JP2003130524A - Circulating flow monitor of liquid cooling system - Google Patents

Circulating flow monitor of liquid cooling system

Info

Publication number
JP2003130524A
JP2003130524A JP2001323158A JP2001323158A JP2003130524A JP 2003130524 A JP2003130524 A JP 2003130524A JP 2001323158 A JP2001323158 A JP 2001323158A JP 2001323158 A JP2001323158 A JP 2001323158A JP 2003130524 A JP2003130524 A JP 2003130524A
Authority
JP
Japan
Prior art keywords
cooling
temperature
circulating flow
temperature difference
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001323158A
Other languages
Japanese (ja)
Inventor
Takashi Negishi
隆 根岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Advantest Corp
Original Assignee
Advantest Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advantest Corp filed Critical Advantest Corp
Priority to JP2001323158A priority Critical patent/JP2003130524A/en
Publication of JP2003130524A publication Critical patent/JP2003130524A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a further inexpensive and small installation space circulating flow monitor of a liquid cooling system capable of detecting reduction in a circulating flow rate of a refrigerant flowing in individual passages circulating by branching off into a plurality. SOLUTION: This circulating flow monitor of the liquid cooling system individually cools a prescribed plurality n of cooling objects by a circulating flow of the liquid refrigerant, and has a first temperature detecting means for detecting an IN side temperature of the circulating flow of the refrigerant for cooling the cooling objects, and has a second temperature detecting means for detecting an OUT side temperature of the circulating flow of the refrigerant for cooling the cooling objects, and has a cooling monitoring means for outputting a prescribed warning when a temperature difference Tx becomes a prescribed warning threshold value or more by determining the temperature difference Tx between the IN side and the OUT side of the circulating flow for cooling the cooling objects in time series on the basis of the first temperature detecting means and the second temperature detecting means.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、液体の冷却媒体
(冷媒)を循環させて冷却対象の電子機器を冷却する液
体冷却装置の循環流監視装置に関する。特に、複数に分
岐して循環する個々の流路を流れる冷媒の循環流量の低
下を検出可能な液体冷却装置の循環流監視装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a circulating flow monitoring device for a liquid cooling device which circulates a liquid cooling medium (refrigerant) to cool an electronic device to be cooled. In particular, the present invention relates to a circulation flow monitoring device of a liquid cooling device capable of detecting a decrease in the circulation flow rate of a refrigerant flowing through each of the flow paths branched and circulated.

【0002】[0002]

【従来の技術】今日の電子機器は、微細化技術の進歩に
より回路の大集積化、小型高密度化が可能になってい
る。特に大型の半導体試験装置等では、回路の高密度大
集積化により単位面積当りの発熱量は年々増加を辿って
いる。これに対応する為に、冷却ファンでの強制空冷手
法での冷却では能力不足である。この為、冷却装置は液
体を冷媒とする冷却能力の高い液体冷却装置が適用され
ている。冷媒としては水冷や、電気的に絶縁性を有する
フロリナートの冷媒等が使用されている。
2. Description of the Related Art In today's electronic devices, circuit integration can be increased and miniaturization can be increased due to advances in miniaturization technology. Particularly in large semiconductor test equipment, the amount of heat generated per unit area is increasing year by year due to high-density and large-scale integration of circuits. In order to deal with this, cooling by the forced air cooling method with a cooling fan is insufficient in capacity. Therefore, as the cooling device, a liquid cooling device using a liquid as a refrigerant and having a high cooling capacity is applied. As the refrigerant, water cooling or a Fluorinert refrigerant having electrical insulation is used.

【0003】しかしながら、冷媒の流れる配管経路には
目詰り等を生じたりして冷媒流量が低下してくる。もし
も許容流量以下となる場合には、装置の発熱限度を超え
る結果、動作不安定、動作不良、更には回路の劣化等に
つながる可能性がある。
However, the flow rate of the refrigerant decreases due to clogging or the like in the piping path through which the refrigerant flows. If the flow rate is below the allowable flow rate, the heat generation limit of the device is exceeded, which may lead to unstable operation, defective operation, and deterioration of the circuit.

【0004】図1は半導体試験装置を冷却する冷却系の
概念構成図である。半導体試験装置はメインフレームM
Fと、テストヘッドTHとがあり、メインフレームMF
側に冷媒供給部10を備えて冷媒用の配管を接続して、
冷却対象を冷却している。尚、ここで冷却対象の電子機
器の具体例としては、高電力を消費する多数枚のボード
と仮定して以下に説明する。
FIG. 1 is a conceptual block diagram of a cooling system for cooling a semiconductor testing device. Semiconductor test equipment is mainframe M
F and test head TH, mainframe MF
The refrigerant supply unit 10 is provided on the side to connect a refrigerant pipe,
The object to be cooled is being cooled. Here, a specific example of the electronic device to be cooled will be described below on the assumption that a large number of boards that consume high power are used.

【0005】図2(a)は冷媒により多数のボードを個
々に冷却する概念構成図である。この構成例では、冷媒
供給部10と、メインフレームMF側に数十枚のボード
B1〜Bnと、テストヘッドTH側に数十枚のピンエレ
クトロニクスのボードPB1〜PBmとを備える。冷媒
供給部10は、所定温度で所定圧力の冷媒を循環供給す
る装置であって、図示しないが冷却液収納タンクと、フ
ィルタと、加圧ポンプと、その他を備えている。冷媒供
給部10に接続される循環用ホースは、送端に往路ホー
スH1、H3が接続され、各ボードから集合された復路
ホースH2、H4が受端に接続されている。従って、各
ボードには個々に冷媒が流れる。半導体試験装置は多数
のボードを備えていて、全体の消費電力は10KW以上
にも至る。このため、多数の例えば50経路に配管分岐
してボード単位(又はユニット単位)に冷却する冷却構
成となっている。
FIG. 2 (a) is a conceptual block diagram for individually cooling a large number of boards with a cooling medium. In this configuration example, the coolant supply unit 10, several tens of boards B1 to Bn on the main frame MF side, and several tens of pin electronics boards PB1 to PBm on the test head TH side are provided. The coolant supply unit 10 is a device that circulates a coolant having a predetermined pressure at a predetermined temperature, and includes a coolant storage tank, a filter, a pressurizing pump, and the like, which are not shown. The circulation hose connected to the refrigerant supply unit 10 is connected to the outgoing hoses H1 and H3 at the sending end, and is connected to the incoming hoses H2 and H4 collected from the boards at the receiving end. Therefore, the refrigerant flows through each board individually. The semiconductor test equipment includes a large number of boards, and the total power consumption reaches 10 KW or more. For this reason, a cooling configuration is adopted in which a large number of pipes are branched into, for example, 50 paths to cool the board unit (or unit unit).

【0006】更に、図2(b、c)に示すように、分岐
した各経路毎に、目詰まり等の有無を検出する目詰まり
検出手段を、例えば50個備えていて、何れの経路にお
いても冷媒の流量低下、循環不良、循環異常が無いこと
を監視している。尚、ボードの消費電力は、ボードの種
類によって数十W〜数百Wと違いがある。更に、システ
ムの運用条件によって±数十%の消費電力の変動を示す
ものや、逆に、常に一定の消費電力を示すものがある。
このため、消費電力の違いや電力変動の有無に対応して
所定の冷媒流量が流れるようにしている。
Further, as shown in FIGS. 2 (b) and 2 (c), for example, each of the branched paths is provided with 50 clogging detecting means for detecting the presence / absence of clogging or the like. It monitors that the flow rate of refrigerant is low, that there is no circulation failure, and that there is no circulation abnormality. The power consumption of the board differs from several tens of watts to several hundreds of watts depending on the type of the board. Furthermore, there are some that show a fluctuation of ± several tens of percent depending on the operating conditions of the system, and conversely that that always show constant power consumption.
Therefore, a predetermined refrigerant flow rate is made to flow depending on the difference in power consumption and the presence or absence of power fluctuation.

【0007】目詰まり検出手段の第1手法は、図2
(b)に示すように、管路中に流量検出器FS1を備え
る例がある。しかし、この流量検出器FS1は比較的高
価である難点がある。また、流量検出器FS1を設置す
るスペース及び配管部材が必要である。また、流量検出
器自体を定期的にメンテナンスする必要性がある難点も
ある。この為、装置全体としてコスト高になり大型にな
り易くと、ボード交換等における保守作業性も悪くな
る。
The first method of the clogging detection means is shown in FIG.
As shown in (b), there is an example in which a flow rate detector FS1 is provided in the pipeline. However, this flow rate detector FS1 has a drawback that it is relatively expensive. Further, a space for installing the flow rate detector FS1 and a piping member are required. There is also a drawback that the flow rate detector itself needs to be regularly maintained. For this reason, the cost of the device as a whole becomes high, the device tends to be large, and the maintenance workability such as board replacement is deteriorated.

【0008】目詰まり検出手段の第2手法は、図2
(c)に示すように、差圧センサPS1を備えて圧力差
を検出する手法であるが、この差圧センサPS1は比較
的高価となる難点がある。即ち、冷却管路長が異なった
り、冷却流量がボード毎に異なったりするので、冷却対
象の冷却媒体が流れるIN側、OUT側配管の両端部の
圧力差を差圧センサPS1で検出する為に、両端部の冷
媒圧力を細いチューブで圧力検出器まで引き回す配管部
材が必要である。更に、チューブの配設領域が必要とな
り、チューブからの漏洩の危惧もある。この為に、装置
全体として大型になり易くコスト高となる難点があり、
更に、ボード交換等における保守作業性も悪くなる。
A second method of clogging detection means is shown in FIG.
As shown in (c), the pressure difference sensor PS1 is provided to detect the pressure difference, but the pressure difference sensor PS1 is relatively expensive. That is, since the cooling pipe length is different and the cooling flow rate is different for each board, the pressure difference between the both ends of the IN side and OUT side pipes through which the cooling medium to be cooled flows is detected by the differential pressure sensor PS1. It is necessary to have a piping member that draws the refrigerant pressure at both ends to a pressure detector with a thin tube. Furthermore, a tube disposition area is required, and there is a risk of leakage from the tube. For this reason, there is a drawback that the entire device tends to be large and the cost is high.
Furthermore, maintenance workability such as board replacement is also deteriorated.

【0009】[0009]

【発明が解決しようとする課題】上述説明したように従
来技術の液体冷却装置の循環流監視装置においては、多
数個使用することが求められる液体冷却装置に適用する
目詰まり検出手段は比較的高価である難点がある。ま
た、定期的にメンテナンスしたり、冷媒圧力を導くチュ
ーブを引き回す必要がある等の難点もある。この点にお
いては、好ましくなく実用上の難点がある。そこで、本
発明が解決しようとする課題は、より安価で設置スペー
スの小さな、複数に分岐して循環する個々の流路を流れ
る冷媒の循環流量の低下を検出可能な液体冷却装置の循
環流監視装置を提供することである。
As described above, in the circulating flow monitoring device of the liquid cooling device of the prior art, the clogging detecting means applied to the liquid cooling device which is required to be used in large numbers is relatively expensive. There is a drawback. In addition, there are drawbacks such as regular maintenance and the need to draw around a tube for guiding the refrigerant pressure. In this respect, it is not preferable and there is a practical difficulty. Therefore, the problem to be solved by the present invention is to monitor the circulation flow of a liquid cooling device that can detect a decrease in the circulation flow rate of a refrigerant that flows through individual flow paths that are cheaper and have a smaller installation space and that circulate in a plurality of branches. It is to provide a device.

【0010】[0010]

【課題を解決するための手段】第1の解決手段を示す。
上記課題を解決するために、所定複数nの冷却対象を液
体冷媒の循環流で個々に冷却する液体冷却装置の循環流
監視装置において、冷却対象を冷却する冷媒の循環流の
IN側(入力側)の温度を検出する第1温度検出手段
(例えば第1温度センサTS1)を具備し、冷却対象を
冷却する冷媒の循環流のOUT側(出力側)の温度を検
出する第2温度検出手段(例えば第2温度センサTS
2)を具備し、上記第1温度検出手段と上記第2温度検
出手段とに基づいて冷却対象を冷却する循環流のIN側
とOUT側との間の温度差Txを時系列に求め、前記温
度差Txが所定の警報しきい値84以上となったとき、
所定の警報出力を行う冷却監視手段を具備し、以上を具
備することを特徴とする液体冷却装置の循環流監視装置
である。上記発明によれば、より安価で設置スペースの
小さな、複数に分岐して循環する個々の流路を流れる冷
媒の循環流量の低下を検出可能な液体冷却装置の循環流
監視装置が実現できる。
A first solution will be described.
In order to solve the above problems, in a circulation flow monitoring device of a liquid cooling device that individually cools a predetermined plurality of cooling targets by a circulation flow of a liquid coolant, an IN side (input side) of a circulation flow of a coolant that cools a cooling target. ) Is provided with a first temperature detecting means (for example, a first temperature sensor TS1), and a second temperature detecting means (for detecting the temperature on the OUT side (output side) of the circulating flow of the refrigerant for cooling the cooling object ( For example, the second temperature sensor TS
2), the temperature difference Tx between the IN side and the OUT side of the circulation flow for cooling the cooling object is obtained in time series based on the first temperature detecting means and the second temperature detecting means, and When the temperature difference Tx exceeds a predetermined alarm threshold value 84,
A circulating flow monitoring device for a liquid cooling device, comprising: a cooling monitoring means for outputting a predetermined alarm; and the above. According to the above-mentioned invention, it is possible to realize a circulating flow monitoring device of a liquid cooling device which is cheaper and has a small installation space and which can detect a decrease in the circulating flow rate of the refrigerant flowing in each of the plurality of branched and circulated circulation channels.

【0011】次に、第2の解決手段を示す。ここで第3
図は、本発明に係る解決手段を示している。上述冷却監
視手段の一態様は、第1AD変換部ADC1と第2AD
変換部ADC2と温度差演算処理部20とを所定複数n
の冷却対象に対応して備え、 上記温度差演算処理部2
0からの温度差信号を受けて所定の警報信号を発生する
冷却監視部80とを備える、ことを特徴とする上述液体
冷却装置の循環流監視装置がある。
Next, the second solving means will be shown. The third here
The figure shows the solution according to the invention. One mode of the above-mentioned cooling monitoring means is a first AD conversion unit ADC1 and a second AD converter.
A predetermined number n of conversion units ADC2 and temperature difference calculation processing units 20 are provided.
Corresponding to the cooling target of the above, the temperature difference calculation processing unit 2
And a cooling monitoring unit 80 that generates a predetermined alarm signal in response to a temperature difference signal from zero.

【0012】次に、第3の解決手段を示す。ここで第5
図は、本発明に係る解決手段を示している。上述冷却監
視手段の一態様は、所定複数n若しくは所定数の第1温
度検出手段からの温度信号を受けて順次選択して出力す
る第1のマルチプレクサ31を具備し、所定複数nの第
2温度検出手段からの温度信号を受けて順次選択して出
力する第2のマルチプレクサ32を具備し、上記第1の
マルチプレクサ31と上記第2のマルチプレクサ32に
より順次選択される温度信号を量子化変換する量子化変
換手段(例えば第1AD変換部ADC1と第2AD変換
部ADC2)を具備し、上記量子化変換手段に基づいて
冷却対象を冷却する循環流の対応するIN側とOUT側
とによる温度差Txを求めて時系列に順次出力する温度
差演算処理部20を具備し、時系列に受ける連続する上
記温度差Txに基づいて所定の警報出力を行う冷却監視
部80を具備し、 以上を備える、ことを特徴とする上
述液体冷却装置の循環流監視装置がある。
Next, a third solving means will be shown. The fifth here
The figure shows the solution according to the invention. One mode of the cooling monitoring means includes a first multiplexer 31 which receives and sequentially selects and outputs a predetermined number n or a predetermined number of temperature signals from the first temperature detecting means, and a predetermined number n of second temperatures. A second multiplexer 32 is provided which receives the temperature signals from the detecting means and sequentially selects and outputs the temperature signals. The second multiplexer 32 includes a second multiplexer 32 for quantizing and converting the temperature signals sequentially selected. The temperature difference Tx between the corresponding IN side and OUT side of the circulation flow for cooling the cooling target based on the quantization conversion means is provided, which is provided with the conversion conversion means (for example, the first AD conversion portion ADC1 and the second AD conversion portion ADC2). The cooling monitoring unit 80 is provided with the temperature difference calculation processing unit 20 that obtains and sequentially outputs it in time series, and performs a predetermined alarm output based on the continuous temperature difference Tx received in time series. Provided, with the above, it is circulation flow monitoring device above the liquid cooling system according to claim.

【0013】次に、第4の解決手段を示す。上記課題を
解決するために、所定複数nの冷却対象を液体冷媒の循
環流で個々に冷却する液体冷却装置の循環流監視装置に
おいて、冷却対象を冷却する冷媒の循環流のIN側の温
度を検出する第1温度検出手段(例えば第1温度センサ
TS1)を具備し、冷却対象を冷却する冷媒の循環流の
OUT側の温度を検出する第2温度検出手段(例えば第
2温度センサTS2)を具備し、上記第1温度検出手段
と上記第2温度検出手段とに基づいて冷却対象を冷却す
る循環流のIN側とOUT側の温度差Txを求めて時系
列に順次出力する温度差演算処理部20を具備し、冷却
対象に対する当初の冷却流量からの流量低下を、対応す
る上記温度差Txの上昇変化により検出して警報するた
めに、個々の冷却対象若しくは所定単位毎の冷却対象に
対応して、警報すべき所定の温度差を警報のしきい値と
して備える警報しきい値84を具備し、時系列に受ける
連続する上記温度差Txが所定期間に渡って上記警報し
きい値84以上となるとき、所定の警報出力を行う冷却
監視部80を具備し、以上を具備することを特徴とする
液体冷却装置の循環流監視装置がある。
Next, a fourth solving means will be shown. In order to solve the above-mentioned problem, in a circulation flow monitoring device of a liquid cooling device that individually cools a predetermined plurality of cooling targets by a circulation flow of a liquid coolant, the temperature on the IN side of the circulation flow of the coolant that cools the cooling target is A second temperature detecting unit (for example, a second temperature sensor TS2) that includes a first temperature detecting unit (for example, a first temperature sensor TS1) for detecting and that detects a temperature on the OUT side of the circulation flow of the refrigerant that cools the cooling target. A temperature difference calculation process for obtaining a temperature difference Tx between the IN side and the OUT side of the circulating flow for cooling the cooling target based on the first temperature detecting means and the second temperature detecting means and sequentially outputting the temperature difference Tx in time series. In order to detect a decrease in the flow rate from the initial cooling flow rate for the cooling target by the corresponding increase change in the temperature difference Tx, the unit 20 is provided with a unit 20 and corresponds to an individual cooling target or a cooling target for each predetermined unit. Shi An alarm threshold value 84 is provided that has a predetermined temperature difference to be alarmed as an alarm threshold value, and the continuous temperature difference Tx received in time series becomes the alarm threshold value 84 or more over a predetermined period. At this time, there is a circulating flow monitoring device for a liquid cooling device, which is equipped with a cooling monitoring unit 80 that outputs a predetermined alarm, and is equipped with the above.

【0014】次に、第5の解決手段を示す。ここで第3
図は、本発明に係る解決手段を示している。上述第1温
度検出手段の一態様としては、所定複数nの冷却対象に
対応して所定複数n備える、ことを特徴とする上述液体
冷却装置の循環流監視装置がある。
Next, a fifth solving means will be shown. The third here
The figure shows the solution according to the invention. As one mode of the above-mentioned first temperature detecting means, there is a circulation flow monitoring device of the above-mentioned liquid cooling device, characterized in that a predetermined plurality n are provided corresponding to a predetermined plurality n of cooling objects.

【0015】次に、第6の解決手段を示す。上述第1温
度検出手段の一態様としては、所定複数nの冷却対象に
対して、少なくとも1つを備えて第1温度検出手段の配
設個数を削減する、ことを特徴とする上述液体冷却装置
の循環流監視装置がある。
Next, the sixth solving means will be described. As one mode of the first temperature detecting means, at least one cooling object is provided for a predetermined plurality n of cooling objects, and the number of the first temperature detecting means provided is reduced, and the liquid cooling device is characterized. There is a circulating flow monitoring device.

【0016】次に、第7の解決手段を示す。上述第1温
度検出手段の一態様としては、所定複数nの冷却対象に
対して、所定複数の冷却対象毎に1つを備えて第1温度
検出手段の配設個数を削減する、ことを特徴とする上述
液体冷却装置の循環流監視装置がある。
Next, a seventh solving means will be shown. As one mode of the above-mentioned first temperature detecting means, the number of the first temperature detecting means is reduced by providing one for each of the predetermined plurality of cooling objects with respect to the predetermined plurality of cooling objects. There is a circulating flow monitoring device for the above liquid cooling device.

【0017】次に、第8の解決手段を示す。上述第1温
度検出手段若しくは上記第2温度検出手段は、冷却する
循環流の冷媒配管の内側に配設して冷媒温度を直接的に
検出する、ことを特徴とする上述液体冷却装置の循環流
監視装置がある。
Next, an eighth solution means will be shown. The first temperature detecting means or the second temperature detecting means is arranged inside the refrigerant pipe of the circulating flow to be cooled to directly detect the refrigerant temperature, and the circulating flow of the liquid cooling device described above. There is a monitoring device.

【0018】次に、第9の解決手段を示す。上述第1温
度検出手段若しくは上記第2温度検出手段は、冷却する
循環流の冷媒配管の外側に配設して冷媒温度を間接的に
検出する、ことを特徴とする上述液体冷却装置の循環流
監視装置がある。
Next, a ninth solving means will be shown. The first temperature detecting means or the second temperature detecting means is arranged outside the refrigerant pipe of the circulating flow to be cooled to indirectly detect the refrigerant temperature, and the circulating flow of the liquid cooling device. There is a monitoring device.

【0019】次に、第10の解決手段を示す。上述第1
温度検出手段若しくは上記第2温度検出手段に適用する
感熱素子は熱電対若しくはサーミスタ若しくはポジスタ
若しくは半導体感熱素子を適用する、ことを特徴とする
上述液体冷却装置の循環流監視装置がある。
Next, a tenth solving means will be described. First mentioned above
There is a circulating flow monitoring device of the above-mentioned liquid cooling device, characterized in that a thermocouple, a thermistor, a posistor or a semiconductor thermosensitive element is applied as the thermosensitive element applied to the temperature detecting means or the second temperature detecting means.

【0020】次に、第11の解決手段を示す。ここで第
6図は、本発明に係る解決手段を示している。上述第1
温度検出手段若しくは上記第2温度検出手段は、冷却す
る循環流の冷媒の温度を検出する所定長に光ファイバを
コイル形状に巻いた形状の光ファイバセンサコイルであ
る、ことを特徴とする上述液体冷却装置の循環流監視装
置がある。
Next, the eleventh solving means will be shown. Here, FIG. 6 shows a solving means according to the present invention. First mentioned above
The above-mentioned liquid, wherein the temperature detecting means or the second temperature detecting means is an optical fiber sensor coil in which an optical fiber is wound in a coil shape to a predetermined length for detecting the temperature of the refrigerant of the circulating flow to be cooled. There is a circulating flow monitoring device for the cooling device.

【0021】次に、第12の解決手段を示す。上述警報
しきい値84の一態様としては、所定複数nの冷却対象
毎に個別に備え、若しくは同一温度上昇特性を示す所定
複数単位の冷却対象毎に備える、ことを特徴とする上述
液体冷却装置の循環流監視装置がある。
Next, a twelfth solving means will be shown. As one mode of the above-mentioned alarm threshold value 84, it is provided individually for each of a predetermined plurality n of cooling targets, or is provided for each predetermined plurality of units of cooling targets exhibiting the same temperature rise characteristics, There is a circulating flow monitoring device.

【0022】次に、第13の解決手段を示す。上述冷却
監視部80が発生する所定の警報出力は、当該冷却対象
を示す情報の通知と、警報通知を行う警報信号80sと
をシステムへ通知する、ことを特徴とする上述液体冷却
装置の循環流監視装置がある。
Next, a thirteenth solving means will be shown. The predetermined alarm output generated by the cooling monitoring unit 80 notifies the system of a notification of information indicating the cooling target and an alarm signal 80s for performing the alarm notification, and the circulating flow of the liquid cooling device. There is a monitoring device.

【0023】次に、第14の解決手段を示す。上述冷却
監視部80が発生する所定の警報出力は、当該システム
の主電源を遮断するシステム電源遮断信号85sであ
る、ことを特徴とする上述液体冷却装置の循環流監視装
置がある。
Next, a fourteenth solving means will be shown. There is a circulating flow monitoring device of the liquid cooling device, wherein the predetermined alarm output generated by the cooling monitoring unit 80 is a system power supply cutoff signal 85s for cutting off the main power supply of the system.

【0024】次に、第15の解決手段を示す。所定複数
個の上記光ファイバセンサコイルを1本の光ファイバに
直列接続して備える、ことを特徴とする上述液体冷却装
置の循環流監視装置がある。
Next, a fifteenth solving means will be shown. There is a circulating flow monitoring device of the above-mentioned liquid cooling device, characterized in that a predetermined plurality of the above-mentioned optical fiber sensor coils are connected in series to one optical fiber.

【0025】次に、第16の解決手段を示す。ここで第
6図は、本発明に係る解決手段を示している。上述光フ
ァイバセンサコイルを適用する上記第1温度検出手段と
上記第2温度検出手段とを直列接続して1本の光ファイ
バとし、この光ファイバに対して所定のレーザー光を入
射し、当該光ファイバの各距離地点からの後方散乱光の
強度が温度により変化することに基づいて、既知のファ
イバ長位置に配設されている各光ファイバセンサコイル
の温度を特定する光送受信器502を備える、ことを特
徴とする上述液体冷却装置の循環流監視装置がある。
Next, a sixteenth solving means will be shown. Here, FIG. 6 shows a solving means according to the present invention. The first temperature detecting means and the second temperature detecting means to which the optical fiber sensor coil is applied are connected in series to form one optical fiber, and a predetermined laser beam is incident on the optical fiber, An optical transceiver 502 that specifies the temperature of each optical fiber sensor coil arranged at a known fiber length position based on the intensity of backscattered light from each distance point of the fiber changing with temperature, There is a circulating flow monitoring device for the liquid cooling device described above.

【0026】尚、本願発明手段は、所望により、上記解
決手段における各要素手段を適宜組み合わせて、実用可
能な他の構成手段としても良い。また、上記各要素に付
与されている符号は、発明の実施の形態等に示されてい
る符号に対応するものの、これに限定するものではな
く、実用可能な他の均等物を適用した構成手段としても
良い。
If desired, the means of the present invention may be appropriately combined with the respective means of the above-mentioned solving means to form other practical means. Further, although the reference numerals given to the above respective elements correspond to the reference numerals shown in the embodiments of the present invention and the like, the present invention is not limited to this, and constituent means to which other practical equivalents are applied. Also good.

【0027】[0027]

【発明の実施の形態】以下に本発明を適用した実施の形
態の一例を図面を参照しながら説明する。また、以下の
実施の形態の説明内容によって特許請求の範囲を限定す
るものではないし、更に、実施の形態で説明されている
要素や接続関係が解決手段に必須であるとは限らない。
更に、実施の形態で説明されている要素や接続関係の形
容/形態は、一例でありその形容/形態内容のみに限定
するものではない。
BEST MODE FOR CARRYING OUT THE INVENTION An example of an embodiment to which the present invention is applied will be described below with reference to the drawings. Further, the scope of the claims is not limited by the description content of the following embodiments, and the elements and connection relationships described in the embodiments are not necessarily essential to the solving means.
Furthermore, the forms / forms of the elements and connection relationships described in the embodiments are examples, and the form / form contents are not limited to these.

【0028】図3は多数n枚のボードB1〜Bnに対応
する温度差検出手段101〜10nと、冷却監視部80
とを備える構成例である。1つの温度差検出手段101
は、所定冷却流量に基づいて当該ボードB1の吸熱部1
2で吸熱し、吸熱による温度上昇分を温度差データ10
1Dとして冷却監視部80へ供給する。この構成要素
は、第1温度センサTS1と、第2温度センサTS2
と、第1AD変換部ADC1と、第2AD変換部ADC
2と、温度差演算処理部20とを備える。
FIG. 3 shows temperature difference detecting means 101 to 10n corresponding to a large number of n boards B1 to Bn, and a cooling monitor 80.
It is a structural example provided with. One temperature difference detecting means 101
Is the heat absorbing portion 1 of the board B1 based on a predetermined cooling flow rate.
The temperature difference data 10
It is supplied to the cooling monitoring unit 80 as 1D. This component includes a first temperature sensor TS1 and a second temperature sensor TS2.
And a first AD converter ADC1 and a second AD converter ADC
2 and a temperature difference calculation processing unit 20.

【0029】両温度センサの配設は、急峻な温度変化を
も検出したい場合には流れる冷媒温度を直接的に測定で
きるように、冷媒中へ温度センサの先端部位を挿入して
シール収容する。第1温度センサTS1は、冷媒が流れ
るIN側の温度を検出するセンサである。温度検出素子
としては、例えば熱電対やサーミスタ等の小型のセンサ
である。これによれば、可動部の無い温度センサによっ
て、保守点検が実用上不要であるからして、メンテナン
スフリーとなる利点が得られる。また、温度センサは微
小な感温素子であるからして設置スペースを殆ど必要と
しない利点が得られる。
In the arrangement of both temperature sensors, the tip portion of the temperature sensor is inserted and sealed in the refrigerant so that the temperature of the flowing refrigerant can be directly measured when it is desired to detect a sharp temperature change. The first temperature sensor TS1 is a sensor that detects the temperature on the IN side through which the refrigerant flows. The temperature detecting element is a small sensor such as a thermocouple or a thermistor. According to this, since the temperature sensor having no movable portion practically does not require maintenance and inspection, there is an advantage that it is maintenance-free. Further, since the temperature sensor is a minute temperature sensitive element, there is an advantage that it requires almost no installation space.

【0030】第2温度センサTS2は、冷媒が流れるO
UT側の温度を検出するセンサであり、上記第1温度セ
ンサTS1及び配設条件と同様である。
The second temperature sensor TS2 is O
This is a sensor that detects the temperature on the UT side, and is the same as the first temperature sensor TS1 and the arrangement conditions.

【0031】第1AD変換部ADC1は、微小な温度信
号をデジタルデータに量子化変換するものであって、上
記第1温度センサTS1からの第1温度センサ信号TS
1sを受けて、必要により所定レベルまで増幅した後、
AD変換部した第1温度データD1を出力する。測定す
るサンプリング周期は、例えば、10秒毎に測定する。
The first AD converter ADC1 quantizes and converts a minute temperature signal into digital data, and the first temperature sensor signal TS from the first temperature sensor TS1.
After receiving 1s and amplifying to a predetermined level if necessary,
The first temperature data D1 converted by the AD converter is output. The sampling cycle to be measured is, for example, every 10 seconds.

【0032】第2AD変換部ADC2は、上記第1AD
変換部ADC1と同様であり、AD変換部した第2温度
データD2を出力する。
The second AD converter ADC2 has the above-mentioned first AD.
It is the same as the conversion unit ADC1 and outputs the second temperature data D2 which has been AD-converted.

【0033】温度差演算処理部20は、第2温度データ
D2 − 第1温度データD1、の演算処理をした結果
の温度差データ101Dを冷却監視部80へ供給する。
この温度差データ101Dは当該ボードB1両端におけ
る冷媒の温度差に相当する。
The temperature difference calculation processing section 20 supplies the temperature difference data 101D, which is the result of the calculation processing of the second temperature data D2-the first temperature data D1, to the cooling monitoring section 80.
The temperature difference data 101D corresponds to the temperature difference of the refrigerant at both ends of the board B1.

【0034】冷却監視部80は、冷却流量の低下や目詰
まり等の循環系の異常の有無を監視し、所定警報条件に
基づいて警報通知したり、更にボード保護の為にシステ
ムの電源を遮断するものである。内部には蓄積メモリ8
2としきい値84とを備えている。蓄積メモリ82は、
入力される温度差データ101D〜10nDを所定期
間、例えば1時間程度保持できるメモリである。尚、数
日以上の温度差履歴を格納できるメモリ容量を備えても
良い。
The cooling monitoring unit 80 monitors whether or not there is an abnormality in the circulation system such as a decrease in cooling flow rate or clogging, gives an alarm notification based on a predetermined alarm condition, and shuts off the system power for further board protection. To do. Internal storage memory 8
2 and a threshold value 84. The storage memory 82 is
The memory is capable of holding the input temperature difference data 101D to 10nD for a predetermined period, for example, about 1 hour. A memory capacity capable of storing the temperature difference history of several days or more may be provided.

【0035】しきい値84には、図4に示すように、警
報しきい値98とシステム電源遮断しきい値99とがあ
る。警報しきい値98は温度異常を警報通知し、システ
ム電源遮断しきい値99は過熱状態に至る前にボードを
保護する為にシステム電源を遮断するものである。ここ
で、システムの運用条件によって±数十%の変動を示す
ものや、逆に、常に一定の消費電力を示すものがある。
従って、消費電力の違いや電力変動の有無に対応する為
に、しきい値84は各温度差検出手段毎に備えるか、若
しくは共通的に適用可能な同類の温度差検出手段毎に備
える。警報しきい値98の一例としては、第1に、常に
一定の消費電力を示すボードの場合には、測定される温
度差Txに対して+10〜20%加算した温度差T1を
設定値とする。第2に、システムの運用条件によって変
動を示すボードの場合には、最大電力時測定される温度
差に対して+20〜30%加算した温度差T2を設定値
とする。尚、警報しきい値98は、経時的に測定して収
集された温度差Txの最大温度差に基づいて、より近接
したしきい値を適用するようにして早期に警報できるよ
うにしても良い。
As shown in FIG. 4, the threshold value 84 includes an alarm threshold value 98 and a system power supply cutoff threshold value 99. The alarm threshold value 98 gives an alarm notification of a temperature abnormality, and the system power supply cutoff threshold value 99 cuts off the system power supply in order to protect the board before the overheated state is reached. Here, there are those that show a fluctuation of ± several tens% depending on the operating conditions of the system, and conversely, that that always show constant power consumption.
Therefore, in order to deal with the difference in power consumption and the presence or absence of power fluctuation, the threshold value 84 is provided for each temperature difference detecting means, or for each commonly applicable temperature difference detecting means. As an example of the alarm threshold value 98, firstly, in the case of a board that always shows constant power consumption, the temperature difference T1 obtained by adding +10 to 20% to the measured temperature difference Tx is set as the set value. . Secondly, in the case of a board which varies depending on the operating conditions of the system, the temperature difference T2 obtained by adding +20 to 30% to the temperature difference measured at the maximum power is set as the set value. The alarm threshold value 98 may be set to a closer threshold value based on the maximum temperature difference of the temperature differences Tx measured and collected over time so that an early warning can be performed. .

【0036】次に、図4の温度差の推移例としきい値に
よる警報出力を説明する図、を参照して冷却監視部80
の動作を説明する。冷却監視部80は、先ず、上記n個
の温度差検出手段101〜10nからの温度差データ1
01D〜10nDを受けて、蓄積メモリ82へ順次格納
する。図4Aは正常時の温度差Txの推移である。長期
間の運用等に伴って、やがて、何れかのボードで目づま
り等が発生すると、温度差Txが上昇して図4Bに示す
ようになる。警報しきい値98に到達すると、無用の誤
動作を防止する為に所定監視時間の間、例えば30秒
間、温度差Txが警報しきい値98に存在すれば、当該
ボード情報の通知と共に、警報信号80sをシステムへ
通知する。
Next, the cooling monitoring unit 80 will be described with reference to the transition example of the temperature difference and the diagram for explaining the alarm output by the threshold value in FIG.
The operation of will be described. The cooling monitoring unit 80 firstly receives the temperature difference data 1 from the n number of temperature difference detecting means 101 to 10n.
Upon receiving 01D to 10nD, they are sequentially stored in the storage memory 82. FIG. 4A shows the transition of the temperature difference Tx in the normal state. When a clogging or the like occurs in any of the boards due to long-term operation or the like, the temperature difference Tx rises and becomes as shown in FIG. 4B. When the alarm threshold value 98 is reached, if a temperature difference Tx exists in the alarm threshold value 98 for a predetermined monitoring time, for example, 30 seconds, in order to prevent an unnecessary malfunction, an alarm signal is sent together with the notification of the board information. Notify the system of 80s.

【0037】また、図4C、Dに示すように、急激な目
づまり等が発生すると温度差Txが急激に上昇する。最
初に所定監視時間の間、警報しきい値98に存在すれ
ば、当該ボード情報と共に、警報信号80sをシステム
へ通知する。更に続いてシステム電源遮断しきい値99
に到達すると、当該ボード情報の通知と共に、システム
電源遮断信号85sを出力する。この結果、当該システ
ムの主電源が遮断されて当該ボードの劣化や損傷が未然
に防止可能となる。
Further, as shown in FIGS. 4C and 4D, when a sudden clogging or the like occurs, the temperature difference Tx sharply rises. First, if the alarm threshold value 98 is present for a predetermined monitoring time, an alarm signal 80s is notified to the system together with the board information. Further, the system power supply cutoff threshold 99
When it reaches, the system power cutoff signal 85s is output together with the notification of the board information. As a result, it is possible to prevent the main power supply of the system from being cut off and the deterioration or damage of the board to be prevented.

【0038】上述発明構成によれば、冷却対象の各ボー
ド単位毎のIN側の温度とOUT側の温度とを検出して
当該ボードの温度差を求め、求めた温度差と予め規定し
ておいた温度差のしきい値84に基づいて、冷媒流量が
所定許容流量以下に低下したことが等価的に検出でき
る。従って、特に多数個備える冷却対象においては、よ
り安価な液体冷却装置の循環流監視装置が実現できる利
点が得られる。また、温度センサは微小な感温素子であ
るからして設置スペースが小さく済む利点が得られる。
また、可動部の無い温度センサは保守点検が実用上不要
であるからして、メンテナンスフリーとなる利点も得ら
れる。
According to the above-mentioned configuration of the invention, the temperature difference between the boards is detected by detecting the temperature on the IN side and the temperature on the OUT side for each board to be cooled, and the temperature difference thus determined is defined in advance. Based on the temperature difference threshold value 84, it can be equivalently detected that the refrigerant flow rate has dropped below the predetermined allowable flow rate. Therefore, particularly in a case where a large number of objects to be cooled are provided, there is an advantage that a cheaper circulating flow monitoring device for a liquid cooling device can be realized. Further, since the temperature sensor is a minute temperature sensitive element, there is an advantage that the installation space is small.
Further, since the temperature sensor having no movable part does not require maintenance and inspection in practice, there is an advantage that it is maintenance-free.

【0039】尚、本発明の技術的思想は、上述実施の形
態の具体構成例、接続形態例に限定されるものではな
い。更に、本発明の技術的思想に基づき、上述実施の形
態を適宜変形して広汎に応用してもよい。例えば、上述
実施例では、各ボード毎の温度差検出手段101〜10
nにおいて、第1AD変換部ADC1と第2AD変換部
ADC2と温度差演算処理部20とをn系統個別に備え
る具体例で示したが、図5に示す量子化部30に示すよ
うに、マルチプレクサ31、32を備えて各ボードから
の温度センサ信号TS1s、TS2sを受けて、順次選
択を切り替えて後段へ温度センサ信号を供給する構成と
することで、全体で1系統の第1AD変換部ADC1と
第2AD変換部ADC2と温度差演算処理部20bとで
構成できる。この構成例では、各ボードからの温度セン
サ信号TS1s、TS2sを順次シリアルに量子化変換
することになるので、全体の量子化変換サイクル時間は
数百ミリ秒〜数秒となるが、実用的に支障なく適用でき
る。この構成例では、更に安価に構成できる利点が得ら
れる。尚、図5における第1AD変換部ADC1と第2
AD変換部ADC2とは、入力側に2入力1出力型のマ
ルチプレクサを更に備えることで、1つの第1AD変換
部ADC1で実現するように構成しても良い。
The technical idea of the present invention is not limited to the specific configuration examples and connection mode examples of the above-described embodiment. Furthermore, based on the technical idea of the present invention, the above-described embodiments may be appropriately modified and widely applied. For example, in the above-mentioned embodiment, the temperature difference detecting means 101 to 10 for each board.
In n, the first AD conversion unit ADC1, the second AD conversion unit ADC2, and the temperature difference calculation processing unit 20 are shown as a specific example including n systems individually, but as shown in the quantization unit 30 shown in FIG. , 32 to receive the temperature sensor signals TS1s and TS2s from each board, switch the selection sequentially and supply the temperature sensor signal to the subsequent stage, and thus the first AD converter ADC1 and It can be configured by the 2AD conversion unit ADC2 and the temperature difference calculation processing unit 20b. In this configuration example, since the temperature sensor signals TS1s and TS2s from each board are sequentially quantized and converted, the total quantization conversion cycle time is several hundred milliseconds to several seconds, but this is a practical problem. Can be applied without. In this configuration example, there is an advantage that the cost can be further reduced. The first AD conversion unit ADC1 and the second AD conversion unit ADC1 in FIG.
The AD conversion unit ADC2 may be configured to be realized by one first AD conversion unit ADC1 by further including a 2-input 1-output type multiplexer on the input side.

【0040】また、上述実施例では、ボードのIN側と
OUT側に各々温度センサを備える具体構成例で示した
が、IN側配管に流れる冷媒の温度は、冷媒供給部10
から共通的に供給される結果、各ボード間のIN側の冷
媒温度は、ほぼ一定温度と見なせる。この場合には、所
望複数カ所毎のIN側配管に対して、1つの第1温度セ
ンサTS1を備えるようにしてIN側の温度センサの個
数を削減する構成とすることができる。この場合には、
更に安価に構成できる利点が得られる。
Further, in the above-described embodiment, a specific configuration example in which the temperature sensor is provided on each of the IN side and the OUT side of the board is shown, but the temperature of the refrigerant flowing through the IN side pipe is determined by the refrigerant supply unit 10.
As a result, the temperature of the refrigerant on the IN side between the boards can be regarded as a substantially constant temperature. In this case, the number of IN-side temperature sensors can be reduced by providing one first temperature sensor TS1 for each IN-side pipe at each desired plurality. In this case,
Further, there is an advantage that the cost can be reduced.

【0041】また、上述実施例では、温度センサの配設
は冷媒温度を直接的に測定できるように、冷媒中へセン
サ先端部位を挿入する収容構造として説明していたが、
冷媒の急峻な温度変化を検出する必要が無い場合には、
配管部材の外側から冷媒の温度を検出するように配設し
て構成しても良い。
Further, in the above-mentioned embodiment, the temperature sensor is arranged as a housing structure in which the tip portion of the sensor is inserted into the refrigerant so that the temperature of the refrigerant can be directly measured.
If it is not necessary to detect a sharp temperature change of the refrigerant,
It may be arranged so as to detect the temperature of the refrigerant from the outside of the piping member.

【0042】また、上述実施例では、冷却監視部80は
温度データ20Dとシステム電源遮断しきい値99とを
比較してシステム電源遮断信号85sを発生する具体例
を示したが、図4Eの傾斜線に示すように、積分処理に
より平均的な温度差データの変化の傾きをその都度求
め、この傾きが所定傾き以上となったことを検出した場
合にも、システム電源遮断信号85sを発生するように
追加しても良い。この場合には、異常温度の前兆を検出
できるので、より前段階でシステム電源を遮断可能とな
り、当該ボードの劣化や破損等を早い段階で防止できる
利点が得られる。
In the above embodiment, the cooling monitor 80 compares the temperature data 20D with the system power cutoff threshold value 99 to generate the system power cutoff signal 85s. As shown by the line, the slope of change of the average temperature difference data is obtained each time by the integration process, and the system power-off signal 85s is generated even when it is detected that the slope becomes equal to or larger than a predetermined slope. May be added to. In this case, since the sign of the abnormal temperature can be detected, the system power supply can be shut off at an earlier stage, and there is an advantage that the deterioration or damage of the board can be prevented at an early stage.

【0043】また、上述実施例では、無用の誤動作を防
止する為に所定監視時間の間、例えば30秒間、温度差
Txが警報しきい値98に存在するかを監視している。
更にこれに加えて、警報しきい値98に到達したら、新
たな軽度の警報信号として直ちにシステムへ通知する機
能を追加しても良い。
Further, in the above embodiment, in order to prevent unnecessary malfunction, it is monitored whether the temperature difference Tx exists in the alarm threshold 98 for a predetermined monitoring time, for example, 30 seconds.
In addition to this, a function to notify the system immediately as a new mild alarm signal when the alarm threshold 98 is reached may be added.

【0044】また、上述実施例では、温度センサを個々
に設置する具体構成例を示したが、この代わりに図6に
示すように、1本の温度検出用の光ファイバ500(F
TR:Fiber Optic Temperature Laser Radar)と光送
受信器502とを適用する他の構成例がある。この場合
は、IN側配管に例えば1m長となるようにコイル状に
巻いた第1センサコイルSC1と、OUT側配管に1m
長となるようにコイル状に巻いた第2センサコイルSC
2を備える。また、外界とは断熱する断熱部材をそのセ
ンサコイルの上から被服する。また、各センサコイルと
の間は直列接続されるように接続し、且つ既知の長さ、
例えば2m等で接続する。尚、ファイバ途中の複数カ所
に着脱可能な光コネクタを設けても良い。尚、所望によ
り、コイル状に巻いた上記センサコイルは、冷媒温度を
直接測定できるように、冷媒中へ配設固定して収容して
も良い。この結果、例えば1本のファイバを適用し、こ
のファイバに対して所定のコイル形状に形成したIN側
とOUT側の2カ所×ボード50カ所の合計で300m
とする。このファイバへ所定のレーザー光を入射して、
各距離地点からの後方散乱光の強度が温度により変化す
ることを利用し、これに基づいて既知のファイバ長位置
に存在する各温度検出地点の温度が特定できる。尚、温
度検出の精度は、例えば0.1℃程度の測定精度で測定
できる。これら各地点の温度データに基づいて、上述温
度差演算処理部20と同様にして温度データを処理する
ことにより、上述同様にして実施できる。この構成例で
は温度測定の点数が多数点となる程安価となる。従っ
て、多数カ所に温度センサを設置する必要のある半導体
試験装置等においては有利であり、且つ設置スペースが
最小にでき、且つメンテナンスフリーとなる利点も得ら
れる。
Further, in the above-described embodiment, a specific configuration example in which the temperature sensors are individually installed has been shown. Instead, however, as shown in FIG. 6, one optical fiber 500 (F) for temperature detection is used.
There is another configuration example in which the TR: Fiber Optic Temperature Laser Radar) and the optical transceiver 502 are applied. In this case, the first sensor coil SC1 wound in a coil shape to have a length of 1 m on the IN side pipe, and 1 m on the OUT side pipe.
Second sensor coil SC wound in a coil shape to have a long length
2 is provided. In addition, a heat insulating member that insulates the outside world is covered over the sensor coil. In addition, each sensor coil is connected so as to be connected in series, and has a known length,
For example, the connection is 2 m or the like. It should be noted that detachable optical connectors may be provided at a plurality of locations along the fiber. If desired, the sensor coil wound in a coil may be fixedly housed in the refrigerant so as to directly measure the refrigerant temperature. As a result, for example, one fiber is applied, and two fibers on the IN side and the OUT side formed in a predetermined coil shape on this fiber × 50 boards in total are 300 m in total.
And Inject a predetermined laser light into this fiber,
By utilizing the fact that the intensity of the backscattered light from each distance point changes with temperature, the temperature at each temperature detection point existing at the known fiber length position can be specified based on this. The accuracy of temperature detection can be measured with a measurement accuracy of, for example, about 0.1 ° C. It can be carried out in the same manner as described above by processing the temperature data in the same manner as the temperature difference calculation processing section 20 based on the temperature data at each of these points. In this configuration example, the more points the temperature measurement has, the lower the cost. Therefore, it is advantageous in a semiconductor tester or the like that requires the temperature sensors to be installed in a large number of places, and the installation space can be minimized and maintenance-free can be obtained.

【0045】[0045]

【発明の効果】本発明は、上述の説明内容からして、下
記に記載される効果を奏する。上述説明したように本発
明によれば、冷却対象のIN側の温度を検出し、OUT
側の温度を検出して当該冷却対象の温度差を求め、これ
と所定温度差のしきい値とを比較することで、冷媒流量
が所定以下に低下したことが等価的に検出でき、警報出
力できる結果、特に多数個備える冷却対象においては、
より安価な液体冷却装置の循環流監視装置が実現できる
利点が得られる。また、温度センサは微小な感温素子で
あるからして設置スペースが小さく済む利点が得られ、
且つ、可動部の無い温度センサは保守点検が実用上不要
となる利点も得られる。従って、本発明の技術的効果は
大であり、産業上の経済効果も大である。
The present invention has the following effects based on the above description. As described above, according to the present invention, the temperature of the cooling target on the IN side is detected, and the OUT
By detecting the temperature on the side and obtaining the temperature difference of the cooling target, and comparing this with the threshold value of the predetermined temperature difference, it is possible to equivalently detect that the refrigerant flow rate has dropped below a predetermined value, and output an alarm. As a result, especially in the case of a large number of objects to be cooled,
The advantage is that a cheaper circulating flow monitoring device for a liquid cooling device can be realized. Moreover, since the temperature sensor is a minute temperature sensitive element, there is an advantage that the installation space is small.
In addition, the temperature sensor having no movable portion has an advantage that maintenance and inspection is practically unnecessary. Therefore, the technical effect of the present invention is great, and the economic effect in industry is also great.

【図面の簡単な説明】[Brief description of drawings]

【図1】半導体試験装置を冷却する冷却系の概念構成
図。
FIG. 1 is a conceptual configuration diagram of a cooling system that cools a semiconductor test apparatus.

【図2】多数のボードを個々の冷媒流により冷却する概
念構成図と、従来の目詰まり検出手段の例。
FIG. 2 is a conceptual configuration diagram in which a large number of boards are cooled by individual refrigerant flows, and an example of conventional clogging detection means.

【図3】本発明の、冷却対象として多数n枚のボードの
個々に温度差検出手段を備える液体冷却装置の循環流監
視装置の要部構成例。
FIG. 3 is a configuration example of a main part of a circulating flow monitoring device of a liquid cooling device according to the present invention, in which a large number of n boards as cooling targets are individually provided with temperature difference detecting means.

【図4】図3の構成で、1チャンネルの温度差の推移例
としきい値による警報出力を説明する図。
FIG. 4 is a diagram illustrating an example of transition of a temperature difference of one channel and an alarm output by a threshold value in the configuration of FIG.

【図5】本発明の、液体冷却装置の循環流監視装置の他
の要部構成例。
FIG. 5 is another example of the configuration of the main part of the circulating-flow monitoring device for a liquid cooling device according to the present invention.

【図6】本発明の、温度検出用の光ファイバを適用した
液体冷却装置の循環流監視装置の他の要部構成例。
FIG. 6 is another configuration example of a main part of a circulating flow monitoring device of a liquid cooling device to which an optical fiber for temperature detection is applied according to the present invention.

【符号の説明】[Explanation of symbols]

ADC1 第1AD変換部 B1〜Bn ボード FS1 流量検出器 H1,H3 往路ホース PB1〜PBm ピンエレクトロニクスのボード PS1 差圧センサ SC1 第1センサコイル TS1 第1温度センサ ADC2 第2AD変換部 H2,H4 復路ホース SC2 第2センサコイル TS2 第2温度センサ 10 冷媒供給部 101〜10n 温度差検出手段 12 吸熱部 20,20b 温度差演算処理部 30 量子化部 31,32 マルチプレクサ 80 冷却監視部 82 蓄積メモリ 500 光ファイバ(Fiber Optic Temperature Lase
r Radar) 502 光送受信器 MF メインフレーム TH テストヘッド
ADC1 First AD converter B1 to Bn Board FS1 Flow rate detectors H1 and H3 Forward hose PB1 to PBm Pin electronics board PS1 Differential pressure sensor SC1 First sensor coil TS1 First temperature sensor ADC2 Second AD converter H2 and H4 Return hose SC2 2nd sensor coil TS2 2nd temperature sensor 10 Refrigerant supply part 101-10n Temperature difference detection means 12 Heat absorption part 20,20b Temperature difference calculation processing part 30 Quantization part 31,32 Multiplexer 80 Cooling monitoring part 82 Storage memory 500 Optical fiber ( Fiber Optic Temperature Lase
r Radar) 502 Optical transceiver MF Mainframe TH test head

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 所定複数nの冷却対象を液体冷媒の循環
流で個々に冷却する液体冷却装置の循環流監視装置にお
いて、 冷却対象を冷却する冷媒の循環流のIN側(入力側)の
温度を検出する第1温度検出手段と、 冷却対象を冷却する冷媒の循環流のOUT側(出力側)
の温度を検出する第2温度検出手段と、 該第1温度検出手段と該第2温度検出手段とに基づいて
冷却対象を冷却する循環流のIN側とOUT側との間の
温度差Txを時系列に求め、該温度差Txが所定の警報
しきい値以上となったとき、所定の警報出力を行う冷却
監視手段と、 を具備することを特徴とする液体冷却装置の循環流監視
装置。
1. A circulating flow monitoring device of a liquid cooling device for individually cooling a predetermined plurality of cooling objects with a circulating flow of a liquid refrigerant, the temperature of an IN side (input side) of the circulating flow of a refrigerant for cooling a cooling object. Temperature detecting means for detecting the temperature, and the OUT side (output side) of the circulating flow of the refrigerant for cooling the cooling target.
The temperature difference Tx between the IN side and the OUT side of the circulating flow for cooling the cooling target based on the first temperature detecting means and the second temperature detecting means. A circulating flow monitoring device for a liquid cooling device, comprising: a cooling monitoring unit which is obtained in a time series and outputs a predetermined alarm when the temperature difference Tx exceeds a predetermined alarm threshold.
【請求項2】 該冷却監視手段は、第1AD変換部と第
2AD変換部と温度差演算処理部とを所定複数nの冷却
対象に対応して備え、 該温度差演算処理部からの温度差信号を受けて所定の警
報信号を発生する冷却監視部とを備える、ことを特徴と
する請求項1記載の液体冷却装置の循環流監視装置。
2. The cooling monitoring means includes a first AD conversion unit, a second AD conversion unit, and a temperature difference calculation processing unit corresponding to a predetermined number n of cooling targets, and the temperature difference calculation processing unit outputs the temperature difference. The circulating flow monitoring device of the liquid cooling device according to claim 1, further comprising a cooling monitoring unit that receives a signal and generates a predetermined alarm signal.
【請求項3】 該冷却監視手段は、所定複数n若しくは
所定数の第1温度検出手段からの温度信号を受けて順次
選択して出力する第1のマルチプレクサと、 所定複数nの第2温度検出手段からの温度信号を受けて
順次選択して出力する第2のマルチプレクサと、 該第1のマルチプレクサと該第2のマルチプレクサによ
り順次選択される温度信号を量子化変換する量子化変換
手段と、 該量子化変換手段に基づいて冷却対象を冷却する循環流
の対応するIN側とOUT側とによる温度差Txを求め
て時系列に順次出力する温度差演算処理部と、 時系列に受ける連続する該温度差Txに基づいて所定の
警報出力を行う冷却監視部と、 を備える、ことを特徴とする請求項1記載の液体冷却装
置の循環流監視装置。
3. The cooling monitoring means receives a temperature signal from a predetermined number n or a predetermined number of first temperature detection means and sequentially selects and outputs the temperature signal, and a predetermined number n of second temperature detection means. A second multiplexer for receiving a temperature signal from the means and sequentially selecting and outputting the temperature signal; a quantizing conversion means for quantizing and converting the temperature signal sequentially selected by the first multiplexer and the second multiplexer; A temperature difference calculation processing unit that obtains a temperature difference Tx between the corresponding IN side and OUT side of the circulating flow that cools the cooling target based on the quantization conversion unit and sequentially outputs the temperature difference Tx in time series, and a continuous temperature difference calculation processing unit that receives in time series. The circulating flow monitor of the liquid cooling device according to claim 1, further comprising: a cooling monitor that outputs a predetermined alarm based on the temperature difference Tx.
【請求項4】 所定複数nの冷却対象を液体冷媒の循環
流で個々に冷却する液体冷却装置の循環流監視装置にお
いて、 冷却対象を冷却する冷媒の循環流のIN側の温度を検出
する第1温度検出手段と、 冷却対象を冷却する冷媒の循環流のOUT側の温度を検
出する第2温度検出手段と、 該第1温度検出手段と該第2温度検出手段とに基づいて
冷却対象を冷却する循環流のIN側とOUT側の温度差
Txを求めて時系列に順次出力する温度差演算処理部
と、 冷却対象に対する当初の冷却流量からの流量低下を、対
応する該温度差Txの上昇変化により検出して警報する
ために、個々の冷却対象若しくは所定単位毎の冷却対象
に対応して、警報すべき所定の温度差を警報のしきい値
として備える警報しきい値と、 時系列に受ける連続する該温度差Txが所定期間に渡っ
て該警報しきい値以上となるとき、所定の警報出力を行
う冷却監視部と、 を具備することを特徴とする液体冷却装置の循環流監視
装置。
4. A circulating flow monitoring device of a liquid cooling device for individually cooling a predetermined plurality of cooling objects by a circulating flow of a liquid refrigerant, wherein a temperature on the IN side of the circulating flow of the refrigerant for cooling the cooling object is detected. 1 temperature detection means, 2nd temperature detection means for detecting the temperature on the OUT side of the circulating flow of the refrigerant for cooling the cooling target, and cooling target based on the 1st temperature detection means and the 2nd temperature detection means A temperature difference calculation processing unit that obtains a temperature difference Tx between the IN side and the OUT side of the circulating flow to be cooled and sequentially outputs the temperature difference in a time series, and a flow rate decrease from an initial cooling flow rate for a cooling target, which corresponds to the temperature difference Tx. In order to detect and warn by rising change, an alarm threshold that has a predetermined temperature difference to be alarmed as an alarm threshold corresponding to each cooling target or cooling target for each predetermined unit, and a time series Continuous temperature When Tx is equal to or greater than said alarm threshold for a predetermined period of time, circulation flow monitoring system for a liquid cooling system, characterized by comprising a cooling monitoring unit that performs a predetermined alarm output.
【請求項5】 該第1温度検出手段若しくは該第2温度
検出手段に適用する感熱素子は熱電対若しくはサーミス
タを適用する、ことを特徴とする請求項1、3又は4記
載の液体冷却装置の循環流監視装置。
5. The liquid cooling device according to claim 1, 3 or 4, wherein a thermocouple or a thermistor is applied to the heat sensitive element applied to the first temperature detecting means or the second temperature detecting means. Circulating flow monitoring device.
【請求項6】 該第1温度検出手段若しくは該第2温度
検出手段は、冷却する循環流の冷媒の温度を検出する所
定長に光ファイバをコイル形状に巻いた形状の光ファイ
バセンサコイルである、ことを特徴とする請求項1、3
又は4記載の液体冷却装置の循環流監視装置。
6. The first temperature detecting means or the second temperature detecting means is an optical fiber sensor coil having a shape in which an optical fiber is wound in a coil shape to a predetermined length for detecting the temperature of a refrigerant of a circulating flow to be cooled. The claim 1 or 3 characterized by the above.
Alternatively, the circulating flow monitoring device of the liquid cooling device according to item 4.
JP2001323158A 2001-10-22 2001-10-22 Circulating flow monitor of liquid cooling system Withdrawn JP2003130524A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001323158A JP2003130524A (en) 2001-10-22 2001-10-22 Circulating flow monitor of liquid cooling system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001323158A JP2003130524A (en) 2001-10-22 2001-10-22 Circulating flow monitor of liquid cooling system

Publications (1)

Publication Number Publication Date
JP2003130524A true JP2003130524A (en) 2003-05-08

Family

ID=19140090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001323158A Withdrawn JP2003130524A (en) 2001-10-22 2001-10-22 Circulating flow monitor of liquid cooling system

Country Status (1)

Country Link
JP (1) JP2003130524A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006194094A (en) * 2005-01-11 2006-07-27 Shimadzu Corp Vacuum pump
JP2008508636A (en) * 2004-08-06 2008-03-21 インテル コーポレイション Overheat detection in thermally controlled equipment.
JP2010134525A (en) * 2008-12-02 2010-06-17 Nec Fielding Ltd Failure monitor, failure-monitoring method and failure monitoring program for electronic device
US7965054B2 (en) 2007-07-26 2011-06-21 Shimadzu Corporation Vacuum pump
JP2015079843A (en) * 2013-10-16 2015-04-23 富士通株式会社 Electronic device, control device for electronic device, and control program for electronic device
JP2015161746A (en) * 2014-02-26 2015-09-07 株式会社リコー Cooling device and image forming apparatus

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008508636A (en) * 2004-08-06 2008-03-21 インテル コーポレイション Overheat detection in thermally controlled equipment.
US8184422B2 (en) 2004-08-06 2012-05-22 Intel Corporation Overheat detection in thermally controlled devices
JP2006194094A (en) * 2005-01-11 2006-07-27 Shimadzu Corp Vacuum pump
JP4710322B2 (en) * 2005-01-11 2011-06-29 株式会社島津製作所 Vacuum pump
US7965054B2 (en) 2007-07-26 2011-06-21 Shimadzu Corporation Vacuum pump
JP2010134525A (en) * 2008-12-02 2010-06-17 Nec Fielding Ltd Failure monitor, failure-monitoring method and failure monitoring program for electronic device
JP2015079843A (en) * 2013-10-16 2015-04-23 富士通株式会社 Electronic device, control device for electronic device, and control program for electronic device
JP2015161746A (en) * 2014-02-26 2015-09-07 株式会社リコー Cooling device and image forming apparatus

Similar Documents

Publication Publication Date Title
Ribeiro et al. Multipoint fiber-optic hot-spot sensing network integrated into high power transformer for continuous monitoring
US7377689B2 (en) Transformer temperature monitoring and control
US5333676A (en) Cooling abnormality detection system for electronic equipment
KR100754280B1 (en) System and method for detecting a partial discharge of a powercable
US7865078B2 (en) Processing of optical performance data in an optical wavelength division multiplexed communication system
US8204700B2 (en) Failure prediction apparatus and failure prediction method
US20060251147A1 (en) Transformer temperature monitoring and control
CN102931579B (en) Drive control device of belt refrigeration laser and drive control method
US20110267598A1 (en) Optical sensor system and detecting method for an enclosed semiconductor device module
JP6367900B2 (en) Laser equipment
US20040071185A1 (en) Apparatus and system for monitoring temperature of high voltage conductors
JP2003130524A (en) Circulating flow monitor of liquid cooling system
CN108306171A (en) Optical fiber laser monitoring and protecting device and guard method
JP2011142495A (en) Optical fiber line monitoring system
US10056178B2 (en) Superconducting magnet device
JP2010135704A (en) Cooling system of semiconductor laser package
GB2479942A (en) Optical sensor for power electronics module
US20020024691A1 (en) Method for detecting abnormality of optical module and apparatus for the same
JP2018036222A (en) Leakage detection system, leakage detection method, and superconductive cable
JP2004037358A (en) Submerged spot detection method and device for optical fiber cable
JP2003347875A (en) Amplifier apparatus
US8792784B2 (en) Terrestrial optical fiber communication with added capacity
US20240204868A1 (en) Fiber optic signal monitoring
KR102462081B1 (en) Temperature monitoring system for electrical equipment using temperature sensor of fiber optic probe type
JP2006066669A (en) Electronic device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050104