JP2003137552A - Method for producing arsenious acid - Google Patents

Method for producing arsenious acid

Info

Publication number
JP2003137552A
JP2003137552A JP2001327838A JP2001327838A JP2003137552A JP 2003137552 A JP2003137552 A JP 2003137552A JP 2001327838 A JP2001327838 A JP 2001327838A JP 2001327838 A JP2001327838 A JP 2001327838A JP 2003137552 A JP2003137552 A JP 2003137552A
Authority
JP
Japan
Prior art keywords
solution
arsenic
sulfuric acid
copper
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001327838A
Other languages
Japanese (ja)
Other versions
JP3963093B2 (en
Inventor
Yasushi Isshiki
靖志 一色
Osamu Nakano
修 中野
Yasuhiko Kamata
靖彦 鎌田
Harumasa Kurokawa
晴正 黒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2001327838A priority Critical patent/JP3963093B2/en
Publication of JP2003137552A publication Critical patent/JP2003137552A/en
Application granted granted Critical
Publication of JP3963093B2 publication Critical patent/JP3963093B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for efficiently producing arsenious acid at a low cost by preventing the lowering of reaction rate by controlling sulfuric acid concentration when solid arsenious acid extracted from an arsenic sulfied- containing material is oxidized and dissolved, and by generating a copper ion necessary as a catalyst instead of adding a copper sulfate solution in a system. SOLUTION: The method comprises a first step to recover a solid content which contains arsenious acid by cooling a slurry containing an extracted residue after extracting aresenic in the copper sulfate solution from the arsenic sulfied-containing material, a second step to oxidize trivalent arsenic to pentavalent arsenic whose solubility is large by aeration while controlling the sulfuric acid concentration to 70 g/L or less after copper oxide and a solution containing sulfuric acid are added to the solid content containing arsenious acid and a third step to deposit arsenious acid by reducing pentavalent arsenic in a solution after solid-liquid separation and to recover it.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、硫化砒素含有物か
ら亜砒酸を分離精製して回収する方法に関するものであ
る。
TECHNICAL FIELD The present invention relates to a method for separating and refining arsenous acid from an arsenic sulfide-containing material and recovering it.

【0002】[0002]

【従来の技術】銅製錬中間物として産出する硫化澱物の
ような硫化砒素含有物から亜砒酸を精製回収する方法と
して、特公昭60−46048公報に記載された方法が
ある。
2. Description of the Related Art As a method for purifying and recovering arsenous acid from an arsenic sulfide-containing material such as a sulfurized starch produced as a copper smelting intermediate, there is a method described in JP-B-60-46048.

【0003】この方法は、図2に示すように、第一工程
において、硫化殿物等の硫化砒素含有物を加温状態の硫
酸銅含有水溶液と反応させることにより、砒素を亜砒酸
イオンとして液中に溶解して抽出し、抽出残渣を含むス
ラリーを冷却して亜砒酸を含む固形分を回収する。
In this method, as shown in FIG. 2, in a first step, an arsenic sulfide-containing substance such as a sulfide compound is reacted with an aqueous solution containing copper sulfate in a warmed state to convert arsenic into arsenite ions in the liquid. Is dissolved in and extracted, and the slurry containing the extraction residue is cooled to recover the solid content containing arsenous acid.

【0004】次の第二工程では、回収した亜砒酸を含む
固形分をリパルプしてスラリーとし、1g/l以上の銅
イオンの存在下でエアレーションすることにより、亜砒
酸の大部分を砒酸に酸化して溶液中に溶解させる。その
後、第三工程において、固液分離した溶液中の砒酸を亜
硫酸ガス(SO)で還元し、亜砒酸として析出させ
る。
In the next second step, the recovered solid content containing arsenous acid is repulped into a slurry to aerate in the presence of 1 g / l or more of copper ions to oxidize most of the arsenic acid to arsenic acid. Dissolve in solution. After that, in the third step, arsenic acid in the solid-liquid separated solution is reduced with sulfurous acid gas (SO 2 ) to precipitate as arsenous acid.

【0005】この方法によれば、砒素の回収率は70%
以上と高く、またZn等の不純物を第二工程で固形分を
得る際に濾液中から系外へ払い出すことで濃縮を防止
し、高品位の亜砒酸を回収することができる。
According to this method, the recovery rate of arsenic is 70%.
As described above, impurities such as Zn are discharged from the filtrate out of the system when solids are obtained in the second step, whereby concentration can be prevented and high-quality arsenous acid can be recovered.

【0006】[0006]

【本発明が解決しようとする課題】上記特公昭60−4
6048公報に記載の亜砒酸の製造方法では、砒素抽出
のための第一工程に銅イオンを供給するため、別の銅抽
出工程において、硫酸含有溶液(図2中に*で示した第
一工程の置換終液、第三工程の還元終液、第二工程の残
渣の洗浄液等)を用い、酸化銅から硫酸銅を抽出して硫
酸銅溶液を製造している。
[Problems to be Solved by the Invention] Japanese Patent Publication No. 60-4
In the method for producing arsenous acid described in JP-A-6048, since copper ions are supplied to the first step for extracting arsenic, in another copper extraction step, a sulfuric acid-containing solution (the first step indicated by * in FIG. 2 is used). Copper sulfate is extracted from copper oxide to produce a copper sulfate solution by using the replacement final solution, the final reduction solution of the third step, the cleaning solution of the residue of the second step, etc.).

【0007】しかし、同時に第二工程には酸化反応の触
媒として必要な銅イオンを供給するため、第一工程の砒
素抽出用の高濃度硫酸銅溶液とは濃度の異なる低濃度の
硫酸銅溶液を別途製造する必要があった。このため銅抽
出工程で2種類の濃度の異なる硫酸銅溶液を製造しなけ
ればならず、極めて不経済であった。
However, at the same time, since copper ions required as a catalyst for the oxidation reaction are supplied to the second step, a low-concentration copper sulfate solution having a different concentration from the high-concentration copper sulfate solution for arsenic extraction in the first step is used. It had to be manufactured separately. For this reason, two kinds of copper sulfate solutions having different concentrations had to be produced in the copper extraction step, which was extremely uneconomical.

【0008】また、第二工程の酸化反応速度にはスラリ
ー中の硫酸濃度が悪影響をもたらすため、硫酸濃度を7
0g/l程度以下に抑えて運転することが望ましい。し
かしながら、第二工程のスラリー中の硫酸濃度は、第一
工程にて処理される硫化澱物中の砒素品位によって決ま
ってしまうので、硫酸濃度を制御するのは困難であっ
た。
Further, the sulfuric acid concentration in the slurry has an adverse effect on the oxidation reaction rate in the second step.
It is desirable to control the operation at 0 g / l or less. However, it is difficult to control the sulfuric acid concentration because the sulfuric acid concentration in the slurry in the second step is determined by the arsenic grade in the sulfurized starch treated in the first step.

【0009】具体的には、第一工程で硫化澱物の砒素品
位が高いほど、硫酸銅の消費が増え且つ副製する硫酸が
増加する。この硫酸のほとんどは濾液として分離される
が、残渣に付着する水分が50%程度あるため、第二工
程に持ち込まれる硫酸分が増加する。この硫酸分は、例
えばNaOHやCa(OH)等のアルカリにより中和す
る方法が考えられるが、Naによる製品の汚染や石膏析
出によるスケーリングが問題となるうえ、不要な中和剤
コストを増大させるので実用は困難であった。
Specifically, the higher the arsenic grade of the sulfided starch in the first step, the more the consumption of copper sulfate and the amount of sulfuric acid produced as a by-product increase. Most of this sulfuric acid is separated as a filtrate, but since the water content attached to the residue is about 50%, the sulfuric acid content brought into the second step increases. This sulfuric acid content may be neutralized with an alkali such as NaOH or Ca (OH) 2. However, contamination of the product with Na or scaling due to gypsum precipitation poses a problem and increases the cost of the unnecessary neutralizing agent. It was difficult to put it into practice.

【0010】本発明は、このような従来の事情に鑑み、
硫化砒素含有物から亜砒酸を精製回収する特公昭60−
46048公報記載の方法を改良し、第二工程である酸
化反応の速度低下を防ぐため硫酸濃度を制御することが
できると共に、第二工程の酸化反応に触媒として必要な
銅イオンを系内で生成させ、第二工程への低濃度の硫酸
銅溶液の製造供給を省略することにより、効率的で製造
コストが低い亜砒酸の製造方法を提供することを目的と
する。
The present invention has been made in view of such conventional circumstances.
Japanese Patent Publication Sho-60- for refining and recovering arsenous acid from arsenic sulfide-containing materials
The method described in JP-A-46048 is improved so that the sulfuric acid concentration can be controlled in order to prevent a reduction in the rate of the oxidation reaction in the second step, and copper ions necessary as a catalyst for the oxidation reaction in the second step are generated in the system. By omitting the production and supply of the low-concentration copper sulfate solution to the second step, it is an object of the present invention to provide an efficient and low-cost production method of arsenous acid.

【0011】[0011]

【課題を解決するための手段】本発明は、上記目的を達
成するために硫化砒素含有物から硫酸銅含有水溶液中に
砒素を亜砒酸イオンとして抽出し、抽出残渣を含むスラ
リーを冷却して亜砒酸を含む固形分を回収する第一工程
と、回収した亜砒酸を含む固形分に酸化銅と硫酸含有溶
液を添加し、エアレーションにより硫酸銅抽出反応と砒
素の酸化反応とを同時に行い、3価の砒素を溶解度の高
い5価に酸化して溶液中に溶解させる第二工程と、固液
分離した溶液中の5価の砒素を還元して亜砒酸を析出回
収する第三工程とを含むことを特徴とする。
In order to achieve the above object, the present invention extracts arsenic as arsenite ions from an arsenic sulfide-containing material in a copper sulfate-containing aqueous solution, and cools a slurry containing an extraction residue to remove arsenite. The first step of recovering the solid content containing is added, the copper oxide and the sulfuric acid-containing solution are added to the recovered solid content containing arsenous acid, and the copper sulfate extraction reaction and the arsenic oxidation reaction are simultaneously performed by aeration to produce trivalent arsenic. The method is characterized by including a second step of oxidizing to pentavalent with high solubility and dissolving in a solution, and a third step of reducing pentavalent arsenic in the solid-liquid separated solution to precipitate and recover arsenous acid. .

【0012】上記本発明の亜砒酸の製造方法において
は、前記第二工程における溶液中の硫酸濃度が70g/
l以下となるように、前記硫酸含有溶液の硫酸濃度に基
づいて、酸化銅の添加量を制御することを特徴とする。
また、前記第二工程において、酸化反応時における溶液
中の銅イオン濃度を1〜30g/lの範囲に制御するこ
とを特徴とする。
In the method for producing arsenous acid of the present invention, the concentration of sulfuric acid in the solution in the second step is 70 g /
The addition amount of copper oxide is controlled based on the sulfuric acid concentration of the sulfuric acid-containing solution so as to be 1 or less.
Further, in the second step, the copper ion concentration in the solution during the oxidation reaction is controlled to be in the range of 1 to 30 g / l.

【0013】[0013]

【発明の実施の形態】本発明方法の工程図を図1に示
す。また、各工程の反応式を下記化学式1〜3に示す
が、第一工程及び第三工程は前記特公昭60−4604
8に記載の方法と同一である。
DETAILED DESCRIPTION OF THE INVENTION A process diagram of the method of the present invention is shown in FIG. Further, the reaction formulas of the respective steps are shown in the following chemical formulas 1 to 3, and the first step and the third step are the same as those described in JP-B-60-4604.
The method is the same as that described in 8.

【0014】この本発明方法における第一工程では、硫
酸銅含有水溶液により硫化砒素含有物中の砒素を亜砒酸
イオンとして抽出する。抽出残渣を含むスラリーを冷却
し、置換残渣として亜砒酸を含む固形分を回収する。
尚、第一工程で用いる硫酸銅溶液は図1に示す銅抽出工
程で製造するが、その際に用いる硫酸含有溶液は第一工
程の置換終液、第三工程の還元終液、第二工程の残渣の
洗浄液(図1中に*で示す)等を繰り返して使用するこ
とができる。
In the first step of the method of the present invention, the arsenic in the arsenic sulfide-containing material is extracted as arsenite ions with an aqueous solution containing copper sulfate. The slurry containing the extraction residue is cooled, and the solid content containing arsenous acid is collected as the replacement residue.
The copper sulfate solution used in the first step is produced in the copper extraction step shown in FIG. 1, and the sulfuric acid-containing solution used in this case is the replacement final solution in the first step, the reduction final solution in the third step, and the second step. The cleaning solution for the residue (shown by * in FIG. 1) and the like can be repeatedly used.

【0015】第二工程では、第一工程で回収した亜砒酸
を含む固形分に、酸化銅と硫酸含有溶液とを添加し、2
0℃以上に昇温してエアレーションすることにより、3
価の砒素(亜砒酸)を溶解度の高い5価(砒酸)に酸化
して溶液中に溶解させる。これを濾過して固液分離した
後、第三工程において、分離した溶液にSOなどの還
元剤を加えて5価の砒素を還元し、亜砒酸を析出させて
回収する。尚、第二工程で用いる硫酸銅溶液としては、
第一工程の置換終液、第三工程の還元終液、第二工程の
残渣の洗浄液等を繰り返して用いることができる。
In the second step, copper oxide and a sulfuric acid-containing solution are added to the solid content containing arsenous acid recovered in the first step, and 2
By raising the temperature to 0 ° C or higher and performing aeration, 3
Valence arsenic (arsenous acid) is oxidized to pentavalent (arsenic acid) having high solubility and dissolved in the solution. After this is filtered and solid-liquid separated, in the third step, a reducing agent such as SO 2 is added to the separated solution to reduce pentavalent arsenic, and arsenous acid is deposited and recovered. As the copper sulfate solution used in the second step,
The replacement final solution in the first step, the reduction final solution in the third step, the residue cleaning solution in the second step, and the like can be repeatedly used.

【0016】[0016]

【化1】第一工程: As+3CuSO+4HO=2HAsO
3CuS+3HSO
Embedded image First step: As 2 S 3 + 3CuSO 4 + 4H 2 O = 2HAsO 2 +
3CuS + 3H 2 SO 4

【0017】[0017]

【化2】第二工程: CuO+HSO=CuSO+HO As+O+3HO=2HAsO Embedded image Second step: CuO + H 2 SO 4 = CuSO 4 + H 2 O As 2 O 3 + O 2 + 3H 2 O = 2H 3 AsO 4

【0018】[0018]

【化3】第三工程: 2HAsO+2SO=As+2HSO
+H
Embedded image Third step: 2H 3 AsO 4 + 2SO 2 = As 2 O 3 + 2H 2 SO 4
+ H 2 O

【0019】本発明方法では、第二工程において、酸化
反応の触媒として作用する銅イオンとして、従来方法で
の硫酸銅溶液の添加に代えて、酸化銅と共に硫酸を含む
溶液を添加することにより、硫酸銅抽出反応を系内のそ
の場で起こさせると同時に、亜砒酸の酸化反応を行う。
従って、砒素抽出の第一工程に供給する高濃度の硫酸銅
溶液のみを製造すればよく、従来に比べて非常に経済的
である。
In the method of the present invention, in the second step, as a copper ion which acts as a catalyst for the oxidation reaction, a solution containing sulfuric acid together with copper oxide is added instead of the copper sulfate solution in the conventional method. At the same time that the copper sulfate extraction reaction takes place in situ in the system, arsenous acid is oxidized.
Therefore, only the high-concentration copper sulfate solution to be supplied in the first step of arsenic extraction needs to be manufactured, which is much more economical than the conventional method.

【0020】第二工程の酸化反応における硫酸イオンの
影響については、前記特公昭60−46048号公報に
既に記載されている。現在稼働しているプラントでの酸
化反応の初期における硫酸濃度と、酸化反応速度との関
係を図3に示した。この酸化反応では反応槽等の設備規
模に応じて必要速度が決められるが、プラントの液処理
能力に必要である1g/l・hr以上の反応速度とする
には、図3から硫酸濃度を70g/l以下とする必要が
あることが分る。
The effect of sulfate ion on the oxidation reaction in the second step has already been described in the above-mentioned JP-B-60-46048. The relationship between the sulfuric acid concentration at the initial stage of the oxidation reaction and the oxidation reaction rate in the plant currently operating is shown in FIG. In this oxidation reaction, the required rate is determined according to the scale of the equipment such as the reaction tank. To achieve a reaction rate of 1 g / l · hr or more, which is necessary for the liquid treatment capacity of the plant, the sulfuric acid concentration should be 70 g from FIG. It turns out that it is necessary to make it less than / l.

【0021】本発明方法の実施に際しては、酸化反応で
の目標とする硫酸濃度について、反応槽の大きさから算
出した滞留時間を越えない酸化速度を得るべく、70g
/l以下にて設定すればよい。また、硫酸濃度が低いほ
ど酸化速度が速く、酸化速度が倍になれば酸化反応で必
要な設備は半分の容量ですむため、経済的には硫酸濃度
は低いほど有利である。
In carrying out the method of the present invention, 70 g of the target sulfuric acid concentration in the oxidation reaction is obtained in order to obtain an oxidation rate which does not exceed the residence time calculated from the size of the reaction tank.
It may be set at less than / l. Also, the lower the sulfuric acid concentration, the faster the oxidation rate, and if the oxidation rate doubles, the equipment required for the oxidation reaction requires only half the capacity. Therefore, the lower the sulfuric acid concentration, the more economically advantageous.

【0022】しかし、本発明方法により酸化銅と硫酸含
有溶液から硫酸銅をその場で生成する場合、硫酸分の減
少に見合う量の銅イオンが液中に生成される。このため
銅濃度が上昇しすぎると、第三工程で砒酸を亜砒酸に還
元晶析する際に製品への銅の混入量増加が懸念される。
尚、亜砒酸中の微量不純物である銅品位については、主
に付着水中に存在していることが想定されている。
However, when copper sulfate is produced in situ from a solution containing copper oxide and sulfuric acid by the method of the present invention, an amount of copper ions corresponding to the reduction of the sulfuric acid content is produced in the liquid. Therefore, if the copper concentration rises too much, there is a concern that the amount of copper mixed in the product may increase when the arsenic acid is reduced and crystallized to arsenous acid in the third step.
The copper grade, which is a trace impurity in arsenous acid, is assumed to exist mainly in the adhered water.

【0023】亜砒酸の粒子径を大きくしたり、長時間洗
浄することによって、不純物を低減することが可能であ
る。しかし、溶液中の銅イオン濃度が30g/lを越え
ると、洗浄時間が長くなるため処理液量が増大して設備
の大型化を招いたり、工程外への払出し液量が増加する
ことでAsの回収率を低下させる等の不都合が生じる。
このため、亜砒酸の銅品位を10ppm以下とするため
には、通常1〜30g/l程度の銅イオン濃度とするこ
とが望ましい。
Impurities can be reduced by increasing the particle size of arsenous acid or by cleaning for a long time. However, when the concentration of copper ions in the solution exceeds 30 g / l, the cleaning time becomes long and the amount of treatment liquid increases, which leads to enlargement of equipment and the amount of liquid to be discharged to the outside of the process increases. Inconveniences such as lowering the recovery rate of
Therefore, in order to reduce the copper quality of arsenous acid to 10 ppm or less, it is usually desirable to set the copper ion concentration to about 1 to 30 g / l.

【0024】よって、目的とする硫酸濃度を得るため供
給する酸化銅の添加量を下記計算にて算出し、銅イオン
濃度及び硫酸濃度として最適な値を選択すれば良い。従
って、硫化砒素含有物が銅製錬の硫化沈殿生成による重
金属分離工程で産出される硫化澱物である場合、硫化澱
物の硫化砒素品位が変動しても、常に最適な銅イオン濃
度及び硫酸濃度を安定して得ることが可能である。
Therefore, the addition amount of copper oxide to be supplied in order to obtain the target sulfuric acid concentration may be calculated by the following calculation, and optimum values may be selected as the copper ion concentration and the sulfuric acid concentration. Therefore, when the arsenic sulfide-containing material is a sulfurized starch produced in the heavy metal separation process by the formation of sulfurized precipitate in copper smelting, even if the arsenic sulfide grade of the sulfurized starch varies, the optimum copper ion concentration and sulfuric acid concentration are always maintained. Can be stably obtained.

【0025】低減硫酸濃度(g/l)=酸化初期の硫酸濃度
(g/l)−目標硫酸濃度(g/l) 必要Cu添加量(kg)=低減硫酸濃度(g/l)×処理液量(m
)÷98×63.5 酸化銅添加量(kg)=必要Cu添加量(kg)÷酸化銅のCu
品位(%) 銅濃度上昇(g/l)=必要Cu添加量(kg)÷処理液量(m)
Reduced sulfuric acid concentration (g / l) = sulfuric acid concentration at the initial stage of oxidation
(g / l) -Target sulfuric acid concentration (g / l) Required Cu addition amount (kg) = Reduced sulfuric acid concentration (g / l) x Treatment liquid amount (m
3 ) ÷ 98 × 63.5 Copper oxide addition amount (kg) = Required Cu addition amount (kg) ÷ Copper oxide Cu
Grade (%) Copper concentration increase (g / l) = Required Cu addition amount (kg) ÷ Treatment liquid amount (m 3 )

【0026】[0026]

【実施例】図1に示す工程に従って、まず第一工程にお
いて、硫化砒素澱物に硫酸銅溶液及び水を加えてスラリ
ーとし、70〜75℃に加温しながら撹拌して砒素を抽
出した後、全体を室温に冷却して固液分離し、亜砒酸を
含む固形分を回収した。尚、銅抽出工程では、上記第一
工程に供給する高濃度の硫酸銅溶液のみを製造した。
EXAMPLE According to the process shown in FIG. 1, first, in a first process, a copper sulfate solution and water were added to an arsenic sulfide precipitate to form a slurry, and arsenic was extracted by stirring while heating at 70 to 75 ° C. The whole was cooled to room temperature and solid-liquid separated, and the solid content containing arsenous acid was recovered. In the copper extraction step, only the high-concentration copper sulfate solution supplied to the first step was manufactured.

【0027】次の第二工程では、この固形分を酸化銅と
共に硫酸含有溶液に加えてリパルプし、70〜75℃に
加温しながら空気を吹き込んでエアレーションした後、
スラリーを濾過して固液分離した。第三工程では、得ら
れた溶液にSOガスを供給して還元し、析出した亜砒
酸を濾過して回収した。尚、第二工程で用いる硫酸含有
溶液として、第三工程で副製する硫酸を含む還元終液、
第一工程で得られる置換終液、第二工程で得られる残渣
の洗浄液など、銅抽出工程で使用する系内繰り返し液を
そのまま添加した。
In the next second step, this solid content was added to a sulfuric acid-containing solution together with copper oxide to be repulped, and air was blown in while aerating by heating at 70 to 75 ° C.
The slurry was filtered and solid-liquid separated. In the third step, SO 2 gas was supplied to the obtained solution to reduce it, and the precipitated arsenous acid was filtered and recovered. Incidentally, as the sulfuric acid-containing solution used in the second step, a reduction final solution containing sulfuric acid by-produced in the third step,
The in-system repeating solution used in the copper extraction step, such as the final substitution solution obtained in the first step and the washing solution for the residue obtained in the second step, was added as it was.

【0028】上記本発明例における試料1〜10ごと
に、上記第二工程における酸化反応の速度を、銅濃度及
び硫酸濃度と共に、特公昭60−46048公報の方法
により実施した従来例と比較して、下記表1に示した。
尚、表1には、酸化速度、銅濃度、及び硫酸濃度につい
て、試料ごとに平均値と標準偏差を求めて併記した。
For each of Samples 1 to 10 in the present invention, the rate of the oxidation reaction in the second step was compared with the conventional example carried out by the method of Japanese Patent Publication No. 60-46048 along with the copper concentration and the sulfuric acid concentration. The results are shown in Table 1 below.
In Table 1, the average value and standard deviation of the oxidation rate, the copper concentration, and the sulfuric acid concentration were calculated for each sample and are shown together.

【0029】[0029]

【表1】 [Table 1]

【0030】本発明例の各試料では、硫酸濃度を目標と
する70g/l以下にほぼ抑えることができ、銅濃度も
30g/l以下に制御されていることが解る。一方、従
来例では、硫酸濃度を制御する手段が無いため、非常に
高い硫酸濃度となっている。また、この時の本発明例の
酸化反応における速度は、明らかに従来例のものよりも
速くなっている。
In each of the samples of the present invention, it can be seen that the sulfuric acid concentration can be suppressed to a target value of 70 g / l or less, and the copper concentration is also controlled to 30 g / l or less. On the other hand, in the conventional example, since there is no means for controlling the sulfuric acid concentration, the sulfuric acid concentration is extremely high. At this time, the rate of the oxidation reaction of the example of the present invention is obviously higher than that of the conventional example.

【0031】[0031]

【発明の効果】本発明によれば、第一工程に供給する硫
酸銅溶液のみを銅抽出工程で製造すればよいため、撹拌
機やポンプの電力が削減可能となり、低コストにて亜砒
酸を製造することができる。
According to the present invention, since only the copper sulfate solution supplied to the first step has to be produced in the copper extraction step, the agitator and pump power can be reduced, and arsenous acid can be produced at low cost. can do.

【0032】また、亜砒酸を砒酸に酸化して溶解させる
第二工程では、酸化銅を硫酸含有溶液と共にスラリーに
添加することにより、硫酸銅の抽出反応と砒素の酸化反
応とが同時に進行し、硫酸銅抽出反応で消費された分だ
け硫酸分が低減される。従って、従来は制御不能であっ
た第二工程の硫酸濃度を任意に制御でき、望ましい酸化
反応速度を安定して維持することが可能となる。
In the second step of oxidizing and dissolving arsenous acid into arsenic acid, copper oxide is added to the slurry together with the sulfuric acid-containing solution, so that the extraction reaction of copper sulfate and the oxidation reaction of arsenic proceed at the same time. The sulfuric acid content is reduced by the amount consumed in the copper extraction reaction. Therefore, the sulfuric acid concentration in the second step, which was conventionally uncontrollable, can be arbitrarily controlled, and the desired oxidation reaction rate can be stably maintained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明方法の工程図である。FIG. 1 is a process drawing of the method of the present invention.

【図2】従来方法の工程図である。FIG. 2 is a process diagram of a conventional method.

【図3】第二工程における硫酸濃度と酸化速度の関係を
示すグラフである。
FIG. 3 is a graph showing the relationship between the sulfuric acid concentration and the oxidation rate in the second step.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 鎌田 靖彦 愛媛県新居浜市西原町3−5−3 住友金 属鉱山株式会社別子事業所内 (72)発明者 黒川 晴正 愛媛県新居浜市西原町3−5−3 住友金 属鉱山株式会社別子事業所内 Fターム(参考) 4G048 AA02 AB02 AB08 AE01 AE05   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Yasuhiko Kamada             3-5-3 Nishihara-cho, Niihama-shi, Ehime Sumitomo Kin             Besshi Works, Inc. (72) Inventor Harumasa Kurokawa             3-5-3 Nishihara-cho, Niihama-shi, Ehime Sumitomo Kin             Besshi Works, Inc. F term (reference) 4G048 AA02 AB02 AB08 AE01 AE05

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 硫化砒素含有物から硫酸銅含有水溶液中
に砒素を亜砒酸イオンとして抽出し、抽出残渣を含むス
ラリーを冷却して亜砒酸を含む固形分を回収する第一工
程と、回収した亜砒酸を含む固形分に酸化銅と硫酸含有
溶液を添加し、エアレーションにより硫酸銅抽出反応と
砒素の酸化反応とを同時に行い、3価の砒素を溶解度の
高い5価に酸化して溶液中に溶解させる第二工程と、固
液分離した溶液中の5価の砒素を還元して亜砒酸を析出
回収する第三工程とを含むことを特徴とする亜砒酸の製
造方法。
1. A first step in which arsenic is extracted as arsenite ions from an arsenic sulfide-containing material into a copper sulfate-containing aqueous solution, and a slurry containing an extraction residue is cooled to recover a solid content containing arsenous acid; A solution containing copper oxide and sulfuric acid is added to the solid content, and the copper sulfate extraction reaction and the arsenic oxidation reaction are simultaneously performed by aeration to oxidize trivalent arsenic into pentavalent one having high solubility and dissolve it in the solution. A method for producing arsenous acid, comprising: two steps; and a third step of reducing pentavalent arsenic in a solid-liquid separated solution to precipitate and recover arsenous acid.
【請求項2】 前記第二工程における溶液中の硫酸濃度
が70g/l以下となるように、前記硫酸含有溶液の硫
酸濃度に基づいて、酸化銅の添加量を制御することを特
徴とする、請求項1に記載の亜砒酸の製造方法。
2. The addition amount of copper oxide is controlled based on the sulfuric acid concentration of the sulfuric acid-containing solution so that the sulfuric acid concentration in the solution in the second step is 70 g / l or less. The method for producing arsenous acid according to claim 1.
【請求項3】 前記第二工程において、酸化反応時にお
ける溶液中の銅イオン濃度を1〜30g/lの範囲に制
御することを特徴とする、請求項1又は2に記載の亜砒
酸の製造方法。
3. The method for producing arsenous acid according to claim 1, wherein in the second step, the concentration of copper ions in the solution during the oxidation reaction is controlled within the range of 1 to 30 g / l. .
【請求項4】 前記硫化砒素含有物が、銅製錬の硫化沈
殿生成による重金属分離工程で産出される硫化澱物であ
ることを特徴とする、請求項1〜3のいずれかに記載の
亜砒酸の製造方法。
4. The arsenous acid-containing substance according to claim 1, wherein the arsenic sulfide-containing substance is a sulfided starch produced in a heavy metal separation step by sulfide precipitation formation in copper smelting. Production method.
JP2001327838A 2001-10-25 2001-10-25 Arsenous acid production method Expired - Lifetime JP3963093B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001327838A JP3963093B2 (en) 2001-10-25 2001-10-25 Arsenous acid production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001327838A JP3963093B2 (en) 2001-10-25 2001-10-25 Arsenous acid production method

Publications (2)

Publication Number Publication Date
JP2003137552A true JP2003137552A (en) 2003-05-14
JP3963093B2 JP3963093B2 (en) 2007-08-22

Family

ID=19143998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001327838A Expired - Lifetime JP3963093B2 (en) 2001-10-25 2001-10-25 Arsenous acid production method

Country Status (1)

Country Link
JP (1) JP3963093B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009011317A1 (en) * 2007-07-13 2009-01-22 Dowa Metals & Mining Co., Ltd. Method of treating nonferrous smelting intermediary product containing arsenic
WO2009011316A1 (en) * 2007-07-13 2009-01-22 Dowa Metals & Mining Co., Ltd. Method of treating copper-arsenic compound
WO2009019955A1 (en) * 2007-08-09 2009-02-12 Dowa Metals & Mining Co., Ltd. Method for treatment of arsenic-containing nonferrous smelting intermediate product
JP2009242935A (en) * 2007-07-13 2009-10-22 Dowa Metals & Mining Co Ltd Method for alkali-treating substance containing arsenic
US8097228B2 (en) 2007-07-13 2012-01-17 Dowa Metals and Mining Co., Ltd. Method of processing diarsenic trioxide
CN113479933A (en) * 2021-06-18 2021-10-08 山东恒邦冶炼股份有限公司 Production method for recovering arsenic trioxide from arsenic acid residue

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8097228B2 (en) 2007-07-13 2012-01-17 Dowa Metals and Mining Co., Ltd. Method of processing diarsenic trioxide
WO2009011316A1 (en) * 2007-07-13 2009-01-22 Dowa Metals & Mining Co., Ltd. Method of treating copper-arsenic compound
JP2009242222A (en) * 2007-07-13 2009-10-22 Dowa Metals & Mining Co Ltd Method of treating nonferrous smelting intermediate product containing arsenic
JP2009242935A (en) * 2007-07-13 2009-10-22 Dowa Metals & Mining Co Ltd Method for alkali-treating substance containing arsenic
JP2009242221A (en) * 2007-07-13 2009-10-22 Dowa Metals & Mining Co Ltd Method of treating copper-arsenic compound
US8092764B2 (en) 2007-07-13 2012-01-10 Dowa Metals and Mining Co., Ltd. Method of processing non-ferrous smelting intermediate containing arsenic
WO2009011317A1 (en) * 2007-07-13 2009-01-22 Dowa Metals & Mining Co., Ltd. Method of treating nonferrous smelting intermediary product containing arsenic
US8110162B2 (en) 2007-07-13 2012-02-07 Dowa Metals & Mining Co., Ltd. Method of processing copper arsenic compound
US8147779B2 (en) 2007-07-13 2012-04-03 Dowa Metals & Minning Co., Ltd. Method of alkali processing substance containing arsenic
WO2009019955A1 (en) * 2007-08-09 2009-02-12 Dowa Metals & Mining Co., Ltd. Method for treatment of arsenic-containing nonferrous smelting intermediate product
JP2009242224A (en) * 2007-08-09 2009-10-22 Dowa Metals & Mining Co Ltd Method of treating nonferrous smelting intermediate product containing arsenic
US8092765B2 (en) 2007-08-09 2012-01-10 Dowa Metals and Mining Co., Ltd. Method of processing non-ferrous smelting intermediates containing arsenic
CN113479933A (en) * 2021-06-18 2021-10-08 山东恒邦冶炼股份有限公司 Production method for recovering arsenic trioxide from arsenic acid residue

Also Published As

Publication number Publication date
JP3963093B2 (en) 2007-08-22

Similar Documents

Publication Publication Date Title
CN101821202B (en) Method for treatment of arsenic-containing nonferrous smelting intermediate product
EP2174912B1 (en) Method of removing arsenic from smelting residues comprising copper-arsenic compounds
JP4216307B2 (en) Process for electrolytically precipitated copper
CA2634878C (en) Process for producing scorodite and recycling the post-scorodite-synthesis solution
KR20090082925A (en) Purified molybdenum technical oxide from molybdenite
US8092764B2 (en) Method of processing non-ferrous smelting intermediate containing arsenic
EA012466B1 (en) Method for the recovery of valuable metals and arsenic from a solution
JP4268196B2 (en) Method for producing scorodite
EA005464B1 (en) Method for recovering copper
US8956583B2 (en) Method for separating rhenium and arsenic, and method for purification of rhenium
TW201934763A (en) Method of recovering iron from zinc sulphate solution
WO2019161447A1 (en) Method for the recovery of manganese products from various feedstocks
CN110438344A (en) The method of separation of Cu and Co recycling
JP2011021219A (en) Method for recovering copper from copper/iron-containing material
JP7016463B2 (en) How to collect tellurium
CN109988921B (en) Method for separating antimony from hydrochloric acid-chlorine salt solution
JP5062111B2 (en) Method for producing high-purity arsenous acid aqueous solution from copper-free slime
JP3963093B2 (en) Arsenous acid production method
JP2004285368A (en) Method for refining cobalt aqueous solution
JPH09315819A (en) Method for recovering arsenic from sulfide containing arsenic and production of calcium arsenate
JP5059081B2 (en) Method for producing scorodite and method for recycling liquid after synthesis of scorodite
JP6953765B2 (en) Iron removal method for crude nickel sulfate solution
JP5124824B2 (en) Method for treating a compound containing gallium
US6495024B1 (en) Method for the removal of arsenic from sulfuric acid solution
CN103288133A (en) Method for preparing arsenic trioxide from black copper sludge

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070501

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070514

R150 Certificate of patent or registration of utility model

Ref document number: 3963093

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100601

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110601

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120601

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130601

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140601

Year of fee payment: 7

EXPY Cancellation because of completion of term