JP2003129073A - Fuel gas-treating agent and method for removing impurities in fuel gas - Google Patents

Fuel gas-treating agent and method for removing impurities in fuel gas

Info

Publication number
JP2003129073A
JP2003129073A JP2001326467A JP2001326467A JP2003129073A JP 2003129073 A JP2003129073 A JP 2003129073A JP 2001326467 A JP2001326467 A JP 2001326467A JP 2001326467 A JP2001326467 A JP 2001326467A JP 2003129073 A JP2003129073 A JP 2003129073A
Authority
JP
Japan
Prior art keywords
fuel gas
treating agent
composite compound
inorganic oxide
gas treating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001326467A
Other languages
Japanese (ja)
Other versions
JP3913522B2 (en
Inventor
Katsuhiro Kino
野 勝 博 城
Tsuguo Koyanagi
柳 嗣 雄 小
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Catalysts and Chemicals Ltd
Original Assignee
Catalysts and Chemicals Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Catalysts and Chemicals Industries Co Ltd filed Critical Catalysts and Chemicals Industries Co Ltd
Priority to JP2001326467A priority Critical patent/JP3913522B2/en
Publication of JP2003129073A publication Critical patent/JP2003129073A/en
Application granted granted Critical
Publication of JP3913522B2 publication Critical patent/JP3913522B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a fuel gas-treating agent which efficiently removes sulfur compounds in a fuel gas and also provide a method for treating the fuel gas with the treating agent concerned. SOLUTION: The fuel gas-treating agent is characterized in that it contains a composite compound consisting of metal components and an inorganic oxide and/or activated carbon. In this case, the metal components represent one or more metals selected from the group consisting of Ag, Cu, Zn, Sn, Pb, Cd, Bi, Hg, Pt, Pd, Ni, Fe, Co, Ru, Rh, Au and Mn, and the inorganic oxide represents one or more oxides of the element selected from the group consisting of Ti, Zr, Ce, Si, Al, Mg, Nb, Mo, W, Ca, Ba and P. Further, the composite compound is of one or more moldings selected from the group consisting of particles having average particle size of 3 nm to 3 mm, sphere, cube or rectangular parallelepiped, pellet, plate, needle and honeycomb.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の技術分野】本発明は、燃料ガス中の不純物の除
去方法および燃料ガス処理剤に関する。特に、小規模の
容量の燃料ガスを処理して燃料ガス中の硫黄分を低減す
ることができる燃料ガス中の不純物除去方法および燃料
ガス処理剤に関する。
TECHNICAL FIELD The present invention relates to a method for removing impurities in fuel gas and a fuel gas treating agent. In particular, the present invention relates to a method for removing impurities in a fuel gas and a fuel gas treating agent capable of treating a small-scale fuel gas to reduce the sulfur content in the fuel gas.

【0002】[0002]

【発明の技術的背景】近年、クリーンな水素をエネルギ
ー源とする高効率、無公害でCO2等温暖化ガスを発生し
ない発電システムとして燃料電池が注目されている。こ
のような燃料電池は、家庭や事業所など固定設備、自動
車などの移動設備などでの使用を目的に本格的な開発研
究が行われている。
BACKGROUND OF THE INVENTION In recent years, fuel cells have been attracting attention as a power generation system using clean hydrogen as an energy source, which is highly efficient, pollution-free, and does not generate greenhouse gases such as CO 2 . Such fuel cells are under full-scale development research for the purpose of use in fixed facilities such as homes and businesses, and mobile facilities such as automobiles.

【0003】この燃料電池に用いる燃料としては、天然
ガス、LPガス、都市ガス、アルコール、ガソリン、灯
油、軽油等の他バイオマスなどの炭化水素系燃料が挙げ
られる。このような炭化水素系燃料を、まず水蒸気改
質、部分酸化などの反応により水素ガス、COガスに変
換し、後述するアノードを被毒して発電性能を低下させ
るCOガスを除去して水素ガスを得る。この水素は、ア
ノードに供給され、アノードの金属触媒によって水素イ
オンと電子に解離し、電子は外部回路を通じて仕事をし
ながらカソードに流れ、水素イオンは電解質膜を拡散し
てカソードに移動し、カソードにて、遊離した電子、供
給される酸素と、反応して水となる。すなわち、燃料電
池では、酸素と燃料ガスに由来する水素とを供給して水
を生成する過程で電流を取り出すメカニズムになってい
る。
Examples of fuels used in this fuel cell include hydrocarbon fuels such as natural gas, LP gas, city gas, alcohol, gasoline, kerosene, light oil, and other biomass. Such a hydrocarbon fuel is first converted into hydrogen gas and CO gas by reactions such as steam reforming and partial oxidation, and CO gas that poisons the anode described later and deteriorates power generation performance is removed to remove hydrogen gas. To get This hydrogen is supplied to the anode, dissociated into hydrogen ions and electrons by the metal catalyst of the anode, the electrons flow to the cathode while working through the external circuit, and the hydrogen ions diffuse through the electrolyte membrane and move to the cathode, At, the free electrons react with the supplied oxygen to become water. That is, the fuel cell has a mechanism of extracting an electric current in the process of generating water by supplying oxygen and hydrogen derived from the fuel gas.

【0004】しかしながら、前記COガス除去工程で
は、通常Ru、Pt、Ni、Fe等の貴金属あるいは金属触
媒が用いられるが、燃料中に硫黄成分がppmオーダー
でも存在するとCO除去触媒が被毒されて活性が低下
し、COガスが残存し、その結果、燃料電池の性能が低
下するという問題があった。このため、燃料電池に用い
られる燃料に硫黄成分が含まれている場合は、水素化脱
硫法(通常、高温・水素加圧下)によって硫黄を除去し
て用いることが検討されている。しかしながら、この方
法では副製する硫化水素を別途除去する工程が必要であ
り、さらに燃料油中の硫黄成分の少ない場合は硫黄除去
量に対する水素化脱硫費用(設備、ランニングコスト
等)が高く経済性に問題があった。
However, in the CO gas removing step, a noble metal such as Ru, Pt, Ni, Fe, or a metal catalyst is usually used. However, if sulfur components are present in the fuel even in the ppm order, the CO removing catalyst is poisoned. There has been a problem that the activity is reduced and CO gas remains, resulting in a reduction in the performance of the fuel cell. Therefore, when the fuel used in the fuel cell contains a sulfur component, it has been considered to remove the sulfur by a hydrodesulfurization method (usually under high temperature and hydrogen pressure) before use. However, this method requires a separate step to remove the hydrogen sulfide produced as a by-product, and when the sulfur content in the fuel oil is small, the hydrodesulfurization cost (equipment, running cost, etc.) relative to the amount of sulfur removed is high and economical. I had a problem with.

【0005】本願出願人は、民生用の燃料油中の硫黄成
分が低濃度である場合に効率的な吸着法による除去方法
および吸着剤を提案している(特願平2001−505
98号)。ところで、一般に、LPガス、都市ガス等の
燃料には、安全性の観点から所定量(1〜50ppm)
のベンゾチオフェン、ジベンゾチオフェンなどの硫黄化
合物を添加し、着臭して用いることが法律で義務づけら
れている。
The applicant of the present application has proposed a removal method and an adsorbent by an efficient adsorption method when the sulfur component in a consumer fuel oil has a low concentration (Japanese Patent Application No. 2001-505).
No. 98). By the way, generally, for fuel such as LP gas and city gas, a predetermined amount (1 to 50 ppm) is added from the viewpoint of safety.
It is obligatory by law to add sulfur compounds such as benzothiophene and dibenzothiophene, and use them with odor.

【0006】従って、LPガス、都市ガス等を燃料電池
用の燃料として用いる場合も、使用時にこの硫黄化合物
を除去して用いる必要がある。本発明者等は、ガス中の
硫黄化合物を効率的に除去できる除去方法について鋭意
検討した結果、新規な硫黄化合物吸着剤を使用すれば極
めてた効率的な除去できることを見出して本発明を完成
するに至った。
Therefore, when using LP gas, city gas or the like as a fuel for a fuel cell, it is necessary to remove this sulfur compound before use. The present inventors have conducted intensive studies on a removal method capable of efficiently removing a sulfur compound in a gas, and as a result, have found that the use of a novel sulfur compound adsorbent enables extremely efficient removal to complete the present invention. Came to.

【0007】[0007]

【発明の目的】本発明は、燃料ガス中の硫黄化合物を効
率的に除去可能な燃料ガス処理剤および該処理剤を用い
た燃料ガス油処理方法を提供することを目的としてい
る。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a fuel gas treating agent capable of efficiently removing a sulfur compound in a fuel gas and a fuel gas oil treating method using the treating agent.

【0008】[0008]

【発明の概要】本発明に係る燃料ガス処理剤は、金属成
分と、無機酸化物および/または活性炭とからなる複合
化合物を含むことを特徴としている。前記金属成分が、
Ag、Cu、Zn、Sn、Pb、Cd、Bi、Hg、Pt、Pd、
Ni、Fe、Co、Ru、Rh、Au、Mn からなる群から選
ばれる1種以上であることが好ましく、また、前記無機
酸化物としては、Ti、Zr、Ce、Si、Al、Mg、N
b、Mo、W、Ca、Ba、Pからなる群から選ばれる1種
以上の元素の酸化物が好ましい。
SUMMARY OF THE INVENTION The fuel gas treating agent according to the present invention is characterized by containing a composite compound consisting of a metal component, an inorganic oxide and / or activated carbon. The metal component is
Ag, Cu, Zn, Sn, Pb, Cd, Bi, Hg, Pt, Pd,
One or more selected from the group consisting of Ni, Fe, Co, Ru, Rh, Au and Mn are preferable, and the inorganic oxides are Ti, Zr, Ce, Si, Al, Mg and N.
An oxide of one or more elements selected from the group consisting of b, Mo, W, Ca, Ba and P is preferable.

【0009】本発明では、前記複合化合物は、好適に
は、平均粒子径が3nm〜3mmの範囲の粒子状、また
は、球状、立方体または直方体、ペレット状、板状、針
状、ハニカム状からなる群から選ばれる1種以上の成型
体にして使用される。また、本発明では、前記粒子状複
合化合物が、繊維、無機酸化物、金属、樹脂、セラミッ
クスからなる群から選ばれる1種以上の成型体に含有ま
たは担持されていてもよい。
In the present invention, the composite compound is preferably in the form of particles having an average particle size of 3 nm to 3 mm, or spherical, cubic or rectangular parallelepiped, pellet, plate, needle, or honeycomb. It is used in the form of one or more moldings selected from the group. Further, in the present invention, the particulate composite compound may be contained or supported in one or more molded bodies selected from the group consisting of fibers, inorganic oxides, metals, resins and ceramics.

【0010】本発明に係る燃料ガス中の不純物除去方法
は、前記燃料ガス処理剤を燃料ガスに接触させること特
徴としている。前記燃料ガス処理剤を燃料ガスに接触さ
せる際の温度は、−30℃〜50℃の範囲にあることが
好ましい。
The method for removing impurities in fuel gas according to the present invention is characterized in that the fuel gas treating agent is brought into contact with the fuel gas. The temperature at which the fuel gas treating agent is brought into contact with the fuel gas is preferably in the range of -30 ° C to 50 ° C.

【0011】[0011]

【発明の具体的説明】まず、本発明に係る燃料ガス処理
剤について説明する。 [燃料ガス処理剤]本発明に係る燃料ガス処理剤は、金属
成分と無機酸化物および/または活性炭とからなる複合
化合物を含んでいる。
DETAILED DESCRIPTION OF THE INVENTION First, a fuel gas treating agent according to the present invention will be described. [Fuel Gas Treatment Agent] The fuel gas treatment agent according to the present invention contains a composite compound including a metal component, an inorganic oxide, and / or activated carbon.

【0012】金属成分 金属成分としては、Ag、Cu、Zn、Sn、Pb、Cd、B
i、Hg、Pt、Pd、Ni、Fe、Co、Ru、Rh、Au、M
n から選ばれる1種または2種以上であることが好まし
い。処理剤がこのような金属成分を含んでいると、燃料
ガス中に不純物として含まれている硫黄化合物(硫黄含
有炭化水素)を吸着・除去できる。
Metal Component As a metal component, Ag, Cu, Zn, Sn, Pb, Cd, B
i, Hg, Pt, Pd, Ni, Fe, Co, Ru, Rh, Au, M
It is preferably one or more selected from n. When the treating agent contains such a metal component, the sulfur compound (sulfur-containing hydrocarbon) contained as an impurity in the fuel gas can be adsorbed and removed.

【0013】特に、金属成分がAg、Cu、Zn、Sn、N
i、Pb から選ばれる1種以上であると、硫黄化合物の
吸着量が高く、硫黄化合物の濃度をより低減することが
でき、0.1volppm以下の燃料ガスを得ることができる
ので、使用される処理剤自体の使用量を少なくすること
ができたり、さらには繰り返し使用することができる。
In particular, the metal components are Ag, Cu, Zn, Sn and N.
When it is at least one selected from i and Pb, the adsorption amount of the sulfur compound is high, the concentration of the sulfur compound can be further reduced, and the fuel gas of 0.1 volppm or less can be obtained. The amount of the treating agent itself used can be reduced, and further, the treating agent can be repeatedly used.

【0014】無機酸化物および/または活性炭 無機酸化物としては、上記金属成分と反応したり、金属
成分を変性させてその機能を損なわないものであれば特
に制限はなく、Ti、Zr、Ce、Si、Al、Mg、Nb、
Mo、W、Ca、Ba、Pからなる群から選ばれる1種以
上の元素の酸化物であることが好ましい。なお、2種以
上の元素の酸化物は、各酸化物の混合物であっても、2
種以上の元素の複合酸化物であってもよい。
The inorganic oxide and / or activated carbon inorganic oxide is not particularly limited as long as it does not react with the above-mentioned metal component or denatures the metal component to impair its function, and Ti, Zr, Ce, Si, Al, Mg, Nb,
It is preferably an oxide of one or more elements selected from the group consisting of Mo, W, Ca, Ba and P. It should be noted that the oxide of two or more elements is 2 even if it is a mixture of each oxide.
It may be a composite oxide of one or more elements.

【0015】具体的には、MgO、ZnO、Al23、B2
3、CeO2、SiO2、SnO2、TiO2、ZrO2、P2
5、Sb25、Nb25、MoO3、WO3、MnO2などの結
晶質あるいは非晶質の酸化物、SiO2-Al23、Al2
3-B23、Al23-MgO、SiO2-TiO2、SiO2-Zr
2などの結晶質あるいは非晶質の複合酸化物などが挙
げられる。結晶質の複合酸化物としては多孔質結晶性ア
ルミノシリケートゼオライトや粘土鉱物を挙げることが
できる。
Specifically, MgO, ZnO, Al 2 O 3 , B 2
O 3 , CeO 2 , SiO 2 , SnO 2 , TiO 2 , ZrO 2 , P 2 O
5 , Sb 2 O 5 , Nb 2 O 5 , MoO 3 , WO 3 , MnO 2 and other crystalline or amorphous oxides, SiO 2 -Al 2 O 3 , Al 2 O
3 -B 2 O 3, Al 2 O 3 -MgO, SiO 2 -TiO 2, SiO 2 -Zr
Examples thereof include crystalline or amorphous composite oxides such as O 2 . Examples of crystalline complex oxides include porous crystalline aluminosilicate zeolite and clay minerals.

【0016】無機酸化物は上記成分を主成分として含ん
でいればよく、主成分以外の成分を含んでいてもよい。
前記した複合酸化物の場合、アルカリ金属、アルカリ土
類金属などを含んでいると、金属成分の担持が均一にで
きることがある。本発明で使用される無機酸化物は、上
記の中でもTi、Zr、Ce、Si、Alから選ばれる1種
以上の元素の酸化物であることが好ましい。
The inorganic oxide may contain the above-mentioned components as the main components, and may contain components other than the main components.
In the case of the above-mentioned complex oxide, if the alkali metal, the alkaline earth metal, etc. are contained, the metal component may be supported uniformly. Among the above, the inorganic oxide used in the present invention is preferably an oxide of one or more elements selected from Ti, Zr, Ce, Si and Al.

【0017】本発明では、前記無機酸化物とともに、あ
るいは無機酸化物の代わりに、活性炭、カーボンナノチ
ューブなどを好適に用いることができる。活性炭として
は、椰子殻活性炭などの比表面積の高いものが、金属成
分をより多く担持できるので好適である。本発明で使用
される無機酸化物および活性炭は、燃料ガスの処理方法
によっても異なるが、硫黄分等の吸着量を増やしたり、
吸着速度を速めたりするために、比表面積が高いことが
好ましい。このため、多孔質な粒子であることが好まし
い。
In the present invention, activated carbon, carbon nanotubes or the like can be preferably used together with the inorganic oxide or instead of the inorganic oxide. As the activated carbon, one having a high specific surface area such as coconut shell activated carbon is suitable because it can support a larger amount of metal components. The inorganic oxide and activated carbon used in the present invention may vary depending on the fuel gas treatment method, but may increase the amount of adsorption of sulfur, etc.,
A high specific surface area is preferred in order to accelerate the adsorption rate. Therefore, it is preferable that the particles are porous.

【0018】比表面積としては100〜2000m2
g、好ましくは200〜1500m2/gの範囲にある
ことが望ましい。さらに、この場合、粒子の平均粒子径
は3〜800nm、さらには3〜500nmの範囲にあ
ることが好ましい。使用される無機酸化物および活性炭
の平均粒子径が3nm未満の場合は、処理剤の調製時の
高温加熱処理等によって焼結し易く最終的に得られる処
理剤の比表面積が低下して硫黄分の吸着量が低下するこ
とがあり、平均粒子径が800nmを越えると処理剤を
構成する粒子が大きすぎて比表面積の高い処理剤が得ら
れないことがある。
The specific surface area is 100 to 2000 m 2 /
g, preferably in the range of 200 to 1500 m 2 / g. Further, in this case, the average particle diameter of the particles is preferably in the range of 3 to 800 nm, and further preferably 3 to 500 nm. When the average particle size of the inorganic oxide and the activated carbon used is less than 3 nm, it is easy to sinter due to high-temperature heat treatment during preparation of the treating agent, and the specific surface area of the finally obtained treating agent decreases, resulting in sulfur content. When the average particle diameter exceeds 800 nm, the particles constituting the treating agent are too large and a treating agent having a high specific surface area may not be obtained.

【0019】また、無機酸化物および/または活性炭の
平均粒子径がコロイド粒子領域である上記範囲にある
と、後述する担体への担持が容易に、均一にできたり、
さらに成形が容易にできたり、強度に優れた成形体を得
ることができる。複合化合物 本発明に用いる複合化合物は、前記金属成分と前記無機
酸化物および/または活性炭とからなり、所定量の金属
成分が無機酸化物および/または活性炭に担持されてい
る。複合化合物中の金属成分の含有量は、0.1〜50
重量%、さらには1〜30重量%の範囲にあることが好
ましい。複合化合物中の金属成分の量が0.1重量%未
満の場合は、硫黄分を吸着する能力が不充分であり、5
0重量%を越えても硫黄分を吸着する能力がさらに向上
することはなく、むしろ低下する傾向がある。
When the average particle diameter of the inorganic oxide and / or the activated carbon is in the above range which is the colloidal particle region, it can be easily and uniformly loaded on the carrier described later,
Furthermore, molding can be easily performed, and a molded product having excellent strength can be obtained. Complex Compound The complex compound used in the present invention comprises the metal component and the inorganic oxide and / or activated carbon, and a predetermined amount of the metal component is supported on the inorganic oxide and / or activated carbon. The content of the metal component in the composite compound is 0.1 to 50.
It is preferably in the range of 1% to 30% by weight, more preferably 1 to 30% by weight. If the amount of the metal component in the composite compound is less than 0.1% by weight, the ability to adsorb sulfur is insufficient and
Even if it exceeds 0% by weight, the ability to adsorb sulfur content does not further improve, but tends to decrease.

【0020】金属成分は、好ましくは平均粒子径が3n
m〜3mmの範囲の無機酸化物粒子および/または活性
炭粒子に担持されることにより、複合化合物粒子として
得られる。無機酸化物を用いた複合化合物粒子は、従来
公知の方法によって無機酸化物粒子を製造したのち、金
属成分を担持することによって調製することができる。
無機酸化物粒子の製造方法としては、たとえば本願出願
人の出願による特開平5−132309号公報、特開平
7−133105号公報記載のシリカ系複合酸化物ゾ
ル、特開昭63−45114号公報記載のシリカゾル、
特開昭63−229139号公報記載のチタニアゾル、
特開平1−301517号公報記載のチタニア・セリア
ゾル、特開平5−132309号公報記載のシリカ・ア
ルミナゾルの製造方法などが採用される。
The metal component preferably has an average particle size of 3n.
It is obtained as composite compound particles by being supported on the inorganic oxide particles and / or activated carbon particles in the range of m to 3 mm. Composite compound particles using an inorganic oxide can be prepared by producing inorganic oxide particles by a conventionally known method and then supporting a metal component.
Examples of the method for producing the inorganic oxide particles include silica-based composite oxide sols described in JP-A-5-132309 and JP-A-7-133105, and JP-A-63-45114. Silica sol,
The titania sol described in JP-A-63-229139,
For example, the method for producing titania / ceria sol described in JP-A-1-301517 and silica / alumina sol described in JP-A-5-132309 may be employed.

【0021】また、平均粒子径が約1μm以上の無機酸
化物粒子は、本願出願人による特公平3-43201号
公報、特公平2-61406号公報に記載の方法などに
よって得ることができる。具体的には、前記方法で得ら
れたゾルまたはゲルを噴霧乾燥したり、凍結乾燥したり
すればよい。さらに、平均粒子径が約1mm以上の無機
酸化物粒子は、たとえば前記いずれかの方法で得られた
ゾル、ゲルを乾燥したのち、これらの乾燥粉体を公知の
方法で所望の大きさに成型することによって得られる。
The inorganic oxide particles having an average particle size of about 1 μm or more can be obtained by the method described in Japanese Patent Publication No. 43201/1993 and Japanese Patent Publication No. 61406/1990 by the applicant of the present application. Specifically, the sol or gel obtained by the above method may be spray-dried or freeze-dried. Further, for the inorganic oxide particles having an average particle diameter of about 1 mm or more, for example, after drying the sol or gel obtained by any of the above methods, these dry powders are molded into a desired size by a known method. It is obtained by doing.

【0022】このような方法で得られた無機酸化物粒
子、または活性炭粒子に前記金属成分の塩の水溶液を吸
収させ、乾燥し、必要に応じて焼成することによって、
所望の粒子径の複合化合物粒子得ることができる。ま
た、前記特開平5−132309号公報に開示された方
法に準ずれば、平均粒子径が3〜500nmの範囲にあ
る複合化合物粒子を製造することができる。すなわち、
アルカリ金属、アンモニウムまたは有機塩基の珪酸塩
と、アルカリ可溶の無機化合物と、前記金属成分の塩の
水溶液とを、pH10以上のアルカリ水溶液中に添加
し、必要に応じて加熱すれば、金属成分が担持された複
合化合物粒子を得ることができる。さらに、平均粒子径
が3〜500nmの範囲にある複合化合物粒子は、特開
昭63−270620号公報に記載された製造方法に準
じて調製することもできる。すなわち、含水チタン酸の
ゲルまたはゾルに過酸化水素を加えて得られるチタン酸
水溶液と前記金属成分の塩の水溶液を加熱処理すること
により、金属成分が担持された複合化合物粒子を得るこ
とができる。
The inorganic oxide particles or activated carbon particles obtained by such a method are allowed to absorb an aqueous solution of the salt of the metal component, dried, and optionally calcined,
It is possible to obtain composite compound particles having a desired particle size. Further, according to the method disclosed in JP-A-5-132309, composite compound particles having an average particle diameter in the range of 3 to 500 nm can be produced. That is,
A silicate of an alkali metal, ammonium or an organic base, an alkali-soluble inorganic compound, and an aqueous solution of the salt of the metal component are added to an alkaline aqueous solution having a pH of 10 or more, and heated if necessary, so that the metal component It is possible to obtain composite compound particles carrying. Further, the composite compound particles having an average particle size in the range of 3 to 500 nm can be prepared according to the production method described in JP-A-63-270620. That is, by subjecting an aqueous solution of titanic acid obtained by adding hydrogen peroxide to a hydrous titanic acid gel or sol and an aqueous solution of a salt of the metal component to heat treatment, composite compound particles carrying a metal component can be obtained. .

【0023】また、以上のようにして得られた平均粒子
径が3nm〜3mmの範囲にある複合化合物粒子に水分
を加え、必要に応じて成形助剤などを添加して複合化合
物粒子の懸濁液またはペーストを調製し、これを押出成
形機などを用いて所望の形状・大きさに成形し、乾燥
し、必要に応じて焼成することによって、球状、立方体
または直方体、ペレット状、板状、針状、ハニカム状な
どの複合化合物成型体を得ることができる。
Further, water is added to the composite compound particles having an average particle diameter in the range of 3 nm to 3 mm obtained as described above, and a molding aid or the like is added as necessary to suspend the composite compound particles. A liquid or paste is prepared, which is molded into a desired shape and size using an extruder or the like, dried, and fired if necessary, to obtain a spherical shape, a cubic shape or a rectangular parallelepiped shape, a pellet shape, a plate shape, It is possible to obtain a compound compound molded body having a needle shape, a honeycomb shape, or the like.

【0024】また、金属成分を担持させる活性炭とは別
に、複合化合物を担持させる担体としては、活性炭を用
いてもよい。この場合に使用される活性炭の粒子径は特
に制限されない。燃料ガス処理剤 本発明に係る燃料ガス処理剤は、前記の複合化合物のみ
からなるか、複合化合物が、繊維、または球状、立方体
または直方体、ペレット状、板状、針状、ハニカム状な
どの適宜の成型体に含有および/または担持されてい
る。
In addition to the activated carbon for supporting the metal component, activated carbon may be used as the carrier for supporting the composite compound. The particle size of the activated carbon used in this case is not particularly limited. Fuel gas treatment agent The fuel gas treatment agent according to the present invention is composed of only the above-described composite compound, or the composite compound is a fiber, or spherical, cubic or rectangular parallelepiped, pellet-shaped, plate-shaped, needle-shaped, honeycomb-shaped or the like as appropriate. Contained in and / or carried by the molded body.

【0025】複合化合物は、平均粒子径が3nm〜3m
mの粒子状、または球状、立方体または直方体、ペレッ
ト状、板状、針状、ハニカム状などの適宜の成型体に成
型されていてもよい。この場合の成型体の最大径または
最大長さは0.5mm〜10cmの範囲の成型体が好ま
しい。このような特定の形状を有していると、後述する
処理容器への処理剤の充填あるいは取り出しが容易であ
ったり、また充填するに際して一定量を充填ムラ等なく
再現性よく充填することができ、とくに処理容器に通ガ
スする際の容器の入り口と出口の差圧を小さくかつ一定
にすることができ、また移動体設備で使用する場合は振
動等による処理剤の充填状態の変動等が小さく、このた
め安定的に硫黄分の低減された燃料ガスを得ることがで
きる。
The composite compound has an average particle size of 3 nm to 3 m.
It may be molded into an appropriate molded body such as m in the form of particles, spheres, cubes or cuboids, pellets, plates, needles, or honeycombs. In this case, the molded body preferably has a maximum diameter or maximum length of 0.5 mm to 10 cm. With such a specific shape, it is easy to fill or remove the treatment agent into the treatment container described later, or a certain amount can be filled with good reproducibility without irregularity in filling. In particular, the pressure difference between the inlet and outlet of the processing vessel can be kept small and constant when gas is passed through the processing vessel, and when used in mobile equipment, fluctuations in the filling state of the processing agent due to vibration are small. Therefore, the fuel gas with a reduced sulfur content can be stably obtained.

【0026】なお、処理剤の形状は、使用する処理量、
処理速度などの処理条件、処理容器の形状等を考慮して
適宜選択することができる。複合化合物を担持させる前
記の球状その他の成型体としては、セラミックス、無機
酸化物、繊維、各種の樹脂、金属などからなる成型体が
挙げられる。各種樹脂としては、ポリエチレン、ポリプ
ロピレン、ポリスチレン、ポリアクリレート、塩化ビニ
ル、ポリアクリロニトリル、ポリエステル、ポリアミ
ド、シリコーン樹脂、天然ゴム、セルロースなどが使用
される。通常は、これらの成型体の表面に複合化合物の
スラリ−を塗布などの方法でコ−トし、乾燥、焼成する
ことによって燃料ガス処理剤が得られる。
The shape of the treatment agent depends on the treatment amount used,
It can be appropriately selected in consideration of the processing conditions such as the processing speed and the shape of the processing container. Examples of the above-mentioned spherical and other shaped articles carrying the composite compound include molded articles made of ceramics, inorganic oxides, fibers, various resins, metals and the like. As various resins, polyethylene, polypropylene, polystyrene, polyacrylate, vinyl chloride, polyacrylonitrile, polyester, polyamide, silicone resin, natural rubber, cellulose and the like are used. Usually, a fuel gas treating agent is obtained by coating the surface of these molded bodies with a slurry of a composite compound by a method such as coating, drying and firing.

【0027】繊維としては特に制限はなく、天然または
合成の有機繊維、無機繊維を挙げることができる。有機
繊維としては、綿、亜麻、パルプなどの植物繊維、羊
毛、絹などの動物繊維、ナイロン、ビニロン、ビニリデ
ン、ポリエステル、アクリル、ポリウレタン、アセテー
トなどの合成繊維、また、無機繊維としては、アルミ
ナ、アルミナ・シリカ、ジルコニア、アスベストなどの
繊維が例示される。また、繊維の形態にも特に制限はな
く、たとえば撚糸による繊維状、紡糸された糸状や長繊
維、短繊維およびモノフイラメントなどが例示され、そ
れらの加工製品として織布、不織布が例示される。
The fibers are not particularly limited, and examples thereof include natural or synthetic organic fibers and inorganic fibers. Examples of the organic fiber include cotton, flax, vegetable fiber such as pulp, wool, animal fiber such as silk, nylon, vinylon, vinylidene, polyester, acrylic, polyurethane, synthetic fiber such as acetate, and inorganic fiber such as alumina, Examples of the fibers include alumina / silica, zirconia, and asbestos. Further, the form of the fiber is not particularly limited, and examples thereof include a fibrous form of twisted yarn, a spun yarn form, a long fiber, a short fiber and a monofilament, and examples of the processed products thereof include a woven fabric and a non-woven fabric.

【0028】上記繊維に複合化合物粒子を担持させる方
法としては、複合化合物粒子が脱落しないように担持で
きれば特に限定されるものではない。たとえば、本願出
願人による特開平7−109674号公報に開示された
抗菌性繊維の製造方法を好適に適用できる。具体的に
は、複合化合物粒子の水および/または有機溶媒分散液
に上記繊維を浸漬したり、繊維に分散液を噴霧するなど
の方法で付着させた後、乾燥し、必要に応じて加熱して
融着させるなどして製造することができる。このときの
複合化合物粒子の平均粒子径は3〜500nmの範囲に
あるものが好ましい。平均粒子径が500nmを越える
と、繊維の材質や太さ等によって異なるが、繊維への付
着性が低下し、所望量の複合化合物粒子を付着させるこ
とができない場合があり、できたとしても燃料ガスと接
触させて処理する際に脱落することがある。複合化合物
の付着量としては、容易に脱落しない範囲で多いことが
好ましく、1〜60重量%、好ましくは5〜40重量%
の範囲から選ばれる。上記範囲の平均粒子径を有する複
合化合物粒子が上記した範囲の付着量で付着した燃料ガ
ス処理剤は、複合化合物粒子が微粒子で比表面積が高い
ために硫黄化合物等の吸着容量が高く、繊維に高分散し
た状態で担持されているので吸着能力を充分に発現する
ことができ、処理能力に優れている。
The method of supporting the composite compound particles on the fibers is not particularly limited as long as the composite compound particles can be supported so as not to fall off. For example, the method for producing an antibacterial fiber disclosed in JP-A-7-109674 by the applicant of the present application can be preferably applied. Specifically, the fibers are immersed in a water and / or organic solvent dispersion liquid of the composite compound particles, or the fibers are attached by a method such as spraying the dispersion liquid, then dried, and heated if necessary. It can be manufactured by fusing. The average particle size of the composite compound particles at this time is preferably in the range of 3 to 500 nm. If the average particle size exceeds 500 nm, the adhesiveness to the fiber may decrease and the desired amount of composite compound particles may not be able to adhere, although it depends on the material and thickness of the fiber. May fall off when contacted with gas for processing. The amount of the composite compound attached is preferably as large as possible without falling off, and is preferably 1 to 60% by weight, preferably 5 to 40% by weight.
Selected from the range. The fuel gas treating agent in which the composite compound particles having the average particle diameter in the above range are adhered in the above-described range of the adhering amount, the composite compound particles are fine particles and have a high specific surface area, so that the adsorption capacity of the sulfur compound etc. is high, Since it is supported in a highly dispersed state, it can exhibit a sufficient adsorption capacity and is excellent in processing capacity.

【0029】[不純物除去方法]本発明に係る燃料ガス
中の不純物除去方法では、前記した燃料ガス処理剤を燃
料ガスと接触させる。接触方法としては燃料ガス中の硫
黄分を所定濃度(0.1volppm)以下に低減できれば特
に制限はなく、たとえば、燃料ガスの入った固定された
貯蔵・供給用の容器あるいは移動体使用機器に装着され
た容器から燃料ガスを取り出す際に燃料ガス処理剤を充
填した処理容器に燃料ガスを通じて燃料ガス処理剤と接
触させるなどの方法が挙げられる。
[Method for Removing Impurities] In the method for removing impurities in fuel gas according to the present invention, the above-mentioned fuel gas treating agent is brought into contact with fuel gas. The contact method is not particularly limited as long as the sulfur content in the fuel gas can be reduced to a predetermined concentration (0.1 volppm) or less. For example, it is mounted on a fixed storage / supply container containing fuel gas or a device using a mobile body. When the fuel gas is taken out from the treated container, there is a method of bringing the processing container filled with the fuel gas processing agent into contact with the fuel gas processing agent through the fuel gas.

【0030】燃料ガス 本発明に用いる燃料ガスとしては、天然ガス、都市ガ
ス、LNG、LPGが挙げられる。本発明で処理される
未処理燃料ガスは、硫黄化合物濃度は、50volppm未
満、好ましくは30volppm未満の範囲にあるものが望ま
しい。燃料ガス中の硫黄分が前記範囲の上限より多い
と、硫黄分が多すぎるために生成する燃料ガス中の硫黄
化合物濃度を所望の低濃度(0.1volppm未満)にする
ことができない場合があり、できたとしても本発明の処
理剤の使用量が多くなり、経済性が低下する。
Fuel Gas Examples of the fuel gas used in the present invention include natural gas, city gas, LNG and LPG. The untreated fuel gas treated in the present invention desirably has a sulfur compound concentration of less than 50 volppm, preferably less than 30 volppm. If the sulfur content in the fuel gas is higher than the upper limit of the above range, the sulfur compound concentration in the produced fuel gas may not be able to reach a desired low concentration (less than 0.1 volppm) because the sulfur content is too high. Even if it is possible, the amount of the treating agent of the present invention used increases, and the economical efficiency decreases.

【0031】本発明は、特に、一般暖房用などに供給さ
れているガス事業法における都市ガスに規定されている
硫黄分が4volppm以下のガスに好適に適用される。燃料
ガス処理剤が平均粒子径が3nm〜3mm、特に500
nm〜3mmの範囲の複合化合物粒子の場合は、そのま
ま燃料油と接触させて用いることもできるが、織布、不
織布などのパック(袋)に充填したり、金属、樹脂製の
網や籠に充填したものを前記した処理容器に充填して燃
料ガスと接触させてもよい。
The present invention is particularly preferably applied to a gas having a sulfur content of 4 volppm or less, which is stipulated in the city gas under the Gas Utility Act for general heating and the like. The fuel gas treating agent has an average particle size of 3 nm to 3 mm, particularly 500
In the case of the composite compound particles in the range of nm to 3 mm, they can be used as they are in contact with fuel oil as they are, but they can be filled in a pack (bag) such as a woven fabric or a non-woven fabric, or a metal or resin net or basket. The filled one may be filled in the above-mentioned processing container and brought into contact with the fuel gas.

【0032】燃料ガス処理剤と燃料ガスとを接触させる
際の圧力は、特に制限されるものではないが、加圧下あ
るいは減圧下である必要はなく、常圧(大気圧)で十分
である。加圧下、減圧下で行っても、不純物の低減能力
にはほとんどは差異はない。また、燃料ガス処理剤と燃
料ガスとを接触させる際の温度は−30℃〜50℃の範
囲にあることが好ましい。この温度範囲は、寒冷地、温
暖地における常温の温度範囲であることから、特別に冷
却したり加温したりする必要はない。また上記温度範囲
内であれば冷却したり加温したりしても硫黄分の除去能
力にはほとんど差異はない。ただし、安全上、必要に応
じて温度を調節することは可能である。
The pressure at which the fuel gas treating agent and the fuel gas are brought into contact with each other is not particularly limited, but it does not have to be under increased pressure or reduced pressure, and normal pressure (atmospheric pressure) is sufficient. There is almost no difference in the ability to reduce impurities even if it is carried out under pressure or under reduced pressure. Further, the temperature at which the fuel gas treating agent and the fuel gas are brought into contact with each other is preferably in the range of -30 ° C to 50 ° C. Since this temperature range is a normal temperature range in cold regions and warm regions, it is not necessary to specially cool or heat. In addition, if the temperature is within the above range, there is almost no difference in the ability to remove the sulfur content even if it is cooled or heated. However, for safety, it is possible to adjust the temperature as needed.

【0033】前記した量の単位処理剤当たりの燃料ガス
を処理した後の燃料ガス処理剤は、処理容器に充填した
まま、あるいは取り出して、吸着した硫黄分を脱着、抽
出等して除去した後再び用いることができる。
The fuel gas treating agent after treating the above-mentioned amount of the fuel gas per unit treating agent is removed while desorbing, extracting, etc., the adsorbed sulfur content while being filled in the processing container or taken out. Can be used again.

【0034】[0034]

【発明の効果】本発明に係る燃料ガス処理剤は金属成分
と無機酸化物および/または活性炭とからなる複合酸化
物を含んでおり、「粒子の平均粒子径は3〜800nm」
というコロイド領域の粒子を含んでいるので燃料ガス中
の硫黄分を多量に吸着することができ、このため硫黄分
が実質的に除去され、燃料電池等に好適に用いることの
できる燃料ガスを製造することができる。
The fuel gas treating agent according to the present invention contains a composite oxide composed of a metal component and an inorganic oxide and / or activated carbon, and has an "average particle size of 3 to 800 nm".
Since it contains particles in the colloidal region, a large amount of sulfur content in the fuel gas can be adsorbed, so that the sulfur content is substantially removed, and a fuel gas suitable for use in fuel cells and the like is produced. can do.

【0035】本発明に係る燃料ガスの処理方法によれ
ば、燃料ガス処理剤が金属成分と無機酸化物および/ま
たは活性炭とからなる複合酸化物を含むとともに、処理
容器等の必要によって適宜形状や大きさを選択すること
ができ、充填が均一かつ再現性よく容易に行うことがで
き、このため差圧が生じたり大きく変動することがな
く、安定的に硫黄分が実質的に除去された燃料ガスを製
造することができる。
According to the method for treating fuel gas of the present invention, the fuel gas treating agent contains a complex oxide composed of a metal component and an inorganic oxide and / or activated carbon, and has an appropriate shape and shape depending on the needs of the processing container and the like. The size can be selected, and the filling can be performed uniformly and with good reproducibility and easily. Therefore, the fuel in which the sulfur content is substantially removed is stable without causing a pressure difference or a large fluctuation. Gas can be produced.

【0036】[0036]

【実施例】以下、本発明を実施例により説明するが、本
発明はこれら実施例に限定されるものではない。
EXAMPLES The present invention will be described below with reference to examples, but the present invention is not limited to these examples.

【0037】[0037]

【実施例1】燃料ガス処理剤の調製 固形分濃度3.0重量%の複合化合物コロイド粒子分散
液(触媒化成工業(株)製:ATOMYBALL-S、無機酸化物=
TiO2・SiO2、Ag含有量=4.2重量%、平均粒子径
=10nm)400gを130℃で24時間乾燥し、つ
いで350℃で2時間焼成した。焼成して得た粉体を加
圧成型(成型圧力50Kg/cm2)し、これを粉砕
し、平均粒子径2mmの燃料ガス処理剤(A)を調製し
た。
Example 1 Preparation of Fuel Gas Treatment Agent Colloidal particle dispersion of composite compound having a solid content concentration of 3.0% by weight (Catalyst Chemical Co., Ltd .: ATOMYBALL-S, inorganic oxide =
400 g of TiO 2 .SiO 2 and Ag content = 4.2% by weight, average particle size = 10 nm) were dried at 130 ° C. for 24 hours and then calcined at 350 ° C. for 2 hours. The powder obtained by firing was pressure-molded (molding pressure 50 Kg / cm 2 ) and pulverized to prepare a fuel gas treating agent (A) having an average particle diameter of 2 mm.

【0038】燃料ガスの処理(1) 燃料ガス処理剤(A)2.5gを、内径0.8mmの反応
管に充填し、温度25℃で、ブタンガス(ジメチルサル
ファイドを8ppm含有)を1250cc/hrの速度
で連続的に供給し、反応間の出口におけるジメチルサル
ファイドの含有量が0.5ppmを越えるまでの時間
(破過時間)を測定し、結果を表1に示した。
Treatment of Fuel Gas (1) 2.5 g of the fuel gas treating agent (A) was charged in a reaction tube having an inner diameter of 0.8 mm, and at a temperature of 25 ° C., 1250 cc / hr of butane gas (containing 8 ppm of dimethyl sulfide). Was continuously fed at the rate of 1., and the time until the content of dimethyl sulfide at the outlet during the reaction exceeded 0.5 ppm (breakthrough time) was measured. The results are shown in Table 1.

【0039】なお、このとき燃料ガス中の硫黄分の測定
は、ガスクロマトグラフィー(化学発光検出器)法で行
った。燃料ガスの処理(2) 燃料ガス処理剤(A)2.5gを、内径0.8mmの反応
管に充填し、バイブレーターにて振動を与えて密充填化
した後、温度25℃で、ブタンガス(ジメチルサルファ
イドを8ppm含有)を1250cc/hrの速度で連
続的に供給し、反応間の出口におけるジメチルサルファ
イドの含有量が0.5ppmを越えるまでの時間(破過
時間)を測定し、結果を表1に示した。
At this time, the sulfur content in the fuel gas was measured by a gas chromatography (chemiluminescence detector) method. Treatment of fuel gas (2) 2.5 g of the fuel gas treating agent (A) was charged into a reaction tube having an inner diameter of 0.8 mm, and after vibrating with a vibrator to close the mixture, butane gas ( Dimethyl sulfide (8 ppm content) was continuously supplied at a rate of 1250 cc / hr, and the time (breakthrough time) until the content of dimethyl sulfide at the outlet of the reaction exceeded 0.5 ppm was measured. Shown in 1.

【0040】[0040]

【実施例2】固形分濃度3.0重量%の複合化合物コロ
イド粒子分散液(触媒化成工業(株)製:ATOMYBALL-U
A、無機酸化物=SiO2・Al23、Ag含有量=4.2重
量%、平均粒子径=20nm)400gを130℃で2
4時間乾燥し、ついで350℃で2時間焼成した。焼成
して得た粉体を加圧成型(成型圧力50Kg/cm2
し、これを粉砕し、平均粒子径2mmの燃料ガス処理剤
(B)を調製した。
[Example 2] Composite compound colloidal particle dispersion liquid having a solid content concentration of 3.0% by weight (Catalyst Kasei Co., Ltd .: ATOMYBALL-U)
A, inorganic oxide = SiO 2 .Al 2 O 3 , Ag content = 4.2% by weight, average particle size = 20 nm) 400 g at 130 ° C.
It was dried for 4 hours and then calcined at 350 ° C. for 2 hours. Powder obtained by firing is pressure-molded (molding pressure 50 Kg / cm 2 ).
Then, this was pulverized to prepare a fuel gas treating agent (B) having an average particle diameter of 2 mm.

【0041】燃料ガスの処理(1)および(2) 実施例1と同様にして燃料油の処理を行った。結果を表
1に示す。
Fuel Gas Treatment (1) and (2) Fuel oil was treated in the same manner as in Example 1. The results are shown in Table 1.

【0042】[0042]

【実施例3】固形分濃度3.0重量%の複合化合物コロ
イド粒子分散液(触媒化成工業(株)製:ATOMYBALL-UA
C、無機酸化物=SiO2・Al23、Cu含有量=4.2重
量%、平均粒子径=20nm)400gを130℃で2
4時間乾燥し、ついで350℃で2時間焼成した。焼成
して得た粉体を加圧成型(成型圧力50Kg/cm2
し、これを粉砕し、平均粒子径2mmの燃料ガス処理剤
(C)を調製した。
[Example 3] Composite compound colloidal particle dispersion liquid having a solid content concentration of 3.0% by weight (manufactured by Catalysts & Chemicals Co., Ltd .: ATOMYBALL-UA
C, inorganic oxide = SiO 2 .Al 2 O 3 , Cu content = 4.2% by weight, average particle diameter = 20 nm) 400 g at 130 ° C.
It was dried for 4 hours and then calcined at 350 ° C. for 2 hours. Powder obtained by firing is pressure-molded (molding pressure 50 Kg / cm 2 ).
Then, this was pulverized to prepare a fuel gas treating agent (C) having an average particle diameter of 2 mm.

【0043】燃料ガスの処理(1)および(2) 実施例1と同様にして燃料油の処理を行った。結果を表
1に示す。
Fuel Gas Treatment (1) and (2) Fuel oil was treated in the same manner as in Example 1. The results are shown in Table 1.

【0044】[0044]

【実施例4】固形分濃度3.0重量%の複合化合物コロ
イド粒子分散液(触媒化成工業(株)製:ATOMYBALL-U
A、無機酸化物=SiO2・Al23、Ag含有量=4.2重
量%、平均粒子径=20nm)400gをパルプ不織布
(テクセル王子製紙(株)製)10gに繰り返し吸収さ
せ、室温で30分間放置した後、130℃で24時間乾
燥して燃料ガス処理剤(D)を調製した。
[Example 4] Composite compound colloidal particle dispersion having a solid content concentration of 3.0% by weight (manufactured by Catalysts & Chemicals Co., Ltd .: ATOMYBALL-U)
A, inorganic oxide = SiO 2 .Al 2 O 3 , Ag content = 4.2% by weight, average particle diameter = 20 nm) 400 g was repeatedly absorbed by 10 g of pulp nonwoven fabric (Texel Oji Paper Co., Ltd.), and room temperature After being left at 30 ° C. for 30 minutes, it was dried at 130 ° C. for 24 hours to prepare a fuel gas treating agent (D).

【0045】燃料ガスの処理(1)および(2) 処理剤を4.7g充填した以外は実施例1と同様にして
燃料油の処理を行った。結果を表1に示す。
Fuel gas treatment (1) and (2) Fuel oil was treated in the same manner as in Example 1 except that 4.7 g of the treating agent was charged. The results are shown in Table 1.

【0046】[0046]

【実施例5】濃度5重量%の硝酸銀水溶液17.64g
を、温度80℃に加温した固形分濃度3.0重量%の複
合化合物コロイド粒子分散液(触媒化成工業(株)製:AT
OMYBALL-S、無機酸化物=TiO2・SiO2、Ag含有量=
4.2重量%、平均粒子径=10nm)667gに撹拌
しながら添加した。この溶液を10gの活性炭(武田薬
品工業(株)製:白鷺、平均粒子径4μm)に、蒸発乾
固を繰り返しながら含浸した後、250℃で5時間、窒
素中で焼成し、燃料ガス処理剤(E)を調製した。
Example 5 17.64 g of an aqueous silver nitrate solution having a concentration of 5% by weight
Was heated to a temperature of 80 ° C. to obtain a composite compound colloidal particle dispersion liquid having a solid content concentration of 3.0% by weight (manufactured by Catalysts & Chemicals Co., Ltd .: AT
OMYBALL-S, Inorganic oxide = TiO 2 · SiO 2 , Ag content =
4.2% by weight, average particle size = 10 nm) was added to 667 g with stirring. This solution was impregnated with 10 g of activated carbon (manufactured by Takeda Yakuhin Kogyo Co., Ltd .: Shirasagi, average particle size 4 μm) by repeatedly evaporating to dryness, followed by firing at 250 ° C. for 5 hours in nitrogen to prepare a fuel gas treatment agent. (E) was prepared.

【0047】燃料ガスの処理(1)および(2) 処理剤を3.9g充填した以外は実施例1と同様にして
燃料油の処理を行った。結果を表1に示す。
Fuel gas treatment (1) and (2) Fuel oil was treated in the same manner as in Example 1 except that 3.9 g of the treating agent was charged. The results are shown in Table 1.

【0048】[0048]

【実施例6】濃度5重量%の硝酸銀水溶液17.64g
を、温度80℃に加温した固形分濃度10.0重量%の
シリカコロイド粒子分散液(触媒化成工業(株)製:Ca
taloido、無機酸化物=SiO2、平均粒子径=8nm)
200gに撹拌しながら添加した。この溶液を10gの
活性炭(武田薬品工業(株)製:白鷺、平均粒子径4μ
m)に、蒸発乾固を繰り返しながら含浸した後、250
℃で5時間、窒素中で焼成し、燃料ガス処理剤(F)を
調製した。
Example 6 17.64 g of an aqueous silver nitrate solution having a concentration of 5% by weight
Was heated to a temperature of 80 ° C. to obtain a silica colloidal particle dispersion having a solid content concentration of 10.0% by weight (manufactured by Catalysts & Chemicals Co., Ltd.
(taloido, inorganic oxide = SiO 2 , average particle size = 8 nm)
200 g was added with stirring. This solution was added with 10 g of activated carbon (manufactured by Takeda Pharmaceutical Co., Ltd .: Shirasagi, average particle size 4 μm).
m) was repeatedly impregnated by evaporation to dryness, and then 250
The fuel gas treating agent (F) was prepared by firing in nitrogen at 5 ° C. for 5 hours.

【0049】燃料ガスの処理(1)および(2) 処理剤を3.9g充填した以外は実施例1と同様にして
燃料油の処理を行った。結果を表1に示す。
Fuel Gas Treatment (1) and (2) Fuel oil was treated in the same manner as in Example 1 except that 3.9 g of the treating agent was charged. The results are shown in Table 1.

【0050】[0050]

【比較例1】濃度4.7重量%の硝酸銀水溶液68.2g
を、シリカ・アルミナ(触媒化成工業(株)製:HA、A
l2328重量%、平均径65μm)50gに吸収させ、
ついで130℃で24時間乾燥した後、350℃で2時
間焼成し、燃料ガス処理剤(G)を調製した。
Comparative Example 1 68.2 g of an aqueous silver nitrate solution having a concentration of 4.7% by weight
Silica / alumina (manufactured by Catalysts & Chemicals Co., Ltd .: HA, A
l 2 O 3 28% by weight, average diameter 65 μm) absorbed into 50 g,
Then, after drying at 130 ° C. for 24 hours, it was baked at 350 ° C. for 2 hours to prepare a fuel gas treating agent (G).

【0051】燃料ガスの処理(1)および(2) 実施例1と同様にして燃料油の処理を行った。結果を表
1に示す。
Fuel Gas Treatment (1) and (2) Fuel oil was treated in the same manner as in Example 1. The results are shown in Table 1.

【0052】[0052]

【表1】 [Table 1]

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4D012 BA01 BA03 CA07 CB02 CB09 CE03 CF04 CG01 CG03 CG04 CG05 4G066 AA02B AA05B AA16B AA17B AA20B AA20C AA22B AA22C AA23B AA23C AA24B AA25B AA27B AA72B AC02C AC11B BA01 BA02 BA03 BA07 BA09 BA10 BA16 BA20 CA25 DA04   ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 4D012 BA01 BA03 CA07 CB02 CB09                       CE03 CF04 CG01 CG03 CG04                       CG05                 4G066 AA02B AA05B AA16B AA17B                       AA20B AA20C AA22B AA22C                       AA23B AA23C AA24B AA25B                       AA27B AA72B AC02C AC11B                       BA01 BA02 BA03 BA07 BA09                       BA10 BA16 BA20 CA25 DA04

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】金属成分と、無機酸化物および/または活
性炭とからなる複合化合物を含むことを特徴とする燃料
ガス処理剤。
1. A fuel gas treating agent comprising a composite compound comprising a metal component and an inorganic oxide and / or activated carbon.
【請求項2】前記金属成分が、Ag、Cu、Zn、Sn、P
b、Cd、Bi、Hg、Pt、Pd、Ni、Fe、Co、Ru、R
h、Au、Mn からなる群から選ばれる1以上であること
を特徴とする請求項1に記載の燃料ガス処理剤。
2. The metal component is Ag, Cu, Zn, Sn, P
b, Cd, Bi, Hg, Pt, Pd, Ni, Fe, Co, Ru, R
The fuel gas treating agent according to claim 1, which is one or more selected from the group consisting of h, Au, and Mn.
【請求項3】前記無機酸化物がTi、Zr、Ce、Si、A
l、Mg、Nb、Mo、W、Ca、Ba、Pからなる群から選
ばれる1種以上の元素の酸化物であることを特徴とする
請求項1に記載の燃料ガス処理剤。
3. The inorganic oxide is Ti, Zr, Ce, Si, A
The fuel gas treating agent according to claim 1, which is an oxide of one or more elements selected from the group consisting of 1, Mg, Nb, Mo, W, Ca, Ba, and P.
【請求項4】前記複合化合物が、平均粒子径が3nm〜
3mmの範囲の粒子状であることを特徴とする請求項1
〜3のいずれかに記載の燃料ガス処理剤。
4. The composite compound has an average particle diameter of 3 nm to
A particle having a particle size of 3 mm.
The fuel gas treating agent according to any one of 1 to 3.
【請求項5】前記複合化合物が、球状、立方体または直
方体、ペレット状、板状、針状、ハニカム状からなる群
から選ばれる1種以上の成型体であることを特徴とする
請求項1〜3のいずれかに記載の燃料ガス処理剤。
5. The composite compound is one or more moldings selected from the group consisting of spherical, cubic or rectangular parallelepiped, pellet, plate, needle and honeycomb shapes. 4. The fuel gas treating agent according to any one of 3 above.
【請求項6】前記粒子状複合化合物が、繊維、無機酸化
物、金属、樹脂、セラミックスからなる群から選ばれる
1種以上の成型体に含有または担持されていることを特
徴とする請求項4に記載の燃料ガス処理剤。
6. The particulate composite compound is contained or carried in one or more molded products selected from the group consisting of fibers, inorganic oxides, metals, resins and ceramics. The fuel gas treating agent described in.
【請求項7】請求項1〜6のいずれかに記載の燃料ガス
処理剤を燃料ガスに接触させること特徴とする燃料ガス
中の不純物除去方法。
7. A method for removing impurities from a fuel gas, which comprises bringing the fuel gas treating agent according to claim 1 into contact with the fuel gas.
【請求項8】前記燃料ガス処理剤を燃料ガスに接触させ
る際の温度が−30℃〜50℃の範囲にあることを特徴
とする請求項7に記載の燃料ガス中の不純物除去方法。
8. The method for removing impurities in a fuel gas according to claim 7, wherein the temperature at which the fuel gas treating agent is brought into contact with the fuel gas is in the range of −30 ° C. to 50 ° C.
JP2001326467A 2001-10-24 2001-10-24 Fuel gas treating agent and method for removing impurities in fuel gas Expired - Lifetime JP3913522B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001326467A JP3913522B2 (en) 2001-10-24 2001-10-24 Fuel gas treating agent and method for removing impurities in fuel gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001326467A JP3913522B2 (en) 2001-10-24 2001-10-24 Fuel gas treating agent and method for removing impurities in fuel gas

Publications (2)

Publication Number Publication Date
JP2003129073A true JP2003129073A (en) 2003-05-08
JP3913522B2 JP3913522B2 (en) 2007-05-09

Family

ID=19142843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001326467A Expired - Lifetime JP3913522B2 (en) 2001-10-24 2001-10-24 Fuel gas treating agent and method for removing impurities in fuel gas

Country Status (1)

Country Link
JP (1) JP3913522B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005169382A (en) * 2003-11-19 2005-06-30 Ueda Shikimono Kojo:Kk Functional material, and functional construction material, functional fiber product, functional building material, functional filter, functional container, and functional toy each of which is produced from this functional material
JP2005279631A (en) * 2004-03-02 2005-10-13 Idemitsu Kosan Co Ltd Method for manufacturing sulfur compound removing adsorbent, sulfur compound removing adsorbent and method for removing sulfur compound
JP2007500265A (en) * 2003-07-28 2007-01-11 フュエルセル エナジー, インコーポレイテッド High capacity sulfur adsorbent bed and desulfurization method
KR100855772B1 (en) 2006-11-21 2008-09-01 주식회사 삼천리 Adsorbent to adsorb the sulfurour gas contained in fuel gas, and desulfurization equipement in fuel cell system using such adsorbent
CN102641651A (en) * 2012-03-30 2012-08-22 四川大学 Low-temperature active carbon-based desulfurizing agent and preparation method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007500265A (en) * 2003-07-28 2007-01-11 フュエルセル エナジー, インコーポレイテッド High capacity sulfur adsorbent bed and desulfurization method
JP4795950B2 (en) * 2003-07-28 2011-10-19 フュエルセル エナジー, インコーポレイテッド Fuel processing system and fuel processing method for fuel cell
JP2005169382A (en) * 2003-11-19 2005-06-30 Ueda Shikimono Kojo:Kk Functional material, and functional construction material, functional fiber product, functional building material, functional filter, functional container, and functional toy each of which is produced from this functional material
JP2005279631A (en) * 2004-03-02 2005-10-13 Idemitsu Kosan Co Ltd Method for manufacturing sulfur compound removing adsorbent, sulfur compound removing adsorbent and method for removing sulfur compound
KR100855772B1 (en) 2006-11-21 2008-09-01 주식회사 삼천리 Adsorbent to adsorb the sulfurour gas contained in fuel gas, and desulfurization equipement in fuel cell system using such adsorbent
CN102641651A (en) * 2012-03-30 2012-08-22 四川大学 Low-temperature active carbon-based desulfurizing agent and preparation method thereof

Also Published As

Publication number Publication date
JP3913522B2 (en) 2007-05-09

Similar Documents

Publication Publication Date Title
US20080271602A1 (en) Doped supported zinc oxide sorbents for regenerable desulfurization applications
US20050230659A1 (en) Particulate absorbent materials and methods for making same
WO2008137463A2 (en) Doped supported zinc oxide sorbents for desulfurization applications
CN112473728B (en) Efficient moisture-resistant ozonolysis catalyst and preparation method and application thereof
US7176159B1 (en) Catalyst and sorbent material for the production of hydrogen
JP5096712B2 (en) Carbon monoxide methanation method
CN104741000B (en) A kind of application of composite bed low temperature SCR denitration catalyst
CN111939896B (en) Liquid catalyst for catalyzing ozonolysis at normal temperature and preparation method and application thereof
CN107694564A (en) A kind of catalyst of decomposing formaldehyde and preparation method thereof
CN102000600B (en) Integral normal-temperature micro nitrogen oxide purification material and preparation method thereof
JP3913522B2 (en) Fuel gas treating agent and method for removing impurities in fuel gas
Jia et al. Preparation of XCu@ TiO2 adsorbent for high-efficient PH3 removal in anaerobic environment and evaluation of desulfurization activity of deactivated adsorbent
KR20020009353A (en) Complex Catalysts Used For Removing Nitrogen Oxides And Other Harmful Materials Among Flue Gases And Method For Preparing The Sames
CN101733111A (en) Perovskite/cerium dioxide composite catalyst and preparation method thereof and catalytic combustion on soot
CN101343571B (en) Method for preparing nano-composite zirconium-manganese based oxide mesoporous desulphurizing agent
CN115676896B (en) Amorphous manganese oxide composite material and preparation method and application thereof
CN111167281A (en) Manganese cerium oxide/active carbon composite material for formaldehyde decomposition and preparation method thereof
JP2002249787A (en) Method for removing impurity in fuel oil and treatment agent for fuel oil
CN101992087B (en) Catalyst for selective combustion of hydrogen in ethylbenzene dehydrogenation process and preparation method thereof
JP2616043B2 (en) Catalysts and catalyst supports
JP4304559B2 (en) Hydrogen production catalyst, exhaust gas purification catalyst, and exhaust gas purification method
Li et al. Design of a dual-bed catalyst system with microporous carbons and urea-supported mesoporous carbons for highly effective removal of NO x at room temperature
BG104214A (en) Method for reducing the nitrogen oxide content in gases and the respective catalysts
Lu et al. Microfibrous entrapped ZnO-support sorbents for high contacting efficiency H2S removal from reformate streams in PEMFC applications
JP2002173370A (en) Titania-based porous body and catalyst

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061025

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070123

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070131

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3913522

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110209

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120209

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120209

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130209

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140209

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term