JP2003135601A - Oxygen-concentrating system for medical treatment - Google Patents

Oxygen-concentrating system for medical treatment

Info

Publication number
JP2003135601A
JP2003135601A JP2001340367A JP2001340367A JP2003135601A JP 2003135601 A JP2003135601 A JP 2003135601A JP 2001340367 A JP2001340367 A JP 2001340367A JP 2001340367 A JP2001340367 A JP 2001340367A JP 2003135601 A JP2003135601 A JP 2003135601A
Authority
JP
Japan
Prior art keywords
oxygen
concentration
ultrasonic
ultrasonic transducer
sample gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001340367A
Other languages
Japanese (ja)
Other versions
JP3979821B2 (en
Inventor
Naotoshi Fujimoto
直登志 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2001340367A priority Critical patent/JP3979821B2/en
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to PCT/JP2002/011238 priority patent/WO2003037786A1/en
Priority to CA2437031A priority patent/CA2437031C/en
Priority to AU2002363201A priority patent/AU2002363201B2/en
Priority to CNB028042646A priority patent/CN1223510C/en
Priority to KR1020037008899A priority patent/KR100908583B1/en
Priority to AT02802381T priority patent/ATE438587T1/en
Priority to DE60233245T priority patent/DE60233245D1/en
Priority to ES02802381T priority patent/ES2328911T3/en
Priority to EP02802381A priority patent/EP1440935B1/en
Priority to PT02802381T priority patent/PT1440935E/en
Priority to US10/466,612 priority patent/US6960246B2/en
Priority to TW091132184A priority patent/TWI259090B/en
Publication of JP2003135601A publication Critical patent/JP2003135601A/en
Priority to HK04107946A priority patent/HK1065023A1/en
Application granted granted Critical
Publication of JP3979821B2 publication Critical patent/JP3979821B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Separation Of Gases By Adsorption (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an oxygen-concentrating system which can accurately measure an oxygen concentration even when argon exists in addition to oxygen and nitrogen in a sample gas. SOLUTION: This oxygen-concentrating system is equipped with an oxygen- concentrating means, an ultrasonic oscillator and a reflecting plate, and a temperature sensor. In this case, the oxygen-concentrating means separates oxygen from air. The ultrasonic oscillator and the reflecting plate are arranged in a manner to be confronted with each other in piping on the downstream side of the oxygen-concentrating means, and transmit/receive an ultrasonic wave. Such an oxygen-concentrating system is equipped with a correction coefficient table for an oxygen-argon ratio in an oxygen-concentrated air based on a set flow rate of the oxygen-concentrated air which is fed to a user. Also, a concentration-computing means which computes the oxygen concentration of the oxygen-concentrated air based on the correction coefficient value is provided for this oxygen-concentrating system for medical treatment.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、空気中から酸素を
分離し濃縮する酸素濃縮装置に関する。更に詳細には、
医療目的で使用される酸素濃縮装置から送り出される酸
素濃縮空気の酸素濃度を測定する手段を備えた医療用酸
素濃縮装置に関するものである。
TECHNICAL FIELD The present invention relates to an oxygen concentrator for separating and concentrating oxygen from the air. More specifically,
The present invention relates to a medical oxygen concentrator equipped with means for measuring the oxygen concentration of oxygen enriched air sent from an oxygen concentrator used for medical purposes.

【0002】[0002]

【従来の技術】サンプルガス中を伝播する超音波の伝播
速度は、サンプルガスの濃度、温度の関数として表され
ることが広く知られている。サンプルガスの平均分子量
をM、温度をT[K]とすれば、サンプルガス中の超音波伝
播速度C[m/sec]は、次式(1)で表される。
It is widely known that the propagation velocity of ultrasonic waves propagating in a sample gas is expressed as a function of the concentration and temperature of the sample gas. When the average molecular weight of the sample gas is M and the temperature is T [K], the ultrasonic wave propagation velocity C [m / sec] in the sample gas is expressed by the following equation (1).

【0003】[0003]

【数1】 [Equation 1]

【0004】ここで、k、Rは定数(k:定積モル比熱と
定圧モル比熱の比、R:気体定数)である。すなわち、
サンプルガス中の超音波伝播速度C[m/sec]とサンプルガ
スの温度T[K]が測定できれば、サンプルガスの平均分子
量Mを決定できる。該サンプルガスが、例えば酸素と窒
素の2分子からなるガスであれば、k = 1.4となること
が知られている。該サンプルガスの平均分子量Mは、酸
素の分子量をMO2、窒素の分子量をMN2として、例えば酸
素100×P[%](0≦P≦1)と窒素100×(1‐P)[%]の場合にお
いては、 M = MO2 P+MN2 (1‐P) ---------- 式(2) と記述することができ、測定された平均分子量Mから酸
素濃度Pを決定できる。
Here, k and R are constants (k: ratio of constant volume molar specific heat and constant pressure molar specific heat, R: gas constant). That is,
If the ultrasonic propagation velocity C [m / sec] in the sample gas and the temperature T [K] of the sample gas can be measured, the average molecular weight M of the sample gas can be determined. It is known that if the sample gas is a gas composed of two molecules of oxygen and nitrogen, then k = 1.4. The average molecular weight M of the sample gas is, for example, oxygen 100 × P [%] (0 ≦ P ≦ 1) and nitrogen 100 × (1-P) [%, where the molecular weight of oxygen is M O2 and the molecular weight of nitrogen is M N2. In the case of], it can be described as M = M O2 P + M N2 (1-P) ---------- Equation (2), and the oxygen concentration P is determined from the measured average molecular weight M. it can.

【0005】超音波反射式ガス濃度測定装置の特徴とし
て、サンプルガスの流量に関わらずサンプルガスの濃度
を測定することが可能である。すなわち、サンプルガス
の流速が0でのサンプルガス中の超音波伝播速度がC[m/s
ec]であれば、超音波振動子から反射板に向かう方向へ
のサンプルガスの流速がV[m/sec]であったとき、超音波
振動子から反射板に向かう超音波伝播速度は、C+Vとな
り、反射板にて反射された超音波が該超音波振動子に戻
る方向への超音波伝播速度はC‐Vとなる。超音波反射式
の装置にて測定される超音波の伝播速度は、往復する超
音波の平均速度となるため、サンプルガスの流速Vはキ
ャンセルされて、サンプルガスの流速が0でのサンプル
ガス中の超音波伝播速度Cが測定されることになる。
As a feature of the ultrasonic reflection type gas concentration measuring device, it is possible to measure the concentration of the sample gas regardless of the flow rate of the sample gas. That is, the ultrasonic wave propagation velocity in the sample gas when the flow velocity of the sample gas is 0 is C [m / s
ec], when the flow velocity of the sample gas in the direction from the ultrasonic transducer to the reflector is V [m / sec], the ultrasonic propagation velocity from the ultrasonic transducer to the reflector is C + V Therefore, the ultrasonic wave propagation velocity in the direction in which the ultrasonic wave reflected by the reflecting plate returns to the ultrasonic transducer becomes CV. Since the propagation velocity of the ultrasonic wave measured by the ultrasonic reflection type device becomes the average velocity of the reciprocating ultrasonic wave, the flow velocity V of the sample gas is canceled and the flow velocity of the sample gas is 0 in the sample gas. The ultrasonic propagation velocity C of is to be measured.

【0006】該原理を利用し、サンプルガス中を伝播す
る超音波の伝播速度もしくは伝播時間からサンプルガス
の濃度、流量を測定する方法及び装置に関しては、種々
の提案が行われている。たとえば、特開平6-213877に
は、サンプルガスが通る配管中に超音波振動子2つを対
向させて配置し、該超音波振動子間を伝播する超音波の
伝播時間を計測することによってサンプルガスの濃度及
び流量を測定する装置が記載されている。また、たとえ
ばUS Patent No.5060506には、超音波の音速変化を測定
することにより、2種類の分子から構成されるサンプル
ガスの濃度を測定する装置が記載されている。
Various proposals have been made regarding the method and apparatus for measuring the concentration and flow rate of the sample gas from the propagation velocity or propagation time of the ultrasonic wave propagating in the sample gas by utilizing the principle. For example, in Japanese Unexamined Patent Publication No. 6-213877, two ultrasonic transducers are arranged to face each other in a pipe through which a sample gas passes, and the propagation time of ultrasonic waves propagating between the ultrasonic transducers is measured to measure the sample. An apparatus for measuring gas concentration and flow rate is described. Further, for example, US Patent No. 5060506 describes a device for measuring the concentration of a sample gas composed of two kinds of molecules by measuring the change in sound velocity of ultrasonic waves.

【0007】[0007]

【発明が解決しようとする課題】このような超音波の伝
播速度等を用いてサンプルガスの濃度を正確に測定する
方法を用いて、酸素濃縮装置から発生する酸素濃縮空気
中の酸素濃度を測定する場合においては、酸素と窒素の
濃度のみが変化し、酸素と窒素以外の分子がサンプルガ
ス中に存在する場合には、酸素と窒素以外の分子は濃度
が常に一定である、もしくは、酸素と窒素以外の分子
は、酸素または窒素の濃度と常に一定の比率で存在する
必要性があった。すなわち、式(1)からも明らかなよ
うに、サンプルガスの温度T、および、音速Cが測定でき
た場合に導出できる変数はサンプルガスの平均分子量M
であり、平均分子量Mからサンプルガスの濃度を求める
ためには、平均分子量は単一の変数のみで表現されなけ
ればならなかった。
The oxygen concentration in the oxygen-enriched air generated from the oxygen concentrator is measured by using the method for accurately measuring the concentration of the sample gas by using the propagation velocity of ultrasonic waves. In this case, only the concentrations of oxygen and nitrogen change, and when molecules other than oxygen and nitrogen are present in the sample gas, the concentration of molecules other than oxygen and nitrogen is always constant, or Molecules other than nitrogen had to be always present in a constant ratio with the concentration of oxygen or nitrogen. That is, as is clear from the equation (1), the variable that can be derived when the temperature T of the sample gas and the sound velocity C can be measured is the average molecular weight M of the sample gas.
Therefore, in order to obtain the concentration of the sample gas from the average molecular weight M, the average molecular weight had to be expressed by a single variable.

【0008】しかしながら、実際に酸素濃縮装置から出
力されるサンプルガスには、酸素と窒素以外に、アルゴ
ンが含まれる。さらにアルゴンの濃度は常に一定ではな
く、酸素濃縮装置の設定流量に伴って変化するため、従
来の超音波式酸素濃度測定手段では、酸素濃度を正確に
測定できないという問題点があった。
However, the sample gas actually output from the oxygen concentrator contains argon in addition to oxygen and nitrogen. Further, since the concentration of argon is not always constant and changes with the set flow rate of the oxygen concentrator, there is a problem that the conventional ultrasonic oxygen concentration measuring means cannot accurately measure the oxygen concentration.

【0009】本発明は、サンプルガスの流量に伴うアル
ゴン濃度を補正する係数を導出し、各流量における酸素
濃度を正確に測定可能な超音波式酸素濃度測定手段を備
えた酸素濃縮装置を提供することを目的としている。
The present invention provides an oxygen concentrator equipped with ultrasonic type oxygen concentration measuring means for deriving a coefficient for correcting the argon concentration according to the flow rate of a sample gas and accurately measuring the oxygen concentration at each flow rate. Is intended.

【0010】[0010]

【課題を解決するための手段】本発明者らは、かかる目
的を達成するために鋭意研究した結果、同一種類の酸素
濃縮装置から出力されるサンプルガスに含まれる酸素/
アルゴン濃度の比率は、同一サンプルガス流量におい
て、ほぼ等しく、サンプルガス流量からアルゴン濃度の
補正係数を導出してフィードバックすることで、アルゴ
ンが存在する場合においても正確に酸素濃度を測定可能
であることを見出したものである。
DISCLOSURE OF THE INVENTION As a result of earnest studies for achieving the above object, the inventors of the present invention have found that oxygen contained in a sample gas output from the same type of oxygen concentrator /
The ratio of the argon concentration is almost the same at the same sample gas flow rate, and the oxygen concentration can be accurately measured even in the presence of argon by deriving the correction coefficient of the argon concentration from the sample gas flow rate and feeding it back. Is found.

【0011】すなわち本発明は、空気中から酸素を分離
する酸素濃縮手段、酸素濃縮手段の下流の配管中に対向
させて配置した超音波を送受信する超音波振動子と反射
板、及び温度センサを備えた酸素濃縮装置において、使
用者に供給する酸素濃縮空気の設定流量に対する酸素濃
縮空気中の酸素、アルゴン比の補正係数テーブルを備
え、該補正係数値に基づいて、酸素濃縮空気の酸素濃度
を演算する濃度演算手段を備えたことを特徴とする医療
用酸素濃縮装置を提供するものである。
That is, according to the present invention, there are provided an oxygen concentrating means for separating oxygen from the air, an ultrasonic transducer for transmitting and receiving ultrasonic waves arranged opposite to each other in a pipe downstream of the oxygen concentrating means, a reflector, and a temperature sensor. In the provided oxygen concentrator, a correction coefficient table for oxygen and argon ratios in the oxygen-enriched air with respect to the set flow rate of the oxygen-enriched air supplied to the user is provided, and the oxygen concentration of the oxygen-enriched air is determined based on the correction coefficient value. The present invention provides a medical oxygen concentrating device comprising a concentration calculating means for calculating.

【0012】また本発明は、かかる濃度演算手段が、該
超音波振動子から送信された超音波が反射板にて反射さ
れ、該超音波振動子にて受信されるまでの伝播速度を検
出し、超音波の伝播速度及びガス温度から酸素濃度を演
算する手段であることを特徴とするものであり、特に該
濃度演算手段が、所定濃度の酸素及び窒素の混合ガスを
該配管中に導入した時の、該超音波振動子から送信され
た超音波が反射板にて反射され、該超音波振動子にて受
信されるまでの伝播時間を演算する機能を備え、その結
果から超音波振動子と反射板を結ぶ配管の基準長さを演
算する演算手段、演算した基準長さの結果を記憶する記
憶手段を備えたことを特徴とする医療用酸素濃縮装置を
提供するものである。
Further, according to the present invention, the concentration calculating means detects the propagation velocity until the ultrasonic wave transmitted from the ultrasonic transducer is reflected by the reflecting plate and received by the ultrasonic transducer. , A means for calculating the oxygen concentration from the ultrasonic wave propagation velocity and the gas temperature, and in particular, the concentration calculating means introduces a mixed gas of oxygen and nitrogen of a predetermined concentration into the pipe. At the time, the ultrasonic wave transmitted from the ultrasonic transducer has a function of calculating the propagation time until the ultrasonic wave is reflected by the reflector and received by the ultrasonic transducer. The present invention provides a medical oxygen concentrator, comprising: a calculating unit that calculates a reference length of a pipe that connects the reflection plate and a storage unit that stores a result of the calculated reference length.

【0013】[0013]

【発明の実施の形態】酸素濃縮装置から出力される酸素
/アルゴン濃度の比率は、該酸素濃縮装置の出力するサ
ンプルガスの流量によって変化するものであり、該酸素
/アルゴン濃度比率は、サンプルガス流量の関数として
表すことが可能である。
BEST MODE FOR CARRYING OUT THE INVENTION The oxygen / argon concentration ratio output from an oxygen concentrator changes depending on the flow rate of a sample gas output from the oxygen concentrator, and the oxygen / argon concentration ratio is the sample gas. It can be expressed as a function of flow rate.

【0014】本発明は、酸素、窒素、アルゴンから構成
されるサンプルガスを出力する酸素濃縮装置に搭載する
ために好適な超音波式酸素濃度測定手段において、サン
プルガス流量からアルゴン濃度の補正係数を導出し、該
補正係数を用いることでサンプルガスの酸素濃度を正確
に測定できる医療用酸素濃縮装置を提供するものであ
る。
The present invention is an ultrasonic oxygen concentration measuring means suitable for mounting on an oxygen concentrating device for outputting a sample gas composed of oxygen, nitrogen and argon, and a correction coefficient for the argon concentration is calculated from the flow rate of the sample gas. It is intended to provide a medical oxygen concentrator which can be accurately derived and used to accurately measure the oxygen concentration of a sample gas.

【0015】以下に実施例を示す。本発明の酸素濃縮装
置は、図2に概略フローを示すように、酸素よりも窒素
を選択的に吸着する吸着剤として高性能のLi―X型ゼ
オライトを充填した2本の吸着筒、加圧空気を該吸着筒
に供給するコンプレッサ、吸着筒から生成する酸素濃縮
空気を使用者に供給する酸素供給手段を備え、吸着塔下
流側の配管途中に超音波式酸素濃度測定手段を備える。
Examples will be shown below. As shown in the schematic flow chart of FIG. 2, the oxygen concentrator of the present invention comprises two adsorption cylinders filled with high-performance Li-X zeolite as an adsorbent that selectively adsorbs nitrogen rather than oxygen, and pressurization. A compressor for supplying air to the adsorption cylinder, an oxygen supply means for supplying oxygen-enriched air generated from the adsorption cylinder to the user, and an ultrasonic oxygen concentration measuring means on the downstream side of the adsorption tower are provided.

【0016】超音波式酸素濃度測定手段の構成は図1に
示すとおりであり、配管に対向して配置した超音波振動
子と反射板、及び温度センサを備える。
The structure of the ultrasonic type oxygen concentration measuring means is as shown in FIG. 1, and is provided with an ultrasonic vibrator, a reflector and a temperature sensor which are arranged so as to face the pipe.

【0017】超音波振動子2と反射板20を結ぶ配管1
の基準長さL0を校正する際には、校正用ガスとして酸素
濃度100×P[%]、窒素100×(1 - P)[%]のガスをガスボン
ベ等で準備し、流量設定器等を用いて、流量Q0[m3/sec]
で配管1に投入する。このとき、2つの温度センサ3の
出力を平均した温度T0[K]を測定しておき、該温度を基
準温度として、不揮発性メモリ9に保存しておく。この
ときの温度T0[K]は、装置の使用温度範囲として設定し
ている温度を逸脱しなければ、何[K]であっても構わな
い。
Piping 1 connecting the ultrasonic transducer 2 and the reflector 20
When calibrating the reference length L 0 , prepare a gas with a gas concentration of 100 × P [%] and nitrogen of 100 × (1-P) [%] as a calibration gas, and use a gas flowmeter, etc. Flow rate Q 0 [m 3 / sec]
To pipe 1. At this time, the temperature T 0 [K] obtained by averaging the outputs of the two temperature sensors 3 is measured and stored in the nonvolatile memory 9 as the reference temperature. The temperature T 0 [K] at this time may be any value [K] as long as it does not deviate from the temperature set as the operating temperature range of the device.

【0018】該校正用ガス投入中において、マイクロコ
ンピュータ7より超音波の送信パルスをドライバ5に送
り、送受信切り替え器4を通して超音波振動子2にパル
ス電圧が印加され、超音波が送信される。超音波送信
後、反射板20にて反射された超音波を該超音波振動子
2にて受信できるように、送受信切り替え器4にて該超
音波振動子2を受信可能状態にする。その後、反射板2
0にて反射し、該超音波振動子2によって受信された超
音波は、送受信切り替え器4、レシーバ6を介してマイ
クロコンピュータ7に入力され、超音波伝播時間t0[se
c]が測定される。
While the calibration gas is being supplied, a transmission pulse of ultrasonic waves is sent from the microcomputer 7 to the driver 5, a pulse voltage is applied to the ultrasonic transducer 2 through the transmission / reception switch 4, and ultrasonic waves are transmitted. After transmitting the ultrasonic wave, the transmission / reception switch 4 sets the ultrasonic transducer 2 in a receivable state so that the ultrasonic wave reflected by the reflector 20 can be received by the ultrasonic transducer 2. After that, the reflector 2
The ultrasonic wave reflected at 0 and received by the ultrasonic transducer 2 is input to the microcomputer 7 via the transmission / reception switch 4 and the receiver 6, and the ultrasonic wave propagation time t 0 [se
c] is measured.

【0019】酸素濃度100×P[%]、窒素100×(1‐P)
[%]、温度T0[K]のガス中の超音波伝播速度C0[m/sec]
は、前述の式(1)を用いて、以下のようになる。
Oxygen concentration 100 x P [%], nitrogen 100 x (1-P)
Ultrasonic propagation velocity C 0 [m / sec] in gas at [%] and temperature T 0 [K]
Is as follows using the above equation (1).

【0020】[0020]

【数2】 [Equation 2]

【0021】該校正用ガスを投入した際に測定された超
音波伝播時間はt0[sec]であったため、基準温度T0[K]に
おける超音波振動子と反射板を結ぶ配管1の基準長さを
L0[m]とすると、以下の関係が成立する。
Since the ultrasonic wave propagation time measured when the calibration gas was introduced was t 0 [sec], the standard of the pipe 1 connecting the ultrasonic transducer and the reflector at the standard temperature T 0 [K] Length
Given that L 0 [m], the following relation holds.

【0022】[0022]

【数3】 [Equation 3]

【0023】すなわち、基準温度T0[K]における基準長
さL0[m]は、以下の式で求めることができる。
That is, the reference length L 0 [m] at the reference temperature T 0 [K] can be obtained by the following equation.

【0024】[0024]

【数4】 [Equation 4]

【0025】上記の計算は、マイクロコンピュータ7に
おいて実施され、ここで求めた基準長さL0[m]は、不揮
発性メモリ9に保存される。
The above calculation is carried out in the microcomputer 7, and the reference length L 0 [m] obtained here is stored in the non-volatile memory 9.

【0026】以上の方法により、既知濃度の校正用ガス
1種類を装置に投入することで、温度T0[K]における超
音波振動子2と反射板20を結ぶ配管1の基準長さL
0[m]を校正できる。該方法は、装置に校正用ガスを投入
中に、装置に装備されたボタンを1回押すだけで実現で
き、計算自体も簡便なものなので、瞬時に校正を終える
ことが可能である。また、装置の経年劣化等により、超
音波振動子2と反射板20の位置関係が変わってしま
い、超音波の伝播距離が変化してしまった場合等におい
ても、簡単に装置を校正し直し、不揮発性メモリ9に保
存された基準温度、基準長さを更新することが可能であ
る。
By introducing one kind of calibration gas having a known concentration into the apparatus by the above method, the reference length L of the pipe 1 connecting the ultrasonic transducer 2 and the reflection plate 20 at the temperature T 0 [K]
Can calibrate 0 [m]. The method can be realized by pushing the button equipped on the device once while the calibration gas is being supplied to the device, and the calculation itself is simple, so that the calibration can be finished in an instant. Further, even when the positional relationship between the ultrasonic transducer 2 and the reflection plate 20 is changed due to aged deterioration of the device and the propagation distance of the ultrasonic wave is changed, the device can be easily recalibrated, The reference temperature and the reference length stored in the non-volatile memory 9 can be updated.

【0027】かかる酸素濃縮装置から出力されるサンプ
ルガスの各流量においてガス成分分析を行った結果を表
1に示す。ガス成分分析はガスクロマトグラフ法で行な
った。
Table 1 shows the results of gas component analysis performed at each flow rate of the sample gas output from the oxygen concentrator. The gas component analysis was performed by gas chromatography.

【0028】[0028]

【表1】 [Table 1]

【0029】表1に示すように、流量により酸素、アル
ゴンの比が異なることが明らかになった。表1には、前
記酸素濃縮装置1台にて測定された結果を示している
が、同じ種類の酸素濃縮装置においても、出力される酸
素濃度には多少のばらつきはあるものの、酸素/アルゴ
ン濃度の比率は同じである。一方、吸着剤の種類や量、
吸着筒の形状など機台の種類が異なればかかる酸素/ア
ルゴン比は異なる。
As shown in Table 1, it was revealed that the ratio of oxygen and argon was different depending on the flow rate. Table 1 shows the results measured by one of the oxygen concentrators, but even in the same type of oxygen concentrator, although there are some variations in the output oxygen concentration, the oxygen / argon concentration Have the same ratio. On the other hand, the type and amount of adsorbent,
The oxygen / argon ratio varies depending on the type of machine base such as the shape of the adsorption cylinder.

【0030】表1の結果より、サンプルガス流量に伴う
アルゴン濃度の補正係数を導出し、酸素濃度を正確に測
定する方法を以下に示す。流量変化に伴うアルゴン濃度
の補正を行う方法は様々ある。例えば、表1より、酸素
とアルゴンの存在比率を用いて、直接的に式(1)にお
ける平均分子量Mを記述する方法が考えられる。すなわ
ち、酸素、窒素、アルゴンの分子量を、それぞれ32、2
8、40とし、酸素濃度を100×P[%]で表せば、酸素濃縮装
置からの出力流量が1.00L/minの時、平均分子量Mは、以
下のように式(6)で表すことが可能となる。
From the results of Table 1, a method of deriving a correction coefficient for the argon concentration depending on the flow rate of the sample gas and accurately measuring the oxygen concentration will be described below. There are various methods for correcting the argon concentration due to the change in the flow rate. For example, from Table 1, a method of directly describing the average molecular weight M in the formula (1) using the abundance ratio of oxygen and argon can be considered. That is, the molecular weights of oxygen, nitrogen, and argon are 32 and 2 respectively.
If the oxygen concentration is expressed as 100 × P [%] and the output flow rate from the oxygen concentrator is 1.00 L / min, the average molecular weight M can be expressed by the following equation (6). It will be possible.

【0031】 M = 32P + 40*(6.4/93.5)P + 28(1-P-(6.4/93.5)P) ----- 式(6) さらに、比熱比kに関しても、2原子分子(酸素、窒
素)の比熱比1.4、1原子分子(アルゴン)の比熱比1.6
7を用いて、次式のように表すことが可能である。
M = 32P + 40 * (6.4 / 93.5) P + 28 (1-P- (6.4 / 93.5) P) ----- Equation (6) Furthermore, regarding the specific heat ratio k, the diatomic molecule ( Specific heat ratio of oxygen and nitrogen is 1.4, specific heat ratio of atomic molecule (argon) is 1.6
Using 7, it can be expressed as

【0032】 k = 1.4*(1-(6.4/93.5)P) + 1.67*(6.4/93.5)P ----- 式(7) したがって、サンプルガス中の音速、及び温度を測定で
きれば、式(1)(6)(7)から、未知数はPのみと
なり、酸素濃度100×P[%]を求めることができる。
K = 1.4 * (1- (6.4 / 93.5) P) + 1.67 * (6.4 / 93.5) P ----- Equation (7) Therefore, if the sound velocity in the sample gas and the temperature can be measured, From (1), (6), and (7), the only unknown number is P, and the oxygen concentration of 100 × P [%] can be obtained.

【0033】上述の例は、サンプルガス流量が1.00L/mi
nの場合であり、その他流量の時には、式(6)、式
(7)における(6.4/93.5)とした酸素/アルゴン存在比
率を、他の流量における酸素/アルゴン存在比率に置き
かえればよい。この場合、酸素/アルゴン存在比率その
ものがアルゴン濃度の補正係数となり、サンプルガス流
量から該アルゴン濃度補正係数をテーブル参照する、も
しくは、あらかじめ測定された流量に対する酸素/アル
ゴン濃度の比率の関係を近似式で求めておき、該アルゴ
ン濃度補正係数を流量の関数として導出すれば、正確な
酸素濃度を測定できる。
In the above example, the sample gas flow rate is 1.00 L / mi.
In the case of n, and at other flow rates, the oxygen / argon existence ratio set to (6.4 / 93.5) in equations (6) and (7) may be replaced with the oxygen / argon existence ratio at other flow rates. In this case, the oxygen / argon existence ratio itself becomes the correction coefficient of the argon concentration, and the argon concentration correction coefficient is referred to from the table based on the sample gas flow rate, or the relationship of the ratio of the oxygen / argon concentration to the flow rate measured in advance is approximated. If the argon concentration correction coefficient is derived as a function of the flow rate, the accurate oxygen concentration can be measured.

【0034】または、計算を簡単にするため、次のよう
な方法も考えられる。すなわち、サンプルガスの成分は
酸素と窒素のみから構成されるものと仮定し、式(2)
を用いて酸素濃度を計算する。ここで得られる酸素濃度
はアルゴンの存在を無視した値であるため、実際の酸素
濃度とは異なる値となる。しかしながら、特定流量にお
ける酸素とアルゴンの存在比率が分かっているため、一
旦計算された酸素濃度の値に特定の係数を乗じること
で、正確な酸素濃度を近似して求めることが可能であ
る。この場合においては、該特定の係数がアルゴン濃度
の補正係数となる。
Alternatively, the following method may be considered in order to simplify the calculation. That is, assuming that the components of the sample gas are composed of only oxygen and nitrogen,
To calculate the oxygen concentration. Since the oxygen concentration obtained here is a value that ignores the presence of argon, it becomes a value different from the actual oxygen concentration. However, since the abundance ratio of oxygen and argon at a specific flow rate is known, it is possible to approximate the accurate oxygen concentration by multiplying the once calculated oxygen concentration value by a specific coefficient. In this case, the specific coefficient serves as a correction coefficient for the argon concentration.

【0035】例えば、サンプルガスの流量が1.00L/min
の場合、式(2)を用い、比熱比k=1.4としてアルゴン
の存在を無視して酸素濃度を計算した時、酸素濃度は10
2.8[%]と計算されてしまう。しかしながら、実際の酸素
濃度は93.5[%]であることがあらかじめ分かっていれ
ば、1.00L/minの際のアルゴン濃度補正係数として(93.5
/102.8)を求めることができ、サンプルガス流量が1.00L
/minの時には式(2)で求まる酸素濃度にアルゴン濃度
補正係数(93.5/102.8)を乗じることで、正確に酸素濃度
を測定できる。
For example, the flow rate of the sample gas is 1.00 L / min
In the case of, when the oxygen concentration is calculated by using the formula (2) and ignoring the presence of argon with the specific heat ratio k = 1.4, the oxygen concentration is 10
It is calculated as 2.8 [%]. However, if it is known in advance that the actual oxygen concentration is 93.5 [%], it is calculated as (93.5%) as the argon concentration correction coefficient at 1.00 L / min.
/102.8) can be obtained and the sample gas flow rate is 1.00L.
When / min, the oxygen concentration can be accurately measured by multiplying the oxygen concentration obtained by the equation (2) by the argon concentration correction coefficient (93.5 / 102.8).

【0036】1.00L/min以外の時にも同様に、あらかじ
めアルゴン濃度補正係数を求めておけば、サンプルガス
流量から該アルゴン濃度補正係数をテーブル参照する、
もしくは、流量に対するアルゴン濃度補正係数を近似式
で求めておけば、各流量におけるアルゴン濃度補正係数
を決定することが可能であり、正確な酸素濃度を測定で
きる。
Similarly, if the argon concentration correction coefficient is obtained in advance at a time other than 1.00 L / min, the argon concentration correction coefficient is referred to from the table based on the sample gas flow rate.
Alternatively, if the argon concentration correction coefficient for the flow rate is obtained by an approximate expression, the argon concentration correction coefficient at each flow rate can be determined, and the accurate oxygen concentration can be measured.

【0037】図1に装置の構成を示す概略図を示す。超
音波振動子2と反射板20を結ぶ部分の配管1は円筒形
状をしており、超音波振動子2と反射板20は、サンプ
ルガスの流れる配管1の中に対向させて配置する。温度
センサ3は、超音波伝播経路上のガスの流れを乱すこと
のないように、サンプルガスの出入り口付近に2つ配置
する。2つの温度センサ3を配管1の出入り口に配置す
ることで、配管1を流れるサンプルガスの平均温度を測
定できるようにしている。サンプルガスの温度変化が大
きくない場合には、温度センサ3は1つでも良い。超音
波振動子2は、超音波の送受信が可能であり、送受信の
切り替えは送受信切り替え器4によって実施される。不
揮発性メモリ9には、前述された流量vsアルゴン濃度補
正係数テーブルが保存されている。表示器8は、測定さ
れたサンプルガスの酸素濃度を表示する。
FIG. 1 is a schematic diagram showing the structure of the apparatus. The pipe 1 at the portion connecting the ultrasonic transducer 2 and the reflection plate 20 has a cylindrical shape, and the ultrasonic transducer 2 and the reflection plate 20 are arranged to face each other in the pipe 1 through which the sample gas flows. Two temperature sensors 3 are arranged near the inlet and outlet of the sample gas so as not to disturb the gas flow on the ultrasonic wave propagation path. By arranging the two temperature sensors 3 at the entrance and exit of the pipe 1, the average temperature of the sample gas flowing through the pipe 1 can be measured. When the temperature change of the sample gas is not large, the number of temperature sensors 3 may be one. The ultrasonic transducer 2 can transmit and receive ultrasonic waves, and switching between transmission and reception is performed by the transmission / reception switch 4. The nonvolatile memory 9 stores the above-described flow rate vs. argon concentration correction coefficient table. The display 8 displays the measured oxygen concentration of the sample gas.

【0038】サンプルガスの流量は、流量測定器21に
よって測定され、流量測定値はマイクロコンピュータ7
に入力される。
The flow rate of the sample gas is measured by the flow rate measuring device 21, and the flow rate measurement value is obtained by the microcomputer 7.
Entered in.

【0039】サンプルガスの音速Cs[m/sec]、温度T
s[℃]、及び、サンプルガス流量からアルゴン濃度補正
係数が分かれば、先述したいずれかの方法を用いて酸素
濃度を正確に求めることが可能である。
Sound velocity C s [m / sec] of sample gas, temperature T
If the argon concentration correction coefficient is known from s [° C.] and the flow rate of the sample gas, it is possible to accurately determine the oxygen concentration using any of the methods described above.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の医療用酸素濃縮装置の超音波式酸素濃
度測定手段の構成を示す概略図。
FIG. 1 is a schematic diagram showing the configuration of ultrasonic oxygen concentration measuring means of a medical oxygen concentrator of the present invention.

【図2】本発明の医療用酸素濃縮装置の概略構成図。FIG. 2 is a schematic configuration diagram of a medical oxygen concentrator of the present invention.

【符号の説明】[Explanation of symbols]

1 配管 2 超音波振動子 3 温度センサ 4 送受信切り替え器 5 ドライバ 6 レシーバ 7 マイクロコンピュータ 8 表示器 9 不揮発性メモリ 10 医療用酸素濃縮装置 11 吸着筒 12 コンプレッサ 13 フィルタ 14 切り替え弁 15 逆止弁 16 製品タンク 17 調圧弁 18 超音波式酸素濃度測定手段 19 製品フィルタ 20 反射板 21 流量測定器 1 piping 2 Ultrasonic transducer 3 Temperature sensor 4 send / receive switch 5 drivers 6 receiver 7 microcomputer 8 display 9 Non-volatile memory 10 Medical oxygen concentrator 11 adsorption cylinder 12 compressor 13 filters 14 Switching valve 15 Check valve 16 product tanks 17 Regulator 18 Ultrasonic oxygen concentration measuring means 19 Product Filter 20 Reflector 21 Flowmeter

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 空気中から酸素を分離する酸素濃縮手
段、酸素濃縮手段の下流の配管中に対向させて配置した
超音波を送受信する超音波振動子と反射板、及び温度セ
ンサを備えた酸素濃縮装置において、使用者に供給する
酸素濃縮空気の設定流量に対する酸素濃縮空気中の酸
素、アルゴン比の補正係数テーブルを備え、該補正係数
値に基づいて、酸素濃縮空気の酸素濃度を演算する濃度
演算手段を備えたことを特徴とする医療用酸素濃縮装
置。
1. Oxygen comprising an oxygen concentrating means for separating oxygen from the air, an ultrasonic transducer for transmitting and receiving ultrasonic waves arranged opposite to each other in a pipe downstream of the oxygen concentrating means, a reflector, and a temperature sensor. The concentrator is provided with a correction coefficient table for the oxygen / argon ratio in the oxygen-enriched air with respect to the set flow rate of the oxygen-enriched air supplied to the user, and the concentration for calculating the oxygen concentration of the oxygen-enriched air based on the correction coefficient value. A medical oxygen concentrator, comprising a calculation means.
【請求項2】 該濃度演算手段が、該超音波振動子から
送信された超音波が反射板にて反射され、該超音波振動
子にて受信されるまでの伝播速度を検出し、超音波の伝
播速度及びガス温度から酸素濃度を演算する手段である
ことを特徴とする請求項1記載の医療用酸素濃縮装置。
2. The concentration calculating means detects a propagation velocity until ultrasonic waves transmitted from the ultrasonic transducer are reflected by a reflecting plate and received by the ultrasonic transducer, 2. The medical oxygen concentrator according to claim 1, which is a means for calculating the oxygen concentration from the propagation velocity and the gas temperature.
【請求項3】 該濃度演算手段が、所定濃度の酸素及び
窒素の混合ガスを該配管中に導入した時の、該超音波振
動子から送信された超音波が反射板にて反射され、該超
音波振動子にて受信されるまでの伝播時間を演算する機
能を備え、その結果から超音波振動子と反射板を結ぶ配
管の基準長さを演算する演算手段、演算した基準長さの
結果を記憶する記憶手段を備えたことを特徴とする請求
項1、2記載の医療用酸素濃縮装置。
3. The ultrasonic wave transmitted from the ultrasonic transducer when the concentration calculating means introduces a mixed gas of oxygen and nitrogen having a predetermined concentration into the pipe is reflected by a reflecting plate, Equipped with a function to calculate the propagation time until it is received by the ultrasonic transducer, the calculation means to calculate the reference length of the pipe connecting the ultrasonic transducer and the reflector from the result, the result of the calculated reference length 3. The medical oxygen concentrating device according to claim 1, further comprising a storage unit for storing.
JP2001340367A 2001-10-30 2001-11-06 Medical oxygen concentrator Expired - Lifetime JP3979821B2 (en)

Priority Applications (14)

Application Number Priority Date Filing Date Title
JP2001340367A JP3979821B2 (en) 2001-11-06 2001-11-06 Medical oxygen concentrator
PT02802381T PT1440935E (en) 2001-10-30 2002-10-29 Oxygen enriching device
AU2002363201A AU2002363201B2 (en) 2001-10-30 2002-10-29 Oxygen enriching device
CNB028042646A CN1223510C (en) 2001-10-30 2002-10-29 Oxygen concentrating apparatus
KR1020037008899A KR100908583B1 (en) 2001-10-30 2002-10-29 Oxygen Concentrator
AT02802381T ATE438587T1 (en) 2001-10-30 2002-10-29 OXYGEN ENRICHMENT DEVICE
DE60233245T DE60233245D1 (en) 2001-10-30 2002-10-29 OXYGEN ENRICHMENT DEVICE
ES02802381T ES2328911T3 (en) 2001-10-30 2002-10-29 ENRICHMENT DEVICE IN OXYGEN.
PCT/JP2002/011238 WO2003037786A1 (en) 2001-10-30 2002-10-29 Oxygen enriching device
CA2437031A CA2437031C (en) 2001-10-30 2002-10-29 Oxygen concentrating apparatus
US10/466,612 US6960246B2 (en) 2001-10-30 2002-10-29 Oxygen concentrating apparatus
EP02802381A EP1440935B1 (en) 2001-10-30 2002-10-29 Oxygen enriching device
TW091132184A TWI259090B (en) 2001-10-30 2002-10-30 An oxygen concentrator
HK04107946A HK1065023A1 (en) 2001-10-30 2004-10-14 Oxygen enriching device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001340367A JP3979821B2 (en) 2001-11-06 2001-11-06 Medical oxygen concentrator

Publications (2)

Publication Number Publication Date
JP2003135601A true JP2003135601A (en) 2003-05-13
JP3979821B2 JP3979821B2 (en) 2007-09-19

Family

ID=19154576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001340367A Expired - Lifetime JP3979821B2 (en) 2001-10-30 2001-11-06 Medical oxygen concentrator

Country Status (1)

Country Link
JP (1) JP3979821B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7682428B2 (en) 2003-08-26 2010-03-23 Teijin Pharma Limited Oxygen concentration apparatus
WO2018117007A1 (en) * 2016-12-21 2018-06-28 上田日本無線株式会社 Gas concentration measuring device and method of calibrating same
CN113295344A (en) * 2021-04-28 2021-08-24 成都秦川物联网科技股份有限公司 Method for detecting gas leakage by ultrasonic wave

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7682428B2 (en) 2003-08-26 2010-03-23 Teijin Pharma Limited Oxygen concentration apparatus
EP3002025A1 (en) 2003-08-26 2016-04-06 Teijin Pharma Limited Oxygen concentration apparatus
WO2018117007A1 (en) * 2016-12-21 2018-06-28 上田日本無線株式会社 Gas concentration measuring device and method of calibrating same
US11525812B2 (en) 2016-12-21 2022-12-13 Ueda Japan Radio Co., Ltd. Gas concentration measuring device and method of calibrating same
CN113295344A (en) * 2021-04-28 2021-08-24 成都秦川物联网科技股份有限公司 Method for detecting gas leakage by ultrasonic wave
CN113295344B (en) * 2021-04-28 2023-03-24 成都秦川物联网科技股份有限公司 Method for detecting gas leakage by ultrasonic wave

Also Published As

Publication number Publication date
JP3979821B2 (en) 2007-09-19

Similar Documents

Publication Publication Date Title
US6912907B2 (en) Ultrasonic apparatus and method for measuring the concentration and flow rate of gas
KR101414925B1 (en) Ultrasonic gas concentration measuring method and device using the same
US5627323A (en) Ultrasonic binary gas measuring device
CN101084415B (en) Ultrasonic flowmeter having a pressure sensor
TWI582329B (en) Method of, and apparatus for, providing a gas mixture
JP4169483B2 (en) Ultrasonic gas concentration flow measurement method and apparatus
EP1477798A2 (en) Acoustic determination of moisture content of a gas mixture
KR20060003022A (en) Ultrasonic apparatus and method for measuring the concentration and flow rate of gas
US6960246B2 (en) Oxygen concentrating apparatus
JP4612218B2 (en) Oxygen concentrator
JP3979821B2 (en) Medical oxygen concentrator
JP4180815B2 (en) Medical oxygen concentrator
JP4536939B2 (en) Ultrasonic reflection type gas concentration measuring method and apparatus
JP2001255313A (en) Gas composition measuring instrument

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070313

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070509

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070605

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070626

R150 Certificate of patent or registration of utility model

Ref document number: 3979821

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100706

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110706

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110706

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120706

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120706

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130706

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140706

Year of fee payment: 7

EXPY Cancellation because of completion of term