JP2003130934A - Optical fiber magnetic sensor - Google Patents

Optical fiber magnetic sensor

Info

Publication number
JP2003130934A
JP2003130934A JP2001329722A JP2001329722A JP2003130934A JP 2003130934 A JP2003130934 A JP 2003130934A JP 2001329722 A JP2001329722 A JP 2001329722A JP 2001329722 A JP2001329722 A JP 2001329722A JP 2003130934 A JP2003130934 A JP 2003130934A
Authority
JP
Japan
Prior art keywords
fbg
light
wavelength
optical fiber
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001329722A
Other languages
Japanese (ja)
Inventor
Yukio Ikeda
幸雄 池田
Shuichi Sunahara
秀一 砂原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Toyota Motor Corp
Original Assignee
Hitachi Cable Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd, Toyota Motor Corp filed Critical Hitachi Cable Ltd
Priority to JP2001329722A priority Critical patent/JP2003130934A/en
Publication of JP2003130934A publication Critical patent/JP2003130934A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Light Guides In General And Applications Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an optical fiber magnetic sensor which has a simple construction and is excellent in extendability. SOLUTION: An FBG 13 covered with metal, a power source 15 for causing a current to flow in this metal covering 3, a light source 27 which causes light to enter the FBG, and a wavelength measuring instrument 29 for measuring the wavelength of light emitted from the FBG 13, are provided. A change of expansion or shrinkage of the FBG 13 is found from a detected wavelength of light emitted when a current is caused to flow in the metal covering 3, and information on external magnetic flux 17 is obtained from this change of expansion or shrinkage.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、光ファイバを用い
た磁気センサに係り、特に、構成が簡素で拡張性に優れ
た光ファイバ磁気センサに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic sensor using an optical fiber, and more particularly to an optical fiber magnetic sensor having a simple structure and excellent expandability.

【0002】[0002]

【従来の技術】光ファイバにより磁気を検出するセンサ
として、例えば、電磁力を利用する多点型のものが公知
である(特開平1−35284号公報)。これをブロッ
ク図で図11に示す。
2. Description of the Related Art As a sensor for detecting magnetism by means of an optical fiber, for example, a multipoint type sensor utilizing electromagnetic force is known (Japanese Patent Laid-Open No. 1-35284). This is shown in a block diagram in FIG.

【0003】光源31には、カプラ32を介して2つの
光ファイバが接続され、これら2つの光ファイバがカプ
ラ34を介して受光器35に接続され、マッハツェンダ
干渉計が構成されている。磁気検出素子40、43、4
6にはそれぞれ異なる周波数が共振点及び駆動電流周波
数として設定される。受光器35の出力は、同期検波器
42、45、48に接続されている。
Two optical fibers are connected to the light source 31 via a coupler 32, and these two optical fibers are connected to a photodetector 35 via a coupler 34 to form a Mach-Zehnder interferometer. Magnetic detection elements 40, 43, 4
Different frequencies are set in 6 as the resonance point and the drive current frequency. The output of the light receiver 35 is connected to the synchronous detectors 42, 45 and 48.

【0004】光源31より出た光は、カプラ32によっ
て2つの光路に分岐され、一方の光路は光学位相変調素
子39を通り、もう一方の光路は磁気検出素子40、4
3、46を経てカプラ34で合波される。受光器35よ
り得られる電気信号を発信器41、44、47によるそ
れぞれの周波数で同期検波し、各点の磁気情報を取り出
す。
The light emitted from the light source 31 is branched into two optical paths by the coupler 32, one optical path passes through the optical phase modulator 39, and the other optical path is detected by the magnetic detection elements 40, 4.
After passing through 3 and 46, they are multiplexed by the coupler 34. The electric signal obtained from the light receiver 35 is synchronously detected at each frequency by the transmitters 41, 44 and 47, and the magnetic information at each point is extracted.

【0005】また、フェージングを除去するために、補
償器37より受光器35の出力と受光器36の出力との
差成分の直流成分を取り出し、この出力を増幅器38で
増幅して光学位相変調素子39に加えて光学的に帰還す
ることにより、直流成分が0になるように制御を行う。
Further, in order to remove the fading, a DC component of a difference component between the output of the photoreceiver 35 and the output of the photoreceiver 36 is taken out from the compensator 37, and this output is amplified by an amplifier 38 to be an optical phase modulation element. In addition to 39, optical feedback is performed to control so that the DC component becomes zero.

【0006】[0006]

【発明が解決しようとする課題】上記光ファイバを用い
た従来の磁気センサは、光ファイバを長くすれば比較的
容易に広範囲にわたる計測が達成できる可能性が高い
が、以下のような問題点がある。
The conventional magnetic sensor using the above-mentioned optical fiber is likely to be able to relatively easily perform measurement over a wide range by lengthening the optical fiber, but has the following problems. is there.

【0007】(1)各センサ部と基地部との間に多くの
電気信号線が存在する。
(1) There are many electric signal lines between each sensor section and the base section.

【0008】例えば、図11の左端のセンサについて以
下のような配置が考えられる。
For example, the following arrangement can be considered for the sensor at the left end of FIG.

【0009】a)発信器41と同期検波器42との両方
をセンサ部(磁気検出素子40の近傍)に設置する場
合、基地部(各センサの出力を収集する基地装置及び受
光器35等を備える)とセンサ部との間には、電源線、
受光器35からの電気信号をセンサ部に送る信号線、セ
ンサ部から基地装置にセンサ出力を送る信号線が必要と
なる。
A) When both the transmitter 41 and the synchronous detector 42 are installed in the sensor section (in the vicinity of the magnetic detection element 40), the base section (base station collecting the output of each sensor, the light receiver 35, etc.) is installed. (Provided) and the sensor section,
A signal line for sending an electric signal from the light receiver 35 to the sensor unit and a signal line for sending a sensor output from the sensor unit to the base unit are required.

【0010】b)発信器41をセンサ部の近傍に、同期
検波器42を基地部に設置する場合、基地部とセンサ部
との間には、電源線、センサ部から基地装置に発信器4
1の信号を送る信号線が必要となる。
B) When the oscillator 41 is installed in the vicinity of the sensor unit and the synchronous detector 42 is installed in the base unit, a power line is provided between the base unit and the sensor unit, and the transmitter 4 is provided from the sensor unit to the base unit.
A signal line for transmitting the 1 signal is required.

【0011】c)発信器41と同期検波器42との両方
を基地部に設置する場合、基地部とセンサ部との間に
は、電源線、基地装置からセンサ部に発信器41の信号
を送る信号線が必要となる。
C) When both the transmitter 41 and the synchronous detector 42 are installed in the base unit, a power line is provided between the base unit and the sensor unit, and a signal from the transmitter 41 is sent from the base unit to the sensor unit. A signal line for sending is required.

【0012】これらの信号線は、磁気情報に直接関与す
る交流電流が流れるため、外部からの雑音を受けると大
きな誤差要因となる。また、センサ部設置間隔や、各セ
ンサ部と基地部との距離が長くなると、引き回すケーブ
ルは、それに伴って長くなり、S/N低下や作業性の悪
化をもたらす。
Since an alternating current directly related to magnetic information flows through these signal lines, noise from the outside causes a large error factor. Further, if the interval between the sensor units is set longer or the distance between each sensor unit and the base unit is longer, the cable to be routed becomes longer accordingly, resulting in a decrease in S / N and deterioration in workability.

【0013】(2)各センサ部の拡張性・互換性が不足
している。
(2) The expandability and compatibility of each sensor unit are insufficient.

【0014】センサ部を1つ追加しようとすると、完全
な単体センサ(磁気検出素子が1つのもの)の一部分を
マッハツェンダ干渉計内に挿入することになり、完全な
単体センサとの互換性が乏しい。
If one sensor unit is added, a part of a complete single sensor (one magnetic detection element) is inserted into the Mach-Zehnder interferometer, and the compatibility with the complete single sensor is poor. .

【0015】(3)フェールセーフ性が欠如している。(3) The fail-safe property is lacking.

【0016】多点化によって伸ばされていくマッハツェ
ンダ干渉計のアームの一方に切断や損失増大などの異常
が発生すると、全てのセンサ部が使用不能になる。
When one of the arms of the Mach-Zehnder interferometer, which is extended due to the increase in the number of points, has an abnormality such as a break or an increase in loss, all the sensor parts become unusable.

【0017】(4)フェージング除去が困難である。(4) It is difficult to remove fading.

【0018】多点化に伴い干渉計の2つのアームの長さ
が伸びていき、あるいは使用するコネクタの数が増大す
ると、加わる外乱量が増大し、あるいは光の干渉性の低
下によってフェージングの変化量や変化周波数のバリエ
ーションが増大し、フェージング除去が困難になる。
As the length of the two arms of the interferometer increases with the increase in the number of points or the number of connectors used increases, the amount of disturbance added increases, or the fading changes due to a decrease in light coherence. Variations in the amount and changing frequency increase, and fading removal becomes difficult.

【0019】そこで、本発明の目的は、上記課題を解決
し、構成が簡素で拡張性に優れた光ファイバ磁気センサ
を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above problems and provide an optical fiber magnetic sensor having a simple structure and excellent expandability.

【0020】[0020]

【課題を解決するための手段】上記目的を達成するため
に本発明は、金属によって被覆されたFBGと、この金
属被覆に通電する電源と、前記FBGに光を入射させる
光源と、前記FBGから出射された光の波長を計測する
波長計測装置とを設け、前記金属被覆に通電したときの
光の検出波長からFBGの伸縮変化を求め、この伸縮変
化から外部磁束の情報を求めるものである。
In order to achieve the above object, the present invention provides an FBG coated with a metal, a power supply for energizing the metal coating, a light source for making light incident on the FBG, and an FBG. A wavelength measuring device for measuring the wavelength of the emitted light is provided, the expansion / contraction change of the FBG is obtained from the detection wavelength of the light when the metal coating is energized, and the information of the external magnetic flux is obtained from this expansion / contraction change.

【0021】前記光源からの光を前記FBGに導くと共
に前記FBGからの反射光を分岐して前記波長計測装置
に導く光カプラを設けてもよい。
An optical coupler may be provided to guide the light from the light source to the FBG and branch the reflected light from the FBG to the wavelength measuring device.

【0022】前記光源からの光を分岐して複数のFBG
に導くと共に各FBGの反射光を合波する複数の光カプ
ラとを設けてもよい。
The light from the light source is split into a plurality of FBGs.
And a plurality of optical couplers that combine the reflected lights of the FBGs with each other.

【0023】前記光源からの光を分岐して複数のFBG
に導く複数の光カプラと、各FBGの透過光を合波して
前記波長計測装置に導く複数の光カプラとを設けてもよ
い。
The light from the light source is split into a plurality of FBGs.
It is also possible to provide a plurality of optical couplers for guiding to the wavelength measuring device and a plurality of optical couplers for multiplexing the transmitted light of each FBG and guiding them to the wavelength measuring device.

【0024】[0024]

【発明の実施の形態】以下、本発明の一実施形態を添付
図面に基づいて詳述する。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of the present invention will be described in detail below with reference to the accompanying drawings.

【0025】本発明は、金属によって被覆された光ファ
イバの金属被覆に通電したとき、外部磁束との相互作用
によって金属被覆に働く力が光ファイバの長手方向や径
方向に伸縮や側圧変化を与えるので、これらの変化を光
学的に検出することにより外部磁束の情報を取り出すも
ので、金属によって被覆される光ファイバとして光ファ
イバのコア部の屈折率を一定の周期で変化させたFBG
を使用する。金属被覆に通電したときの光の検出波長か
らFBGの伸縮変化を求め、この伸縮変化から外部磁束
の情報を求めることができる。
According to the present invention, when the metal coating of an optical fiber coated with a metal is energized, the force acting on the metal coating due to the interaction with the external magnetic flux gives expansion / contraction or lateral pressure change in the longitudinal or radial direction of the optical fiber. Therefore, the information of the external magnetic flux is extracted by optically detecting these changes. As an optical fiber coated with metal, the FBG in which the refractive index of the core of the optical fiber is changed at a constant cycle
To use. The expansion / contraction change of the FBG can be obtained from the detection wavelength of light when the metal coating is energized, and the information of the external magnetic flux can be obtained from this expansion / contraction change.

【0026】本発明に使用する金属被覆FBGを図1に
示す。金属被覆FBGは、光ファイバ1のコア部2の屈
折率を一定の周期Lで変化させたもので入射光がこの屈
折率変化部で反射する。その反射波長λは、次式のよう
に周期Lとコア屈折率nで決まる。
The metal-coated FBG used in the present invention is shown in FIG. The metal-coated FBG changes the refractive index of the core portion 2 of the optical fiber 1 at a constant period L, and the incident light is reflected by this refractive index changing portion. The reflection wavelength λ is determined by the period L and the core refractive index n as in the following equation.

【0027】 λ=2×L×n (1) このFBGに金属3が被覆されている。被覆する金属3
としては、例えば、ニッケル、金があり、光ファイバの
上にニッケルを被覆し、さらにその上に金を被覆する。
Λ = 2 × L × n (1) This FBG is coated with metal 3. Metal to cover 3
There are, for example, nickel and gold, nickel is coated on the optical fiber, and gold is further coated thereon.

【0028】この金属被覆FBGを用いた光ファイバ磁
気センサを図2に示す。この構成では、金属被覆FBG
13にカプラ28を接続し、そのカプラ28に光源27
及び波長計29を接続する。即ち、カプラ28は、光源
27からの光を金属被覆FBG13に導くと共に金属被
覆FBG13からの反射光を分岐して波長計29に導く
ものである。光源27は、十分広い波長領域の光を放射
する。金属被覆FBG13で反射されて波長計29に戻
ってくる光は、図3に示されるように、(1)式で得ら
れる波長λを有している。この波長λを波長計29で測
定する。
An optical fiber magnetic sensor using this metal-coated FBG is shown in FIG. In this configuration, the metal-coated FBG
13 is connected to the coupler 28, and the light source 27 is connected to the coupler 28.
And the wavelength meter 29 are connected. That is, the coupler 28 guides the light from the light source 27 to the metal-coated FBG 13 and branches the reflected light from the metal-coated FBG 13 to guide it to the wavelength meter 29. The light source 27 emits light in a sufficiently wide wavelength range. The light reflected by the metal-coated FBG 13 and returning to the wavemeter 29 has a wavelength λ obtained by the equation (1), as shown in FIG. This wavelength λ is measured by the wavelength meter 29.

【0029】図4に示されるように、絶縁筐体14に固
定された固定治具11と固定材料12とを用いて金属被
覆FBG13を直線状に張って両端を固定し、金属被覆
の両端間に交流電源15より電圧を印加する。16は電
源線である。尚、金属被覆FBG13には図2と同様、
カプラを介して光源及び波長計を接続する。
As shown in FIG. 4, a metal-clad FBG 13 is stretched in a straight line using a fixing jig 11 and a fixing material 12 fixed to an insulating casing 14 to fix both ends, and between the both ends of the metal coating. A voltage is applied from the AC power supply 15 to the. 16 is a power supply line. The metal-coated FBG 13 has the same structure as in FIG.
A light source and a wavelength meter are connected via a coupler.

【0030】このとき、図5に示されるように、外部か
ら磁界17が加わると、金属被覆FBG13には、矢印
方向に次式で表される外力が加わる。
At this time, as shown in FIG. 5, when a magnetic field 17 is applied from the outside, an external force represented by the following equation is applied to the metal-coated FBG 13 in the arrow direction.

【0031】 F=B×I (2) 金属被覆FBG13が一定の張力を保つように絶縁筐体
14に固定されているので、金属被覆FBG13は外力
により一定の長さだけ変位する。これによりFBGが伸
長するので、周期Lが長くなる。
F = B × I (2) Since the metal coating FBG 13 is fixed to the insulating casing 14 so as to maintain a constant tension, the metal coating FBG 13 is displaced by a constant length by an external force. As a result, the FBG is expanded, and the cycle L is lengthened.

【0032】上述したようにFBGは周期Lにより反射
波長λが決定されるため、周期Lが変化することにより
反射波長λが変化する。従って、反射波長λを計測する
ことにより外力変化、即ち、磁気の変化を求めることが
できる。
As described above, since the reflection wavelength λ of the FBG is determined by the period L, the reflection wavelength λ changes as the period L changes. Therefore, a change in external force, that is, a change in magnetism can be obtained by measuring the reflection wavelength λ.

【0033】この方式においては、電源として直流電源
を用いることができるため、フィルタなどにより外乱に
よる影響を除去しやすくなる。また、磁気による変化で
は、初期値に対する波長の変化を波長計29により取り
出すので、電気的な信号を参照する必要がない。
In this system, since a DC power source can be used as the power source, the influence of disturbance can be easily removed by a filter or the like. Further, in the change due to magnetism, since the change in wavelength with respect to the initial value is taken out by the wavelength meter 29, it is not necessary to refer to an electrical signal.

【0034】尚、図2においては、カプラを用いた例で
説明したが、図6のように、光源27、金属被覆FBG
13、波長計29を直列に接続してもよい。この場合、
金属被覆FBG13を透過した光は、(1)式で得られ
る波長λが減少する。従って、波長計29で受光される
光の波長分布波形は図7のようになる。この減衰してい
る波長λを波長計29で測定する。
Although an example using a coupler has been described with reference to FIG. 2, as shown in FIG. 6, the light source 27 and the metal-coated FBG are used.
13. The wavelength meter 29 may be connected in series. in this case,
In the light transmitted through the metal-coated FBG 13, the wavelength λ obtained by the equation (1) decreases. Therefore, the wavelength distribution waveform of the light received by the wavelength meter 29 is as shown in FIG. This attenuated wavelength λ is measured by the wavelength meter 29.

【0035】次に、光ファイバ磁気センサを多点接続す
る実施形態を説明する。
Next, an embodiment in which optical fiber magnetic sensors are connected at multiple points will be described.

【0036】図8に示した光ファイバ磁気センサは、光
源27に近い位置に、光源27からの光をFBG側に導
き、FBG側からの反射光を分岐して波長計29に導く
光カプラ28を設け、その光カプラ28より遠い位置
に、光源側からの光を分岐して複数の金属被覆FBG1
3a,13b,13cに導き、各金属被覆FBG13
a,13b,13cの反射光を合波して光源側に戻す複
数の光カプラ28を設けたものである。ここで、金属被
覆FBG13a,13b,13cは、互いに異なる波長
の光を反射する。
The optical fiber magnetic sensor shown in FIG. 8 guides the light from the light source 27 to the FBG side at a position close to the light source 27, branches the reflected light from the FBG side and guides it to the wavelength meter 29. Is provided, and the light from the light source side is branched at a position farther from the optical coupler 28, and a plurality of metal-coated FBG1s are provided.
3a, 13b, 13c, each metal coated FBG13
A plurality of optical couplers 28 that combine reflected lights of a, 13b, and 13c and return them to the light source side are provided. Here, the metal-coated FBGs 13a, 13b, 13c reflect lights having different wavelengths.

【0037】図9に示した光ファイバ磁気センサは、光
源27からの光を分岐して複数の金属被覆FBG13
a,13b,13cに導く複数の光カプラ28を設け、
各金属被覆FBG13a,13b,13cの透過光を合
波して波長計29に導く複数の光カプラ28を設けたも
のである。ここで、金属被覆FBG13a,13b,1
3cは、互いに異なる波長の光を減衰させて透過する。
The optical fiber magnetic sensor shown in FIG. 9 branches the light from the light source 27 into a plurality of metal-coated FBGs 13.
A plurality of optical couplers 28 that lead to a, 13b, and 13c are provided,
A plurality of optical couplers 28 are provided to combine the transmitted lights of the metal-coated FBGs 13a, 13b, 13c and guide them to the wavelength meter 29. Here, the metal-coated FBGs 13a, 13b, 1
3c attenuates and transmits light of different wavelengths.

【0038】図8及び図9の光ファイバ磁気センサは、
個々のセンサ部、即ち、金属被覆FBG13a,13
b,13cは、互いに独立であり、カプラ接続により個
数を増加することができるため、拡張性、互換性、フェ
ールセーフ性に優れている。
The optical fiber magnetic sensor of FIGS. 8 and 9 is
Individual sensor parts, that is, metal-coated FBGs 13a, 13
b and 13c are independent of each other and can be increased in number by a coupler connection, and thus are excellent in expandability, compatibility, and fail-safe property.

【0039】また、センサ出力は、基本的にFBGの周
期Lによるため、安定した出力を得ることができる。
Since the sensor output basically depends on the period L of the FBG, a stable output can be obtained.

【0040】尚、図8、図9では金属被覆FBG13を
3個使用したが、接続できる金属被覆FBG13の個数
は、波長計29のダイナミックレンジにより制約を受け
るものの、原理的には制限がない。
Although the three metal-coated FBGs 13 are used in FIGS. 8 and 9, the number of connectable metal-coated FBGs 13 is limited by the dynamic range of the wavemeter 29, but is not limited in principle.

【0041】図4の形態では、金属被覆FBG13を絶
縁筐体14,14間に直線状に張り渡したが、図10に
示されるように、金属被覆FBG13を絶縁筐体14,
14間より長くし、接触しないように円形状或いは螺旋
状に形成し、一定半径を保つようにクランプ(図示せ
ず)或いは他の治具を用いて保持するようにしてもよ
い。この場合でも、金属被覆の両端間に交流電源15よ
り電圧を印加すると、磁界17に応じてFBGが伸長
し、反射又は透過波長λが変化する。
In the embodiment of FIG. 4, the metal-coated FBG 13 is linearly stretched between the insulating casings 14 and 14, but as shown in FIG.
It may be made longer than 14 and formed in a circular shape or a spiral shape so as not to come into contact with each other, and may be held by using a clamp (not shown) or another jig so as to keep a constant radius. Even in this case, when a voltage is applied from both ends of the metal coating by the AC power supply 15, the FBG is extended according to the magnetic field 17 and the reflection or transmission wavelength λ is changed.

【0042】[0042]

【発明の効果】本発明は次の如き優れた効果を発揮す
る。
The present invention exhibits the following excellent effects.

【0043】(1)電気信号線は金属被覆に電流を流す
ための電源線16のみであり、従来に比べて本数が低減
され、構成が簡素になる。
(1) The electric signal line is only the power supply line 16 for supplying a current to the metal coating, the number of electric signal lines is reduced as compared with the conventional one, and the structure is simplified.

【0044】(2)各センサ部の拡張性・互換性が高
く、フェールセーフ性にも優れている。また、フェージ
ング除去の問題がない。
(2) The expandability and compatibility of each sensor unit are high, and the fail-safe property is also excellent. Also, there is no problem of fading removal.

【0045】(3)安定した出力を得ることができる。(3) A stable output can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施形態を示す金属被覆FBGの側
断面図である。
FIG. 1 is a side sectional view of a metal-coated FBG showing an embodiment of the present invention.

【図2】本発明の一実施形態を示す光ファイバ磁気セン
サの光学回路図である。
FIG. 2 is an optical circuit diagram of an optical fiber magnetic sensor showing an embodiment of the present invention.

【図3】本発明による光ファイバ磁気センサの光信号特
性図である。
FIG. 3 is an optical signal characteristic diagram of the optical fiber magnetic sensor according to the present invention.

【図4】本発明の一実施形態を示す光ファイバ磁気セン
サの機械的構成図である。
FIG. 4 is a mechanical configuration diagram of an optical fiber magnetic sensor showing an embodiment of the present invention.

【図5】本発明による光ファイバ磁気センサの動作説明
図である。
FIG. 5 is an operation explanatory diagram of the optical fiber magnetic sensor according to the present invention.

【図6】本発明の一実施形態を示す光ファイバ磁気セン
サの光学回路図である。
FIG. 6 is an optical circuit diagram of an optical fiber magnetic sensor showing an embodiment of the present invention.

【図7】本発明による光ファイバ磁気センサの光信号特
性図である。
FIG. 7 is an optical signal characteristic diagram of the optical fiber magnetic sensor according to the present invention.

【図8】本発明の一実施形態を示す光ファイバ磁気セン
サの光学回路図である。
FIG. 8 is an optical circuit diagram of an optical fiber magnetic sensor showing an embodiment of the present invention.

【図9】本発明の一実施形態を示す光ファイバ磁気セン
サの光学回路図である。
FIG. 9 is an optical circuit diagram of an optical fiber magnetic sensor showing an embodiment of the present invention.

【図10】本発明の一実施形態を示す光ファイバ磁気セ
ンサの機械的構成図である。
FIG. 10 is a mechanical configuration diagram of an optical fiber magnetic sensor according to an embodiment of the present invention.

【図11】従来の光ファイバ磁気センサの光学・電気回
路図である。
FIG. 11 is an optical / electrical circuit diagram of a conventional optical fiber magnetic sensor.

【符号の説明】[Explanation of symbols]

1 光ファイバ 2 コア部 3 金属 13 金属被覆FBG 15 交流電源 17 磁界 27 光源 28 カプラ 29 波長計 1 optical fiber 2 core parts 3 metal 13 Metal coated FBG 15 AC power supply 17 magnetic field 27 light source 28 Coupler 29 Wavemeter

───────────────────────────────────────────────────── フロントページの続き (72)発明者 砂原 秀一 愛知県豊田市トヨタ町1番地 トヨタ自動 車株式会社内 Fターム(参考) 2G017 AA01 AD11 2H038 AA04 BA24 BA25    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Shuichi Sunahara             1 Toyota Town, Toyota City, Aichi Prefecture Toyota Auto             Car Co., Ltd. F-term (reference) 2G017 AA01 AD11                 2H038 AA04 BA24 BA25

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 金属によって被覆されたファイバブラッ
ググレーティング(以下、FBGという)と、この金属
被覆に通電する電源と、前記FBGに光を入射させる光
源と、前記FBGから出射された光の波長を計測する波
長計測装置とを設け、前記金属被覆に通電したときの光
の検出波長からFBGの伸縮変化を求め、この伸縮変化
から外部磁束の情報を求めることを特徴とする光ファイ
バ磁気センサ。
1. A fiber Bragg grating (hereinafter referred to as FBG) coated with a metal, a power supply for energizing the metal coating, a light source for making light incident on the FBG, and a wavelength of light emitted from the FBG. A fiber optic magnetic sensor, comprising: a wavelength measuring device for measuring; obtaining expansion / contraction change of the FBG from a detection wavelength of light when the metal coating is energized; and obtaining information of external magnetic flux from the expansion / contraction change.
【請求項2】 前記光源からの光を前記FBGに導くと
共に前記FBGからの反射光を分岐して前記波長計測装
置に導く光カプラを設けたことを特徴とする請求項1記
載の光ファイバ磁気センサ。
2. The optical fiber magnetism according to claim 1, further comprising an optical coupler for guiding the light from the light source to the FBG and branching the reflected light from the FBG to the wavelength measuring device. Sensor.
【請求項3】 前記光源からの光を分岐して複数のFB
Gに導くと共に各FBGの反射光を合波する複数の光カ
プラとを設けたことを特徴とする請求項1又は2記載の
光ファイバ磁気センサ。
3. The plurality of FBs are formed by branching the light from the light source.
3. The optical fiber magnetic sensor according to claim 1, further comprising a plurality of optical couplers that guide the light to G and combine the reflected light of each FBG.
【請求項4】 前記光源からの光を分岐して複数のFB
Gに導く複数の光カプラと、各FBGの透過光を合波し
て前記波長計測装置に導く複数の光カプラとを設けたこ
とを特徴とする請求項1記載の光ファイバ磁気センサ。
4. A plurality of FBs are formed by branching light from the light source.
2. The optical fiber magnetic sensor according to claim 1, wherein a plurality of optical couplers for guiding to G and a plurality of optical couplers for multiplexing the transmitted light of each FBG and guiding to the wavelength measuring device are provided.
JP2001329722A 2001-10-26 2001-10-26 Optical fiber magnetic sensor Pending JP2003130934A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001329722A JP2003130934A (en) 2001-10-26 2001-10-26 Optical fiber magnetic sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001329722A JP2003130934A (en) 2001-10-26 2001-10-26 Optical fiber magnetic sensor

Publications (1)

Publication Number Publication Date
JP2003130934A true JP2003130934A (en) 2003-05-08

Family

ID=19145573

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001329722A Pending JP2003130934A (en) 2001-10-26 2001-10-26 Optical fiber magnetic sensor

Country Status (1)

Country Link
JP (1) JP2003130934A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7840102B2 (en) 2007-01-16 2010-11-23 Baker Hughes Incorporated Distributed optical pressure and temperature sensors
US8417084B2 (en) * 2007-01-16 2013-04-09 Baker Hughes Incorporated Distributed optical pressure and temperature sensors
CN103760504A (en) * 2014-01-16 2014-04-30 昆明理工大学 Fiber Bragg optical grating spatial magnetic field intensity sensor based on giant magnetostriction materials and use method of fiber Bragg optical grating spatial magnetic field intensity sensor
KR101465156B1 (en) 2013-10-01 2014-11-26 한국표준과학연구원 FBG sensor for measuring the maximum strain, manufacturing method thereof and operating method thereof

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7840102B2 (en) 2007-01-16 2010-11-23 Baker Hughes Incorporated Distributed optical pressure and temperature sensors
US8417084B2 (en) * 2007-01-16 2013-04-09 Baker Hughes Incorporated Distributed optical pressure and temperature sensors
KR101465156B1 (en) 2013-10-01 2014-11-26 한국표준과학연구원 FBG sensor for measuring the maximum strain, manufacturing method thereof and operating method thereof
WO2015050355A1 (en) * 2013-10-01 2015-04-09 한국표준과학연구원 Fbg sensor for measuring maximum strain, manufacturing method and using method
CN105683705A (en) * 2013-10-01 2016-06-15 韩国标准科学研究院 FBG sensor for measuring maximum strain, manufacturing method and using method
JP2016540188A (en) * 2013-10-01 2016-12-22 韓国標準科学研究院 FBG sensor for measuring maximum distortion, method for manufacturing and using the same
US9791335B2 (en) 2013-10-01 2017-10-17 Korea Research Institute Of Standards And Science FBG sensor for measuring maximum strain, manufacturing method and using method
CN105683705B (en) * 2013-10-01 2019-04-16 韩国标准科学研究院 For measuring FBG sensor, manufacturing method and the application method of maximum strain
CN103760504A (en) * 2014-01-16 2014-04-30 昆明理工大学 Fiber Bragg optical grating spatial magnetic field intensity sensor based on giant magnetostriction materials and use method of fiber Bragg optical grating spatial magnetic field intensity sensor

Similar Documents

Publication Publication Date Title
US11002594B2 (en) Method and apparatus for distributed sensing
JP2578601B2 (en) Sensor system, sensor array and method for remotely sensing environmental changes
JP4420982B2 (en) Optical frequency domain reflection measurement type physical quantity measurement device, and temperature and strain simultaneous measurement method using the same
JP4474494B2 (en) Optical frequency domain reflection measurement type physical quantity measurement device and temperature and strain measurement method using the same
JP5628779B2 (en) Multipoint measuring method and multipoint measuring apparatus for FBG sensor
Spammer et al. Merged Sagnac-Michelson interferometer for distributed disturbance detection
CA2763389C (en) Optical sensor and method of use
US5426297A (en) Multiplexed Bragg grating sensors
US9310273B2 (en) Optical fibre sensor interrogation system
JP6291313B2 (en) Optical frequency domain reflection measurement method, optical frequency domain reflection measurement apparatus, and apparatus for measuring position or shape using the same
JP5904733B2 (en) Deflection measuring equipment using the principle of interferometry
US20090290147A1 (en) Dynamic polarization based fiber optic sensor
CN106066203B (en) The highly sensitive vibration-detection system of distribution and method based on ultrashort optical fiber optical grating array
JP2009229134A (en) Optical sensor system
US7342217B2 (en) System for the measurement and data acquisition for optical fiber sensors
JP2013072701A (en) Temperature and strain distribution measurement system
Montero et al. Self-referenced optical networks for remote interrogation of quasi-distributed fiber-optic intensity sensors
JP2003130934A (en) Optical fiber magnetic sensor
KR100810145B1 (en) Strain measurement system using double-pass mach-zehnder interferometer and fiber grating sensor
JP2016099249A (en) Optical fiber sensor system
Nurulain et al. A Review on Optical Fibre Sensor Topology and ModulationTechnique
JPH11295153A (en) Wavelength detecting device
Chtcherbakov et al. Dual-wavelength Sagnac-Michelson distributed optical fiber sensor
KR20160058568A (en) A mirror treated reflective vibration sensor apparatus
AU2015201357B2 (en) Optical sensor and method of use