JP2003131141A - Rotational zone total reflection illumination mechanism - Google Patents

Rotational zone total reflection illumination mechanism

Info

Publication number
JP2003131141A
JP2003131141A JP2001325773A JP2001325773A JP2003131141A JP 2003131141 A JP2003131141 A JP 2003131141A JP 2001325773 A JP2001325773 A JP 2001325773A JP 2001325773 A JP2001325773 A JP 2001325773A JP 2003131141 A JP2003131141 A JP 2003131141A
Authority
JP
Japan
Prior art keywords
total reflection
illumination
reflecting mirror
objective lens
laser beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001325773A
Other languages
Japanese (ja)
Inventor
Kazuhiko Kinoshita
一彦 木下
Hagumu Shio
育 塩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Corp filed Critical Japan Science and Technology Corp
Priority to JP2001325773A priority Critical patent/JP2003131141A/en
Priority to PCT/JP2002/008933 priority patent/WO2003036363A1/en
Publication of JP2003131141A publication Critical patent/JP2003131141A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/101Scanning systems with both horizontal and vertical deflecting means, e.g. raster or XY scanners
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/06Means for illuminating specimens
    • G02B21/08Condensers
    • G02B21/082Condensers for incident illumination only

Abstract

PROBLEM TO BE SOLVED: To provide a rotational zone total reflection illumination mechanism in which an illumination without polarization even at the periphery of a visual field is given and a fluorescence information of all directions is available. SOLUTION: In a Koehler type illumination system in which an object is illuminated by introducing laser light to the peripheral part of an objective lens of a microscope, the rotational zone total reflection illumination mechanism is characterized in that the direction of illumination with the laser light is rotatable around the axis of the objective lens 56 of the microscope.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、顕微鏡対物レンズ
周辺部にレーザビームを入射させる照明系において、こ
のレーザビームの照明方向を回転可能にした回転式輪帯
全反射照明機構に関するものであり、さらに具体的には
全反射光を用いて蛍光を発光させる照明系に好適な回転
式輪帯全反射照明機構に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rotary annular total reflection illuminating mechanism in which an illuminating direction of a laser beam is rotatable in an illuminating system in which a laser beam is incident on a peripheral portion of a microscope objective lens, More specifically, the present invention relates to a rotary annular total reflection illumination mechanism suitable for an illumination system that emits fluorescence using total reflection light.

【0002】[0002]

【従来の技術】従来のエバネッセント照明を利用した全
反射の原理を簡単に説明しておくと、図5は顕微鏡対物
レンズの辺縁部にレーザビームを入射させ全反射光を用
いて蛍光を発光させる全反射照明(エバネセント照明:
通常内角61°外角68°)の原理図である。
2. Description of the Related Art The principle of total reflection using conventional evanescent illumination will be briefly described. FIG. 5 shows that a laser beam is made incident on the peripheral portion of a microscope objective lens to emit fluorescence using total reflection light. Total reflection lighting (evanescent lighting:
It is a principle view of a normal inner angle of 61 ° and an outer angle of 68 °.

【0003】図において11は対物レンズ、12は油浸
オイル、13はガラス、14は溶液であり、対物レンズ
11の辺縁部にレーザビームを入射するとガラス・水溶
液部で全反射し、表面近傍150nmの深さに光がしみ出
す(この光の場をエバネッセント場という)。このエバ
ネッセント場を蛍光照明に使うと背景光を著しく減少さ
せコントラストの高い蛍光ー分子像が得られる。しかし
ながら、エバネッセント場を利用した1方向から照明す
る全反射照明では偏った蛍光情報しか得られないという
問題がある。
In the drawing, 11 is an objective lens, 12 is oil immersion oil, 13 is glass, and 14 is a solution. When a laser beam is incident on the peripheral portion of the objective lens 11, it is totally reflected by the glass / aqueous solution portion and near the surface. Light exudes at a depth of 150 nm (this light field is called the evanescent field). When this evanescent field is used for fluorescent illumination, the background light is significantly reduced and a high-contrast fluorescent-molecular image can be obtained. However, there is a problem that only the fluorescence information that is biased can be obtained by total reflection illumination that illuminates from one direction using the evanescent field.

【0004】また、図6は従来技術の他の一例で、中央
を遮光した輪帯全反射照明を行った照明光学系である。
図6において20は試料面、21は対物レンズ、22は
対物レンズ瞳面、23は反射鏡、24は凸レンズ、25
は視野絞り面(物体面と共役面)、26は中央遮光絞り
(対物レンズ瞳面22と共役)であり、この照明方式は
試料面20にレーザビームを集光させる方式(クリチカ
ル照明)を採用しており、試料面20を平行ビームで照
明する図1とは異なる。本照明系では輪帯全反射照明を
行うため、対物レンズ瞳面22と共役面に中央遮光絞り
26が設置されており、従来技術はこの照明方式を用い
ている。
Further, FIG. 6 shows another example of the prior art, which is an illumination optical system for performing annular total reflection illumination with the central part shielded.
In FIG. 6, 20 is a sample surface, 21 is an objective lens, 22 is an objective lens pupil surface, 23 is a reflecting mirror, 24 is a convex lens, and 25
Is a field stop surface (object surface and conjugate surface), and 26 is a central light-shielding diaphragm (conjugate with the objective lens pupil surface 22). This illumination method adopts a method of converging a laser beam on the sample surface 20 (critical illumination). This is different from FIG. 1 in which the sample surface 20 is illuminated with a parallel beam. In the present illumination system, since the ring-shaped total reflection illumination is performed, the central light-shielding diaphragm 26 is provided on the conjugate plane with the objective lens pupil plane 22, and the conventional technique uses this illumination system.

【0005】しかしながら、この照明方式は試料面20
にレーザビームを集光させるため視野の中央と周辺では
明るさが異なり、均一な蛍光情報が得られないばかり
か、視野の拡大が困難であった。また視野拡大のため拡
散板を挿入すると明るさが大幅に低下する欠点があっ
た。
However, this illumination method is used for the sample surface 20.
Since the laser beam is focused at the center, the brightness is different between the center and the periphery of the field of view, so that it is difficult to obtain uniform fluorescence information and it is difficult to expand the field of view. In addition, there is a drawback that the brightness is significantly reduced when a diffusion plate is inserted to expand the field of view.

【0006】ところで、一般の顕微鏡照明は明るく照明
ムラがないケーラー照明が理想の照明となっている。図
7にケーラー照明を用いた物体面の焦光状況を示す。図
において、レーザビームは対物レンズ焦点位置(前側焦
点面)Fに図示のごとく集光させなければ、物体面にお
いては平行な光束で照明されない。平行性の優れたレー
ザビームを使用した場合、物体面中央光軸上は1o,2
o,3o,4oの4方向からの光線が集光し明るくな
る。しかしながら、視野周辺最上端部S点は1bと3b
の光線しか集光せず周辺は暗くなるだけでなく偏光をも
っているため、偏光方向を含めた均質照明をすることが
難しく、正しい蛍光情報が得られないという問題があ
る。
By the way, general microscope illumination is ideally Koehler illumination which is bright and has no illumination unevenness. FIG. 7 shows the focus state of the object plane using Koehler illumination. In the figure, the laser beam must be focused at the focal position (front focal plane) F of the objective lens as shown in FIG. When a laser beam with excellent parallelism is used, 1o, 2 on the center optical axis of the object plane
Light rays from four directions of o, 3o, and 4o are condensed and become bright. However, the uppermost point S around the visual field is 1b and 3b.
Since only the rays of light are condensed and the periphery is not only dark but also polarized, it is difficult to perform uniform illumination including the polarization direction, and there is a problem that correct fluorescence information cannot be obtained.

【0007】近年、微小なプローブ(蛍光色素ー分子)
を用いてタンパク質の特定向きを知ることはダイナミッ
クな動きをここにとらえることができ、今後ますます重
要な課題となっている。しかし、この課題を解決するに
は前述した1方向から照明する全反射照明(エバネッセ
ント照明)では偏った蛍光情報しか得られず、また、ケ
ーラー照明方式の輪帯全反射照明が理想の照明といえる
が、前記した問題があるため、採用例はみられない。
In recent years, a minute probe (fluorescent dye-molecule)
It is possible to catch a dynamic movement here to know the specific direction of the protein using, and it will become an important issue in the future. However, in order to solve this problem, the total internal reflection illumination (evanescent illumination) that illuminates from one direction described above can obtain only biased fluorescence information, and the Koehler illumination type annular total internal reflection illumination can be said to be ideal illumination. However, due to the above-mentioned problems, there are no examples of adoption.

【0008】さらに、全反射照明の照明角度は試料を囲
む媒質の屈折率変化(異なる媒質への対応、試料の温度
変化)によって異なり厳密に対応しないと不要な背景光
を招き、一分子蛍光色素の観察は困難となる。また使用
する対物レンズの倍率(焦点距離)が替わるとこれに対
応するには照明系レンズや輪帯絞りの大きさの異なるも
のにその都度交換する厄介な問題があった。
Further, the illumination angle of the total internal reflection illumination varies depending on the change in the refractive index of the medium surrounding the sample (corresponding to different medium, temperature change of the sample), and unless it is strictly handled, unnecessary background light is caused, and the single molecule fluorescent dye is produced. Is difficult to observe. Further, if the magnification (focal length) of the objective lens used changes, there is a troublesome problem of changing to different ones for the illumination system lens and the zonal aperture each time in order to cope with this.

【0009】[0009]

【発明が解決しようとする課題】そこで、本発明では、
レーザビームを対物レンズの辺縁部に沿って移動(回
転)させることにより、視野周辺に至るまで偏光のない
照明が可能であり、あらゆる方向の蛍光情報が得られる
回転式輪帯全反射照明機構を提供し、上記問題点を解決
することを目的とする。本発明に係る回転可能な全反射
照明機構によれば、蛍光輝度の最大方向の情報から試料
や蛍光色素の励起効率の高い方向を知ることができる。
また、アナライザー(検光子)等の偏光素子と組み合わ
せれば蛍光色素ー分子を用いたタンパク質の特定向きを
知ることができダイナミックな動きを個々にとらえるこ
とができる。さらに、反射鏡の傾き微調整機構により、
使用する対物レンズの焦点距離に厳密に対応することが
できるだけでなく、試料を囲む媒質の屈折率変化(異な
る媒質への対応、試料の温度変化)に綿密に対応可能で
ある。
Therefore, according to the present invention,
By rotating (rotating) the laser beam along the edge of the objective lens, it is possible to illuminate unpolarized light even to the periphery of the field of view, and a rotary annular total reflection illumination mechanism that can obtain fluorescence information in all directions. It aims to solve the above problems. According to the rotatable total internal reflection illumination mechanism of the present invention, it is possible to know the direction in which the excitation efficiency of the sample or the fluorescent dye is high from the information on the maximum direction of the fluorescence brightness.
Also, by combining with a polarizing element such as an analyzer (analyzer), it is possible to know the specific direction of the protein using the fluorescent dye-molecules, and it is possible to individually capture the dynamic movement. Furthermore, by the tilt fine adjustment mechanism of the reflecting mirror,
In addition to being able to strictly correspond to the focal length of the objective lens used, it is possible to closely respond to changes in the refractive index of the medium surrounding the sample (correspondence to different media, temperature changes of the sample).

【0010】[0010]

【課題を解決するための手段】このため本発明が採用し
た解決手段は、顕微鏡対物レンズの辺縁部にレーザビー
ムを導入し物体を照明するケーラー式照明系において、
前記レーザビームによる照明方向を顕微鏡対物レンズの
軸心を中心に傾斜したまま回転可能としたことを特徴と
する回転式輪帯全反射照明機構である。また、前記照明
系は顕微鏡対物レンズの辺縁部にレーザビームを導入し
全反射させ蛍光を発光させる照明系であることを特徴と
する回転式輪帯全反射照明機構である。また、前記レー
ザビームによる照明方向を回転させるとともに使用する
対物レンズに最適全反射角を与えるために、反射鏡の傾
きを微調整できる機構を備えた反射鏡と、その反射鏡を
回転させるための回転手段を備えていることを特徴とす
る回転式輪帯全反射照明装置である。また、前記回転手
段の回転中心は、反射鏡の回転中心軸から僅かに離れた
位置に配置されていることを特徴とする回転式輪帯全反
射照明装置である。また、前記反射鏡の回転による振動
が顕微鏡に悪影響を及ぼさぬ様、反射鏡を含む回転手段
は回転中心軸に形状重量ともに対象な構造を形成してい
ることを特徴とする回転式輪帯全反射照明装置である。
Therefore, the solution adopted by the present invention is, in a Koehler illumination system for illuminating an object by introducing a laser beam to the peripheral portion of a microscope objective lens,
The rotary annular total reflection illumination mechanism is characterized in that the illumination direction by the laser beam can be rotated while being tilted about the axis of the microscope objective lens. Further, the illumination system is a rotary annular total reflection illumination mechanism characterized by being an illumination system which introduces a laser beam into a peripheral portion of a microscope objective lens and totally reflects it to emit fluorescence. Further, in order to rotate the illumination direction by the laser beam and give an optimum total reflection angle to the objective lens to be used, a reflecting mirror having a mechanism capable of finely adjusting the tilt of the reflecting mirror, and for rotating the reflecting mirror It is a rotary type annular total reflection illuminating device characterized by comprising a rotating means. Further, in the rotary annular total reflection illuminator, the rotation center of the rotating means is arranged at a position slightly apart from the rotation center axis of the reflecting mirror. Further, in order that the vibration due to the rotation of the reflecting mirror does not adversely affect the microscope, the rotating means including the reflecting mirror has a structure in which the shape and weight are symmetrical with respect to the center axis of rotation, and the whole rotary ring zone. It is a reflective lighting device.

【0011】[0011]

【実施の形態】以下、本発明に係る実施形態としての光
学系について説明すると、図1は本光学系全体の図、図
2は反射鏡の一部断面図、図3は図2中A−A矢視破断
図、図4(イ)(ロ)は反射鏡の傾きを変えた状態の光
学系図である。図1において、51はレーザファイバー
光源、52はコレクターレンズ、53は凸レンズ56の
前側焦点面(コレクターレンズ52の後側焦点面とも一
致)、54はモータ、55は反射鏡、56は凸レンズ、
57はダイクロックミラー、58は対物レンズ前側焦点
面、59は対物レンズ、60は物体面(試料面)であ
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An optical system as an embodiment according to the present invention will be described below. FIG. 1 is a diagram of the entire optical system, FIG. 2 is a partial sectional view of a reflecting mirror, and FIG. 3 is A- in FIG. 4A and 4B are optical system diagrams in a state in which the tilt of the reflecting mirror is changed. In FIG. 1, 51 is a laser fiber light source, 52 is a collector lens, 53 is a front focal plane of the convex lens 56 (also coincides with the rear focal plane of the collector lens 52), 54 is a motor, 55 is a reflecting mirror, and 56 is a convex lens.
57 is a dichroic mirror, 58 is a front focal plane of the objective lens, 59 is an objective lens, and 60 is an object plane (sample plane).

【0012】ここで、前記反射鏡55の構成を図2、図
3を参照して詳細に説明すると、図2、図3において、
61は反射鏡体、62は反射鏡体他保持金物、63は本
体金物であり、これらはいずれも円形形状をしている。
反射鏡体61は反射鏡保持金物62に接着などにより固
定されている。反射鏡体保持金物62の外周の対称位置
2カ所(回転軸となる直線上)には図3に示すようにピ
ボット溝62aが設けてあり、本体金物63の外周2カ
所に形成したねじ穴63aに取り付けたピボットねじ6
6、ロックナット67によってピボットねじ66軸上に
おいて回転可能状態で本体金物63に取り付けられてい
る。
Now, the structure of the reflecting mirror 55 will be described in detail with reference to FIGS. 2 and 3. In FIG.
Reference numeral 61 is a reflecting mirror body, 62 is a reflecting mirror body and other holding metal pieces, and 63 is a main body metal piece, all of which have a circular shape.
The reflecting mirror body 61 is fixed to the reflecting mirror holding metal member 62 by adhesion or the like. As shown in FIG. 3, pivot grooves 62a are provided at two symmetrical positions (on a straight line as a rotation axis) on the outer circumference of the reflecting mirror holding metal 62, and screw holes 63a formed at two outer circumferences of the main metal fitting 63. Pivot screw 6 attached to
6. The lock nut 67 is attached to the metal body 63 so as to be rotatable on the axis of the pivot screw 66.

【0013】本体金物63には、反射鏡体61の傾き微
調整を行うために微調整ねじ64が前記ピボットねじ軸
を挟んむ対称位置2カ所に設けられており、微調整ねじ
64の押し戻しによってピボットねじ66を軸にして反
射鏡体の傾き微調整を行い、最後は微調整ねじ64をロ
ックナット65により締め付けて固定できる構造となっ
ている。
Fine adjustment screws 64 are provided on the main metal part 63 at two symmetrical positions sandwiching the pivot screw shaft for fine adjustment of the tilt of the reflecting mirror 61. The structure is such that the tilt of the reflecting mirror body is finely adjusted by using the pivot screw 66 as an axis, and finally the fine adjustment screw 64 is tightened and fixed by the lock nut 65.

【0014】また本体金物は、その中心から僅かに離れ
た位置で回転手段としてのモータ54の回転軸54aに
固定されている。これは、光学系において反射鏡55は
物体面60(試料面)と共役な関係にあり、反射鏡表面
のわずかなゴミなどが物体面60(試料面)に結像しな
いようモータ54の回転中心軸はわずかにシフトさせて
設置されている。さらに反射鏡の回転による振動が顕微
鏡に悪影響を及ぼさぬ様に図2、図3に示す如く、前記
反射鏡を含む回転体が回転中心軸に形状重量ともに対象
な構造となるように形成されている。
The body hardware is fixed to a rotary shaft 54a of a motor 54 as a rotating means at a position slightly apart from the center of the body hardware. This is because the reflecting mirror 55 in the optical system has a conjugate relationship with the object surface 60 (sample surface), and the rotation center of the motor 54 is set so that slight dust on the reflecting mirror surface does not form an image on the object surface 60 (sample surface). The shaft is installed with a slight shift. Further, as shown in FIGS. 2 and 3, the rotating body including the reflecting mirror is formed on the central axis of rotation so as to have a symmetrical shape and weight structure so that the vibration due to the rotation of the reflecting mirror does not adversely affect the microscope. There is.

【0015】上記構成からなる光学系において、 レー
ザファイバー光源51はコレクターレンズ52により平
行な光束となるが、反射鏡55が傾いたまま回転する機
構となっているため輪光束となり、凸レンズ56周辺部
に入射した光は凸レンズ56の後側焦点面58(対物レ
ンズ59の前側焦点面)に集光する。
In the optical system having the above-mentioned structure, the laser fiber light source 51 becomes a parallel light beam by the collector lens 52, but since it is a mechanism that rotates while the reflecting mirror 55 is tilted, it becomes a circular light beam and around the convex lens 56. The light incident on is condensed on the rear focal plane 58 of the convex lens 56 (the front focal plane of the objective lens 59).

【0016】ここで、反射鏡55が+αの傾いていると
図4(イ)に示すように、光軸に平行なレーザビームは
2倍のα傾きをもって凸レンズ56の縁端部に入射し光
軸に平行な光となり対物レンズ59の対物レンズ前側焦
点面を輪帯状に照明する。反射鏡55が−αの傾いてい
ると図4(ロ)に示すように光軸に平行なレーザビーム
は(イ)とは反対に凸レンズ56の反対側縁端部に入射
し光軸に平行な光となり対物レンズ59の対物レンズ前
側焦点面を輪帯状に照明する。
When the reflecting mirror 55 is tilted by + α, the laser beam parallel to the optical axis is incident on the edge of the convex lens 56 with a double α tilt, as shown in FIG. The light becomes parallel to the axis and illuminates the focal plane of the objective lens 59 on the front side of the objective lens in a ring shape. When the reflecting mirror 55 is tilted by -α, the laser beam parallel to the optical axis is incident on the opposite edge of the convex lens 56 and parallel to the optical axis as shown in FIG. Then, the focal plane of the objective lens 59 on the front side of the objective lens 59 is illuminated like a ring.

【0017】こうして集光した光は対物レンズ59(コ
ンデンサーの役割)によって再び平行な光束となり物体
面60(試料面)を照明する。上記のように反射鏡の傾
き微調整機構と反射鏡の回転機構により、使用する対物
レンズの焦点距離に厳密に対応することができるだけで
なく、試料を囲む媒質の屈折率変化(異なる媒質への対
応、試料の温度変化)に綿密に対応可能となる。また、
反射鏡をモータによって360°回転させることで、試
料面を周囲360°方向から照射することができ、1方
向から照明する従来のエバネッセント照明の全反射照明
の問題点、さらには従来のケーラー顕微鏡の持つ問題点
を確実に解決することができる。また、レーザビームは
干渉性が非常に優れているため、照明光学系の干渉縞が
発生する。蛍光観察の場合は励起光(照明光)がダイク
ロックミラーやフィルターで除かれる筈であるが、優れ
た可干渉性が励起光(照明光)班となり均質な蛍光像を
得ることができないという問題がある。しかし、上記の
構成からなる本光学系では、回転する反射鏡が試料面と
光学的共役面に配置されており、この干渉縞が発生して
も光軸に傾斜した反射鏡の回転により干渉縞は回転移動
し平均化され、結果的には除去されたと同じ効果が得ら
れるようになっている。
The light thus condensed becomes a parallel light beam again by the objective lens 59 (the role of a condenser) and illuminates the object surface 60 (sample surface). As described above, the mechanism for finely adjusting the tilt of the reflecting mirror and the rotating mechanism for the reflecting mirror can not only strictly correspond to the focal length of the objective lens used, but also change the refractive index of the medium surrounding the sample (for different media). Correspondence, temperature change of sample) Also,
By rotating the reflecting mirror 360 ° by a motor, the sample surface can be illuminated from the surrounding 360 ° direction, and the problem of the total internal reflection illumination of the conventional evanescent illumination that illuminates from one direction, and further the problem of the conventional Koehler microscope It can surely solve the problems that it has. Further, since the laser beam has a very excellent coherence, an interference fringe of the illumination optical system is generated. In the case of fluorescence observation, the excitation light (illumination light) should be removed by a dichroic mirror or a filter, but the problem is that the excellent coherence becomes excitation light (illumination light) groups and a uniform fluorescence image cannot be obtained. There is. However, in the present optical system configured as described above, the rotating reflecting mirror is arranged on the sample surface and the optically conjugate plane, and even if this interference fringe occurs, the interference fringe is generated by the rotation of the reflecting mirror inclined to the optical axis. Is rotated and averaged, resulting in the same effect as removed.

【0018】なお、全反射照明を行うため物体面(試料
面)は61°から68°以内の光が送られるよう反射鏡
55の傾き角αを調整すればよい。また、レーザファイ
バー光源51となるファイバーはコアー径の小さいもの
が望ましい。
In order to perform total reflection illumination, the tilt angle α of the reflecting mirror 55 may be adjusted so that light within 61 ° to 68 ° is sent to the object surface (sample surface). Further, it is desirable that the fiber serving as the laser fiber light source 51 has a small core diameter.

【0019】以上本発明の実施形態について説明してき
たが、反射鏡の回転機構、あるいは反射鏡の傾きの微調
整機構等は前述したものに限定することなく、同様の機
能を達成できるものであれば他の機構を採用することが
できる。また本発明はその精神または主要な特徴から逸
脱することなく、他のいかなる形でも実施できる。その
ため、前述の実施形態はあらゆる点で単なる例示にすぎ
ず限定的に解釈してはならない。
Although the embodiment of the present invention has been described above, the rotating mechanism of the reflecting mirror, the mechanism for finely adjusting the tilt of the reflecting mirror, and the like are not limited to those described above, and any similar function can be achieved. For example, other mechanisms can be adopted. The present invention can be embodied in any other form without departing from the spirit or the main features thereof. Therefore, the above-described embodiments are merely examples in all respects and should not be limitedly interpreted.

【0020】[0020]

【発明の効果】本発明に係る回転可能な全反射照明機構
によれば、視野周辺部まで均一な照明が可能となり、あ
らゆる方向の均一な蛍光情報が得られる。また、蛍光輝
度の最大方向の情報から試料や蛍光色素の励起効率の高
い方向を知ることができる。また、アナライザー(検光
子)等の偏光素子と組み合わせれば蛍光色素ー分子を用
いたタンパク質の特定向きを知ることができダイナミッ
クな動きを個々にとらえることができる。さらに、反射
鏡の傾き微調整機構により、使用する対物レンズの焦点
距離に厳密に対応することができるだけでなく、試料を
囲む媒質の屈折率変化(異なる媒質への対応、試料の温
度変化)に綿密に対応可能である。レーザビーム特有の
可干渉によって生じた照明系の干渉縞は回転する反射鏡
により短時間内に平均化され、結果的に除去されたと同
じ効果が得られる。等々の優れた効果を奏することがで
きる。
According to the rotatable total internal reflection illumination mechanism of the present invention, even the peripheral portion of the visual field can be illuminated uniformly, and uniform fluorescence information in all directions can be obtained. In addition, the direction in which the excitation efficiency of the sample or the fluorescent dye is high can be known from the information on the maximum direction of the fluorescence brightness. Also, by combining with a polarizing element such as an analyzer (analyzer), it is possible to know the specific direction of the protein using the fluorescent dye-molecules, and it is possible to capture the dynamic movements individually. In addition, the fine adjustment mechanism of the tilt of the reflecting mirror not only makes it possible to strictly correspond to the focal length of the objective lens used, but also to change the refractive index of the medium surrounding the sample (corresponding to different media, temperature change of the sample). It is possible to correspond closely. The interference fringes of the illumination system caused by the coherence peculiar to the laser beam are averaged in a short time by the rotating reflecting mirror, and as a result, the same effect as removed is obtained. It is possible to obtain excellent effects such as.

【図面の簡単な説明】[Brief description of drawings]

【図1】本実施形態に係る回転式輪帯全反射照明機構を
備えた光学系の構成図である。
FIG. 1 is a configuration diagram of an optical system including a rotary annular total reflection illumination mechanism according to the present embodiment.

【図2】反射鏡傾き微調整機構の断面図である。FIG. 2 is a sectional view of a reflecting mirror tilt fine adjustment mechanism.

【図3】図2中A−A矢視破断図である。3 is a sectional view taken along the line AA in FIG.

【図4】反射鏡傾き微調整機構において反射鏡の傾きを
変えた状態の光学系の説明図である。
FIG. 4 is an explanatory diagram of an optical system in a state in which the tilt of the reflecting mirror is changed in the reflecting mirror tilt fine adjustment mechanism.

【図5】エバネッセント場を利用した全反射照明の原理
図である。
FIG. 5 is a principle diagram of total internal reflection illumination using an evanescent field.

【図6】従来の中央遮光輪帯全反射照明の光学系図であ
る。
FIG. 6 is an optical system diagram of a conventional central shading ring zone total reflection illumination.

【図7】ケーラー照明を用いた物体面の焦光状態を示す
図である。
FIG. 7 is a diagram showing a focused state of an object plane using Koehler illumination.

【符号の説明】[Explanation of symbols]

51 レーザファイバー光源 52 コレクターレンズ 53 凸レンズ56の前側焦点面 54 モータ 55 反射鏡 56 凸レンズ 57 ダイクロックミラー 58 対物レンズ前側焦点面 59 対物レンズ 60 物体面 61 反射鏡体 62 鏡体保持金物 63 本体金物 64 微調整ねじ 65 ロックナット 66 ピボットねじ 51 laser fiber light source 52 Collector lens 53 Front focal plane of convex lens 56 54 motor 55 Reflector 56 convex lens 57 dichroic mirror 58 Objective lens front focal plane 59 Objective lens 60 Object plane 61 Reflective body 62 Mirror holding hardware 63 Main body hardware 64 Fine adjustment screw 65 lock nuts 66 pivot screw

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2G043 AA03 BA16 EA01 FA01 FA02 GA02 GA06 GB03 GB19 HA01 HA02 HA05 HA07 HA08 HA15 JA02 KA02 KA09 MA11 2H041 AA12 AB14 AC01 AZ02 AZ03 2H052 AA09 AB03 AC02 AC15 AC17 AC26 AC34 AD31    ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 2G043 AA03 BA16 EA01 FA01 FA02                       GA02 GA06 GB03 GB19 HA01                       HA02 HA05 HA07 HA08 HA15                       JA02 KA02 KA09 MA11                 2H041 AA12 AB14 AC01 AZ02 AZ03                 2H052 AA09 AB03 AC02 AC15 AC17                       AC26 AC34 AD31

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】顕微鏡対物レンズの辺縁部にレーザビーム
を導入し物体を照明するケーラー式照明系において、前
記レーザビームによる照明方向を顕微鏡対物レンズの軸
心を中心に傾斜したまま回転可能としたことを特徴とす
る回転式輪帯全反射照明機構。
1. A Koehler-type illumination system for illuminating an object by introducing a laser beam to a peripheral portion of a microscope objective lens, wherein the illumination direction by the laser beam can be rotated while being inclined around the axis of the microscope objective lens. A rotating ring total reflection illumination mechanism characterized by the above.
【請求項2】前記照明系は顕微鏡対物レンズの辺縁部に
レーザビームを導入し全反射させ蛍光を発光させる照明
系であることを特徴とする請求項1に記載の回転式輪帯
全反射照明機構。
2. The rotary annular total reflection according to claim 1, wherein the illumination system is an illumination system that introduces a laser beam into a peripheral portion of a microscope objective lens and totally reflects it to emit fluorescence. Lighting mechanism.
【請求項3】前記レーザビームによる照明方向を回転さ
せるとともに使用する対物レンズに最適全反射角を与え
るために、反射鏡の傾きを微調整できる機構を備えた反
射鏡と、その反射鏡を回転させるための回転手段を備え
ていることを特徴とする請求項1または請求項2に記載
の回転式輪帯全反射照明装置
3. A reflecting mirror equipped with a mechanism capable of finely adjusting the tilt of the reflecting mirror in order to rotate the illumination direction by the laser beam and give an optimum total reflection angle to the objective lens used, and the rotating mirror. The rotary annular total reflection illuminator according to claim 1 or 2, further comprising a rotating means for rotating the rotary annular total reflection illuminator.
【請求項4】前記回転手段の回転中心は、反射鏡の回転
中心軸から僅かに離れた位置に配置されていることを特
徴とする請求項3に記載の回転式輪帯全反射照明装置
4. The rotary annular total reflection illuminator according to claim 3, wherein the rotation center of the rotating means is arranged at a position slightly apart from the rotation center axis of the reflecting mirror.
【請求項5】前記反射鏡の回転による振動が顕微鏡に悪
影響を及ぼさぬ様、反射鏡を含む回転手段は回転中心軸
に形状重量ともに対象な構造を形成していることを特徴
とする請求項請求項3または請求項4に記載の回転式輪
帯全反射照明装置。
5. The rotating means including the reflecting mirror has a structure in which the shape and weight are symmetrical with respect to the central axis of rotation so that the vibration due to the rotation of the reflecting mirror does not adversely affect the microscope. The rotary annular total reflection illumination device according to claim 3 or 4.
JP2001325773A 2001-10-24 2001-10-24 Rotational zone total reflection illumination mechanism Withdrawn JP2003131141A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2001325773A JP2003131141A (en) 2001-10-24 2001-10-24 Rotational zone total reflection illumination mechanism
PCT/JP2002/008933 WO2003036363A1 (en) 2001-10-24 2002-09-03 Rotary zone total reflection illumination mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001325773A JP2003131141A (en) 2001-10-24 2001-10-24 Rotational zone total reflection illumination mechanism

Publications (1)

Publication Number Publication Date
JP2003131141A true JP2003131141A (en) 2003-05-08

Family

ID=19142267

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001325773A Withdrawn JP2003131141A (en) 2001-10-24 2001-10-24 Rotational zone total reflection illumination mechanism

Country Status (2)

Country Link
JP (1) JP2003131141A (en)
WO (1) WO2003036363A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004057402A1 (en) * 2002-12-20 2004-07-08 Japan Science And Technology Agency Rotary-type circular-band total reflection polarized-light illumination optical system
GB2413648A (en) * 2002-12-20 2005-11-02 Japan Science & Tech Agency Rotary-type circular-band total reflection polarized-light illumination optical system
JP2007506955A (en) * 2003-09-25 2007-03-22 ライカ マイクロシステムス ツェーエムエス ゲーエムベーハー Scanning microscope with evanescent wave illumination
EP2902833A1 (en) 2014-01-30 2015-08-05 Olympus Corporation Microscope illumination apparatus, microscope, and microscope illumination method
JP2018166119A (en) * 2010-04-13 2018-10-25 株式会社小糸製作所 Optical unit

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0424652D0 (en) * 2004-11-08 2004-12-08 Imp College Innovations Ltd Fluorescence polarisation in TIRF

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08122036A (en) * 1994-10-27 1996-05-17 Olympus Optical Co Ltd Scanning near-field optical microscope
JP3093145B2 (en) * 1995-12-13 2000-10-03 科学技術振興事業団 Light irradiation switching method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004057402A1 (en) * 2002-12-20 2004-07-08 Japan Science And Technology Agency Rotary-type circular-band total reflection polarized-light illumination optical system
GB2413648A (en) * 2002-12-20 2005-11-02 Japan Science & Tech Agency Rotary-type circular-band total reflection polarized-light illumination optical system
GB2413648B (en) * 2002-12-20 2006-09-06 Japan Science & Tech Agency A polarized total internal reflection illumination optical system by rotary annulus light
US7486440B2 (en) 2002-12-20 2009-02-03 Japan Science And Technology Agency Polarized total internal reflection illumination optical system by rotary annulus light
JP2007506955A (en) * 2003-09-25 2007-03-22 ライカ マイクロシステムス ツェーエムエス ゲーエムベーハー Scanning microscope with evanescent wave illumination
JP2018166119A (en) * 2010-04-13 2018-10-25 株式会社小糸製作所 Optical unit
US10540556B2 (en) 2010-04-13 2020-01-21 Koito Manufacturing Co., Ltd. Optical unit, vehicle monitor, and obstruction detector
US10748015B2 (en) 2010-04-13 2020-08-18 Koito Manufacturing Co., Ltd. Optical unit, vehicle monitor, and obstruction detector
US11262041B2 (en) 2010-04-13 2022-03-01 Koito Manufacturing Co., Ltd. Optical unit, vehicle monitor, and obstruction detector
EP2902833A1 (en) 2014-01-30 2015-08-05 Olympus Corporation Microscope illumination apparatus, microscope, and microscope illumination method
US9690085B2 (en) 2014-01-30 2017-06-27 Olympus Corporation Microscope illumination apparatus, microscope, and microscope illumination method

Also Published As

Publication number Publication date
WO2003036363A1 (en) 2003-05-01

Similar Documents

Publication Publication Date Title
KR100293126B1 (en) Inspection device
US20090168159A1 (en) Optical System for Illumination of an Evanescent Field
JPS5855483B2 (en) Epi-illumination device for bright-field and dark-field illumination
JPS58145911A (en) Optical system for testing with light transmission microscope by reflected light irradiation
JP2004038139A (en) Device for coupling light ray into microscope
EP0857316A1 (en) Dark field illuminator ringlight adaptor
WO1991008502A1 (en) Single aperture confocal scanning biomicroscope
JP2003131141A (en) Rotational zone total reflection illumination mechanism
JP3523348B2 (en) Slit lamp microscope
JP3395351B2 (en) Lighting equipment for microscope
US7486440B2 (en) Polarized total internal reflection illumination optical system by rotary annulus light
WO2006057033A1 (en) Objective lens and condenser
JP3015912B2 (en) Confocal light scanner
JP4339553B2 (en) Confocal microscope
JP2001296206A (en) Apparatus and method for double refraction measuring
JP4012709B2 (en) Lens barrel processing equipment
JPH09145721A (en) Optical microscope integrated scanning probe microscope
JP4487359B2 (en) Stereo microscope and dark field illumination device
JP2570631Y2 (en) Optical scanner for confocal
JPH09297266A (en) Microscope
JPH07218991A (en) Reflective illuminator
JPH06186482A (en) Lighting device for microscope
JP3846608B2 (en) Reflective dark field illumination device
JP2004288279A (en) Nipkow disk and confocal scanning device using this disk
JPH06160723A (en) Dark field lighting equipment

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040108

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050104