JP2003127045A - Main spindle equipment - Google Patents

Main spindle equipment

Info

Publication number
JP2003127045A
JP2003127045A JP2001320947A JP2001320947A JP2003127045A JP 2003127045 A JP2003127045 A JP 2003127045A JP 2001320947 A JP2001320947 A JP 2001320947A JP 2001320947 A JP2001320947 A JP 2001320947A JP 2003127045 A JP2003127045 A JP 2003127045A
Authority
JP
Japan
Prior art keywords
path
bearing
housing
route
spindle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001320947A
Other languages
Japanese (ja)
Other versions
JP3759893B2 (en
Inventor
Tatsuhiro Yoshimura
辰浩 吉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okuma Corp
Original Assignee
Okuma Corp
Okuma Machinery Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okuma Corp, Okuma Machinery Works Ltd filed Critical Okuma Corp
Priority to JP2001320947A priority Critical patent/JP3759893B2/en
Publication of JP2003127045A publication Critical patent/JP2003127045A/en
Application granted granted Critical
Publication of JP3759893B2 publication Critical patent/JP3759893B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Auxiliary Devices For Machine Tools (AREA)
  • Turning (AREA)

Abstract

PROBLEM TO BE SOLVED: To maintain excellent processing precision by preventing occurrence of thermal displacement due to a cooling route. SOLUTION: A bearing housing 2 is composed of an inner hosing 8 for holding a bearing row 4, an outer housing 9, and a sleeve 11. Between the inner housing 8 and the outer housing 9, and also between the sleeve 11 and the outer housing 9, a spiral outward-going route 12 and a returning route 13 are formed respectively, with both of their front ends connected with each other through a connection hole 14. Furthermore, at the rear side of the outer housing 9, a supply route 15, which is connected with the rear end of the outward-going route 12, and a recovery route 16, which is linked with the rear end of the return route 13, are formed individually.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、マシニングセンタ
等の工作機械に設けられる主軸装置の構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the structure of a spindle device provided in a machine tool such as a machining center.

【0002】[0002]

【従来の技術】図2は、従来の主軸装置を示すもので、
主軸装置20は、円筒状の軸受ハウジング21内で、同
軸上のスピンドル22を軸受列23によって回動可能に
軸支してなる。24は、スピンドル22の前端(図2の
左側)へ着脱可能に設けられた工具ホルダ、25はスピ
ンドル22の軸心で前後移動可能に設けられ、工具ホル
ダ24を把持するコレット26を拡縮動作させる進退ロ
ッドである。また、軸受ハウジング21内には、軸受列
23の周囲を螺旋状に周回する螺旋状経路27が形成さ
れると共に、その螺旋状経路27の前端にキリ孔28が
接続されて、軸受ハウジング21を前後に往復する冷却
経路が形成されている。さらに、螺旋状経路27の後端
には、軸受ハウジング21後方の入口29までキリ孔を
連結して形成される供給経路30が、キリ孔28には、
軸受ハウジング21後方の出口31まで同じくキリ孔を
連結して形成される回収経路32が夫々接続されてい
る。よって、入口29から供給されたクーラント(冷却
液)は、供給経路30を通って螺旋状経路27に入り、
軸受列23の周囲を均等に周回しながら軸受列23を冷
却し、キリ孔28から回収経路32を通って出口31か
ら回収されるものとなる。
2. Description of the Related Art FIG. 2 shows a conventional spindle device.
The spindle device 20 is configured such that a coaxial spindle 22 is rotatably supported by a bearing row 23 in a cylindrical bearing housing 21. Reference numeral 24 is a tool holder detachably provided on the front end of the spindle 22 (left side in FIG. 2), and 25 is provided so as to be movable back and forth around the axis of the spindle 22 to expand and contract a collet 26 that holds the tool holder 24. It is an advancing / retreating rod. Further, in the bearing housing 21, a spiral path 27 that spirals around the bearing row 23 is formed, and a drill hole 28 is connected to the front end of the spiral path 27 to connect the bearing housing 21. A cooling path that reciprocates back and forth is formed. Further, at the rear end of the spiral path 27, a supply path 30 formed by connecting a drill hole to an inlet 29 at the rear of the bearing housing 21 is formed, and in the drill hole 28, a supply path 30 is formed.
Recovery paths 32 formed by similarly connecting drill holes are connected to the outlet 31 at the rear of the bearing housing 21. Therefore, the coolant (coolant) supplied from the inlet 29 enters the spiral path 27 through the supply path 30,
The bearing row 23 is cooled while uniformly orbiting the circumference of the bearing row 23, and is collected from the outlet 31 through the recovery hole 32 from the drill hole 28.

【0003】[0003]

【発明が解決しようとする課題】軸受ハウジング21内
では、冷却経路の復路となるキリ孔28が軸受ハウジン
グ21を略前後に貫通する格好で形成されるため、クー
ラントの通過量が螺旋状経路27と合わせて当該部分で
多くなり、冷却作用が不均等となりやすい。よって、主
軸装置20による加工の際、スピンドル22の回転数の
上昇時等に温度変化があると、軸受ハウジング21のキ
リ孔28付近が他の部分よりも冷却されて熱的なアンバ
ランスが発生し、熱変位によって主軸装置20に傾きを
生じさせて加工精度を低下させるという問題があった。
In the bearing housing 21, a drill hole 28, which serves as a return path for the cooling path, is formed so as to penetrate the bearing housing 21 substantially in the front-rear direction, so that the passage amount of the coolant is the spiral path 27. Together with this, the number of parts increases and the cooling action tends to be uneven. Therefore, when machining is performed by the spindle device 20, if there is a temperature change such as when the rotational speed of the spindle 22 increases, the vicinity of the drill hole 28 of the bearing housing 21 is cooled more than other portions, and thermal imbalance occurs. However, there is a problem that the spindle device 20 is tilted due to thermal displacement to reduce the machining accuracy.

【0004】そこで、請求項1に記載の発明は、冷却経
路による熱変位の発生を防止し、良好な加工精度を維持
できる主軸装置を提供することを目的としたものであ
る。
Therefore, an object of the present invention is to provide a spindle device capable of preventing thermal displacement due to a cooling path and maintaining good machining accuracy.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に、請求項1に記載の発明は、冷却経路を、軸受を均等
に覆う同軸二重の円筒状に形成し、一方をクーラントの
供給側と接続される往き経路と、他方をクーラントの回
収側と接続される戻り経路としたことを特徴とするもの
である。請求項2に記載の発明は、請求項1の目的に加
えて、冷却経路を軸受に近い好適な位置で簡単に形成可
能としつつ、冷却経路によって剛性を低下させないよう
にするために、軸受ハウジングを、径の異なる3つの分
割ハウジングを同軸で順に外装して形成し、各分割ハウ
ジングの内外周間の一方に往き経路を、他方に戻り経路
を夫々形成したものである。なお、本発明でいう円筒状
とは、円筒そのものは勿論、螺旋状や網目状、格子状
等、部分的に円筒を形成する形態も含む。
In order to achieve the above object, the invention as set forth in claim 1 forms a cooling path in a coaxial double cylinder shape that evenly covers a bearing, and supplies a coolant to one side. And a return path connected to the coolant recovery side, and a return path connected to the coolant recovery side. In addition to the object of claim 1, the invention according to claim 2 makes it possible to easily form the cooling path at a suitable position close to the bearing, and yet to prevent the rigidity from being lowered by the cooling path, the bearing housing Is formed by coaxially enclosing three divided housings having different diameters, and a forward path is formed on one side between the inner and outer circumferences of each divided housing and a return path is formed on the other side. The term "cylindrical" used in the present invention includes not only the cylinder itself, but also a form in which the cylinder is partially formed, such as a spiral shape, a mesh shape, or a lattice shape.

【0006】[0006]

【発明の実施の形態】以下、本発明の実施の形態を図面
に基づいて説明する。図1は、主軸装置1の一部縦断面
図で、主軸装置1は、円筒状の軸受ハウジング2と、そ
の軸受ハウジング2内で複数のボールベアリングからな
る軸受列4によって同軸で軸支されるスピンドル3とを
有する。スピンドル3の前端(図1の左側)には、工具
ホルダ5が着脱可能に装着され、スピンドル3の軸心に
は、軸方向への前後移動によって工具ホルダ5を把持す
るコレット6を拡縮動作させる進退ロッド7が設けられ
ている。スピンドル3の回転及び進退ロッド7の進退動
は、図示しないサーボモータ及び油圧によって夫々制御
される。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a partial vertical cross-sectional view of a spindle device 1. The spindle device 1 is coaxially supported by a cylindrical bearing housing 2 and a bearing row 4 formed of a plurality of ball bearings in the bearing housing 2. And a spindle 3. A tool holder 5 is detachably attached to the front end of the spindle 3 (on the left side in FIG. 1), and a collet 6 that grips the tool holder 5 is expanded and contracted on the shaft center of the spindle 3 by moving back and forth in the axial direction. A forward / backward rod 7 is provided. The rotation of the spindle 3 and the forward / backward movement of the forward / backward rod 7 are controlled by a servomotor and hydraulic pressure (not shown), respectively.

【0007】軸受ハウジング2は、軸受列4を保持する
内側ハウジング8と、その内側ハウジング8に同軸で外
装され、複数のボルト10,10・・によって一体に固
定される外側ハウジング9と、その外側ハウジング9に
同軸で外装され、一体に固定されるスリーブ11との3
つの分割ハウジングから形成される。内側ハウジング8
の外周には、軸受列4を中心とした螺旋形に溝が凹設さ
れて、外側ハウジング9の内周面との間に軸受列4を均
等に覆う円筒状の往き経路12を形成している。同様
に、スリーブ11の内周にも螺旋形に溝が凹設されて、
外側ハウジング9の外周面との間に、往き経路12と同
軸で軸受列4を均等に覆う円筒状の戻り経路13を形成
している。そして、外側ハウジング9の前方には、往き
経路12と戻り経路13との前端同士を接続する接続孔
14が半径方向に穿設されて、軸受列4の周囲で前後に
往復可能な冷却経路が形成されている。
The bearing housing 2 includes an inner housing 8 for holding the bearing row 4, an outer housing 9 which is coaxially mounted on the inner housing 8 and is integrally fixed by a plurality of bolts 10, 10 ,. 3 with the sleeve 11 which is coaxially mounted on the housing 9 and fixed integrally
Formed from two split housings. Inner housing 8
A groove is formed in a spiral shape around the bearing row 4 on the outer periphery of the cylindrical housing 12 to form a cylindrical outward path 12 that evenly covers the bearing row 4 with the inner peripheral surface of the outer housing 9. There is. Similarly, a groove is spirally formed on the inner circumference of the sleeve 11,
A cylindrical return path 13 that is coaxial with the outward path 12 and evenly covers the bearing row 4 is formed between the outer housing 9 and the outer peripheral surface. A connection hole 14 that connects the front ends of the forward path 12 and the return path 13 is radially provided in front of the outer housing 9 to form a cooling path that can reciprocate back and forth around the bearing row 4. Has been formed.

【0008】一方、外側ハウジング9の後方部位には、
直線状のキリ孔の連結によって、往き経路12の後端と
接続される供給経路15が形成されると共に、供給経路
15と点対称の位置に、同じく直線状のキリ孔の連結に
よって、戻り経路13の後端と接続される回収経路16
が形成されている。17は、供給経路15の入口に接続
されるクーラントの供給管、18は、回収経路16の出
口に接続されるクーラントの回収管である。よって、供
給管17からクーラントを供給すると、クーラントは、
供給経路15から往き経路12に入り、往き経路12に
沿って軸受列4の周囲を均等に周回しながら軸受列4の
冷却を行う。軸受列4の冷却を終えたクーラントは、往
き経路12の前端へ達すると、接続孔14を通って戻り
経路13に入り、戻り経路13に沿って往き経路12の
周囲を均等に周回しながら後端へ達し、回収経路16を
通って回収管18から回収されることになる。
On the other hand, in the rear part of the outer housing 9,
The supply path 15 connected to the rear end of the outward path 12 is formed by the connection of the linear drill holes, and the return path is formed at the position symmetrical with the supply path 15 by the connection of the linear drill holes. Collection path 16 connected to the rear end of 13
Are formed. Reference numeral 17 is a coolant supply pipe connected to the inlet of the supply passage 15, and 18 is a coolant recovery pipe connected to the outlet of the recovery passage 16. Therefore, when the coolant is supplied from the supply pipe 17, the coolant becomes
From the supply path 15 to the outward path 12, the bearing row 4 is cooled while uniformly circulating around the bearing row 4 along the outward path 12. When the coolant that has finished cooling the bearing row 4 reaches the front end of the outward path 12, the coolant enters the return path 13 through the connection hole 14 and travels along the return path 13 evenly around the outward path 12 to the rear side. It will reach the end and will be recovered from the recovery pipe 18 through the recovery path 16.

【0009】このように上記形態の主軸装置1によれ
ば、冷却経路を、軸受列4を均等に覆う同軸二重の円筒
状の往き経路12と戻り経路13とし、往き経路12を
クーラントの供給側と、戻り経路13をクーラントの回
収側と夫々接続したことで、軸受列4の周囲で往復する
冷却経路を軸受ハウジング2内で均等に形成でき、軸受
ハウジング2の半径方向で熱的アンバランスに冷却する
箇所が生じない。従って、スピンドル3の回転速度を変
更する等して軸受ハウジング2の発熱量が変化しても、
熱変位が生じることがなく、主軸装置1の傾きが防止さ
れ、高い加工精度を維持可能となる。
As described above, according to the spindle device 1 of the above-described embodiment, the cooling path is the coaxial double cylindrical forward path 12 and the return path 13 that evenly cover the bearing row 4, and the forward path 12 supplies the coolant. Side and the return path 13 are connected to the coolant recovery side, respectively, a cooling path that reciprocates around the bearing row 4 can be uniformly formed in the bearing housing 2, and a thermal imbalance in the radial direction of the bearing housing 2 can be achieved. There is no place to cool down. Therefore, even if the heat generation amount of the bearing housing 2 is changed by changing the rotation speed of the spindle 3,
The thermal displacement does not occur, the inclination of the spindle device 1 is prevented, and high machining accuracy can be maintained.

【0010】また、一般に、軸受の冷却には、冷却経路
の空間を大きく形成するよりも、できるだけ軸受の近く
にクーラントが流れるようにする方が効果的である。そ
のために軸受ハウジングの直径を小さくする必要がある
が、軸受ハウジングの直径が小さくなると、主軸装置の
剛性が低下して切削に影響を与えることになる。しか
し、ここでは軸受ハウジング2を、径の異なる内側ハウ
ジング8と、外側ハウジング9と、スリーブ11との3
つの分割ハウジングを同軸で順に外装して形成し、各分
割ハウジングの内外周間の一方に往き経路12を、他方
に戻り経路13を夫々形成しているから、冷却用の往き
経路12を、主軸装置1の剛性を低下させることなく、
冷却効果が高い軸受列4の近くへ簡単に設けられるよう
になっている。
In general, for cooling the bearing, it is more effective to allow the coolant to flow as close to the bearing as possible rather than forming a large space in the cooling path. Therefore, it is necessary to reduce the diameter of the bearing housing. However, when the diameter of the bearing housing is reduced, the rigidity of the spindle device is reduced and cutting is affected. However, here, the bearing housing 2 is composed of an inner housing 8 having a different diameter, an outer housing 9 and a sleeve 11.
The two divided housings are coaxially externally formed in order, and the forward path 12 is formed on one side between the inner and outer circumferences of the respective divided housings, and the return path 13 is formed on the other side. Without reducing the rigidity of the device 1,
It can be easily installed near the bearing row 4 having a high cooling effect.

【0011】なお、往き経路と戻り経路とは、上記形態
では螺旋状としているが、熱的アンバランスを発生させ
ない形状であれば、一方或いは双方とも円筒状の空間と
したり、網目状や格子状の空間としたりする等の設計変
更は可能である。また、上記形態では内側を往き経路、
外側を戻り経路としているが、往きと戻りとを逆にして
も同様の効果が得られる。その他、供給経路と回収経路
をなくして、往き経路と戻り経路とに直接クーラントの
供給管と回収管とを接続することもできる。
Although the forward path and the return path are spiral in the above embodiment, one or both of them may be a cylindrical space, a mesh shape or a lattice shape as long as they do not generate thermal imbalance. It is possible to change the design such as the space of Further, in the above-mentioned form, the route going inside,
Although the outer side is used as the return path, the same effect can be obtained by reversing the forward and backward directions. Besides, it is also possible to directly connect the coolant supply pipe and the recovery pipe to the forward route and the return route by eliminating the supply route and the recovery route.

【0012】[0012]

【発明の効果】請求項1に記載の発明によれば、冷却経
路を、軸受を均等に覆う同軸二重の円筒状に形成し、一
方をクーラントの供給側と接続される往き経路と、他方
をクーラントの回収側と接続される戻り経路としたこと
で、軸受の周囲で往復する冷却経路を軸受ハウジング内
で均等に形成でき、軸受ハウジングの半径方向で熱的ア
ンバランスに冷却する箇所が生じない。従って、スピン
ドルの回転速度を変更する等して軸受ハウジングの発熱
量が変化しても、熱変位が生じることがなく、主軸装置
の傾きが防止され、高い加工精度を維持可能となる。請
求項2に記載の発明によれば、請求項1の効果に加え
て、軸受ハウジングを前記3つの分割ハウジングで形成
し、各分割ハウジングの内外周間の一方に往き経路を、
他方に戻り経路を夫々形成したことで、冷却用の往き経
路又は戻り経路を、主軸装置の剛性を低下させることな
く、冷却効果が高い軸受の近くへ簡単に設けることがで
きる。
According to the first aspect of the present invention, the cooling path is formed in the shape of a coaxial double cylinder that evenly covers the bearing, and one of the forward paths is connected to the coolant supply side, and the other is the forward path. By using as a return path that is connected to the coolant recovery side, a cooling path that reciprocates around the bearing can be evenly formed inside the bearing housing, and there are places where cooling is performed in a thermal unbalance in the radial direction of the bearing housing. Absent. Therefore, even if the amount of heat generated by the bearing housing changes due to changes in the rotation speed of the spindle, thermal displacement does not occur, tilting of the spindle device is prevented, and high machining accuracy can be maintained. According to the invention described in claim 2, in addition to the effect of claim 1, the bearing housing is formed of the three divided housings, and the forward path is provided to one of the inner and outer circumferences of each divided housing,
By forming each of the return paths on the other side, the forward path or the return path for cooling can be easily provided near the bearing having a high cooling effect without lowering the rigidity of the spindle device.

【図面の簡単な説明】[Brief description of drawings]

【図1】主軸装置の一部縦断面図である。FIG. 1 is a partial vertical cross-sectional view of a spindle device.

【図2】従来の主軸装置の一部縦断面図である。FIG. 2 is a partial vertical sectional view of a conventional spindle device.

【符号の説明】[Explanation of symbols]

1・・主軸装置、2・・軸受ハウジング、3・・スピン
ドル、4・・軸受列、8・・内側ハウジング、9・・外
側ハウジング、11・・スリーブ、12・・往き経路、
13・・戻り経路、14・・接続孔、15・・供給経
路、16・・回収経路。
1 ... Spindle device, 2 ... Bearing housing, 3 ... Spindle, 4 ... Bearing row, 8 ... Inner housing, 9 ... Outer housing, 11 ... Sleeve, 12 ... Forward path,
13 ... Return path, 14 ... Connection hole, 15 ... Supply path, 16 ... Recovery path

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 前端に工具を装着可能としたスピンドル
と、内周に軸受を備えて前記スピンドルを軸支する軸受
ハウジングとを有し、前記軸受ハウジング内に、前記軸
受の周囲でクーラントが前後に往復可能な冷却経路を形
成した主軸装置であって、 前記冷却経路を、前記軸受を均等に覆う同軸二重の円筒
状に形成し、一方を前記クーラントの供給側と接続され
る往き経路と、他方を前記クーラントの回収側と接続さ
れる戻り経路としたことを特徴とする主軸装置。
1. A spindle having a tool mountable at a front end thereof, and a bearing housing having a bearing on an inner periphery thereof for axially supporting the spindle, wherein a coolant is provided in the bearing housing around the bearing. A spindle device having a reciprocating cooling path formed therein, wherein the cooling path is formed in a coaxial double cylinder shape that evenly covers the bearing, and one of them is a forward path connected to the coolant supply side. The spindle device, wherein the other is a return path connected to the coolant recovery side.
【請求項2】 軸受ハウジングを、径の異なる3つの分
割ハウジングを同軸で順に外装して形成し、前記各分割
ハウジングの内外周間の一方に往き経路を、他方に戻り
経路を夫々形成した請求項1に記載の主軸装置。
2. The bearing housing is formed by coaxially covering three divided housings having different diameters in order, and a forward path is formed in one of the inner and outer circumferences of each divided housing, and a return path is formed in the other. The spindle device according to Item 1.
JP2001320947A 2001-10-18 2001-10-18 Spindle device Expired - Lifetime JP3759893B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001320947A JP3759893B2 (en) 2001-10-18 2001-10-18 Spindle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001320947A JP3759893B2 (en) 2001-10-18 2001-10-18 Spindle device

Publications (2)

Publication Number Publication Date
JP2003127045A true JP2003127045A (en) 2003-05-08
JP3759893B2 JP3759893B2 (en) 2006-03-29

Family

ID=19138253

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001320947A Expired - Lifetime JP3759893B2 (en) 2001-10-18 2001-10-18 Spindle device

Country Status (1)

Country Link
JP (1) JP3759893B2 (en)

Also Published As

Publication number Publication date
JP3759893B2 (en) 2006-03-29

Similar Documents

Publication Publication Date Title
RU73636U1 (en) SPINDLE ASSEMBLY
JP2009184089A (en) Spindle head for machine tool
US20030094864A1 (en) Spindle apparatus
EP2529883A1 (en) Main shaft device for boring machine
JP2010221360A (en) Machine tool
TW200810876A (en) Machining head for machine tool
JP2010052100A (en) Main spindle device and machine tool equipped with the same
JP2010260150A (en) Spindle cooling apparatus
US10882156B2 (en) Spindle device
JP2003127045A (en) Main spindle equipment
JP2000158288A (en) Main spindle cooling device for machine tool and spindle device
JPH08118199A (en) Feeder for machine tool
JP2009285808A (en) Rotary tool turret
JPH0871888A (en) Spindle cooling device
JP3494419B2 (en) Motor built-in spindle
JP2002066874A (en) Main spindle device for machine tool
CN114850514B (en) Heat dissipation balance type ultra-high speed numerical control machine tool mandrel and heat dissipation optimization method thereof
JP5455578B2 (en) Spindle device
WO2023073796A1 (en) Spindle device
KR102538937B1 (en) Indirect injection type cutting tool and including processing device thereof
JP3080253B2 (en) Spindle device of machine tool
KR102614077B1 (en) Indirect injection and mql injection type cutting tool and including processing device thereof
KR100397973B1 (en) Spindle cooling device of machine tools
JP4637321B2 (en) Rotary joint
KR100428057B1 (en) Spindle cooling device of boring machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040512

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050802

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060105

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3759893

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120113

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120113

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150113

Year of fee payment: 9