射された又はこれを透過した測定光
を前記第1及び第2光検出器で検出した場合の第1及び第2
光検出器の出力信号間の相対値と、(b)樹脂塗布後で
あって硬化促進手段の駆動期間中に対象物表面で反射さ
れた又はこれを透過した測定光を第1及び第2光検出器で
検出した場合の第1及び第2光検出器の出力信号間の相関
値とに基づいて樹脂硬化の度合いXを演算することを特
徴とする。
Here, in the present invention, the control device uses (a) the measurement light reflected by or transmitted through the surface of the object after the resin application and before the driving period of the curing accelerating means. 1st and 2nd when detected by 1st and 2nd photodetectors
The relative value between the output signals of the photodetector, and (b) the measurement light reflected by or transmitted through the surface of the object after the resin is applied and during the driving period of the curing accelerating means, the first and second lights. It is characterized in that the degree X of resin curing is calculated based on the correlation value between the output signals of the first and second photodetectors when detected by the detector.

【0008】第1及び第2フィルタを通過した波長成分の
強度は、樹脂硬化の進捗度に対する変化率が異なる。す
なわち、一方の波長成分の強度は樹脂硬化が進捗するに
従って相対的に大きく変化し、他方の波長成分の強度は
樹脂硬化が進捗するに従って相対的に小さく強度変化す
る。換言すれば、樹脂硬化度という要因の観点からは、
これらの波長成分の強度は異なる影響を受けるのであ
る。
The intensity of the wavelength component that has passed through the first and second filters has different rates of change with respect to the degree of progress of resin curing. That is, the intensity of one wavelength component changes relatively greatly as the resin curing progresses, and the intensity of the other wavelength component changes relatively small intensity as the resin curing progresses. In other words, from the perspective of the factor of resin curing degree,
The intensities of these wavelength components are affected differently.

【0009】そこで、この強度変化の小さい方の波長成
分を基準とすれば、大きな方の波長成分の強度が、対象
物の温度変化等の外的要因よって変化しても、このよう
な外的要因は、双方の波長成分の強度に同時に影響を与
えるのであるから、これらの相関値は、樹脂硬化度以外
の外的要因の影響を受けにくくなる。
Therefore, if the wavelength component having the smaller intensity change is used as a reference, even if the intensity of the wavelength component having the larger intensity changes due to an external factor such as a temperature change of the object, such an external component is generated. Since the factors affect the intensities of both wavelength components at the same time, these correlation values are less likely to be affected by external factors other than the resin curing degree.

【0010】制御装置は、樹脂塗布後であって硬化促進
手段の駆動期間前と、樹脂塗布後であって硬化促進手段
の駆動期間中に、これらの波長成分の強度に応じた出力
信号を得る。上述のように、相関値は樹脂硬化度に影響
を大きく受けるが、その他の要因には影響を受けにくい
のであるから、樹脂硬化前と、硬化後において、相関値
はより正確に変化することとなる。
The control device obtains output signals corresponding to the intensities of these wavelength components after the resin application and before the drive period of the curing promoting means and after the resin application and during the drive period of the curing promoting means. . As described above, the correlation value is greatly affected by the degree of resin curing, but is not easily affected by other factors, so that the correlation value changes more accurately before and after resin curing. Become.

【0011】したがって、本制御装置は、樹脂硬化前後
の相関値に基づいて硬化の度合いXを正確に演算するこ
とができる。すなわち、完全硬化が行われた場合に得ら
れる度合いXを100%とし、硬化が全く行われていな
い場合の度合いXを0%等とすれば、それぞれの状態を
硬化前後に得られた相関値を対応させることができ、こ
れらに基づいて度合いXを演算することができる。
Therefore, the present control device can accurately calculate the degree of curing X based on the correlation value before and after resin curing. That is, assuming that the degree X obtained when complete curing is performed is 100% and the degree X when no curing is performed is 0%, etc., the correlation values obtained before and after curing in each state. Can be made to correspond, and the degree X can be calculated based on these.

【0012】また、制御装置は、(c)樹脂塗布前に固
体からなる対象物表面で反射された又はこれを透過した
測定光を第1及び第2光検出器で検出した場合の第1及び
第2光検出器の出力信号を更に用いて、演算値Xを演算
することが好ましい。樹脂塗布前に固体からなる対象物
表面で反射された又はこれを透過した測定光は、硬化前
後に樹脂を介在させて反射された又はこれを透過した測
定光よりも特性が安定しているため、これを基準値とし
て、双方の波長成分の強度を相対的に数値化すれば、よ
り正確な硬化の度合いXを測定することができる。
Further, (c) the first and the second detectors when the measuring light reflected by or transmitted through the surface of the solid object before the resin is applied is detected by the first and second photodetectors. It is preferable to calculate the calculation value X by further using the output signal of the second photodetector. The measurement light reflected by or transmitted through the surface of the solid object before the resin coating has more stable characteristics than the measurement light reflected by or through the resin before and after curing. By using this as a reference value and converting the intensities of both wavelength components into relative values, a more accurate degree of curing X can be measured.

【0013】工程(a)における出力信号をA2,B
2、工程(b)における出力信号をAs,Bs、工程
(c)における出力信号をA1,B1、既知係数をKo
とした場合、度合いXは以下の式で与えられることが好
ましい。
The output signals in step (a) are A2, B
2. Output signals in step (b) are As and Bs, output signals in step (c) are A1 and B1, and known coefficients are Ko.
Then, the degree X is preferably given by the following equation.

【数3】 工程(a)、工程(b)において得られる出力信号、す
なわち各工程における各波長成分の反射強度A2,B
2、As,Bsは、安定した反射が得られる工程(c)
における出力信号、すなわち、反射強度A1,B1を基
準する相対値に各波長毎に換算されている。すなわち、
A2は(A2/A1)に、B2は(B2/B1)に、A
sは(As/A1)に、Bsは(Bs/B1)に、それ
ぞれ換算されている。もちろん、前記の「反射強度」は
「透過強度」に読み替えることができる。
[Equation 3] Output signals obtained in the steps (a) and (b), that is, the reflection intensities A2 and B of the respective wavelength components in the respective steps
2, As and Bs are steps (c) in which stable reflection is obtained.
The output signal at, that is, the relative value based on the reflection intensities A1 and B1 is converted for each wavelength. That is,
A2 is (A2 / A1), B2 is (B2 / B1), A
s is converted into (As / A1) and Bs is converted into (Bs / B1). Of course, the above-mentioned "reflection intensity" can be read as "transmission intensity".

【0014】相対値換算された各波長成分の強度は、硬
化前後でそれぞれ相関値にされている。硬化前において
は波長Aに対する波長Bの比率、すなわち、相関値は、
上記換算値を用いれば、(B2/B1)/(A2/A
1)である。硬化後においては波長Aに対する波長Bの
比率、すなわち、相関値は、上記換算値を用いれば、
(Bs/B1)/(As/A1)である。
The intensity of each wavelength component converted into a relative value is set as a correlation value before and after curing. Before curing, the ratio of wavelength B to wavelength A, that is, the correlation value is
Using the above converted value, (B2 / B1) / (A2 / A
1). After curing, the ratio of the wavelength B to the wavelength A, that is, the correlation value is
(Bs / B1) / (As / A1).

【0015】硬化前後の相関値の比率は、硬化の度合い
を示す値となるが、ここでは、完全硬化の場合に略10
0%という数値化ができるように、硬化の度合いXを示
す上式に既知係数Koを用いている。
The ratio of the correlation values before and after curing is a value indicating the degree of curing, but here, in the case of complete curing, it is approximately 10.
The known coefficient Ko is used in the above equation indicating the degree of curing X so that the numerical value of 0% can be obtained.

【0016】このように、上式は各種外的要因の中で硬
化の度合いに対して大きく影響を受けるように設定され
ている。したがって、硬化の度合いXは非常に正確なも
のとなる。
As described above, the above equation is set so as to be greatly influenced by the degree of curing among various external factors. Therefore, the degree of cure X is very accurate.

【0017】上式では既知係数Koを用いたが、制御装
置においては既に硬化した樹脂を表面上に有する対象物
を標準サンプルとし、この標準サンプルに測定光を照射
した場合の前記第1及び第2検出器の出力信号に基づいて
既知係数Koを決定する。この場合、装置起動時に測定
の基準となる標準サンプルを用いて既知係数Koを決定
するため、正確な度合いXを測定することができる。標
準サンプルは、装置起動の度に作製することとしてもよ
いし、既に用意されたものを使い回してもよい。
Although the known coefficient Ko is used in the above equation, in the control device, the object having the already cured resin on the surface is used as the standard sample, and the first and the first cases when the standard sample is irradiated with the measuring light. 2 Determine the known coefficient Ko based on the output signal of the detector. In this case, since the known coefficient Ko is determined using the standard sample serving as the measurement reference when the apparatus is activated, the accurate degree X can be measured. The standard sample may be prepared each time the apparatus is activated, or the already prepared sample may be reused.

【0018】また、硬化促進手段は紫外線光源であり、
前記第1及び第2フィルタは紫外線以外の波長帯から選
択される波長を前記第1及び第2波長成分として透過さ
せるフィルタであり、この樹脂は紫外線硬化樹脂である
ことが好ましい。紫外線硬化樹脂は紫外線光源からの紫
外線の照射によって硬化するが、本装置においては第1
及び第2フィルタを用いているので、紫外線の影響が除
去され、正確な硬化の度合い測定を行うことができる。
The curing accelerating means is an ultraviolet light source,
The first and second filters are filters that transmit wavelengths selected from wavelength bands other than ultraviolet rays as the first and second wavelength components, and the resin is preferably an ultraviolet curable resin. The UV curable resin is cured by irradiation with UV light from a UV light source.
Further, since the second filter is used, the influence of ultraviolet rays is removed, and the accurate degree of curing can be measured.

【0019】また、制御装置は、度合いXが以下の条
件:
Further, the control device has a condition that the degree X is as follows:

【数4】 を満たした場合に前記硬化促進手段を停止させる制御信
号を出力することが好ましく、この場合には、樹脂硬化
が完了した時点で硬化促進を終了することができる。
[Equation 4] It is preferable to output a control signal for stopping the curing promoting means when the above condition is satisfied, and in this case, the curing promotion can be ended when the resin curing is completed.

【0020】[0020]

【発明の実施の形態】以下、実施の形態に係る樹脂硬化
度測定装置について説明する。なお、同一要素には同一
符号を用い、重複する説明は省略する。
BEST MODE FOR CARRYING OUT THE INVENTION A resin curing degree measuring device according to an embodiment will be described below. The same elements will be denoted by the same reference symbols, without redundant description.

【0021】図1は樹脂硬化度測定装置の構成図であ
る。この樹脂硬化度測定装置10は、対象物1の表面1
s上に塗布された樹脂RSNの硬化を促進させる紫外線
光源(硬化促進手段)2と共に用いられる。樹脂硬化度
測定装置10は、投光系と受光系を備えている。
FIG. 1 is a block diagram of a resin curing degree measuring device. This resin curing degree measuring device 10 is provided with a surface 1 of an object 1.
It is used together with an ultraviolet light source (curing promoting means) 2 for promoting the curing of the resin RSN applied on the s. The resin curing degree measuring device 10 includes a light projecting system and a light receiving system.

【0022】投光系は、ハウジング10a内に収納され
た電源10b、電源10bから供給される電力によって
発光するアルミ反射鏡付の測定光出射光源(100W:
ハロゲンランプ)10c、測定光出射光源10cから出
射された測定光を整形光学系10dに導く光ファイバ1
0eを備えている。光ファイバ10eから出射された
後、整形光学系10dにより適当なビーム径に整形され
た測定光(赤外線)は、樹脂RSN上に照射される。
The light projecting system includes a power source 10b housed in a housing 10a and a measurement light emitting light source (100W: 100W: with an aluminum reflecting mirror) which emits light by electric power supplied from the power source 10b.
Halogen lamp) 10c, optical fiber 1 for guiding the measurement light emitted from the measurement light emitting light source 10c to the shaping optical system 10d
0e. After being emitted from the optical fiber 10e, the measurement light (infrared ray) shaped into an appropriate beam diameter by the shaping optical system 10d is irradiated onto the resin RSN.

【0023】樹脂RSNを透過し対象物表面1sで反射
された測定光は、投光時と逆方向に進行し、受光系に入
射する。
The measuring light which has passed through the resin RSN and reflected on the surface 1s of the object travels in the direction opposite to that at the time of projection and enters the light receiving system.

【0024】受光系は、投光系と共用の整形光学系10
d、整形光学系10dを投光時とは逆方向に進行した測
定光を伝達する光ファイバ10f及び10gを備えてい
る。光ファイバ10f及び10gは、対象物表面1sに
おいて反射された測定光を分岐させるものであり、測定
光は分岐させられた後、それぞれ第1及び第2フィルタ
10h,10iに入射する。すなわち、光ファイバ10
f及び10gは、対象物表面1sで反射された測定光を
第1及び第2測定光に分岐する分岐手段として機能する。
The light receiving system is a shaping optical system 10 which is also used as a light projecting system.
d, the shaping optical system 10d is provided with optical fibers 10f and 10g for transmitting the measurement light traveling in the direction opposite to that at the time of projecting. The optical fibers 10f and 10g branch the measurement light reflected on the object surface 1s, and after the measurement light is branched, the measurement light is incident on the first and second filters 10h and 10i, respectively. That is, the optical fiber 10
f and 10g function as branching means for branching the measurement light reflected by the object surface 1s into the first and second measurement lights.

【0025】なお、光ファイバ10e,10f,10g
の数は、それぞれ複数であって、これらの光ファイバ1
0e,10f,10gは束ねられており、光ファイバ1
0e,10f,10gの整形光学系10d側の一端部が
光軸に垂直な面内において均等に分布するように配置さ
れ(ランダム配置)、他端部は光ファイバ10e,10
f,10g毎に分離されている。
Optical fibers 10e, 10f, 10g
The number of each of these optical fibers is one.
0e, 10f, 10g are bundled, and the optical fiber 1
0e, 10f, 10g are arranged so that one end of the shaping optical system 10d side is evenly distributed in a plane perpendicular to the optical axis (random arrangement), and the other ends are the optical fibers 10e, 10g.
Separated every f and 10 g.

【0026】第1及び第2フィルタ10h,10iは、
光ファイバ10f及び10gによって分岐した第1測定
光の第1波長成分(1580nm)、第2測定光の第2波
長成分(1620nm)をそれぞれ選択的に通過させ
る。ここでは、第1及び第2フィルタ10h,10i
は、第1及び第2波長成分を中心波長(1580nm、
1620nm)とするバンドパスフィルタである。より
詳細には、第1フィルタ10hは、透過波長帯域158
0nm±20nm(半値幅)、透過率30%以上のフィ
ルタであり、第2フィルタ10iは透過波長帯域162
0nm±10nm(半値幅):透過率30%以上のフィ
ルタある。
The first and second filters 10h and 10i are
The first wavelength component (1580 nm) of the first measurement light and the second wavelength component (1620 nm) of the second measurement light branched by the optical fibers 10f and 10g are selectively passed. Here, the first and second filters 10h, 10i
Is the center wavelength (1580 nm,
1620 nm). More specifically, the first filter 10h includes a transmission wavelength band 158
The filter has a wavelength of 0 nm ± 20 nm (half-value width) and a transmittance of 30% or more. The second filter 10i has a transmission wavelength band 162.
0 nm ± 10 nm (half-value width): A filter having a transmittance of 30% or more.

【0027】第1及び第2フィルタ10h,10iを通過
した第1及び第2波長成分は、それぞれ集光レンズ10
j,10kによって集光され、それぞれ第1及び第2光検
出器(ホトダイオード:InGaAs:900〜350
0nmに感度を有する、Geでもよい)10m,10n
に入射する。すなわち、第1及び第2波長成分は、それぞ
れ第1及び第2光検出器10m,10nによって検出され
る。
The first and second wavelength components that have passed through the first and second filters 10h and 10i are collected by the condenser lens 10 respectively.
The first and second photodetectors (photodiode: InGaAs: 900 to 350) are focused by the light source j and 10k, respectively.
Ge having sensitivity to 0 nm, Ge may be used) 10 m, 10 n
Incident on. That is, the first and second wavelength components are detected by the first and second photodetectors 10m and 10n, respectively.

【0028】第1及び第2光検出器10m,10nの出力
信号の大きさは、入射光強度に比例するが、この出力信
号はそれぞれ増幅/AD変換器10p,10qによっ
て、増幅及びデジタル変換され、演算装置10rに入力
される。ここでは、増幅/AD変換器10p,10q及
び演算装置10rは、第1及び第2光検出器10m,10
nの出力信号が入力される制御装置を構成している。
The magnitudes of the output signals of the first and second photodetectors 10m and 10n are proportional to the intensity of the incident light, and the output signals are amplified and digitally converted by the amplifier / AD converters 10p and 10q, respectively. , Is input to the arithmetic unit 10r. Here, the amplification / AD converters 10p and 10q and the arithmetic unit 10r are connected to the first and second photodetectors 10m and 10m.
A control device to which n output signals are input is configured.

【0029】制御装置を構成する演算装置10rは、
(a)樹脂塗布「後」であって硬化促進手段の駆動期間
「前」に対象物表面1sで反射された測定光を第1及び
第2光検出器10m,10nで検出した場合の第1及び第
2光検出器10m,10nの出力信号間の相対値と、
(b)樹脂塗布「後」であって硬化促進手段の駆動期間
「中」に対象物表面1sで反射された測定光を第1及び
第2光検出器10m,10nで検出した場合の第1及び第
2光検出器10m,10nの出力信号間の相関値とに基
づいて樹脂硬化の度合いXを演算する。この演算結果、
すなわち度合いXは、表示器10s上に表示される。
The arithmetic unit 10r constituting the control unit is
(A) The first when the measurement light reflected by the object surface 1s is detected by the first and second photodetectors 10m and 10n "after" the resin application and before "before" the driving period of the curing accelerator. And the
2 Relative value between the output signals of the photodetectors 10m and 10n,
(B) The first when the measurement light reflected by the object surface 1s is detected by the first and second photodetectors 10m and 10n after the resin application "after" and during the drive period "during" of the curing accelerator. And the
2 The degree of resin curing X is calculated based on the correlation value between the output signals of the photodetectors 10m and 10n. This calculation result,
That is, the degree X is displayed on the display 10s.

【0030】第1及び第2フィルタ10h,10iを通過
した波長成分の強度は、樹脂硬化の進捗度に対する変化
率が異なる。すなわち、波長成分(1580nm)の強
度I1は樹脂硬化が進捗するに従って相対的に小さく強
度変化し、波長成分(1620nm)の強度I2は樹脂
硬化が進捗するに従って相対的に大きく変化する。換言
すれば、樹脂硬化度という要因の観点からは、これらの
波長成分の強度は異なる影響を受けるのである。
The intensity of the wavelength components that have passed through the first and second filters 10h and 10i have different rates of change with respect to the degree of progress of resin curing. That is, the intensity I1 of the wavelength component (1580 nm) changes relatively small as the resin curing progresses, and the intensity I2 of the wavelength component (1620 nm) changes relatively large as the resin curing progresses. In other words, the intensities of these wavelength components are affected differently from the viewpoint of the factor of resin curing degree.

【0031】そこで、この強度変化の小さい方の波長成
分(1580nm)を基準とすれば、大きな方の波長成
分(1620nm)の強度I2が、対象物1の温度変化
等の外的要因よって変化しても、このような外的要因
は、双方の波長成分の強度に同時に影響を与えるのであ
るから、これらの相関値(I2/I1)は、樹脂硬化度
以外の外的要因の影響を受けにくくなる。
Therefore, with reference to the wavelength component (1580 nm) having the smaller intensity change, the intensity I2 of the wavelength component having the larger intensity (1620 nm) changes due to an external factor such as a temperature change of the object 1. However, since such an external factor affects the intensities of both wavelength components at the same time, these correlation values (I2 / I1) are less likely to be affected by external factors other than the resin curing degree. Become.

【0032】演算装置10rは、樹脂塗布「後」であっ
て硬化促進手段2の駆動期間「前」と、樹脂塗布「後」
であって硬化促進手段2の駆動期間「中」に、これらの
波長成分の強度I1,I2に比例した大きさの出力信号
を得る。上述のように、相関値(I2/I1)は、樹脂
硬化度に影響を大きく受けるが、その他の要因には影響
を受けにくいのであるから、樹脂硬化前と、硬化後にお
いて、相関値(I2/I1)はより正確に変化すること
となる。
The arithmetic unit 10r is "after" the resin application, and "before" the driving period of the curing promoting means 2 and "after" the resin application.
In addition, during the driving period of the curing accelerating means 2, an output signal having a magnitude proportional to the intensities I1 and I2 of these wavelength components is obtained. As described above, the correlation value (I2 / I1) is greatly affected by the degree of resin curing, but is less affected by other factors. Therefore, the correlation value (I2 / I1) will change more accurately.

【0033】したがって、演算装置10rは、樹脂硬化
前の相関値(F=I2/I1)、樹脂硬化後の相関値
(R=I2/I1)に基づいて、硬化の度合いXを正確
に演算することができる。すなわち、完全硬化が行われ
た場合に得られる度合いXを100%とし、硬化が全く
行われていない場合の度合いXを0%等とすれば、それ
ぞれの状態を硬化前後に得られた相関値F,Rを対応さ
せることができ、これらに基づいて度合いXを演算する
ことができる。
Therefore, the arithmetic unit 10r accurately calculates the degree of curing X based on the correlation value before resin curing (F = I2 / I1) and the correlation value after resin curing (R = I2 / I1). be able to. That is, assuming that the degree X obtained when complete curing is performed is 100% and the degree X when no curing is performed is 0%, etc., the correlation values obtained before and after curing in each state. F and R can be associated with each other, and the degree X can be calculated based on these.

【0034】なお、対象物1は固体からなる例えばSi
やアルミニウムである。演算装置10rは、(c)樹脂
塗布「前」に固体からなる対象物表面1sで反射された
測定光を第1及び第2光検出器10m,10nで検出した
場合の第1及び第2光検出器10m,10nの出力信号を
更に用いて、演算値Xを演算することが好ましい。樹脂
塗布「前」に固体からなる対象物表面1sで反射された
測定光は、硬化前後に樹脂を介在させて反射された測定
光よりも特性が安定しているため、これを基準値とし
て、双方の波長成分の強度I1,I2を相対的に数値化
すれば、より正確な硬化の度合いXを測定することがで
きる。
The object 1 is made of a solid material such as Si.
And aluminum. The arithmetic unit 10r includes (c) first and second light when the measuring light reflected by the solid object surface 1s "before" the resin application is detected by the first and second photodetectors 10m and 10n. It is preferable to calculate the calculated value X by further using the output signals of the detectors 10m and 10n. Since the measurement light reflected by the object surface 1s made of a solid "before" the resin application has more stable characteristics than the measurement light reflected by interposing the resin before and after curing, with this as a reference value, If the intensities I1 and I2 of both wavelength components are relatively numerically expressed, a more accurate degree of curing X can be measured.

【0035】工程(a)における出力信号をA2(=I
1(硬化中)),B2(=I2(硬化中))、工程
(b)における出力信号をAs(=I1(硬化前)),
Bs(=I2(硬化前))、工程(c)における出力信
号をA1(=I1(塗布前)),B1(=I2(塗布
前))、既知係数をKoとした場合、度合いXは以下の
式で与えられることが好ましい。
The output signal in step (a) is set to A2 (= I
1 (during curing)), B2 (= I2 (during curing)), the output signal in step (b) is As (= I1 (before curing)),
When Bs (= I2 (before curing)), the output signal in step (c) is A1 (= I1 (before coating)), B1 (= I2 (before coating)), and the known coefficient is Ko, the degree X is as follows: Is preferably given by

【数5】 工程(a)、工程(b)において得られる出力信号、す
なわち各工程における各波長成分の反射強度A2,B
2、As,Bsは、安定した反射が得られる工程(c)
における出力信号、すなわち、反射強度A1,B1を基
準する相対値に各波長毎に換算されている。すなわち、
A2は(A2/A1)に、B2は(B2/B1)に、A
sは(As/A1)に、Bsは(Bs/B1)に、それ
ぞれ換算されている。
[Equation 5] Output signals obtained in the steps (a) and (b), that is, the reflection intensities A2 and B of the respective wavelength components in the respective steps
2, As and Bs are steps (c) in which stable reflection is obtained.
The output signal at, that is, the relative value based on the reflection intensities A1 and B1 is converted for each wavelength. That is,
A2 is (A2 / A1), B2 is (B2 / B1), A
s is converted into (As / A1) and Bs is converted into (Bs / B1).

【0036】相対値換算された各波長成分の強度は、硬
化前後でそれぞれ相関値にされている。硬化前において
は波長Aに対する波長Bの比率、すなわち、相関値は、
上記換算値を用いれば、(B2/B1)/(A2/A
1)である。硬化後においては波長Aに対する波長Bの
比率、すなわち、相関値は、上記換算値を用いれば、
(Bs/B1)/(As/A1)である。
The intensity of each wavelength component converted into a relative value is set as a correlation value before and after curing. Before curing, the ratio of wavelength B to wavelength A, that is, the correlation value is
Using the above converted value, (B2 / B1) / (A2 / A
1). After curing, the ratio of the wavelength B to the wavelength A, that is, the correlation value is
(Bs / B1) / (As / A1).

【0037】纏めると、以下のようになる。The summary is as follows.

【0038】(硬化前相関値) 相関値F=I2(硬化前)/I1(硬化前)∝B2/A
2≒(B2/B1)/(A2/A1))である。
(Correlation value before curing) Correlation value F = I2 (before curing) / I1 (before curing) ∝B2 / A
2≈ (B2 / B1) / (A2 / A1)).

【0039】(硬化後相関値) 相関値R=I2(硬化後(完全硬化前の硬化中を含
む))/I1(硬化後(完全硬化前の硬化中を含む))
∝Bs/As≒(Bs/B1)/(As/A1))であ
る。
(Correlation value after curing) Correlation value R = I2 (after curing (including during curing before complete curing)) / I1 (after curing (including during curing before complete curing))
∝Bs / As≈ (Bs / B1) / (As / A1)).

【0040】X=R/Fとしてもよい。硬化前後の相関
値の比率は、硬化の度合いを示す値となるが、ここで
は、完全硬化の場合に略100%という数値化ができる
ように、硬化の度合いXを示す上式に既知係数Koを用
いている。
It is also possible to set X = R / F. The ratio of the correlation values before and after curing is a value indicating the degree of curing, but here, in order to be able to quantify approximately 100% in the case of complete curing, the known coefficient Ko in the above equation indicating the degree of curing X is used. Is used.

【0041】以上のように、上式は各種外的要因の中で
硬化の度合いに対して大きく影響を受けるように設定さ
れている。したがって、硬化の度合いXは非常に正確な
ものとなる。
As described above, the above equation is set so as to be greatly influenced by the degree of curing among various external factors. Therefore, the degree of cure X is very accurate.

【0042】上式では既知係数Koを用いたが、演算装
置10rにおいては既に硬化した樹脂RSNを表面1s
上に有する対象物1を標準サンプルとし、この標準サン
プルに測定光を照射した場合の第1及び第2検出器10
m,10nの出力信号に基づいて既知係数Koを決定す
る。この場合、装置起動時に測定の基準となる標準サン
プルを用いて既知係数Koを決定するため、正確な度合
いXを測定することができる。標準サンプルは、装置起
動の度に作製することとしてもよいし、既に用意された
ものを使い回してもよい。
Although the known coefficient Ko is used in the above equation, in the arithmetic unit 10r, the already cured resin RSN is used for the surface 1s.
First and second detectors 10 when the object 1 above is used as a standard sample and the standard sample is irradiated with measurement light.
The known coefficient Ko is determined based on the output signals of m and 10n. In this case, since the known coefficient Ko is determined using the standard sample serving as the measurement reference when the apparatus is activated, the accurate degree X can be measured. The standard sample may be prepared each time the apparatus is activated, or the already prepared sample may be reused.

【0043】既知係数Koを求める場合、予め、樹脂塗
布前の状態、樹脂塗布後硬化前の状態、既に100%硬
化していると判断されている樹脂の状態を測定する。本
装置にて、この樹脂に光を照射し表面で反射した光を測
定する。もちろん、この光は樹脂自体を透過する。これ
を、Xを与える式に代入し、X=100%とすること
で、Koを決定することができる。
When obtaining the known coefficient Ko, the state before resin application, the state after resin application and before curing, and the state of the resin which has already been determined to be 100% cured are measured. With this device, the resin is irradiated with light and the light reflected on the surface is measured. Of course, this light passes through the resin itself. By substituting this into the equation that gives X and setting X = 100%, Ko can be determined.

【0044】なお、本装置では硬化促進手段2として紫
外線光源を用いた。第1及び第2フィルタは紫外線以外
の波長帯から選択される波長を第1及び第2波長成分と
して透過させるフィルタであった。また、樹脂RSNは
紫外線硬化樹脂である。紫外線硬化樹脂RSNは、紫外
線光源2、具体的にはUVスポットランプからの紫外線
を光ファイバの先端部から出射し、この紫外線の照射に
よって硬化するが、本装置においては第1及び第2フィ
ルタ10h,10iを用いているので、紫外線の影響が
除去され、正確な硬化の度合い測定を行うことができ
る。
In this apparatus, an ultraviolet light source was used as the curing promoting means 2. The first and second filters were filters that transmitted wavelengths selected from wavelength bands other than ultraviolet rays as the first and second wavelength components. The resin RSN is an ultraviolet curable resin. The ultraviolet curable resin RSN emits the ultraviolet light from the ultraviolet light source 2, specifically, the UV spot lamp, from the tip of the optical fiber and cures by irradiation of this ultraviolet light. In this device, the first and second filters 10h are used. , 10i are used, the influence of ultraviolet rays is removed, and accurate degree of curing can be measured.

【0045】演算装置10rは、度合いXが以下の条
件:
The arithmetic unit 10r has a condition that the degree X is as follows:

【数6】 を満たした場合に硬化促進手段2を停止させる制御信号
を出力する。この場合には、樹脂硬化が完了した時点で
樹脂RSNの硬化促進を終了することができる。樹脂R
SNは図示しないディスペンサから対象物表面1s上に
供給される。樹脂RSNは光硬化樹脂であって、樹脂硬
化用の紫外線光源2から樹脂RSNに樹脂硬化用光を照
射すると、樹脂RSNの主成分である高分子材料が重合
反応し、樹脂RSNは硬化する。
[Equation 6] When the above condition is satisfied, a control signal for stopping the curing promoting means 2 is output. In this case, the hardening promotion of the resin RSN can be ended when the resin hardening is completed. Resin R
The SN is supplied onto the object surface 1s from a dispenser (not shown). The resin RSN is a photo-curable resin, and when the resin RSN is irradiated with the resin curing light from the resin curing ultraviolet light source 2, the polymer material, which is the main component of the resin RSN, undergoes a polymerization reaction to cure the resin RSN.

【0046】本例の樹脂RSNはアクリル系接着剤であ
る。樹脂RSNがアクリル系接着剤である場合には、エ
チレン二重結合(=CH2)が1617nmに吸収スペ
クトルを有し、重合が行われることによりこの結合が切
断されることから、スペクトルのうちの波長1617n
mの光を第2波長成分(本例で1620nmを含むバン
ドパスフィルタで選別)とする。この場合、硬化が進行
すると強度I2は徐々に低下し、硬化が終了すると変化
が止まる。
The resin RSN of this example is an acrylic adhesive. When the resin RSN is an acrylic adhesive, the ethylene double bond (= CH2) has an absorption spectrum at 1617 nm, and this bond is cleaved by polymerization, so that the wavelength of the spectrum 1617n
The light of m is used as the second wavelength component (selected by a bandpass filter including 1620 nm in this example). In this case, the strength I2 gradually decreases as the curing progresses, and stops changing when the curing ends.

【0047】図2はアクリル系接着剤を対象物表面1s
上に塗布した場合の反射光(測定光)の反射率の波長依
存性を示すグラフである。また、図3はアクリル系接着
剤を対象物表面1s上に塗布した場合の樹脂による吸光
度の波長依存性を示すグラフである。図4はアクリル系
接着剤を対象物表面1s上に塗布した場合の樹脂による
強度比(I2/I1)の時間微分値と度合いXの時間依
存性をそれぞれ太線及び細線で示すグラフである。な
お、対象物1はアルミである。なお、図5はアクリル系
接着材の硬化進行度(%)と、アクリル系接着剤に照射
される紫外線の積算光量(mJ/cm2)との関係を示
すグラフである。
FIG. 2 shows an acrylic adhesive on the surface 1s of the object.
It is a graph which shows the wavelength dependence of the reflectance of the reflected light (measurement light) when apply | coated on top. FIG. 3 is a graph showing the wavelength dependence of the absorbance by the resin when the acrylic adhesive is applied on the surface 1s of the object. FIG. 4 is a graph showing a time differential value of the strength ratio (I2 / I1) by the resin and a time dependency of the degree X when the acrylic adhesive is applied on the surface 1s of the object, which are indicated by a thick line and a thin line, respectively. The object 1 is aluminum. Note that FIG. 5 is a graph showing the relationship between the degree of curing progress (%) of the acrylic adhesive and the integrated light amount (mJ / cm 2 ) of ultraviolet rays with which the acrylic adhesive is irradiated.

【0048】硬化前に比べて硬化後の反射率(強度)
は、第1及び第2波長成分において、共に減少するが、
第2波長成分の方が硬化の影響を強く受けることが分か
る。
Reflectivity (strength) after curing as compared to before curing
Both decrease in the first and second wavelength components,
It can be seen that the second wavelength component is more strongly affected by curing.

【0049】なお、樹脂RSNがエポキシ系接着剤であ
る場合には、一重結合(CH−CH)が1166nm
に、CONH2結合が1429nmに吸収スペクトルを
有することから、スペクトルのうちの波長1166nm
及び1429nmのいずれか一方の光を第2波長成分と
する。この場合、硬化が進行すると前者の強度Iは徐々
に上昇し、硬化が終了すると変化が止まるが、後者の強
度Iは、硬化が進行すると徐々に下降し、硬化が終了す
ると変化が止まる。
When the resin RSN is an epoxy adhesive, the single bond (CH--CH) is 1166 nm.
In addition, since the CONH2 bond has an absorption spectrum at 1429 nm, the wavelength of the spectrum is 1166 nm.
, Or 1429 nm is used as the second wavelength component. In this case, the intensity I of the former gradually increases as the curing proceeds, and stops changing when the curing ends, whereas the intensity I of the latter gradually decreases as the curing progresses and stops changing when the curing ends.

【0050】次に、演算装置10rによる制御の一例に
ついて説明する。
Next, an example of control by the arithmetic unit 10r will be described.

【0051】図6は、演算装置10rの制御を示すフロ
ーチャートである。まず、図示しないベルトコンベアを
駆動して対象物1を測定光及び樹脂硬化用光が照射され
る領域まで移動させる(S1)。次に、樹脂硬化用光を
照射する前に、測定光を照射し、基準値を得るための測
定を行う(S2)。ここで、第1及び第2波長成分の強
度I1,I2(データA1,B1)に対応する出力信号
を得ることができる(S21)。
FIG. 6 is a flow chart showing the control of the arithmetic unit 10r. First, a belt conveyor (not shown) is driven to move the object 1 to a region irradiated with the measurement light and the resin curing light (S1). Next, before irradiating the resin curing light, the measuring light is irradiated to perform measurement for obtaining the reference value (S2). Here, output signals corresponding to the intensities I1 and I2 (data A1 and B1) of the first and second wavelength components can be obtained (S21).

【0052】次に、接着剤としての樹脂RSNを対象物
表面1s上に塗布し(S3)、しかる後、樹脂硬化用光
を照射する前に、測定光を照射し、もう1つの基準値を
得るための測定を行う(S4)。ここで、第1及び第2
波長成分の強度I1,I2(データA2,B2)に対応
する出力信号を得ることができる(S41)。
Next, the resin RSN as an adhesive is applied on the surface 1s of the object (S3), and thereafter, before the resin curing light is irradiated, the measuring light is irradiated and another reference value is set. Measurement for obtaining is performed (S4). Where the first and second
Output signals corresponding to the wavelength component intensities I1 and I2 (data A2 and B2) can be obtained (S41).

【0053】次に、樹脂硬化を開始する。すなわち、紫
外線光源2を駆動し、樹脂硬化用光(紫外線)を樹脂R
SNに照射する。この照射を行いながら、測定光を照射
し、もう現在の硬化の度合いXに依存する数値を得るた
めの測定を行う(S6)。ここで、第1及び第2波長成
分の強度I1,I2(データAs,Bs)に対応する出
力信号を得ることができる(S61)。
Next, resin curing is started. That is, the ultraviolet light source 2 is driven to apply the resin curing light (ultraviolet light) to the resin R.
Irradiate SN. While performing this irradiation, measurement light is irradiated, and measurement is performed to obtain a numerical value that depends on the current degree X of curing (S6). Here, output signals corresponding to the intensities I1 and I2 (data As, Bs) of the first and second wavelength components can be obtained (S61).

【0054】次に、得られた値A1,B1,A2,B
2,As,Bsと既知係数Koを用いて硬化の度合いX
を演算し、度合いXが所定値を以上かどうかを判定する
(S7)。度合いXが所定値よりも小さい場合には、紫
外線光源2を停止させ、樹脂硬化用光の照射を中止す
る。これにより、樹脂RSNが完全硬化している旨が判
明する。
Next, the obtained values A1, B1, A2, B
2, degree of curing X using As, Bs and known coefficient Ko
Is calculated, and it is determined whether the degree X is greater than or equal to a predetermined value (S7). When the degree X is smaller than the predetermined value, the ultraviolet light source 2 is stopped and the irradiation of the resin curing light is stopped. This reveals that the resin RSN is completely cured.

【0055】しかる後、図示しないベルトコンベアを駆
動して対象物1を、測定光及び樹脂硬化用光が照射され
る領域から外れる領域まで移動させ、樹脂硬化作業が終
了する(S9)。
Thereafter, a belt conveyor (not shown) is driven to move the object 1 to a region outside the region irradiated with the measurement light and the resin curing light, and the resin curing work is completed (S9).

【0056】図7は図1に示した樹脂硬化度測定装置に
測定光直接検出光学系を付加した樹脂硬化度測定装置の
構成図である。すなわち、この装置は、測定光出射光源
10cから出射された測定光の一部を分岐する光ファイ
バ10F,10Gを備え、光ファイバ10F,10Gは
分岐後の測定光を波長別受光系にそれぞれ導いている。
FIG. 7 is a block diagram of a resin curing degree measuring device in which a measuring light direct detection optical system is added to the resin curing degree measuring device shown in FIG. That is, this apparatus includes optical fibers 10F and 10G that branch a part of the measurement light emitted from the measurement light emitting light source 10c, and the optical fibers 10F and 10G guide the branched measurement light to the wavelength-dependent light receiving system, respectively. ing.

【0057】波長別受光系は、分岐されたそれぞれ測定
光から第1及び第2波長成分を選択した後、それぞれの
波長成分を光検出器10M,10Nに入射させる。すなわ
ち、第1波長成分(1620nm)の選択には第1フィ
ルタ10H及び集光レンズ10Jが用いられ、第2波長
成分(1580nm)の選択には第2フィルタ10I及
び集光レンズ10Kが用いられる。光検出器10M,1
0Nの出力信号は、それぞれ増幅・AD変換器10P,
10Qに入力され、デジタル信号として演算装置10r
に入力される。ここで得られるそれぞれの波長成分の強
度I1,I2を、測定光参照値C,Dとする。
The wavelength-dependent light receiving system selects the first and second wavelength components from the branched measuring light beams, and then makes the respective wavelength components incident on the photodetectors 10M and 10N. That is, the first filter 10H and the condenser lens 10J are used to select the first wavelength component (1620 nm), and the second filter 10I and the condenser lens 10K are used to select the second wavelength component (1580 nm). Photodetector 10M, 1
The output signals of 0N are amplified / AD converter 10P,
10Q is input to the arithmetic unit 10r as a digital signal.
Entered in. The intensities I1 and I2 of the respective wavelength components obtained here are defined as measurement light reference values C and D.

【0058】測定光参照値C,Dは、樹脂塗布前であっ
て樹脂硬化開始前に得られるC1,D1、樹脂塗布後で
あって樹脂硬化開始前に得られるC2,D2、樹脂塗布
後であって樹脂硬化開始中に得られるCs,Dsがあ
る。
The measurement light reference values C and D are C1 and D1 obtained before resin curing and before resin curing starts, C2 and D2 obtained after resin coating and before resin curing, and after resin coating. Therefore, there are Cs and Ds obtained during the initiation of resin curing.

【0059】データC1,D1、データC2,D2、デ
ータCs,Dsは、それぞれ、データA1,B1(ステ
ップS21)、データA2,B2(ステップS41)、
データAs,Bs(ステップS61)と同時に得ること
ができる。
The data C1 and D1, the data C2 and D2, and the data Cs and Ds are data A1 and B1 (step S21), data A2 and B2 (step S41), respectively.
The data As and Bs can be obtained at the same time (step S61).

【0060】この場合、樹脂硬化の度合いXを測定光参
照値C,Dで補正することができる。すなわち、度合い
Xは以下の式で与えられる。
In this case, the degree X of resin curing can be corrected by the measurement light reference values C and D. That is, the degree X is given by the following equation.

【数7】 これにより、測定光自体に含まれるノイズ成分が減じら
れ、より正確な度合いXを求めることができるが、この
式は、上述のXの式を補正したものであり、実質的には
数5を含むものである。また、これらの式は、その他の
補正をかけることもできる。なお、上記ではアクリル系
樹脂を用いた場合の第1波長成分として1580nmを
波長帯域の中心波長として用いたが、これは1600n
mとすることもできる。
[Equation 7] As a result, the noise component contained in the measurement light itself is reduced, and a more accurate degree X can be obtained. However, this equation is a correction of the above-mentioned equation of X, and in practice, It includes. Further, these equations can be subjected to other corrections. In the above description, 1580 nm is used as the center wavelength of the wavelength band as the first wavelength component when the acrylic resin is used.
It can also be m.

【0061】なお、上述の「反射」は全て「透過」に読
み替えることができる。すなわち、測定光は、これが樹
脂内を透過した後に対象物表面で反射され、しかる後に
樹脂内を逆方向に透過した場合に対象物表面で「反射」
が行われたことになり、測定光が樹脂内を透過した後に
対象物も透過した場合に対象物表面を「透過」したこと
になる。いずれの場合も、樹脂内を測定光が透過してい
るため、これを検出すれば硬化度を測定することができ
る。
All the above-mentioned "reflection" can be read as "transmission". That is, the measurement light is “reflected” on the surface of the object when it is reflected on the surface of the object after passing through the resin and then in the opposite direction through the resin.
When the measurement light is transmitted through the resin and then the object is also transmitted, the surface of the object is “transmitted”. In either case, since the measurement light is transmitted through the resin, the degree of curing can be measured by detecting this.

【0062】[0062]

【発明の効果】本発明の樹脂硬化度測定装置によれば、
樹脂硬化の度合いを正確に測定することができる。
According to the resin curing degree measuring device of the present invention,
The degree of resin curing can be accurately measured.

【図面の簡単な説明】[Brief description of drawings]

【図1】樹脂硬化度測定装置の構成図である。FIG. 1 is a configuration diagram of a resin curing degree measuring device.

【図2】アクリル系接着剤を対象物表面1s上に塗布し
た場合の反射光(測定光)の反射率の波長依存性を示す
グラフである。
FIG. 2 is a graph showing the wavelength dependence of the reflectance of reflected light (measurement light) when an acrylic adhesive is applied on the object surface 1s.

【図3】アクリル系接着剤を対象物表面1s上に塗布し
た場合の樹脂による吸光度の波長依存性を示すグラフで
ある。
FIG. 3 is a graph showing the wavelength dependence of the absorbance by the resin when an acrylic adhesive is applied on the surface 1s of the object.

【図4】アクリル系接着剤を対象物表面1s上に塗布し
た場合の樹脂による強度比(I2/I1)の時間微分値
と度合いXの時間依存性を示すグラフである。
FIG. 4 is a graph showing the time-dependent value of the strength differential (I2 / I1) and the degree X of the resin when an acrylic adhesive is applied to the surface 1s of the object.

【図5】アクリル系接着材の硬化進行度(%)と、アク
リル系接着剤に照射される紫外線の積算光量(mJ/c
2)との関係を示すグラフである。
FIG. 5: Curing progress (%) of acrylic adhesive and cumulative light amount (mJ / c) of ultraviolet rays applied to acrylic adhesive
is a graph showing the relationship between m 2).

【図6】演算装置10rの制御を示すフローチャートで
ある。
FIG. 6 is a flowchart showing control of the arithmetic unit 10r.

【図7】は図1に示した樹脂硬化度測定装置に測定光直
接検出光学系を付加した樹脂硬化度測定装置の構成図で
ある。
7 is a configuration diagram of a resin curing degree measuring device in which a measuring light direct detection optical system is added to the resin curing degree measuring device shown in FIG.

【符号の説明】[Explanation of symbols]

1…対象物、1s…対象物表面、2…硬化促進手段(紫
外線光源)、10a…ハウジング、10h,10i、1
0H…フィルタ、10I…フィルタ、10e,10f,
10g…光ファイバ、10F,10G…光ファイバ、1
0m,10n…光検出器、10M,10N…光検出器、
10d…整形光学系、10…樹脂硬化度測定装置、10
c…測定光出射光源、10j,10k…集光レンズ、1
0J…集光レンズ、10K…集光レンズ、10b…電
源、RSN…紫外線硬化樹脂。
DESCRIPTION OF SYMBOLS 1 ... Object, 1s ... Object surface, 2 ... Curing acceleration means (ultraviolet light source), 10a ... Housing, 10h, 10i, 1
0H ... filter, 10I ... filter, 10e, 10f,
10g ... Optical fiber, 10F, 10G ... Optical fiber, 1
0m, 10n ... Photodetector, 10M, 10N ... Photodetector,
10d ... Shaping optical system, 10 ... Resin curing degree measuring device, 10
c ... Measuring light emitting light source, 10j, 10k ... Condensing lens, 1
0J ... condenser lens, 10K ... condenser lens, 10b ... power supply, RSN ... UV curable resin.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 対象物表面上に塗布された樹脂の硬化を
促進させる硬化促進手段と共に用いられる樹脂硬化度測
定装置において、 前記対象物表面で反射された又はこれを透過した測定光
を第1及び第2測定光に分岐する分岐手段と、この分岐手
段によって分岐した第1測定光の第1波長成分、第2測定
光の第2波長成分をそれぞれ選択的に通過させる第1及び
第2フィルタと、前記第1及び第2フィルタを通過した第1
及び第2波長成分をそれぞれ検出する第1及び第2光検出
器と、前記第1及び第2光検出器の出力信号が入力される
制御装置とを備え、 前記制御装置は、 (a)前記樹脂塗布後であって前記硬化促進手段の駆動
期間前に前記対象物表面で反射された又はこれを透過し
た測定光を前記第1及び第2光検出器で検出した場合の前
記第1及び第2光検出器の出力信号間の相対値と、 (b)前記樹脂塗布後であって前記硬化促進手段の駆動
期間中に前記対象物表面で反射された又はこれを透過し
た測定光を前記第1及び第2光検出器で検出した場合の前
記第1及び第2光検出器の出力信号間の相関値と、 に基づいて樹脂硬化の度合いXを演算することを特徴と
する樹脂硬化度測定装置。
1. A resin curing degree measuring device used together with a curing accelerating means for accelerating the curing of a resin applied on the surface of an object, wherein the measurement light reflected by the surface of the object or transmitted through the first And a branching means for branching into the second measuring light, a first wavelength component of the first measuring light branched by the branching means, and a first and second filter for selectively passing the second wavelength component of the second measuring light, respectively. And the first that has passed through the first and second filters
And first and second photodetectors for respectively detecting the second wavelength component, and a control device to which the output signals of the first and second photodetectors are input, the control device comprising: After the resin application, before the driving period of the curing promoting means, the measurement light reflected on or transmitted through the object surface is detected by the first and second photodetectors, and the first and second photodetectors are detected. (2) the relative value between the output signals of the photodetectors, and (b) the measurement light reflected by or transmitted through the surface of the object after the resin application and during the driving period of the curing promoting means, Resin curing degree measurement, characterized in that the degree of resin curing X is calculated based on the correlation value between the output signals of the first and second photodetectors when detected by the first and second photodetectors. apparatus.
【請求項2】 前記制御装置は、(c)前記樹脂塗布前
に固体からなる前記対象物表面で反射された又はこれを
透過した測定光を前記第1及び第2光検出器で検出した場
合の前記第1及び第2光検出器の出力信号を更に用いて、
度合いXを演算することを特徴とする請求項1に記載の
樹脂硬化度測定装置。
2. The control device, when (c) the measuring light reflected by or transmitted through the surface of the solid object before the resin is applied is detected by the first and second photodetectors. Further using the output signals of the first and second photodetectors of,
The resin curing degree measuring device according to claim 1, wherein the degree X is calculated.
【請求項3】 前記工程(a)における出力信号をA
2,B2、前記工程(b)における出力信号をAs,B
s、前記工程(c)における出力信号をA1,B1、既
知係数をKoとした場合、度合いXは以下の式: 【数1】 で与えられることを特徴とする請求項2に記載の樹脂硬
化度測定装置。
3. The output signal in the step (a) is A
2, B2, the output signal in the step (b) is As, B
s, the output signal in the step (c) is A1, B1, and the known coefficient is Ko, the degree X is expressed by the following equation: The resin curing degree measuring device according to claim 2, wherein
【請求項4】 前記制御装置は、既に硬化した樹脂を表
面上に有する対象物を標準サンプルとし、この標準サン
プルに測定光を照射した場合の前記第1及び第2検出器の
出力信号に基づいて既知係数Koを決定することを特徴
とする請求項3に記載の樹脂硬化度測定装置。
4. The control device uses an object having a cured resin on its surface as a standard sample, and based on output signals of the first and second detectors when the standard sample is irradiated with measurement light. The resin curing degree measuring device according to claim 3, wherein the known coefficient Ko is determined by the above.
【請求項5】 前記硬化促進手段は紫外線光源であり、
前記第1及び第2フィルタは紫外線以外の波長帯から選
択される波長を前記第1及び第2波長成分として透過さ
せるフィルタであり、前記樹脂は紫外線硬化樹脂である
ことを特徴とする請求項1に記載の樹脂硬化度測定装
置。
5. The curing promoting means is an ultraviolet light source,
The first and second filters are filters that transmit a wavelength selected from a wavelength band other than ultraviolet rays as the first and second wavelength components, and the resin is an ultraviolet curable resin. The resin curing degree measuring device as described in.
【請求項6】 前記制御装置は、度合いXが以下の条
件: 【数2】 を満たした場合に前記硬化促進手段を停止させる制御信
号を出力することを特徴とする請求項3に記載の樹脂硬
化度測定装置。
6. The control device sets the condition that the degree X is as follows: The resin curing degree measuring device according to claim 3, wherein a control signal for stopping the curing accelerating means is output when the above condition is satisfied.
JP2001339735A 2001-11-05 2001-11-05 Resin hardening degree measuring device Expired - Fee Related JP3839703B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001339735A JP3839703B2 (en) 2001-11-05 2001-11-05 Resin hardening degree measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001339735A JP3839703B2 (en) 2001-11-05 2001-11-05 Resin hardening degree measuring device

Publications (2)

Publication Number Publication Date
JP2003139697A true JP2003139697A (en) 2003-05-14
JP3839703B2 JP3839703B2 (en) 2006-11-01

Family

ID=19154043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001339735A Expired - Fee Related JP3839703B2 (en) 2001-11-05 2001-11-05 Resin hardening degree measuring device

Country Status (1)

Country Link
JP (1) JP3839703B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010025558A (en) * 2008-07-15 2010-02-04 Topcon Corp Optical system for measurement
JP2011080984A (en) * 2009-09-10 2011-04-21 Sumitomo Chemical Co Ltd Method of evaluating adhesiveness
WO2011162113A1 (en) * 2010-06-22 2011-12-29 株式会社日立ハイテクノロジーズ Automatic analysis device
JP2013007680A (en) * 2011-06-24 2013-01-10 Nippon Sheet Glass Co Ltd Cured state measuring instrument and cured state measuring method
JP2013064918A (en) * 2011-09-20 2013-04-11 Seiko Epson Corp Drawing device and drawing method
JP2013238591A (en) * 2012-05-15 2013-11-28 Palo Alto Research Center Inc Low-cost measurement system for photopolymer film polymerization monitoring
JP2015166701A (en) * 2014-03-04 2015-09-24 武藤工業株式会社 Curing degree measuring device for ultraviolet ray-curable ink by using spectral photometer, and printing apparatus using the same
JP2016133449A (en) * 2015-01-21 2016-07-25 富士通株式会社 Hardness distribution measurement device and hardness distribution measurement method of photocurable resin
JPWO2016017464A1 (en) * 2014-07-30 2017-04-27 国立研究開発法人産業技術総合研究所 Photocrosslinking film production equipment
CN107611204A (en) * 2017-10-18 2018-01-19 江西共青城汉能薄膜太阳能有限公司 A kind of confirmation method of solar cell module embedding adhesive curing
JP2019215232A (en) * 2018-06-12 2019-12-19 オムロン株式会社 Evaluation device and evaluation method
JP2020067380A (en) * 2018-10-24 2020-04-30 株式会社東芝 Deterioration estimation device, deterioration estimation system, deterioration estimation method and computer program
JP2020085770A (en) * 2018-11-29 2020-06-04 株式会社日立ビルシステム Scattered light detection device, and nondestructive inspection device using the same
US10746660B2 (en) 2016-07-29 2020-08-18 3M Innovative Properties Company Cure monitoring systems and methods

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010025558A (en) * 2008-07-15 2010-02-04 Topcon Corp Optical system for measurement
JP2011080984A (en) * 2009-09-10 2011-04-21 Sumitomo Chemical Co Ltd Method of evaluating adhesiveness
WO2011162113A1 (en) * 2010-06-22 2011-12-29 株式会社日立ハイテクノロジーズ Automatic analysis device
JP2012007896A (en) * 2010-06-22 2012-01-12 Hitachi High-Technologies Corp Automatic analyzer
JP2013007680A (en) * 2011-06-24 2013-01-10 Nippon Sheet Glass Co Ltd Cured state measuring instrument and cured state measuring method
JP2013064918A (en) * 2011-09-20 2013-04-11 Seiko Epson Corp Drawing device and drawing method
JP2013238591A (en) * 2012-05-15 2013-11-28 Palo Alto Research Center Inc Low-cost measurement system for photopolymer film polymerization monitoring
JP2015166701A (en) * 2014-03-04 2015-09-24 武藤工業株式会社 Curing degree measuring device for ultraviolet ray-curable ink by using spectral photometer, and printing apparatus using the same
JPWO2016017464A1 (en) * 2014-07-30 2017-04-27 国立研究開発法人産業技術総合研究所 Photocrosslinking film production equipment
JP2016133449A (en) * 2015-01-21 2016-07-25 富士通株式会社 Hardness distribution measurement device and hardness distribution measurement method of photocurable resin
US10746660B2 (en) 2016-07-29 2020-08-18 3M Innovative Properties Company Cure monitoring systems and methods
CN107611204A (en) * 2017-10-18 2018-01-19 江西共青城汉能薄膜太阳能有限公司 A kind of confirmation method of solar cell module embedding adhesive curing
JP2019215232A (en) * 2018-06-12 2019-12-19 オムロン株式会社 Evaluation device and evaluation method
WO2019239651A1 (en) * 2018-06-12 2019-12-19 オムロン株式会社 Evaluation device and evaluation method
JP7059818B2 (en) 2018-06-12 2022-04-26 オムロン株式会社 Evaluation device and evaluation method
JP2020067380A (en) * 2018-10-24 2020-04-30 株式会社東芝 Deterioration estimation device, deterioration estimation system, deterioration estimation method and computer program
JP7237516B2 (en) 2018-10-24 2023-03-13 株式会社東芝 Deterioration estimation device, deterioration estimation system, deterioration estimation method, and computer program
JP2020085770A (en) * 2018-11-29 2020-06-04 株式会社日立ビルシステム Scattered light detection device, and nondestructive inspection device using the same
JP7106436B2 (en) 2018-11-29 2022-07-26 株式会社日立ビルシステム Scattered light detection device and non-destructive inspection device using the same

Also Published As

Publication number Publication date
JP3839703B2 (en) 2006-11-01

Similar Documents

Publication Publication Date Title
JP2003139697A (en) Resin degree-of-curing measuring apparatus
US7643859B2 (en) Non-invasive glucose meter
US6441900B1 (en) Method and apparatus for calibrating an optical spectrum analyzer in wavelength
US7649627B2 (en) Wavelength calibration method and wavelength calibration apparatus
US9170194B2 (en) Material property measuring apparatus
JP5973954B2 (en) Low-cost measurement system for polymerization monitoring of photosensitive resin films.
JP5056308B2 (en) Curing state measuring device
US4904088A (en) Method and apparatus for determining radiation wavelengths and wavelength-corrected radiation power of monochromatic light sources
JPH0364812B2 (en)
JPS61286703A (en) Detector for detecting minute displacement
JPH08304282A (en) Gas analyzer
WO2001086261A1 (en) Method and device for detecting end point of curing of resin, assembly, apparatus and method for producing assembly
JP2002081916A (en) Film thickness measuring method and film thickness sensor using the same
US6723989B1 (en) Remote emissions sensing system and method with a composite beam of IR and UV radiation that is not split for detection
JPH0450639A (en) Optical sample analyzer
JP2009287999A (en) Fluorescence detecting system and concentration measuring method using it
JP2000074634A (en) Method and instrument for measuring thickness of macromolecular film
JPS63201536A (en) Ultraviolet-ray illuminance measuring instrument of ultraviolet-ray irradiation device for optical fiber drawing device
US20060285107A1 (en) Method for sensing and controlling radiation incident on substrate
JPH0131580B2 (en)
JPH0680444A (en) Production of optical fiber core filament
JPH03214040A (en) Light analyzing apparatus
JP2003106902A (en) Non-contact temperature measuring method and apparatus therefor
JP2002081910A (en) Method for measuring film thickness and film thickness sensor using it
KR20020095255A (en) Method and device for detecting end point of curing of resin, assembly, apparatus and method for producing assembly

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060523

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060622

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060801

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060803

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100811

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100811

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110811

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120811

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120811

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130811

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees