JP2003132910A - Polymer electrolytic film and fuel cell using the same - Google Patents

Polymer electrolytic film and fuel cell using the same

Info

Publication number
JP2003132910A
JP2003132910A JP2001330441A JP2001330441A JP2003132910A JP 2003132910 A JP2003132910 A JP 2003132910A JP 2001330441 A JP2001330441 A JP 2001330441A JP 2001330441 A JP2001330441 A JP 2001330441A JP 2003132910 A JP2003132910 A JP 2003132910A
Authority
JP
Japan
Prior art keywords
electrolyte membrane
polymer electrolyte
polymer
fuel cell
composite fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001330441A
Other languages
Japanese (ja)
Inventor
Junji Morita
純司 森田
Makoto Uchida
誠 内田
Eiichi Yasumoto
栄一 安本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2001330441A priority Critical patent/JP2003132910A/en
Publication of JP2003132910A publication Critical patent/JP2003132910A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PROBLEM TO BE SOLVED: To provide a polymer electrolytic film with high mechanical strength, high dimension stability, and low electric resistance. SOLUTION: The polymer electrolytic film is provided, which comprises a conjugated fiber which uses a fluoric polymer fiber as a inner layer and provides with an outer layer comprising the ion exchange resin which has a sulfonic group around the inner layer.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は高分子型燃料電池の
構成要素である高分子電解質膜とその製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polymer electrolyte membrane which is a constituent element of a polymer fuel cell and a method for producing the same.

【0002】[0002]

【従来の技術】高分子電解質を用いた燃料電池は水素を
含有する燃料ガスと空気など酸素を含有する燃料ガス
(酸化剤ガス)とを電気化学的に反応させることで電力
と熱とを同時に発生させる発電装置である。その構造は
水素イオン(プロトン)を選択的に輸送する高分子電解
質膜と電解質膜の両面に形成される貴金属系触媒を担持
したカーボン粉末を主成分とする触媒層と触媒層の外面
に燃料ガスの通気性と電子伝導性を併せ持つガス拡散層
を有する一対の多孔質電極からなる。これを膜電極接合
体(以下MEA)と呼ぶ。このMEAの外側に反応ガス
を供給し、生成ガスや余剰ガスを運び去るためのガス流
路が設けられたセパレータを配置したものを単セルと呼
ぶ。この単セルを冷却板などを介して複数積層し、数ボ
ルトから数百ボルトの出力を発揮する積層電池(スタッ
ク)が構成される。
2. Description of the Related Art A fuel cell using a polymer electrolyte simultaneously reacts electric power and heat by electrochemically reacting a fuel gas containing hydrogen with a fuel gas containing oxygen such as air (oxidant gas). This is a power generation device. Its structure is a polymer electrolyte membrane that selectively transports hydrogen ions (protons) and a catalyst layer mainly composed of carbon powder carrying a noble metal catalyst formed on both sides of the electrolyte membrane and a fuel gas on the outer surface of the catalyst layer. Of a pair of porous electrodes having a gas diffusion layer having both air permeability and electron conductivity. This is called a membrane electrode assembly (hereinafter MEA). A unit cell in which a reaction gas is supplied to the outside of the MEA and a separator provided with a gas channel for carrying away the generated gas and the surplus gas is arranged is called a single cell. A plurality of these single cells are stacked via a cooling plate or the like to form a stacked battery (stack) that exhibits an output of several volts to several hundreds of volts.

【0003】高分子電解質型燃料電池は、燃料極及び酸
化剤極でそれぞれ、H2→2H++2e-および1/2O2
+2H++2e-→H2Oで表される反応が起こる。lこ
の反応式において、燃料極で発生した電子は外部回路を
通じて酸化剤極へ移動し、プロトンは高分子電解質膜を
介して酸化剤極へ移動する。
The polymer electrolyte fuel cell has H 2 → 2H + + 2e and 1 / 2O 2 at the fuel electrode and the oxidant electrode, respectively.
The reaction represented by + 2H + + 2e → H 2 O occurs. In this reaction formula, the electrons generated in the fuel electrode move to the oxidant electrode through the external circuit, and the protons move to the oxidant electrode through the polymer electrolyte membrane.

【0004】燃料電池の性能は、使用する高分子電解質
膜の性能に大きく依存する。高分子電解質膜のイオン交
換容量が大きいほどプロトン伝導度は高くなり、また、
電解質膜の膜厚が薄いほど電気抵抗が低くなり、高出力
密度の燃料電池を得ることができる。高分子電解質型燃
料電池に使用される高分子電解質膜は、イオン交換基に
スルホン酸基を有し、そのイオン交換容量が0.7〜
1.3ミリ当量/グラムで膜厚が20〜200mmのパ
ーフルオロカーボンスルホン酸イオノマーが一般的に使
用されている。その代表例として、Nafion(米国
DuPont社製)、Flemion(旭硝子社製)、
Aciplex(旭化成社製)などがある。
The performance of the fuel cell largely depends on the performance of the polymer electrolyte membrane used. The larger the ion exchange capacity of the polymer electrolyte membrane, the higher the proton conductivity.
The thinner the electrolyte membrane is, the lower the electric resistance is, and a fuel cell having a high output density can be obtained. A polymer electrolyte membrane used in a polymer electrolyte fuel cell has a sulfonic acid group as an ion exchange group and has an ion exchange capacity of 0.7 to
Perfluorocarbon sulfonic acid ionomers having a film thickness of 20 to 200 mm at 1.3 meq / g are generally used. As typical examples, Nafion (manufactured by DuPont, USA), Flemion (manufactured by Asahi Glass Co., Ltd.),
Aciplex (manufactured by Asahi Kasei Corp.) and the like.

【0005】これまで、高分子電解質膜のイオン交換容
量を増加、または膜厚の低減による、燃料電池の高性能
化の試みがなされてきた。しかし、高分子電解質膜のイ
オン交換容量を必要以上に増加させると機械的強度の低
下によりクリープやピンホールが発生、または、水への
溶解度が増加し、信頼性や耐久性に問題があった。
Up to now, attempts have been made to improve the performance of fuel cells by increasing the ion exchange capacity of the polymer electrolyte membrane or reducing the membrane thickness. However, if the ion exchange capacity of the polymer electrolyte membrane is increased more than necessary, creep and pinholes will occur due to the decrease in mechanical strength, or the solubility in water will increase, resulting in problems in reliability and durability. .

【0006】前記した電解質膜のように、高分子電解質
を溶融押し出し成形もしくは、その溶液のキャスティン
グにより得られた膜は、熱や溶媒の影響による寸法変化
が大きく、ハンドリングの悪さや電極の位置ずれなどに
よるMEAの電気的短絡の原因となることがあった。
[0006] Like the above-mentioned electrolyte membrane, a membrane obtained by melt extrusion molding of a polymer electrolyte or casting of a solution thereof has a large dimensional change due to the influence of heat and a solvent, which causes poor handling and displacement of electrodes. This may cause an electrical short circuit of the MEA due to such reasons.

【0007】このような問題に対し、機械強度の低下を
抑制するためにテトラフルオロエチレン(PTFE)の
ような含フッ素重合体からなる織布状や不織布などを補
強材として電解質膜中に挿入する方法(特開昭53−5
6192号公報、特開平6−231779号公報な
ど)、フィブリル状のPTFEを電解質中に混合し成膜
する方法(特開平6−231779号公報など)や含フ
ッ素重合体の多孔質基材に電解質を含漬する方法(特開
平6−342666号公報)などが提案されている。
In order to solve such a problem, a woven fabric or a non-woven fabric made of a fluoropolymer such as tetrafluoroethylene (PTFE) is inserted into the electrolyte membrane as a reinforcing material in order to suppress deterioration of mechanical strength. Method (JP-A-53-5)
No. 6192, JP-A-6-231779, etc.), a method of mixing fibrillar PTFE into an electrolyte to form a film (JP-A-6-231779, etc.) and an electrolyte on a porous substrate of a fluoropolymer. A method of soaking (Japanese Patent Application Laid-Open No. 6-342666) and the like have been proposed.

【0008】[0008]

【発明が解決しようとする課題】PTFEの織布や多孔
質基材を補強材とし電解質膜とする手法は、PTFEの
三次元的繋がりにより、高い機械強度と寸法安定性を有
する、薄膜を可能とした。しかし、絶縁材料であるPT
FEが、電解質膜中広範囲に連なり存在し、導電性の障
害となり、電気抵抗を十分に低下させることが困難であ
った。
The method of using a PTFE woven cloth or a porous substrate as a reinforcing material to form an electrolyte membrane enables a thin film having high mechanical strength and dimensional stability due to the three-dimensional connection of PTFE. And However, the insulating material PT
FE was present in a wide range in the electrolyte membrane, which was an obstacle to conductivity, and it was difficult to sufficiently reduce the electric resistance.

【0009】また、フィブリル状のPTFEを電解質中
に混合し成膜する手法は、高い機械強度を有する薄膜が
可能であり、また、PTFEのフィブリルを用いること
で導電性への影響を低減し、電気抵抗の低減を可能にし
た。しかし、PTFEのフィブリルは電解質膜中で点在
しているため、前記PTFEの織り布や多孔質基材が示
す高い寸法安定性は得られなかった。また、延伸などの
工程を経るとフィブリルの配列に異方性が付与され、電
解質膜の熱などによる寸法変化が著しかった。
The method of mixing fibrillar PTFE in an electrolyte to form a film can be a thin film having high mechanical strength, and the use of PTFE fibrils reduces the effect on conductivity. The electric resistance can be reduced. However, since PTFE fibrils are scattered in the electrolyte membrane, the high dimensional stability exhibited by the PTFE woven cloth or porous substrate cannot be obtained. In addition, anisotropy was imparted to the fibril arrangement after a process such as stretching, and the dimensional change due to heat of the electrolyte membrane was remarkable.

【0010】[0010]

【課題を解決するための手段】以上の課題を解決するた
め本発明の高分子電解質膜は、高分子繊維で内層を形成
し、前記内層の外周部に水素イオン交換基を含有する高
分子からなる外層を形成したことを特徴とする。
In order to solve the above problems, the polymer electrolyte membrane of the present invention comprises a polymer having an inner layer formed of polymer fibers, and a polymer having a hydrogen ion exchange group at the outer periphery of the inner layer. Is formed.

【0011】そして、この高分子電解質膜の両面に配置
した一対の電極と、前記電極の一方に燃料ガスを供給排
出し、他方に酸化剤ガスを供給排出するガス流路を有す
る一対の導電性セパレータとで燃料電池を構成する。
A pair of electrodes having a pair of electrodes arranged on both sides of the polymer electrolyte membrane and a pair of gas passages for supplying and discharging the fuel gas to one of the electrodes and supplying and discharging the oxidant gas to the other of the electrodes. A fuel cell is composed of the separator.

【0012】[0012]

【発明の実施の形態】本発明は、前述した課題に対し、
高い機械強度、高い寸法安定性、低い電気抵抗といった
特性を兼ね備えた高分子電解質膜を提供するものであ
る。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention addresses the above-mentioned problems.
It is intended to provide a polymer electrolyte membrane having properties such as high mechanical strength, high dimensional stability, and low electric resistance.

【0013】本発明は、イオン交換基を含有しない高分
子繊維を内層とし、前記内層の外周部にイオン交換基を
含有する高分子からなる外層を具備した複合繊維からな
り、前記複合繊維からなる織布に、前記織布に前記イオ
ン交換基を含有する高分子溶液を塗布し、加熱加圧処理
し、得られた高分子電解質膜に関する。
The present invention comprises a composite fiber comprising an inner layer of a polymer fiber containing no ion exchange group and an outer layer of a polymer containing an ion exchange group on the outer peripheral portion of the inner layer, which comprises the above-mentioned composite fiber. The present invention relates to a polymer electrolyte membrane obtained by applying a polymer solution containing the ion-exchange group to the woven cloth, heating and pressing the solution.

【0014】本発明において、前記内層を形成する前記
イオン交換基を含有しない高分子繊維がフッ素系高分子
繊維であり、また、前記外層を形成する前記イオン交換
基を含有する高分子がスルホン酸基を有するパーフルオ
ロカーボン樹脂である高分子電解質膜に関する。
In the present invention, the polymer fiber which does not contain the ion-exchange group forming the inner layer is a fluorine-containing polymer fiber, and the polymer containing the ion-exchange group forming the outer layer is sulfonic acid. The present invention relates to a polymer electrolyte membrane which is a perfluorocarbon resin having a group.

【0015】フッ素系高分子としては、ポリテトラフル
オロエチレン(PTFE)、テトラフルオロエチレン−
ヘキサフルオロプロピレン共重合体、テトラフルオロエ
チレン−パーフルオロアルキルビニルエーテル共重合
体、ポリクロロトリフルオロエチレン、テトラフルオロ
エチレン−エチレン共重合体、テトラフルオロエチレン
−ヘキサフルオロプロピレン−パーフルオロアルキルビ
ニルエーテル共重合体などが挙げられる。なかでもPT
FEがもっとも好ましい。
As the fluorine-based polymer, polytetrafluoroethylene (PTFE), tetrafluoroethylene-
Hexafluoropropylene copolymer, tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer, polychlorotrifluoroethylene, tetrafluoroethylene-ethylene copolymer, tetrafluoroethylene-hexafluoropropylene-perfluoroalkyl vinyl ether copolymer, etc. Is mentioned. Above all, PT
FE is most preferred.

【0016】内層に用いられるフッ素系高分子繊維は、
特に限定するものではないが、短繊維や長繊維もしく
は、それらを集束、加撚りしたものが用いられる。
The fluoropolymer fiber used for the inner layer is
Although not particularly limited, short fibers, long fibers, or those obtained by bundling and twisting them are used.

【0017】フッ素系高分子樹脂の径に特に制限はない
が、形成された膜に十分な強度を付与するためには、2
0〜400デニールであることが好ましい。さらに好ま
しくは50〜200デニールであることが望ましい。
The diameter of the fluoropolymer resin is not particularly limited, but in order to impart sufficient strength to the formed film, it should be 2
It is preferably from 0 to 400 denier. More preferably, it is 50 to 200 denier.

【0018】外層を形成するイオン交換基を含有する高
分子としては、イオン交換基にカルボン酸基、スルホン
酸基、ホスホン酸基などが用いられる。なかでもスルホ
ン酸基がもっとも好ましい。
As the polymer having an ion exchange group forming the outer layer, a carboxylic acid group, a sulfonic acid group, a phosphonic acid group or the like is used as the ion exchange group. Of these, a sulfonic acid group is the most preferable.

【0019】また、スルホン酸基を有するパーフルオロ
カーボン樹脂は、特に限定はしないが、CF2=CF2
とCF2=CF−(O−CF2CFX−)m−O−(C
F2)n−A(m=0〜3、n=1〜5、X:Fまたは
CF3、A:−SO2Fまたは−SO3-)との共重合
体からなることが好ましい。なかでもCF2=CF2と
CF2=CF−O−CF2−CF(CF3)−O−(C
F2)2−SO2Fの単量体からなる共重合体が好まし
い。
The perfluorocarbon resin having a sulfonic acid group is not particularly limited, but CF2 = CF2
And CF2 = CF- (O-CF2CFX-) m-O- (C
F2) n-A (m = 0~3, n = 1~5, X: F or CF3, A: -SO2F or --SO3 -) is preferably made of a copolymer of. Among them, CF2 = CF2 and CF2 = CF-O-CF2-CF (CF3) -O- (C
A copolymer composed of F2) 2-SO2F monomer is preferable.

【0020】また、スルホン酸基を有するパーフルオロ
カーボン樹脂のイオン交換容量が0.7〜1.5meq
/gの範囲であることが好ましい。さらには0.9〜
1.3meq/gであることが望ましい。
The ion exchange capacity of the perfluorocarbon resin having a sulfonic acid group is 0.7 to 1.5 meq.
It is preferably in the range of / g. Furthermore 0.9-
It is preferably 1.3 meq / g.

【0021】複合繊維は、内層が単一コアもしくは複数
コアからなることが好ましい。コアの形状は特に限定し
ないが、円形、楕円形、角形、三角形などが好ましい。
The inner layer of the composite fiber preferably has a single core or a plurality of cores. The shape of the core is not particularly limited, but a circle, an ellipse, a prism, a triangle, and the like are preferable.

【0022】本発明の高分子電解質膜は、前記複合繊維
からなる織布を作成し、前記織布に前記イオン交換基を
含有する高分子溶液を塗布し、加熱加圧処理し、形成さ
れる。
The polymer electrolyte membrane of the present invention is formed by preparing a woven fabric made of the composite fiber, applying the polymer solution containing the ion-exchange group to the woven fabric, and heating and pressing the solution. .

【0023】複合繊維の織り形は、特に限定するものは
ないが、平織り、絡み織り、綾織、コード織り、レノ織
り、バスケット織りなどが用いられる。なかでも、平織
りが好ましい。織密度としては、10〜70本/インチ
であり、好ましくは20〜50本/インチである。
The woven form of the composite fiber is not particularly limited, but plain weave, entangled weave, twill weave, cord weave, leno weave, basket weave and the like are used. Among them, plain weave is preferable. The weaving density is 10 to 70 yarns / inch, and preferably 20 to 50 yarns / inch.

【0024】複合繊維よりなる電解質膜の厚みは、加熱
加圧後20〜200mmであり、好ましくは30〜75m
mである。
The thickness of the electrolyte membrane composed of the composite fiber is 20 to 200 mm, preferably 30 to 75 m after heating and pressing.
m.

【0025】複合繊維からなる電解質膜を加圧加熱処理
する機器としては、平板プレス機、ロール式ラミネータ
ーなどがある。なかでも製造の連続性よりロール式ラミ
ネーターの使用が好ましい。
Examples of equipment for pressurizing and heating an electrolyte membrane made of composite fibers include a flat plate press and a roll type laminator. Above all, it is preferable to use a roll type laminator in view of continuity of production.

【0026】加熱加圧処理の条件としては、温度は、ス
ルホン酸の熱分解が生じず、高分子電解質が軟化する範
囲100〜200℃が好ましく。さらに好ましくは、1
20〜180℃の範囲である。圧力は、電解質膜にピン
ホールなど損傷を与えない範囲線圧10〜70kg/c
m、さらに好ましくは、20〜50kg/cm2であ
る。
As the conditions for the heating and pressurizing treatment, the temperature is preferably 100 to 200 ° C. in which the sulfonic acid is not thermally decomposed and the polymer electrolyte is softened. More preferably, 1
It is in the range of 20 to 180 ° C. The pressure is in the range that does not damage the electrolyte membrane such as pinholes. Linear pressure 10-70kg / c
m, more preferably 20 to 50 kg / cm 2 .

【0027】本発明における燃料電池は、高分子電解質
膜と、前記高分子電解質膜を挟んだ一対の電極を具備し
た燃料電池である。前記電極は、導電性多孔質基材およ
び触媒層からなり、導電性多孔質基材と触媒層の間に導
電性微粒子からなるガス拡散層を有する場合もある。
The fuel cell of the present invention is a fuel cell comprising a polymer electrolyte membrane and a pair of electrodes sandwiching the polymer electrolyte membrane. The electrode is composed of a conductive porous base material and a catalyst layer, and may have a gas diffusion layer composed of conductive fine particles between the conductive porous base material and the catalyst layer.

【0028】高分子電解質膜として、前記複合繊維から
なる電解質膜が用いられる。
As the polymer electrolyte membrane, an electrolyte membrane made of the above composite fiber is used.

【0029】導電性多孔質基材としては、カーボンペー
パー、カーボンクロス、カーボン・PTFE複合シート
などが好ましく用いられる。
As the conductive porous substrate, carbon paper, carbon cloth, carbon / PTFE composite sheet and the like are preferably used.

【0030】また、触媒層に用いられる触媒坦持粉末と
しては、100〜500nmの平均粒子系を有する貴金
属を坦持した炭素粉末が好ましく用いられる。
As the catalyst-supporting powder used in the catalyst layer, carbon powder supporting a noble metal having an average particle size of 100 to 500 nm is preferably used.

【0031】また、撥水層に用いられる導電性粉末とし
ては、平均粒径1〜10mmの炭素粉末が好ましく用い
られる。
As the conductive powder used for the water repellent layer, carbon powder having an average particle size of 1 to 10 mm is preferably used.

【0032】触媒層用および撥水層用塗料に用いられる
溶剤としては、例えばエタノール、n−プロパノール、
エトキシエタノール、酢酸ブチル、水などが好ましく用
いられる。これらは単独もしくは2種以上を混合して用
いてもよい。
The solvent used in the coating for the catalyst layer and the water repellent layer is, for example, ethanol, n-propanol,
Ethoxyethanol, butyl acetate, water and the like are preferably used. You may use these individually or in mixture of 2 or more types.

【0033】[0033]

【実施例】次に実施例に基づき本発明を具体的に説明す
る。
EXAMPLES The present invention will be described in detail with reference to Examples.

【0034】(実施例1)図1に示すような装置を用い
てPTFEを内層、スルホン酸基を有するパーフルオロ
カーボン樹脂(以後PFSI:−(CF2−CF2)m
−(CF2−CF)n−O−CF2−CF(CF3)−
O−(CF2)2−SO3H、イオン交換容量1.1m
eq/g)を外層とする複合繊維を作製した。
Example 1 Using a device as shown in FIG. 1, PTFE was used as an inner layer and a perfluorocarbon resin having a sulfonic acid group (hereinafter referred to as PFSI :-( CF2-CF2) m).
-(CF2-CF) n-O-CF2-CF (CF3)-
O- (CF2) 2-SO3H, ion exchange capacity 1.1m
A composite fiber having eq / g) as an outer layer was produced.

【0035】容器1には、PTFEの融液が入れられ、
口金2より吐出し張力をかけてさらに細くしつつ、PF
SIが入れてある容器3中を走らせ口金4よりPTFE
の周囲にPFSIを付着させて、集束し、口金7に集め
再紡糸し、太さ35mmの内層5PTFE、外層6PF
SIからなる複合繊維を作製した。作製した複合繊維の
断面図の一例を図2に示した。本実施例では図1に示し
た機器で図2に示した断面を有する複数コアの複合繊維
を作製したが本発明はこれに限定されない。
The container 1 is filled with the melt of PTFE,
It is discharged from the mouthpiece 2 and tension is applied to make it thinner
Run in the container 3 containing SI
PFSI is attached to the periphery of the core, bundled, collected in the spinneret 7 and re-spun, and the inner layer 5PTFE and outer layer 6PF with a thickness of 35 mm are formed.
A composite fiber made of SI was produced. An example of a cross-sectional view of the produced conjugate fiber is shown in FIG. In this example, a multi-core composite fiber having the cross section shown in FIG. 2 was produced by the device shown in FIG. 1, but the present invention is not limited to this.

【0036】この複合繊維を縦糸、横糸に使用し、平織
りした密度30本/インチの複合繊維製織布を作製し
た。この複合繊維製織布の両面にPFSIの10重量%
のアルコール溶液を塗布し、乾燥したのち、温度165
℃、線圧50kg/cmのロール式ラミネーターを用い
て、複合繊維と塗布したPFSIを融着させ膜圧50m
mの高分子電解質膜を得た。
Using this composite fiber as warp and weft, a plain-woven composite fiber woven fabric having a density of 30 fibers / inch was prepared. 10% by weight of PFSI on both sides of this composite fiber woven fabric
After applying the alcohol solution of No. 1 and drying, the temperature is 165
Using a roll-type laminator with a linear pressure of 50 kg / cm at 50 ° C, the composite fiber and the coated PFSI are fused and the film pressure is 50 m.
A polymer electrolyte membrane of m was obtained.

【0037】(比較例1)実施例1で用いたPFSIの
押し出し成形により、膜厚30mmとした2枚の間に、
縦糸、横糸30デニール、密度25本/インチのPTF
E製織布25mmに挟み、温度200℃、線圧50kg
/cm2のロール式ラミネーターで50mmのPTFE補
強膜を得た。
(Comparative Example 1) By extrusion molding of the PFSI used in Example 1, between two sheets having a film thickness of 30 mm,
PTF with warp yarn, weft yarn 30 denier, density 25 threads / inch
It is sandwiched between 25 mm E woven cloth, temperature 200 ° C, linear pressure 50 kg.
A 50 mm PTFE reinforced membrane was obtained with a roll type laminator of / cm 2 .

【0038】(比較例2)実施例1で用いたPFSIの
押し出し成形膜50mmを得た。
(Comparative Example 2) An extruded film of PFSI used in Example 1 having a thickness of 50 mm was obtained.

【0039】(機械強度測定)実施例の複合繊維膜、比
較例1のPTFE補強膜、比較例2の非補強膜それぞれ
の引っ張り強度を相対湿度50%RH、温度25℃の条
件で測定した。
(Measurement of Mechanical Strength) The tensile strength of each of the composite fiber membrane of the example, the PTFE reinforced membrane of Comparative Example 1 and the non-reinforced membrane of Comparative Example 2 was measured under the conditions of a relative humidity of 50% RH and a temperature of 25 ° C.

【0040】(寸法安定性測定)実施例の複合繊維膜、
比較例1のPTFE補強膜、比較例2の非補強膜それぞ
れの寸法安定性を測定した。各電解質膜5cm×5cm
を相対湿度50RH%、25℃の状態から、25℃の水
に6時間浸漬した後の寸法変化率を測定した。
(Measurement of Dimensional Stability) The composite fiber membrane of the example,
The dimensional stability of each of the PTFE reinforced membrane of Comparative Example 1 and the non-reinforced membrane of Comparative Example 2 was measured. Each electrolyte membrane 5 cm x 5 cm
From the state of relative humidity of 50 RH% and 25 ° C., the dimensional change rate after immersion in water of 25 ° C. for 6 hours was measured.

【0041】(電気抵抗測定)実施例の複合繊維膜、比
較例1のPTFE補強膜、比較例2の非補強膜それぞれ
の交流比抵抗を測定した。各電解質膜をφ1cmの円形
に切り抜き、相対湿度95RH%、温度70℃の条件下
で含水させた後、φ1cmの2枚の白金電極で挟み、交
流インピーダンス測定装置(SOLARTRON社製、
ポテンシオスタット、周波数応答アナライザー)を用
い、交流比抵抗を測定した。
(Measurement of Electric Resistance) The AC specific resistances of the composite fiber membrane of the example, the PTFE reinforced membrane of Comparative Example 1 and the non-reinforced membrane of Comparative Example 2 were measured. Each electrolyte membrane was cut out into a circle with a diameter of 1 cm, hydrated under conditions of a relative humidity of 95 RH% and a temperature of 70 ° C., and then sandwiched between two platinum electrodes with a diameter of 1 cm, and an AC impedance measuring device (SOLATRRON,
AC specific resistance was measured using a potentiostat and a frequency response analyzer.

【0042】以上の引っ張り強度、寸法変化率、交流費
抵抗の結果を表1に示した。
Table 1 shows the results of the tensile strength, the dimensional change rate, and the AC cost resistance.

【0043】[0043]

【表1】 [Table 1]

【0044】実施例の複合繊維からなる高分子電解質膜
は、複合繊維の織布としても、PTFEの持つ補強性を
効果的に発揮できることがわかった。また、ふくごうせ
んいとすることでPFSIの導電性を維持し、PTFE
による絶縁効果を抑制していることがわかった。
It was found that the polymer electrolyte membrane made of the composite fiber of the example can effectively exhibit the reinforcing property of PTFE even as a woven fabric of the composite fiber. In addition, the conductivity of PFSI is maintained by making it
It was found that the insulation effect due to is suppressed.

【0045】(実施例2)撥水処理を施したカーボンペ
ーパー(東レ製、TGP−H−120)上に、炭素粉末
(電気化学工業性、デンカブラック)150gとPTF
E分散液(ダイキン工業製、D−1)36gとを混合し
た撥水層塗料を作成し、撥水処理カーボンペーパー上に
塗工し、350℃で焼成し、ガス拡散層を作成した。5
0重量%白金坦持カーボン粉末(田中貴金属社製、TE
C10E50E)10gをイオン交換水10gと高分子
電解質分散液(旭硝子社製、9重量%FSS溶液)59
gを超音波攪拌により、混合分散し、触媒層インクを作
成し、前記ガス拡散層に塗布、70℃乾燥を経て、触媒
層とガス拡散層からなる電極を作成した。
(Example 2) On a water-repellent carbon paper (TGP-H-120 manufactured by Toray), 150 g of carbon powder (electrochemical industrial grade, Denka Black) and PTF were added.
A water-repellent layer coating material was prepared by mixing 36 g of E dispersion liquid (D-1 manufactured by Daikin Industries, Ltd.) on the water-repellent treated carbon paper and baked at 350 ° C. to form a gas diffusion layer. 5
0 wt% platinum supported carbon powder (Tanaka Kikinzoku Co., TE
C10E50E) 10 g, ion-exchanged water 10 g, and polymer electrolyte dispersion (Asahi Glass Co., Ltd., 9 wt% FSS solution) 59
g was mixed and dispersed by ultrasonic agitation to prepare a catalyst layer ink, which was applied to the gas diffusion layer and dried at 70 ° C. to prepare an electrode composed of the catalyst layer and the gas diffusion layer.

【0046】高分子電解質膜に実施例1で作製した複合
繊維からなる高分子電解質膜を用い、上記工程で作成し
た電極2枚でその高分子電解質膜を挟み、ガスケットを
配置し、120℃でホットプレスし、MEAを作成し
た。MEAをセパレータ、集電板、ヒーター、絶縁板、
端板の順に挟み、単セルを作成した。
The polymer electrolyte membrane made of the composite fiber prepared in Example 1 was used as the polymer electrolyte membrane, and the polymer electrolyte membrane was sandwiched between the two electrodes prepared in the above steps, and a gasket was placed at 120 ° C. It hot-pressed and created MEA. MEA as separator, collector plate, heater, insulation plate,
A single cell was prepared by sandwiching the end plates in this order.

【0047】(比較例3)高分子電解質膜に比較例1で
作製したPTFE補強高分子電解質膜を用いた。それ以
外は、実施例2と同様の操作を行った。
Comparative Example 3 The PTFE-reinforced polymer electrolyte membrane prepared in Comparative Example 1 was used as the polymer electrolyte membrane. Otherwise, the same operation as in Example 2 was performed.

【0048】(比較例4)高分子電解質膜に比較例2で
作製した非補強高分子電解質膜を用いた。
Comparative Example 4 The non-reinforced polymer electrolyte membrane produced in Comparative Example 2 was used as the polymer electrolyte membrane.

【0049】それ以外は、実施例2と同様の操作を行っ
た。各単セルを電流―電圧特性測定装置に設置し、燃料
極に水素、酸化剤極に空気を流し、電池温度75℃、燃
料利用率70%、空気利用率40%に設定し、水素ガス
は75℃、空気は60℃の露点になるようにガスを加湿
した。電流密度0.2A/cm2、0.7A/cm2にお
ける電池電圧の結果を示した。
Other than that, the same operation as in Example 2 was performed. Each unit cell is installed in the current-voltage characteristic measuring device, hydrogen is flown to the fuel electrode and air is flown to the oxidant electrode, and the cell temperature is set to 75 ° C, the fuel utilization rate is 70%, and the air utilization rate is 40%. The gas was humidified so that the dew point was 75 ° C and the temperature was 60 ° C. The results of the battery voltage at current densities of 0.2 A / cm 2 and 0.7 A / cm 2 are shown.

【0050】実施例2の複合繊維からなる高分子電解質
膜を用いた電池は、PTFEによる絶縁性の影響を受け
ず、非補強膜と同等の電池性能を示すことがわかった。
上記の結果より、複合繊維からなる高分子電解質膜は、
PTFEの持つ機械強度、寸法安定性といった補強効果
を維持しながら、電気抵抗を低下することができた。こ
の高分子電解質膜を用いた燃料電池は、非補強膜と同等
の電池性能を発揮することができた。
It was found that the battery using the polymer electrolyte membrane made of the composite fiber of Example 2 was not affected by the insulating property of PTFE and exhibited the same battery performance as the non-reinforced membrane.
From the above results, the polymer electrolyte membrane composed of the composite fiber,
The electrical resistance could be reduced while maintaining the reinforcing effects such as mechanical strength and dimensional stability of PTFE. The fuel cell using this polymer electrolyte membrane was able to exhibit cell performance equivalent to that of the non-reinforced membrane.

【0051】[0051]

【表2】 [Table 2]

【0052】[0052]

【発明の効果】フッ素系高分子繊維を内層とし、その周
囲にスルホン酸基を有するイオン交換樹脂からなる外層
を具備した複合繊維からなる、高分子電解質膜は、フッ
素系高分子繊維の機械強度、寸法安定性といった補強効
果を維持しながら、電気抵抗を低下することが可能であ
り、この複合繊維からなる高分子電解質膜を用いること
で高出力密度の燃料電池を提供することができる。
EFFECT OF THE INVENTION A polymer electrolyte membrane comprising a composite fiber having an inner layer made of a fluoropolymer fiber and an outer layer made of an ion exchange resin having a sulfonic acid group around the inner layer is a mechanical strength of the fluoropolymer fiber. It is possible to reduce the electric resistance while maintaining the reinforcing effect such as dimensional stability, and by using the polymer electrolyte membrane made of this composite fiber, it is possible to provide a fuel cell having a high output density.

【図面の簡単な説明】[Brief description of drawings]

【図1】複合繊維を作製する際に用いる装置の一例を示
す図
FIG. 1 is a diagram showing an example of an apparatus used for producing a composite fiber.

【図2】実施例1で作製した複合繊維の断面図の一例を
示す図
FIG. 2 is a diagram showing an example of a cross-sectional view of the composite fiber produced in Example 1.

【符号の説明】[Explanation of symbols]

1,3 容器 2,4 口金 5,7 PTFE繊維(内層) 6,8 PFSI(外層) 1,3 container 2,4 clasp 5,7 PTFE fiber (inner layer) 6,8 PFSI (outer layer)

───────────────────────────────────────────────────── フロントページの続き (72)発明者 安本 栄一 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 5G301 CD01 CE01 5H026 AA06 CX02 CX05 EE18    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Eiichi Yasumoto             1006 Kadoma, Kadoma-shi, Osaka Matsushita Electric             Sangyo Co., Ltd. F-term (reference) 5G301 CD01 CE01                 5H026 AA06 CX02 CX05 EE18

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 高分子繊維で内層を形成し、前記内層の
外周部に水素イオン交換基を含有する高分子からなる外
層を形成したことを特徴とする高分子電解質膜。
1. A polymer electrolyte membrane, wherein an inner layer is formed of polymer fibers, and an outer layer made of a polymer containing a hydrogen ion exchange group is formed on an outer peripheral portion of the inner layer.
【請求項2】 請求項1記載の高分子電解質膜の両面に
配置した一対の電極と、前記電極の一方に燃料ガスを供
給排出し、他方に酸化剤ガスを供給排出するガス流路を
有する一対の導電性セパレータとで構成した燃料電池。
2. A pair of electrodes arranged on both sides of the polymer electrolyte membrane according to claim 1, and a gas flow path for supplying and discharging a fuel gas to one of the electrodes and supplying and discharging an oxidant gas to the other. A fuel cell composed of a pair of conductive separators.
JP2001330441A 2001-10-29 2001-10-29 Polymer electrolytic film and fuel cell using the same Withdrawn JP2003132910A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001330441A JP2003132910A (en) 2001-10-29 2001-10-29 Polymer electrolytic film and fuel cell using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001330441A JP2003132910A (en) 2001-10-29 2001-10-29 Polymer electrolytic film and fuel cell using the same

Publications (1)

Publication Number Publication Date
JP2003132910A true JP2003132910A (en) 2003-05-09

Family

ID=19146161

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001330441A Withdrawn JP2003132910A (en) 2001-10-29 2001-10-29 Polymer electrolytic film and fuel cell using the same

Country Status (1)

Country Link
JP (1) JP2003132910A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110200907A1 (en) * 2008-05-28 2011-08-18 Lg Chem, Ltd. Ion conductive resin fiber, ion conductive hybrid membrane, membrane electrode assembly and fuel cell
WO2015083546A1 (en) 2013-12-03 2015-06-11 日本バルカー工業株式会社 Composite film for electrochemical element
WO2019088299A1 (en) * 2017-11-06 2019-05-09 Agc株式会社 Solid polymer electrolyte film, membrane electrode assembly and electrolyzer
CN115039262A (en) * 2020-09-29 2022-09-09 可隆工业株式会社 Polymer electrolyte membrane and membrane-electrode assembly including the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110200907A1 (en) * 2008-05-28 2011-08-18 Lg Chem, Ltd. Ion conductive resin fiber, ion conductive hybrid membrane, membrane electrode assembly and fuel cell
JP2011523982A (en) * 2008-05-28 2011-08-25 エルジー・ケム・リミテッド Ion conductive resin fiber, ion conductive composite membrane, membrane electrode assembly and fuel cell
US8617764B2 (en) * 2008-05-28 2013-12-31 Lg Chem, Ltd. Ion conductive resin fiber, ion conductive hybrid membrane, membrane electrode assembly and fuel cell
WO2015083546A1 (en) 2013-12-03 2015-06-11 日本バルカー工業株式会社 Composite film for electrochemical element
KR20160093016A (en) 2013-12-03 2016-08-05 닛폰 바루카 고교 가부시키가이샤 Composite film for electrochemical element
WO2019088299A1 (en) * 2017-11-06 2019-05-09 Agc株式会社 Solid polymer electrolyte film, membrane electrode assembly and electrolyzer
CN115039262A (en) * 2020-09-29 2022-09-09 可隆工业株式会社 Polymer electrolyte membrane and membrane-electrode assembly including the same
JP7427095B2 (en) 2020-09-29 2024-02-02 コーロン インダストリーズ インク Polymer electrolyte membrane and membrane electrode assembly including the same

Similar Documents

Publication Publication Date Title
US8420701B2 (en) Polymer electrolyte membrane, membrane-electrode assembly for polymer electrolyte fuel cells and process for producing polymer electrolyte membrane
US6733915B2 (en) Gas diffusion backing for fuel cells
CA2539255C (en) Membrane electrode assembly with electrode catalyst present on ion-conductive domains
JP4023903B2 (en) Membrane / electrode assembly for polymer electrolyte fuel cells
KR101877753B1 (en) Composite electrolyte membrane for fuel cell, membrane-electrode assembly including thereof, fuel cell including thereof, and manufacturing method thereof
JP4090108B2 (en) Membrane / electrode assembly for polymer electrolyte fuel cells
JP3714766B2 (en) Electrode and membrane / electrode assembly for polymer electrolyte fuel cell
WO2012067650A1 (en) Electrochemical device comprising an electrically-conductive, selectively-permeable membrane
JP5207582B2 (en) Manufacturing method of electrolyte membrane with little dimensional change
KR102321252B1 (en) Complex electrolyte membrane, manufacturing method thereof and membrane electrode assembly containing the same
JP2000260443A (en) Solid high polymer electrolyte fuel cell
KR101877755B1 (en) Composite electrolyte membrane for fuel cell, membrane-electrode assembly including thereof, fuel cell including thereof, and manufacturing method thereof
JP2003132910A (en) Polymer electrolytic film and fuel cell using the same
JP3712959B2 (en) Fuel cell electrode and method of manufacturing the same
EP1298744A1 (en) Fuel cell
US20230006232A1 (en) Method for manufacturing polymer electrolyte membrane, and electrolyte membrane manufactured by same
JPH06342667A (en) High molecular type fuel cell
US10109877B2 (en) Method for producing fuel cell electrode sheet
JP6105215B2 (en) Membrane electrode assembly for polymer electrolyte fuel cell
JP2005078895A (en) Cation exchange membrane, its manufacturing method, and membrane-electrode junction for solid polymer fuel cell
JP2002343380A (en) Electrolyte film for solid polymer fuel cell, and manufacturing method of the same
KR102321256B1 (en) Complex electrolyte membrane for PEMFC, manufacturing method thereof and membrane electrode assembly containing the same
JP2002313365A (en) Polymer ion exchange thin-membrane and its manufacturing method
JPH06231780A (en) Improved solid high polymer electrolytic fuel cell
KR102321255B1 (en) Complex electrolyte membrane, manufacturing method thereof and membrane electrode assembly containing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040701

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050701

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20060518