JP2003133567A - Method of manufacturing solar cell and electrode material used in the same solar cell - Google Patents

Method of manufacturing solar cell and electrode material used in the same solar cell

Info

Publication number
JP2003133567A
JP2003133567A JP2001326830A JP2001326830A JP2003133567A JP 2003133567 A JP2003133567 A JP 2003133567A JP 2001326830 A JP2001326830 A JP 2001326830A JP 2001326830 A JP2001326830 A JP 2001326830A JP 2003133567 A JP2003133567 A JP 2003133567A
Authority
JP
Japan
Prior art keywords
semiconductor substrate
solar cell
silver
electrode material
front surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001326830A
Other languages
Japanese (ja)
Inventor
Shuichi Fujii
修一 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2001326830A priority Critical patent/JP2003133567A/en
Publication of JP2003133567A publication Critical patent/JP2003133567A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing a solar cell which can solve the conventional problem that contact resistance between a substrate and an electrode material is large and a fill factor is poor. SOLUTION: This method comprises steps of forming fine projected and recessed portions to the front surface side of a semiconductor substrate showing one conductivity type, forming a region which shows an inverse conductivity type to the front surface side of the semiconductor substrate, and forming an electrode to the front surface and rear surface sides of the semiconductor substrate. The front surface of the semiconductor substrate is coated with silver paste which is mainly formed of silver and includes silver particle of 5 to 50 pts.wt. in grain sizes ranging from 0.1 to 0.5 μm for the 100 pts.wt. of silver, and is then baked.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は太陽電池素子の製造
方法とそれに用いる電極材料に関し、特に半導体基板の
表面に微細な凹凸を形成した太陽電池素子の製造方法お
よびそれに用いる電極材料に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a solar cell element and an electrode material used therefor, and more particularly to a method for manufacturing a solar cell element having fine irregularities formed on the surface of a semiconductor substrate and an electrode material used therefor.

【0002】[0002]

【従来の技術】太陽電池素子には、単結晶半導体基板を
用いた太陽電池素子、多結晶半導体基板を用いた太陽電
池素子、アモルファス半導体層を用いた太陽電池素子が
ある。このうち、量産性の点では多結晶半導体基板を用
いた太陽電池素子が最も優れている。
2. Description of the Related Art Solar cell elements include a solar cell element using a single crystal semiconductor substrate, a solar cell element using a polycrystalline semiconductor substrate, and a solar cell element using an amorphous semiconductor layer. Among them, the solar cell element using the polycrystalline semiconductor substrate is the most excellent in terms of mass productivity.

【0003】このような多結晶半導体基板を用いた太陽
電池素子の高効率化を図るために、従来から種々の検討
がなされている。例えば半導体基板に照射された光をで
きるだけ多く半導体基板内に取り込むとともに、半導体
基板内に取り込まれた光をできるだけ多く半導体基板内
に閉じ込めるために、半導体基板の表面に微細な凹凸を
形成することが提案されている。
Various studies have heretofore been made to improve the efficiency of solar cell elements using such a polycrystalline semiconductor substrate. For example, it is possible to form fine irregularities on the surface of the semiconductor substrate in order to capture as much light as possible onto the semiconductor substrate into the semiconductor substrate and to confine as much light as possible into the semiconductor substrate. Proposed.

【0004】このような微細な凹凸は、例えば反応性イ
オンエッチング(Reactive Ion Etching:RIE)法で
形成される(例えば特公昭60−27195号、特開平
5−75152号、特開平9−102625号公報参
照)。この方法によると、半導体基板として多結晶シリ
コンを用いた場合でも、結晶の不規則な面方位に左右さ
れることなく、均一な凹凸を形成することができ、特に
多結晶シリコンを用いた太陽電池素子においては、より
効果的に表面反射を低減できるようになる。
Such fine irregularities are formed by, for example, a reactive ion etching (RIE) method (for example, JP-B-60-27195, JP-A-5-75152, JP-A-9-102625). See the bulletin). According to this method, even when polycrystalline silicon is used as the semiconductor substrate, it is possible to form uniform unevenness without being influenced by the irregular plane orientation of the crystal. In particular, a solar cell using polycrystalline silicon In the device, the surface reflection can be reduced more effectively.

【0005】すなわち、単結晶シリコン基板は、結晶の
面方位が均一であることから、例えば濃度が5%程度の
水酸化ナトリウム水溶液などのアルカリ溶液で等方性エ
ッチングを行うと基板の表面の全面にわたって微細な凹
凸を均一に形成することができるが、多結晶シリコン基
板は結晶の面方位が不均一であることから、アルカリ溶
液でエッチングしても凹凸が均一にならず、基板表面で
の反射を効果的に防止することができず、太陽電池の高
効率化を図ることができない。
That is, since a single crystal silicon substrate has uniform crystal plane orientations, if isotropic etching is performed with an alkaline solution such as an aqueous solution of sodium hydroxide having a concentration of about 5%, the entire surface of the substrate will be processed. Although fine irregularities can be uniformly formed over the entire surface, the polycrystalline silicon substrate has non-uniform crystal plane orientations, so even if the substrate is etched with an alkaline solution, the irregularities are not uniform and reflection on the substrate surface occurs. Cannot be effectively prevented, and the solar cell cannot be made highly efficient.

【0006】ところが、このような多結晶シリコン基板
でも、反応性イオンエッチング法などのドライエッチン
グ法であれば、その面方位に左右されることなく、微細
な凹凸を均一に形成することができる。
However, even with such a polycrystalline silicon substrate, if the dry etching method such as the reactive ion etching method is used, fine irregularities can be uniformly formed without being influenced by the plane orientation.

【0007】[0007]

【発明が解決しようとする課題】ところが、上記の方法
で形成された微細な凹凸部の上にスクリーン印刷法等を
用いて銀ペースト等の導電性ペーストを塗布して焼成し
た場合、この銀ペーストには銀の粒径が1〜5μm程度
のものを多量に含んでいるために、凹凸部の深さが0.
2〜0.5μm、幅が0.2〜1.0μm程度しかない
凹部には銀が入り込めず、シリコン基板との接触が行え
なくなって接触抵抗が高くなり、とりわけ曲線因子が低
下して太陽電池素子の変換効率を低下させるという問題
があった。
However, when a conductive paste such as a silver paste is applied onto the fine uneven portion formed by the above method by a screen printing method and then baked, this silver paste is used. Contains a large amount of silver having a grain size of about 1 to 5 μm, so the depth of the uneven portion is 0.1.
Silver cannot enter into the concave portion having only 2 to 0.5 μm and width of 0.2 to 1.0 μm, contact with the silicon substrate cannot be made, and contact resistance becomes high. There is a problem that the conversion efficiency of the battery element is reduced.

【0008】本発明はこのような従来技術の問題点に鑑
みてなされたものであり、基板と電極材料との接触抵抗
が大きく、曲線因子が悪いという従来の問題を解消した
太陽電池素子の製造方法を提供することを目的とする。
The present invention has been made in view of the above problems of the prior art, and manufactures a solar cell element which solves the conventional problems that the contact resistance between the substrate and the electrode material is large and the fill factor is bad. The purpose is to provide a method.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
に、本発明に係る太陽電池素子の製造方法によれば、一
導電型を呈する半導体基板の表面側に微細な凹凸を形成
するとともに、この半導体基板の表面側に逆導電型を呈
する領域を形成し、この半導体基板の表面側と裏面側に
電極を形成する太陽電池素子の製造方法において、前記
半導体基板の表面側に銀を主成分とし、その銀100重
量部に対して0.1〜0.5μmの範囲の粒径のものを
5〜50重量部含有する銀ペーストを塗布して焼き付け
ることを特徴とする。
In order to achieve the above object, according to the method for manufacturing a solar cell element of the present invention, fine irregularities are formed on the surface side of a semiconductor substrate of one conductivity type, and In the method for manufacturing a solar cell element, in which a region having an opposite conductivity type is formed on the front surface side of this semiconductor substrate and electrodes are formed on the front surface side and the back surface side of this semiconductor substrate, silver is the main component on the front surface side of the semiconductor substrate. It is characterized by coating and baking a silver paste containing 5 to 50 parts by weight of silver having a particle size in the range of 0.1 to 0.5 μm per 100 parts by weight of silver.

【0010】また、本発明に係る太陽電池素子用電極材
料によれば、前記半導体接合部を有する半導体基板の表
面側に焼き付けられる太陽電池素子用電極材料におい
て、前記電極材料が銀を主成分とし、その銀100重量
部に対して0.1〜0.5μmの範囲の粒径のものを5
〜50重量部含有することを特徴とする。
Further, according to the electrode material for a solar cell element of the present invention, in the electrode material for a solar cell element which is baked on the front surface side of the semiconductor substrate having the semiconductor junction, the electrode material contains silver as a main component. , With a grain size in the range of 0.1 to 0.5 μm with respect to 100 parts by weight of silver 5
It is characterized by containing ˜50 parts by weight.

【0011】[0011]

【発明の実施の形態】以下、本発明を添付図面に基づき
詳細に説明する。図1は本発明の太陽電池素子の製造方
法を示す断面図であり、1は半導体基板、2は反射防止
膜、3は裏面電極、4は表面電極である。
DETAILED DESCRIPTION OF THE INVENTION The present invention will be described below in detail with reference to the accompanying drawings. FIG. 1 is a cross-sectional view showing a method for manufacturing a solar cell element of the present invention, in which 1 is a semiconductor substrate, 2 is an antireflection film, 3 is a back electrode, and 4 is a front electrode.

【0012】まず、半導体基板1を用意する(図1
(a)参照)。この半導体基板1は、単結晶又は多結晶
シリコンなどから成る。この半導体基板1をシリコンで
形成する場合は、ボロン(B)などの一導電型半導体不
純物を1×1016 18atoms/cm3程度含有し、
比抵抗1.5Ω・cm程度の基板である。単結晶シリコ
ンの場合は引き上げ法などによって形成され、多結晶シ
リコンの場合は鋳造法などによって形成される。多結晶
シリコンは、大量生産が可能であり製造コスト面で単結
晶シリコンよりも有利である。引き上げ法や鋳造法によ
って形成されたブロックを10cm×10cmもしくは
15cm×15cm程度の大きさに切断し、300〜5
00μm程度の厚みにスライスして半導体基板とする。
First, a semiconductor substrate 1 is prepared (see FIG. 1).
(See (a)). The semiconductor substrate 1 is made of single crystal or polycrystalline silicon or the like. When this semiconductor substrate 1 is made of silicon, it contains one conductivity type semiconductor impurity such as boron (B) in an amount of about 1 × 10 16 to 18 atoms / cm 3 .
The substrate has a specific resistance of about 1.5 Ω · cm. In the case of single crystal silicon, it is formed by a pulling method, and in the case of polycrystalline silicon, it is formed by a casting method. Polycrystalline silicon can be mass-produced and is advantageous over manufacturing cost in terms of manufacturing cost. A block formed by a pulling method or a casting method is cut into a size of about 10 cm × 10 cm or 15 cm × 15 cm, and 300 to 5
The semiconductor substrate is sliced to a thickness of about 00 μm.

【0013】次に、半導体基板1の表面側に、微細な凹
凸1cを多数形成する(図1(b)参照)。この微細な
凹凸1cは、半導体基板1の表面側に照射される光を多
重反射させて、表面反射を減少させるために設ける。こ
の微細な凹凸1cは、円錐形もしくは角錐形を呈し、R
IE法によるガス濃度若しくはエッチング時間を制御す
ることにより、その大きさを変化させることができる。
この微細な凹凸1cの幅と高さはそれぞれ2μm以下に
形成される。この凹凸1cの幅と高さが2μm以上にな
ると、エッチングの処理時間が長くなる反面、基板1表
面での反射率はさほど低減されない。この微細な凹凸1
cを半導体基板1の表面側の全面にわたって均一且つ正
確に制御性を持たせて形成するには、その幅と高さは1
μm以下が好適である。また、この微細な凹凸1cは極
めて微小なものでも反射率低滅の効果はあるが、面内に
均一かつ正確に形成するためには、製造工程上1nm以
上であることが望まれる。
Next, a large number of fine irregularities 1c are formed on the front surface side of the semiconductor substrate 1 (see FIG. 1B). The fine irregularities 1c are provided in order to multiple-reflect the light irradiated to the surface side of the semiconductor substrate 1 and reduce the surface reflection. The fine irregularities 1c have a cone shape or a pyramid shape, and
The size can be changed by controlling the gas concentration or etching time by the IE method.
The width and height of the fine irregularities 1c are each formed to be 2 μm or less. When the width and height of the unevenness 1c is 2 μm or more, the etching processing time becomes long, but the reflectance on the surface of the substrate 1 is not reduced so much. This fine unevenness 1
In order to form c with uniform and accurate controllability over the entire surface of the semiconductor substrate 1, the width and height are set to 1
μm or less is preferable. Further, even if the minute unevenness 1c is extremely minute, the effect of lowering the reflectance can be obtained, but in order to form it uniformly and accurately in the surface, it is desired that it is 1 nm or more in the manufacturing process.

【0014】次に、半導体基板1を拡散炉中に配置し
て、オキシ塩化リン(POCl3)などの中で加熱する
ことによって、半導体基板1の表面部分にリン原子を拡
散させて他の導電型を呈する領域1aを形成する(図1
(c)参照)。この他の導電型を呈する領域1aは、
0.3〜0.5μm程度の深さに形成され、シート抵抗
が60Ω/□以上になるように形成される。この熱拡散
により、半導体基板1の外表面全体に他の導電型を呈す
る領域とリン原子を含むリンガラス層(不図示)が形成
されるが、半導体基板1の一主面側の他の導電型を呈す
る領域のみを残して他の部分は、弗酸(HF)と硝酸
(HNO3)を主成分とするエッチング液に浸漬して除
去した後、純水で洗浄する(図1(c))。
Next, the semiconductor substrate 1 is placed in a diffusion furnace and heated in phosphorus oxychloride (POCl 3 ) or the like to diffuse phosphorus atoms to the surface portion of the semiconductor substrate 1 to cause another conductivity. A region 1a having a shape is formed (see FIG. 1).
(See (c)). The region 1a exhibiting other conductivity type is
It is formed to a depth of about 0.3 to 0.5 μm and has a sheet resistance of 60 Ω / □ or more. By this thermal diffusion, a region having another conductivity type and a phosphorus glass layer (not shown) containing phosphorus atoms are formed on the entire outer surface of the semiconductor substrate 1, but the other conductivity on the one main surface side of the semiconductor substrate 1 is increased. The rest of the mold-exposing region is removed by immersing it in an etching solution containing hydrofluoric acid (HF) and nitric acid (HNO 3 ) as main components, and then cleaning with pure water (FIG. 1C). ).

【0015】次に、半導体基板1の一主面側に反射防止
膜2を形成する(図1(d))。この反射防止膜2は例
えば窒化シリコン膜などから成り、シランとアンモニア
との混合ガスを用いたプラズマCVD法などで形成され
る。この反射防止膜2は、半導体基板1の表面で光が反
射するのを防止して、半導体基板1内に光を有効に取り
込むために設ける。また、半導体基板1の表面部の界面
準位を低下させると共に、半導体基板1の内部の結晶欠
陥を緩和するために設ける。この反射防止膜2は、半導
体基板1との屈折率差などを考慮して、屈折率が1.8
〜2.3程度になるように形成され、厚み850Å程度
に形成される。
Next, the antireflection film 2 is formed on the one main surface side of the semiconductor substrate 1 (FIG. 1D). The antireflection film 2 is made of, for example, a silicon nitride film, and is formed by a plasma CVD method using a mixed gas of silane and ammonia. The antireflection film 2 is provided to prevent light from being reflected on the surface of the semiconductor substrate 1 and to effectively take in light into the semiconductor substrate 1. Further, it is provided in order to lower the interface state of the surface portion of the semiconductor substrate 1 and alleviate crystal defects inside the semiconductor substrate 1. The antireflection film 2 has a refractive index of 1.8 in consideration of a difference in refractive index with the semiconductor substrate 1.
It is formed to have a thickness of about 2.3, and a thickness of about 850Å.

【0016】次に、裏面電極材料3を塗布して乾燥した
後、表面電極材料4を塗布して乾燥する。この際に使用
される裏面電極材料3、4は0.1〜5μm程度の銀粉
末の100重量部に対し、有機ビヒクルを10〜30重
量部、ガラスフリットを0.1〜5重量部含有する電極
材料を用いる。また、表面電極材料4の銀粉末は、銀粉
末の100重量部に対して0.1〜0.5μmの粒径の
銀粉末を5〜50重量部含有する。このような電極材料
を用いると、図2に示すように、半導体基板1の表面側
の凹部1cに電極材料が入り込み、半導体基板1と電極
材料4との接触抵抗を極力低減できる。この表面電極材
料4の0.1〜0.5μmの粒径の銀粉末が5重量部よ
り少ない場合には、微細な凹凸1cの凹部に銀が充分に
入りこまず、電極の接触抵抗が増大する。また、50重
量部を越える場合には、ペースト中のガラスフリット成
分がシリコンと電極との界面に多量に押し出されて電極
の接触抵抗が増大する。
Next, the back electrode material 3 is applied and dried, and then the front electrode material 4 is applied and dried. The back surface electrode materials 3 and 4 used at this time contain 10 to 30 parts by weight of an organic vehicle and 0.1 to 5 parts by weight of a glass frit with respect to 100 parts by weight of silver powder of about 0.1 to 5 μm. An electrode material is used. The silver powder of the surface electrode material 4 contains 5 to 50 parts by weight of silver powder having a particle size of 0.1 to 0.5 μm with respect to 100 parts by weight of silver powder. When such an electrode material is used, as shown in FIG. 2, the electrode material enters the concave portion 1c on the front surface side of the semiconductor substrate 1 and the contact resistance between the semiconductor substrate 1 and the electrode material 4 can be reduced as much as possible. When the amount of the silver powder having a particle diameter of 0.1 to 0.5 μm of the surface electrode material 4 is less than 5 parts by weight, the silver does not sufficiently enter into the concave portions of the fine irregularities 1c and the contact resistance of the electrode increases. To do. On the other hand, if it exceeds 50 parts by weight, a large amount of glass frit component in the paste is pushed out to the interface between silicon and the electrode, and the contact resistance of the electrode increases.

【0017】このような電極材料3、4は塗布して乾燥
した後、600〜800℃で1〜30分程度焼成するこ
とにより焼き付けられる。
The electrode materials 3 and 4 are applied and dried, and then baked by baking at 600 to 800 ° C. for about 1 to 30 minutes.

【0018】[0018]

【実施例】比抵抗が1.5Ωcmの半導体基板の一主面
側をドライエッチング法により表面に凹部の深さが0.
2〜0.5μm、凸部の間隔が0.2〜1.0μmとな
る微細な凹凸を形成して粗面化したのち、リンを1×1
17atoms/cm3拡散させて、厚み850Åの窒
化シリコン膜を形成した。その後、銀粉末100重量部
に対し有機ビヒクル25重量部、ガラスフリット2重量
部からなる裏面電極材料を塗布したのち、銀粉末100
重量部に対し有機ビヒクル25重量部、ガラスフリット
2重量部からなる表面電極材料で銀ペーストの粒径が
0.1〜5μmの銀粉末のうち、0.1〜0.5μmの
銀粉末の重量比が1%、5%、15%、25%、35
%、50%、60%のものを750℃×15分で焼き付
けて、太陽電池素子の電極部とした。このときの曲線因
子および太陽電池特性を測定した。その結果を表1に示
す。
EXAMPLES One main surface side of a semiconductor substrate having a specific resistance of 1.5 Ωcm was formed on the surface by a dry etching method so that the depth of the recess was 0.1.
After roughening the surface by forming fine irregularities having a diameter of 2 to 0.5 μm and a convex portion spacing of 0.2 to 1.0 μm, phosphorus is added to 1 × 1.
0 17 atoms / cm 3 was diffused to form a silicon nitride film having a thickness of 850 Å. Then, a back electrode material consisting of 25 parts by weight of an organic vehicle and 2 parts by weight of a glass frit is applied to 100 parts by weight of the silver powder, and then the silver powder 100 is added.
A surface electrode material consisting of 25 parts by weight of an organic vehicle and 2 parts by weight of a glass frit with respect to parts by weight, and a weight of the silver powder of 0.1 to 0.5 μm among the silver powder having a silver paste particle size of 0.1 to 5 μm. Ratio is 1%, 5%, 15%, 25%, 35
%, 50%, and 60% were baked at 750 ° C. for 15 minutes to form an electrode portion of a solar cell element. The fill factor and solar cell characteristics at this time were measured. The results are shown in Table 1.

【0019】[0019]

【表1】 [Table 1]

【0020】粒径が0.1〜5μmの銀粉末を含有する
銀ペーストで、粒径が0.1〜0.5μmの銀粉末の重
量比を変えた場合の曲線因子の結果は表1に示すとおり
である。すなわち、0.1〜0.5μmの銀粉末の重量
比が1%のとき、曲線因子は74.0%であった。0.
1〜0.5μmの銀粉末の重量比が5%のとき、曲線因
子は75.5%であった。0.1〜0.5μmの銀粉末
の重量比が15%のとき、曲線因子は76.1%であっ
た。0.1〜0.5μmの銀粉末の重量比が25%のと
き、曲線因子は76.8%であった。0.1〜0.5μ
mの銀粉末の重量比が35%のとき、曲線因子は76.
2%であった。0.1〜0.5μmの銀粉末の重量比が
50%のとき、曲線因子は75.0%であった。0.1
〜0.5μmの銀粉末の重量比が60%のとき、曲線因
子は74.2%であった。
Table 1 shows the fill factor results when the weight ratio of silver powder having a particle diameter of 0.1 to 0.5 μm was changed in a silver paste containing the silver powder having a particle diameter of 0.1 to 5 μm. It is shown. That is, when the weight ratio of the silver powder of 0.1 to 0.5 μm was 1%, the fill factor was 74.0%. 0.
The fill factor was 75.5% when the weight ratio of the silver powder of 1 to 0.5 μm was 5%. The fill factor was 76.1% when the weight ratio of the silver powder of 0.1 to 0.5 μm was 15%. When the weight ratio of the silver powder of 0.1 to 0.5 μm was 25%, the fill factor was 76.8%. 0.1-0.5μ
When the weight ratio of the silver powder of m is 35%, the fill factor is 76.
It was 2%. The fill factor was 75.0% when the weight ratio of 0.1-0.5 μm silver powder was 50%. 0.1
The fill factor was 74.2% when the weight ratio of silver powder of ˜0.5 μm was 60%.

【0021】[0021]

【発明の効果】以上のように、本発明に係る太陽電池素
子の製造方法によれば、一導電型を呈する半導体基板の
表面側に微細な凹凸を形成するとともに、この半導体基
板の表面側に銀を主成分とし、その銀100重量部に対
して0.1〜0.5μmの範囲の粒径のものを5〜50
重量部含有する銀ペーストを塗布して焼き付けることか
ら、電極の接触抵抗が低減できて良好な曲線因子を有す
る太陽電池素子を得ることができる。
As described above, according to the method for manufacturing a solar cell element of the present invention, fine irregularities are formed on the surface side of a semiconductor substrate having one conductivity type, and the surface side of this semiconductor substrate is formed. 5 to 50 having silver as a main component and having a particle size of 0.1 to 0.5 μm with respect to 100 parts by weight of silver
By coating and baking the silver paste contained in parts by weight, it is possible to reduce the contact resistance of the electrodes and obtain a solar cell element having a good fill factor.

【0022】また、本発明に係る太陽電池用電極材料に
よれば、銀を主成分とし、その銀100重量部に対して
0.1〜0.5μmの範囲の粒径のものを5〜50重量
部含有することから、表面に微細な凹凸部を形成した太
陽電池素子においても、電極の接触抵抗が低減でき、良
好な曲線因子を有する太陽電池素子を得ることができ
る。
Further, according to the electrode material for a solar cell of the present invention, silver containing 5 to 50 as a main component and having a particle size of 0.1 to 0.5 μm with respect to 100 parts by weight of silver is used. Since the weight part is contained, the contact resistance of the electrode can be reduced and a solar cell element having a good fill factor can be obtained even in the solar cell element having fine irregularities formed on the surface.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る太陽電池素子の製造方法を説明す
るための図であり、(a)〜(e)は工程毎の断面図で
ある。
FIG. 1 is a diagram for explaining a method for manufacturing a solar cell element according to the present invention, in which (a) to (e) are cross-sectional views in each step.

【図2】本発明に係る太陽電池素子の製造方法の表面側
の凹凸部を拡大して示す図である。
FIG. 2 is an enlarged view showing a concavo-convex portion on the surface side of the method for manufacturing a solar cell element according to the present invention.

【符号の説明】[Explanation of symbols]

1・・・半導体基板、1a・・・逆導電型半導体不純物
を有する領域、1c・・・微細な凹凸部、2・・・反射
防止膜、3・・・裏面電極、4・・・表面電極
DESCRIPTION OF SYMBOLS 1 ... Semiconductor substrate, 1a ... Area | region which has an opposite conductivity type semiconductor impurity, 1c ... Fine concavo-convex part, 2 ... Antireflection film, 3 ... Back surface electrode, 4 ... Front surface electrode

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 一導電型を呈する半導体基板の表面側に
微細な凹凸を形成するとともに、この半導体基板の表面
側に逆導電型を呈する領域を形成し、この半導体基板の
表面側と裏面側に電極を形成する太陽電池素子の製造方
法において、前記半導体基板の表面側に銀を主成分と
し、その銀100重量部に対して0.1〜0.5μmの
範囲の粒径のものを5〜50重量部含有する銀ペースト
を塗布して焼き付けることを特徴とする太陽電池素子の
製造方法。
1. A semiconductor substrate of one conductivity type is provided with fine irregularities on the front surface side thereof, and a region of the opposite conductivity type is formed on the front surface side of the semiconductor substrate. In the method for manufacturing a solar cell element, in which an electrode is formed on the surface of the semiconductor substrate, silver having a particle diameter of 0.1 to 0.5 μm as a main component on the surface side of the semiconductor substrate and having a particle size of 0.1 to 0.5 μm is used. A method for manufacturing a solar cell element, which comprises coating and baking a silver paste containing 50 to 50 parts by weight.
【請求項2】 前記半導体接合部を有する半導体基板の
表面側に焼き付けられる太陽電池素子用電極材料におい
て、前記電極材料が銀を主成分とし、その銀100重量
部に対して0.1〜0.5μmの範囲の粒径のものを5
〜50重量部含有することを特徴とする太陽電池素子用
電極材料。
2. In an electrode material for a solar cell element, which is baked on the front surface side of a semiconductor substrate having the semiconductor junction, the electrode material contains silver as a main component, and 0.1 to 0 relative to 100 parts by weight of the silver. 5 with a particle size in the range of 0.5 μm
An electrode material for a solar cell element, characterized by containing ˜50 parts by weight.
JP2001326830A 2001-10-24 2001-10-24 Method of manufacturing solar cell and electrode material used in the same solar cell Pending JP2003133567A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001326830A JP2003133567A (en) 2001-10-24 2001-10-24 Method of manufacturing solar cell and electrode material used in the same solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001326830A JP2003133567A (en) 2001-10-24 2001-10-24 Method of manufacturing solar cell and electrode material used in the same solar cell

Publications (1)

Publication Number Publication Date
JP2003133567A true JP2003133567A (en) 2003-05-09

Family

ID=19143147

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001326830A Pending JP2003133567A (en) 2001-10-24 2001-10-24 Method of manufacturing solar cell and electrode material used in the same solar cell

Country Status (1)

Country Link
JP (1) JP2003133567A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006008896A1 (en) * 2004-07-16 2006-01-26 Shin-Etsu Chemical Co., Ltd. Electrode material, solar cell and process for producing solar cell
JP2007194580A (en) * 2005-12-21 2007-08-02 E I Du Pont De Nemours & Co Paste for solar cell electrode
JP2007194581A (en) * 2005-12-21 2007-08-02 E I Du Pont De Nemours & Co Paste for solar cell electrode
WO2008026415A1 (en) * 2006-08-31 2008-03-06 Shin-Etsu Handotai Co., Ltd. Method for forming semiconductor substrate and electrode, and method for manufacturing solar battery
JP2008520094A (en) * 2004-11-12 2008-06-12 フエロ コーポレーション Method for manufacturing solar cell contact
JP2010263136A (en) * 2009-05-11 2010-11-18 Shin-Etsu Chemical Co Ltd Electrode, solar cell and method for manufacturing solar cell
CN102592710A (en) * 2012-02-13 2012-07-18 江苏瑞德新能源科技有限公司 Solar energy battery electrode-conducting silver slurry containing micron-size mixed silver powders
KR101239793B1 (en) * 2011-11-29 2013-03-06 엘지전자 주식회사 Solar cell and mehtod for manufacturing the same
US8721931B2 (en) 2005-12-21 2014-05-13 E I Du Pont De Nemours And Company Paste for solar cell electrode, solar cell electrode manufacturing method, and solar cell
JP2017017364A (en) * 2011-12-16 2017-01-19 エルジー エレクトロニクス インコーポレイティド Solar cell and method for manufacturing the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61208701A (en) * 1985-03-13 1986-09-17 株式会社村田製作所 Conducting paste
JPS6396809A (en) * 1986-10-13 1988-04-27 株式会社村田製作所 Conducting paste
JPH0885874A (en) * 1994-07-21 1996-04-02 Sharp Corp Formation of phosphorus-containing titanium oxide film, production of solar cell and device therefor
JPH11307792A (en) * 1998-04-27 1999-11-05 Kyocera Corp Solar cell element
JP2000133826A (en) * 1998-10-27 2000-05-12 Sharp Corp Photoelectric transducer and its manufacture

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61208701A (en) * 1985-03-13 1986-09-17 株式会社村田製作所 Conducting paste
JPS6396809A (en) * 1986-10-13 1988-04-27 株式会社村田製作所 Conducting paste
JPH0885874A (en) * 1994-07-21 1996-04-02 Sharp Corp Formation of phosphorus-containing titanium oxide film, production of solar cell and device therefor
JPH11307792A (en) * 1998-04-27 1999-11-05 Kyocera Corp Solar cell element
JP2000133826A (en) * 1998-10-27 2000-05-12 Sharp Corp Photoelectric transducer and its manufacture

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
FUKUI, K.; INOMATA, Y.; SHIRASAWA, K.: "Surface texturing using reactive ion etching for multicrystalline silicon solar cells", PHOTOVOLTAIC SPECIALISTS CONFERENCE, 1997., CONFERENCE RECORD OF THE TWENTY-SIXTH IEEE, JPN4007007647, 1997, US, pages 47 - 50, XP010267724, ISSN: 0000846056, DOI: 10.1109/PVSC.1997.653921 *

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101082114B1 (en) 2004-07-16 2011-11-10 신에쓰 가가꾸 고교 가부시끼가이샤 Electrode Material, Solar Cell and Process for Producing Solar Cell
WO2006008896A1 (en) * 2004-07-16 2006-01-26 Shin-Etsu Chemical Co., Ltd. Electrode material, solar cell and process for producing solar cell
AU2005264235B2 (en) * 2004-07-16 2010-07-01 Shin-Etsu Chemical Co., Ltd. Electrode material, solar cell and process for producing solar cell
US7705236B2 (en) 2004-07-16 2010-04-27 Shin-Etsu Chemical Co., Ltd. Electrode material, solar cell, and method for producing solar cell
CN100411104C (en) * 2004-07-16 2008-08-13 信越化学工业株式会社 Electrode material, solar cell and process for producing solar cell
JP2008520094A (en) * 2004-11-12 2008-06-12 フエロ コーポレーション Method for manufacturing solar cell contact
US8721931B2 (en) 2005-12-21 2014-05-13 E I Du Pont De Nemours And Company Paste for solar cell electrode, solar cell electrode manufacturing method, and solar cell
JP2007194580A (en) * 2005-12-21 2007-08-02 E I Du Pont De Nemours & Co Paste for solar cell electrode
JP2007194581A (en) * 2005-12-21 2007-08-02 E I Du Pont De Nemours & Co Paste for solar cell electrode
US8253011B2 (en) 2006-08-31 2012-08-28 Shin-Etsu Handotai Co., Ltd. Semiconductor substrate, electrode forming method, and solar cell fabricating method
WO2008026415A1 (en) * 2006-08-31 2008-03-06 Shin-Etsu Handotai Co., Ltd. Method for forming semiconductor substrate and electrode, and method for manufacturing solar battery
CN101512778B (en) * 2006-08-31 2012-05-09 信越半导体股份有限公司 Semiconductor substrate, electrode forming method, and method for manufacturing solar battery
JPWO2008026415A1 (en) * 2006-08-31 2010-01-14 信越半導体株式会社 Semiconductor substrate, electrode forming method and solar cell manufacturing method
AU2007289892B2 (en) * 2006-08-31 2012-09-27 Shin-Etsu Chemical Co., Ltd. Method for forming semiconductor substrate and electrode, and method for manufacturing solar battery
JP5118044B2 (en) * 2006-08-31 2013-01-16 信越半導体株式会社 Semiconductor substrate, electrode forming method and solar cell manufacturing method
US8766089B2 (en) 2006-08-31 2014-07-01 Shin-Etsu Handotai Co., Ltd. Semiconductor substrate, electrode forming method, and solar cell fabricating method
JP2010263136A (en) * 2009-05-11 2010-11-18 Shin-Etsu Chemical Co Ltd Electrode, solar cell and method for manufacturing solar cell
KR101239793B1 (en) * 2011-11-29 2013-03-06 엘지전자 주식회사 Solar cell and mehtod for manufacturing the same
JP2017017364A (en) * 2011-12-16 2017-01-19 エルジー エレクトロニクス インコーポレイティド Solar cell and method for manufacturing the same
CN102592710A (en) * 2012-02-13 2012-07-18 江苏瑞德新能源科技有限公司 Solar energy battery electrode-conducting silver slurry containing micron-size mixed silver powders

Similar Documents

Publication Publication Date Title
JP3271990B2 (en) Photovoltaic device and method for manufacturing the same
TWI408816B (en) A solar cell manufacturing method, a solar cell, and a method of manufacturing a semiconductor device
JP6269760B2 (en) Boron diffusion coating and semiconductor device manufacturing method
EP1876650A1 (en) Solar cell manufacturing method and solar cell
WO2006008896A1 (en) Electrode material, solar cell and process for producing solar cell
JP2004235274A (en) Polycrystalline silicon substrate and method of roughing its surface
WO2005117138A1 (en) Semiconductor substrate for solar cell, method for manufacturing the same, and solar cell
JP5991945B2 (en) Solar cell and solar cell module
CN103247715A (en) Solar cell and method of manufacturing the same
JP2003133567A (en) Method of manufacturing solar cell and electrode material used in the same solar cell
JP4340031B2 (en) Surface roughening method for solar cell substrate
JP2006073832A (en) Solar battery and method of manufacturing the same
JP2003069059A (en) Method for roughening glass substrate, and thin film polycrystalline silicon solar battery using the same
JP2000323735A (en) Photovoltaic device and fabrication thereof
JP4467218B2 (en) Surface roughening method for solar cell substrates
JP3238003B2 (en) Method of manufacturing solar cell element
JPH1117202A (en) Solar cell device
JP4339990B2 (en) Surface roughening method of silicon substrate
JP2001127317A (en) Method of manufacturing solar cell
JP3652128B2 (en) Method for manufacturing solar cell element
JPS6196772A (en) Surface treating method of semiconductor substrate for solar battery
JP4716881B2 (en) Manufacturing method of solar cell
JP2003273382A (en) Solar cell element
JP2000277778A (en) Manufacture of solar cell element
JP2005311060A (en) Solar cell and manufacturing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040415

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060530

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060731

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070508