JP2003126843A - Oil water separating system - Google Patents

Oil water separating system

Info

Publication number
JP2003126843A
JP2003126843A JP2001330122A JP2001330122A JP2003126843A JP 2003126843 A JP2003126843 A JP 2003126843A JP 2001330122 A JP2001330122 A JP 2001330122A JP 2001330122 A JP2001330122 A JP 2001330122A JP 2003126843 A JP2003126843 A JP 2003126843A
Authority
JP
Japan
Prior art keywords
tank
sub
liquid level
vacuum chamber
oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001330122A
Other languages
Japanese (ja)
Other versions
JP3689661B2 (en
Inventor
Kenji Nakagawa
憲治 仲川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Industries Co Ltd filed Critical Hitachi Industries Co Ltd
Priority to JP2001330122A priority Critical patent/JP3689661B2/en
Publication of JP2003126843A publication Critical patent/JP2003126843A/en
Application granted granted Critical
Publication of JP3689661B2 publication Critical patent/JP3689661B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide oil water separating system which is equipped with a mechanism in a vacuum chamber to detect a liquid level precisely without affected by the fluctuated liquid level caused by low temperature boiling and can control the operation. SOLUTION: The oil water separating system consists of a conventional vacuum chamber and a sub-tank whose liquid level equals to the vacuum chamber liquid level. This system obtains a liquid level by measuring the pressure change in the sub-tank when the vacuum chamber is separated from the sub-tank and a given amount of air is introduced in the sub-tank during vacuum distillation and feeds it back to operation control.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、給油式圧縮機にお
いて圧縮空気等のドレンの油水分離装置に係り、特に、
真空状態でドレンを加熱し低温沸騰させ、油と水の沸点
の差を利用してドレン中の水分を気化蒸発させる真空チ
ャンバー方式の油水分離装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an oil / water separator for drain of compressed air or the like in an oil supply type compressor, and more particularly,
The present invention relates to a vacuum chamber type oil-water separation device that heats a drain in a vacuum state to boil at a low temperature and vaporizes and evaporates water in the drain by utilizing a difference in boiling points of oil and water.

【0002】[0002]

【従来の技術】給油式圧縮機は圧縮空気をユーティリテ
ィとして使用する産業分野で広く使用されている一般的
な圧縮機である。この種の圧縮機はスクリュ式およびレ
シプロ式が主流である。スクリュ式の場合、空気を圧縮
する2本のスクリュロータ間の隙間をシールする目的
と、圧縮プロセスで発生する圧縮熱を冷却する目的と、
ロータ同士の接触部の潤滑を目的として、所要量の潤滑
油を圧縮機内部に給油するようになっている。また、レ
シプロ圧縮機の場合、空気を圧縮するシリンダ、ピスト
ンの接触部の潤滑を目的としてシリンダ内部に潤滑油を
給油するようになっている。
2. Description of the Related Art A refueling type compressor is a general compressor which is widely used in the industrial field where compressed air is used as a utility. Most of the compressors of this type are a screw type and a reciprocating type. In the case of the screw type, the purpose is to seal the gap between the two screw rotors that compress air, the purpose to cool the compression heat generated in the compression process,
A necessary amount of lubricating oil is supplied to the inside of the compressor for the purpose of lubricating the contact portion between the rotors. Further, in the case of the reciprocating compressor, lubricating oil is supplied to the inside of the cylinder for the purpose of lubricating the contact portion of the cylinder and piston for compressing air.

【0003】この種の圧縮機で製造された圧縮空気は前
述の潤滑油を含んでいる。そして、この圧縮空気は通常
常温近傍まで冷却され空気機械に供給される。このた
め、冷却の過程で圧縮空気中の水分が凝縮し、油分を含
んだドレンが発生する。このドレンは環境保全のため油
分を除去し、法律で決められた油分濃度基準値以下に減
量した上で排水が可能となる。ドレンの油水分離技術と
して一般的にフィルタによる油分除去、電気分解、浮
選、真空蒸留方式などがとられている。
Compressed air produced by this type of compressor contains the aforementioned lubricating oil. Then, this compressed air is usually cooled to around room temperature and supplied to the air machine. For this reason, the water in the compressed air is condensed during the cooling process, and a drain containing oil is generated. This drain removes oil for environmental protection, and can be drained after reducing the oil concentration below the legally determined oil concentration standard value. As a drain oil / water separation technology, generally, oil removal by a filter, electrolysis, flotation, vacuum distillation method and the like are adopted.

【0004】特に、特開平11−343976号公報で
は、一定量のドレンが油水分離真空チャンバに溜まると
油水送入弁が閉じ、加熱器による加熱と、真空ポンプの
運転が開始し、油水真空チャンバ内は過熱真空状態にな
る。この結果ドレン中の水分は低温沸騰し、真空ポンプ
を通って大気に還元され、油水真空チャンバ内には油分
濃度の高い凝縮されたドレンが残る。この段階で真空ポ
ンプは停止し、加熱器が切れ、均圧弁、排油弁が開い
て、油分濃度の減量されたドレンが排出される。その
後、排油弁、均圧弁が閉となり、油水送油弁が開き、前
述の動作を繰返すことにより、油水分離が継続的に実施
される。
Particularly, in Japanese Patent Laid-Open No. 11-343976, when a certain amount of drain is accumulated in the oil / water separation vacuum chamber, the oil / water inlet valve is closed, heating by the heater and operation of the vacuum pump are started, and the oil / water vacuum chamber is started. The inside becomes a superheated vacuum state. As a result, the water in the drain boils at a low temperature, is reduced to the atmosphere through the vacuum pump, and the condensed drain having a high oil concentration remains in the oil / water vacuum chamber. At this stage, the vacuum pump is stopped, the heater is turned off, the pressure equalizing valve and the oil discharge valve are opened, and the drain with the reduced oil concentration is discharged. After that, the oil discharge valve and the pressure equalizing valve are closed, the oil / water feeding valve is opened, and the oil / water separation is continuously performed by repeating the above-described operation.

【0005】[0005]

【発明が解決しようとする課題】上記従来技術において
は、一連の運転制御を自動的に行うために、真空チャン
バ内の液面高さの検出が必要である。一般的な液面高さ
の検出方法として真空チャンバ内にフロート式のレベル
スイッチを設けるか、または真空チャンバの重量を重量
センサで測定し、重量変化を液面高さに変換する方法が
考えられる。これらの方法の場合下記の問題がある。 1.真空状態で加熱し沸騰したドレンは、蒸発現象の気
泡が液中で発生し、成長した後液面で破裂を繰返し、液
面変動が著しいためフロート式のレベルスイッチで液面
を正確に検出することができない。 2.上述のように、液面変動に伴い真空チャンバが振動
するため、重量センサで真空チャンバの重量を正確に検
出することができない。
In the above-mentioned prior art, it is necessary to detect the liquid level in the vacuum chamber in order to automatically perform a series of operation controls. As a general method for detecting the liquid level, a float type level switch may be provided in the vacuum chamber, or the weight of the vacuum chamber may be measured by a weight sensor to convert the weight change into the liquid level. . These methods have the following problems. 1. Drain heated and boiled in a vacuum state causes bubbles of evaporation phenomenon in the liquid, grows and repeats bursting at the liquid level, and liquid level fluctuations are remarkable, so the liquid level is accurately detected with a float type level switch. I can't. 2. As described above, since the vacuum chamber vibrates due to the liquid level variation, the weight sensor cannot accurately detect the weight of the vacuum chamber.

【0006】以上のことから、従来技術における一般的
な検出方法を適用して真空チャンバ内の液面高さを検出
することは困難であり、真空蒸留方式による油水分離装
置の運転を自動化する上で課題である。
From the above, it is difficult to detect the liquid surface height in the vacuum chamber by applying the general detection method in the prior art, and it is difficult to automate the operation of the oil-water separator by the vacuum distillation method. Is a challenge.

【0007】そこで、本発明の目的は、真空チャンバ内
の液面高さを正確に計測し、油水分離の自動運転を可能
にした油水分離装置を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide an oil / water separation device capable of accurately measuring the liquid level in the vacuum chamber and enabling automatic operation of oil / water separation.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に、本発明では、液面高さが真空チャンバ内の液面高さ
と同じ液面高さになるようなサブタンクを設け、真空蒸
留作業中に、真空チャンバとサブタンクとを切り離し、
サブタンク内に所定量の空気を導入した時の圧力変化を
計測し、それを用いて、サブタンク内の液面高さを求め
て、真空チャンバ内の液面高さとしたものである。
In order to achieve the above object, the present invention provides a sub-tank in which the liquid level is the same as the liquid level in the vacuum chamber, and the vacuum distillation work is performed. Inside, separate the vacuum chamber and sub tank,
The pressure change when a predetermined amount of air is introduced into the sub-tank is measured, and the liquid level height in the sub-tank is determined using the measured pressure change, and is used as the liquid level height in the vacuum chamber.

【0009】[0009]

【発明の実施の形態】図1は本発明の油水分離装置の一
実施形態の概略構成を示す。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows a schematic configuration of an embodiment of an oil / water separator according to the present invention.

【0010】本システムは次のように構成されている。
図示していない圧縮機等で発生した油成分を含むドレン
は、ドレンタンク8に溜められる。このドレンタンク8
に溜められたドレンは、配管21bと、電磁弁E14
と、配管21aを介して真空チャンバ1に送られる。ま
た、同時に真空チャンバ1内に送られてきたドレンは、
配管16aと、電磁弁A10と、配管16bとを介して
サブタンク2にも送られる。
This system is constructed as follows.
Drain containing an oil component generated in a compressor or the like (not shown) is stored in the drain tank 8. This drain tank 8
Drain accumulated in the pipe 21b and the solenoid valve E14
Then, it is sent to the vacuum chamber 1 through the pipe 21a. Also, the drain sent to the vacuum chamber 1 at the same time,
It is also sent to the sub tank 2 via the pipe 16a, the solenoid valve A10, and the pipe 16b.

【0011】真空タンク1の上部には配管19が接続さ
れており、この配管19により、真空タンク1内を真空
状態(減圧状態)にしたり、大気圧に戻すことをしてい
る。更に、真空タンク1の上部とサブタンク2の上部は
配管17aと、電磁弁B11と、配管17bとを介して
接続されており、電磁弁B11を開放することにより、
サブタンク2と真空タンク1内の圧力が同じ圧力となる
ようにしてある。更に真空タンク1の下部の外側には、
ヒータ7が設けてある。
A pipe 19 is connected to the upper portion of the vacuum tank 1, and the pipe 19 is used to bring the inside of the vacuum tank 1 into a vacuum state (reduced pressure state) or to return it to atmospheric pressure. Furthermore, the upper part of the vacuum tank 1 and the upper part of the sub tank 2 are connected via a pipe 17a, a solenoid valve B11, and a pipe 17b, and by opening the solenoid valve B11,
The pressures in the sub tank 2 and the vacuum tank 1 are set to be the same. Furthermore, on the outside of the lower part of the vacuum tank 1,
A heater 7 is provided.

【0012】また、サブタンク2の上部側には、圧力セ
ンサ9が設けられていると共に、定量空気タンク3と接
続するための配管18aと、電磁弁C12と、配管18
bとが設けてある。更に、定量空気タンク3の上部側に
は、電磁弁D13が設けてある。
A pressure sensor 9 is provided on the upper side of the sub-tank 2, and a pipe 18a for connecting to the constant volume air tank 3, a solenoid valve C12, and a pipe 18 are provided.
b and are provided. Further, a solenoid valve D13 is provided on the upper side of the metering air tank 3.

【0013】真空タンク1の上部側に設けた配管19の
真空タンク1側の端部には電磁弁F15が設けて有り、
この電磁弁15を開放することで真空タンク1やサブタ
ンク2内を大気圧に戻すことができる。更に、配管19
の他の端部側には凝縮機4が設けられ、凝縮機4には配
管20を介して真空ポンプ6が接続されている。なお、
凝縮機4には冷却ファン5が設けてある。
A solenoid valve F15 is provided at the end of the pipe 19 provided on the upper side of the vacuum tank 1 on the vacuum tank 1 side,
By opening the solenoid valve 15, the vacuum tank 1 and the sub tank 2 can be returned to the atmospheric pressure. Furthermore, the piping 19
A condenser 4 is provided on the other end side of the condenser 4, and a vacuum pump 6 is connected to the condenser 4 via a pipe 20. In addition,
The condenser 4 is provided with a cooling fan 5.

【0014】次に、真空蒸留のプロセスについて説明す
る。
Next, the vacuum distillation process will be described.

【0015】図示していない主電源スイッチの投入で、
冷却ファン5と、真空ポンプ6が駆動され、電磁弁C1
2、電磁弁F15が閉となる。尚、他の電磁弁A10、
電磁弁B11、電磁弁E14は開放状態としてある。こ
のため、真空チャンバ1やサブタンク2内の空気は、配
管19と、凝縮器4と、配管20及び真空ポンプ6を通
って大気に放出される。そのため、真空チャンバ1とサ
ブタンク2は徐々に真空度が上昇する。
When a main power switch (not shown) is turned on,
The cooling fan 5 and the vacuum pump 6 are driven, and the solenoid valve C1
2. The solenoid valve F15 is closed. Incidentally, another solenoid valve A10,
The solenoid valve B11 and the solenoid valve E14 are open. Therefore, the air in the vacuum chamber 1 and the sub tank 2 is released to the atmosphere through the pipe 19, the condenser 4, the pipe 20 and the vacuum pump 6. Therefore, the vacuum degree of the vacuum chamber 1 and the sub tank 2 gradually increases.

【0016】真空度上昇に伴ってドレンタンク8に溜め
られたドレン(イ)が真空チャンバ1、およびサブタン
ク2に吸引される。その後、図示していない制御盤から
の指令(信号)によって、主電源投入後予め設定された
時間で電磁弁E14が閉じられ、ヒータ7に通電され
る。
The drain (a) accumulated in the drain tank 8 is sucked into the vacuum chamber 1 and the sub tank 2 as the degree of vacuum increases. Then, by a command (signal) from a control panel (not shown), the solenoid valve E14 is closed at a preset time after the main power is turned on, and the heater 7 is energized.

【0017】この状態では、真空チャンバ1にはドレン
(ロ)が、サブタンク2にはドレン(ハ)が溜められてい
る。また、真空チャンバ1とサブタンク2は、配管16
aと、電磁弁A10と配管16b、及び配管17aと、
電磁弁B11と配管17bにより連通しており、ドレン
(ロ)とドレン(ハ)の液面高さは等しい。
In this state, the drain (b) is stored in the vacuum chamber 1 and the drain (c) is stored in the sub tank 2. In addition, the vacuum chamber 1 and the sub tank 2 are connected to the pipe 16
a, the solenoid valve A10, the pipe 16b, and the pipe 17a,
The solenoid valve B11 and the pipe 17b communicate with each other, and the drain (b) and the drain (c) have the same liquid level.

【0018】ヒータ7を通電後、ドレン(ロ)の温度は
上昇し、真空チャンバ1の真空度に応じて決まる水の沸
点に達すると、ドレン(ロ)の水分の蒸発が開始する。
真空タンク1内で発生した蒸気は、配管19を通って凝
縮器4に入り冷却ファン5で冷却され、蒸気から水分に
還元された後、配管20を介して真空ポンプ6を通って
排出される。なお、シンクタンク1内のドレン(ロ)が
減少すると、サブタンク2からドレン(ハ)が真空タン
ク1側に流れ込む。このため、ドレン(ロ)、ドレン
(ハ)は蒸発によって水分が減量し、低温沸騰で蒸発し
ない油分が残留する。液面が所定量低下した段階で、図
示していない制御盤からの指示で電磁弁E14を開き,
再度ドレンタンク8のドレン(イ)を真空チャンバ1と
サブタンク2に吸引し、前述の蒸発工程を繰返す。
After the heater 7 is energized, the temperature of the drain (b) rises, and when the boiling point of water determined according to the vacuum degree of the vacuum chamber 1 is reached, evaporation of the water in the drain (b) starts.
The steam generated in the vacuum tank 1 enters the condenser 4 through the pipe 19, is cooled by the cooling fan 5, is reduced to water from the steam, and is then discharged through the vacuum pump 6 through the pipe 20. . When the drain (b) in the think tank 1 decreases, the drain (c) flows from the sub tank 2 into the vacuum tank 1 side. Therefore, the water content of the drain (b) and drain (c) is reduced by evaporation, and the oil content that does not evaporate due to low temperature boiling remains. When the liquid level drops by a predetermined amount, the solenoid valve E14 is opened by an instruction from a control panel (not shown),
The drain (a) of the drain tank 8 is sucked into the vacuum chamber 1 and the sub tank 2 again, and the above evaporation process is repeated.

【0019】次に、液面制御について説明する。液面を
求める方式としては次の2種類が考えられる。1つの方
法は、外部から定量の空気を一定時間供給し、その間の
圧力変化から求める方法である。もう1つの方法は、定
量容器との連通による圧力変化から求める方法である。
Next, the liquid level control will be described. There are two possible methods for determining the liquid level. One method is to supply a fixed amount of air from the outside for a certain period of time and obtain it from the pressure change during that period. The other method is a method of obtaining from the pressure change due to communication with the metering container.

【0020】まず1番目の方法では、空間容積をV、初
期圧力をP1、最終圧力を;P2、供給空気圧力をP
3、供給空気量をQ、ガス定数をR、ガスの温度をT、
ガスの重量をGとする。また、初期と最終のガス定数、
温度の変化は小さく無視できるものとする。気体の状態
方程式PV=GRTから、 初期重量はG1=(P1×V)/(R×T) 最終重量はG2=(P2×V)/(R×T) この差が外部から供給された空気量に等しいため、 G2−G1=(P2−P1)×V/(R×T) =(P3×Q)/(R×T) ∴ V=(P3×Q)/(P2−P1) …(1) として求められる。
In the first method, the space volume is V, the initial pressure is P1, the final pressure is P2, and the supply air pressure is P.
3, supply air quantity Q, gas constant R, gas temperature T,
Let G be the weight of the gas. Also, the initial and final gas constants,
The change in temperature is small and negligible. From the equation of state of gas PV = GRT, the initial weight is G1 = (P1 × V) / (R × T) and the final weight is G2 = (P2 × V) / (R × T). Since it is equal to the quantity, G2-G1 = (P2-P1) * V / (R * T) = (P3 * Q) / (R * T)? V = (P3 * Q) / (P2-P1) ... ( 1) is required.

【0021】次に2番の方法では、空間容積をV1、空
間容積の初期圧力をP1、定量容器の容積をV2、定量
容器の初期圧力をP2、空間容積と定量容器を連通後の
到達圧力をP3、とし、気体の状態方程式における各記
号は1項と同一とする。 空間容積中の初期重量 G1=(P1×V1)/(R×
T) 定量容器中の初期重量 G2=(P2×V2)/(R×
T) 連通後の流体重量 G3=P3×(V1+V2)/
(R×T) G3=G1+G2 より V1を求めると ∴ V1=(P2−P3)×V2/(P3−P1) …式(2) として求められる。
In the second method, the space volume is V1, the initial pressure of the space volume is P1, the volume of the fixed quantity container is V2, the initial pressure of the fixed quantity container is P2, and the ultimate pressure after the space volume and the fixed quantity container are communicated with each other. Is P3, and each symbol in the equation of state of gas is the same as the first term. Initial weight in space volume G1 = (P1 × V1) / (R ×
T) Initial weight in quantitative container G2 = (P2 × V2) / (R ×
T) Weight of fluid after communication G3 = P3 × (V1 + V2) /
(R × T) When V1 is calculated from G3 = G1 + G2, ∴V1 = (P2-P3) × V2 / (P3-P1) (2)

【0022】以上の説明のとおり、定期的に容器に計量
可能な空気を導入し、容器内の状態変化として圧力を測
定することにより計算により求める。空間容積は液面変
動有無に関わらず計測時点の状態で一定である。また振
動に影響されないため、計測中の状態を安定的に捉える
ことが出来る。
As described above, it is calculated by introducing measurable air into the container on a regular basis and measuring the pressure as the state change in the container. The space volume is constant at the time of measurement regardless of whether the liquid surface changes. Moreover, since it is not affected by vibration, it is possible to stably capture the state during measurement.

【0023】なおここでは、2番の方式で液面を求めて
制御する方法を説明する。
Here, a method for obtaining and controlling the liquid level by the second method will be described.

【0024】通常運転中は電磁弁A10、電磁弁B11
が開いているため、配管16a、16b、および配管1
7a、17bの連通により真空チャンバ1のドレン
(ロ)とサブタンク2のドレン(ハ)の液面レベルは等
しく保たれている。また、サブタンク2の内圧は真空チ
ャンバ1内圧と等しく、真空圧P1となっている。この
状態で、図示していない制御盤から、予め設定した時間
間隔で信号を出し、電磁弁A10、電磁弁B11、電磁
弁D13を閉じ、電磁弁C12を開ける。
During normal operation, solenoid valve A10 and solenoid valve B11
The pipes 16a, 16b and the pipe 1
The liquid levels of the drain (b) of the vacuum chamber 1 and the drain (c) of the sub tank 2 are kept equal by the communication of 7a and 17b. The internal pressure of the sub tank 2 is equal to the internal pressure of the vacuum chamber 1 and is the vacuum pressure P1. In this state, a control panel (not shown) outputs a signal at preset time intervals to close the solenoid valves A10, B11 and D13 and open the solenoid valve C12.

【0025】定量空気タンク3には大気圧P2状態の空
気が容積V2充填されており、この空気が18bと、電
磁弁C12と、配管18aとを通って圧力の低いサブタ
ンク2側へ瞬時に流れる。これによって、サブタンク2
と定量空気タンクの内圧はP3の状態となる。
The fixed-quantity air tank 3 is filled with air at the atmospheric pressure P2 in a volume V2, and this air instantaneously flows to the side of the sub-tank 2 having a low pressure through 18b, the solenoid valve C12, and the pipe 18a. . As a result, the sub tank 2
Then, the internal pressure of the constant volume air tank becomes P3.

【0026】この初期状態の圧力P1と最終状態の圧力
P3は圧力センサ9で検知し、図示していない制御盤に
入力される。また、大気圧P2は定数として演算式に織
込まれている。以上のデータから、図示していない制御
盤に組み込まれた前述の式(2)を用いて、サブタンク
2の空間容積V1を求める。そして、サブタンク2の全
容積V3からV1を除くことによりサブタンク2内の液
量が求められる。更に、サブタンク2の底面積は定数で
あり、液量を底面積で割って液面高さの解を得る。一連
の演算が終了し、予め設定された液面高さの下限値より
計算結果が大きい場合は、電磁弁A10、電磁弁B1
1、電磁弁D13を開け、電磁弁C12を閉じて蒸発工
程を繰返す。また、下限値よりも計算結果が小さい場合
は、電磁弁E14を開いてドレンタンク8のドレン
(イ)を真空チャンバ1、サブタンク2に吸引する。
The pressure P1 in the initial state and the pressure P3 in the final state are detected by the pressure sensor 9 and input to a control panel (not shown). Further, the atmospheric pressure P2 is incorporated in the arithmetic expression as a constant. From the above data, the space volume V1 of the sub-tank 2 is obtained using the above-mentioned formula (2) incorporated in a control panel (not shown). Then, by removing V1 from the total volume V3 of the sub tank 2, the liquid amount in the sub tank 2 can be obtained. Furthermore, the bottom area of the sub-tank 2 is a constant, and the liquid amount is divided by the bottom area to obtain a solution of the liquid level. When a series of calculations is completed and the calculation result is larger than the preset lower limit value of the liquid level, the solenoid valve A10, the solenoid valve B1
1, the solenoid valve D13 is opened, the solenoid valve C12 is closed, and the evaporation process is repeated. When the calculation result is smaller than the lower limit value, the solenoid valve E14 is opened to suck the drain (a) of the drain tank 8 into the vacuum chamber 1 and the sub tank 2.

【0027】以上のように、本実施形態ではサブタンク
に加えて、定量空気タンクを設けた構成としたが、真空
チャンバと切り離した時にサブタンクに導入する空気量
を計測できできれば、定量空気タンクを設けずに、
(1)式を用いて、液面高さを求めることができる。
As described above, in the present embodiment, the fixed quantity air tank is provided in addition to the sub tank. However, if the quantity of air introduced into the sub tank when it is separated from the vacuum chamber can be measured, the fixed quantity air tank is provided. Without
The liquid level height can be calculated using the equation (1).

【0028】本発明は、低圧沸騰している真空チャンバ
とは別に設けたサブタンクにて液面を計測する構成とし
ていているために、液面の乱れがなく高精度に液面高さ
を計測でき、更に、フロートスイッチ等の稼動部がない
ためメンテナンスが不要となり長期間に渡って計測精度
を保つことができる等の効果がある。
According to the present invention, since the liquid level is measured in the sub-tank provided separately from the low pressure boiling vacuum chamber, the liquid level can be measured with high accuracy without disturbance of the liquid level. Furthermore, since there is no moving part such as a float switch, maintenance is not required, and the measurement accuracy can be maintained for a long period of time.

【0029】なお、上記実施形態では真空チャンバとは
別にサブタンクを設ける構成としたが、真空チャンバを
2つの部屋(室)に仕切る仕切り板と、その仕切り板の
上下に弁を設ける構成としてもよい。この場合、一方側
の部屋の下部にヒータを設けて加熱し、他方の部屋へは
熱が伝わらないようにして、液面高さを測定する時は上
下に設けた弁を閉じ他方の部屋に設けた大気供給弁を開
放して、所定量の大気を所定時間導入することで、先に
説明した式(1)、又は式(2)を用いて液面高を求め
るようにしても良い。この構成では、先の実施形態で設
けたサブタンクが不要となり、装置の小型が図れる。
Although the sub-tank is provided separately from the vacuum chamber in the above embodiment, a partition plate for partitioning the vacuum chamber into two chambers (rooms) and valves above and below the partition plate may be provided. . In this case, a heater is installed in the lower part of the room on one side to heat it so that heat is not transmitted to the other room, and when measuring the liquid level, the valves installed above and below are closed and the other room is closed. It is also possible to open the provided atmosphere supply valve and introduce a predetermined amount of atmosphere for a predetermined time to obtain the liquid surface height by using the above-described equation (1) or equation (2). With this configuration, the sub-tank provided in the previous embodiment is unnecessary, and the device can be downsized.

【0030】[0030]

【発明の効果】以上説明したように本発明によれば、 (1)低温沸騰現象に伴う液面変動の激しい場合におい
ても、容積を測定することにより精度良く液面高さを検
出できる。 (2)フロートスイッチのような可動部がなく、構造的
信頼性が高い。 (3)制御する液面高さはスイッチを交換する必要がな
く、制御盤の演算プログラムの設定値を変更するだけで
容易に出来る。
As described above, according to the present invention, (1) the liquid level can be accurately detected by measuring the volume even when the liquid level changes drastically due to the low temperature boiling phenomenon. (2) Since there is no moving part like a float switch, structural reliability is high. (3) The liquid level to be controlled does not need to be replaced with a switch, and can be easily changed only by changing the set value of the arithmetic program of the control panel.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例のフローと機器構成図FIG. 1 is a flow chart of an embodiment of the present invention and a device configuration diagram.

【符号の説明】[Explanation of symbols]

1…真空チャンバ 2…サブタンク 3…定量空気タンク 4…凝縮器 5…冷却ファン 6…真空ポンプ 7…ヒータ 8…ドレンタンク 9…圧力センサ 10〜15…電磁弁 16〜21…配管 1 ... vacuum chamber 2 ... Sub tank 3 ... Fixed quantity air tank 4 ... condenser 5 ... Cooling fan 6 ... Vacuum pump 7 ... Heater 8 ... Drain tank 9 ... Pressure sensor 10-15 ... Solenoid valve 16-21 ... Piping

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) B01D 17/12 B01D 17/12 B C02F 1/40 ZAB C02F 1/40 ZABZ ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) B01D 17/12 B01D 17/12 B C02F 1/40 ZAB C02F 1/40 ZABZ

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】圧縮空気系統から排出される油分と水分が
懸濁したドレンを溜めるタンクと、真空状態で油と水の
沸点の差を利用して水分を気化蒸発させる真空チャンバ
とを備えた油水分離装置において、 前記真空チャンバの液面と同一高さを維持するサブタン
クを設け、定期的に前記真空チャンバと前記サブタンク
との連通を切り離し、サブタンク内の空間に満たされた
空気の量と圧力変化から液面高さを計測する構成とした
ことを特徴とする油水分離装置。
1. A tank for storing a drain in which oil and water discharged from a compressed air system are suspended, and a vacuum chamber for evaporating water by utilizing a difference in boiling points of oil and water in a vacuum state. In the oil-water separation device, a sub-tank that maintains the same height as the liquid level of the vacuum chamber is provided, and the communication between the vacuum chamber and the sub-tank is periodically disconnected, and the amount and pressure of air filled in the space inside the sub-tank. An oil / water separator characterized in that the liquid level height is measured from changes.
【請求項2】請求項1記載の油水分離装置において、液
面高さを計測する時にサブタンク内に流入する空気量を
一定にするため、前記サブタンクに連通する定量空気タ
ンクを設けたことを特徴とする油水分離装置。
2. The oil-water separation device according to claim 1, further comprising a fixed-quantity air tank communicating with the sub-tank in order to make the amount of air flowing into the sub-tank constant when measuring the liquid level. Oil and water separation device to be.
JP2001330122A 2001-10-29 2001-10-29 Oil / water separator Expired - Fee Related JP3689661B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001330122A JP3689661B2 (en) 2001-10-29 2001-10-29 Oil / water separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001330122A JP3689661B2 (en) 2001-10-29 2001-10-29 Oil / water separator

Publications (2)

Publication Number Publication Date
JP2003126843A true JP2003126843A (en) 2003-05-07
JP3689661B2 JP3689661B2 (en) 2005-08-31

Family

ID=19145901

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001330122A Expired - Fee Related JP3689661B2 (en) 2001-10-29 2001-10-29 Oil / water separator

Country Status (1)

Country Link
JP (1) JP3689661B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009254497A (en) * 2008-04-15 2009-11-05 Kazuo Takahashi External heating type reduced pressure fryer
KR101076051B1 (en) * 2011-04-05 2011-10-24 강원대학교산학협력단 Water and oil separator using peltier element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009254497A (en) * 2008-04-15 2009-11-05 Kazuo Takahashi External heating type reduced pressure fryer
KR101076051B1 (en) * 2011-04-05 2011-10-24 강원대학교산학협력단 Water and oil separator using peltier element

Also Published As

Publication number Publication date
JP3689661B2 (en) 2005-08-31

Similar Documents

Publication Publication Date Title
US11073315B2 (en) Refrigeration system with purge and acid filter
US4304102A (en) Refrigeration purging system
US6740205B2 (en) Processing of shipboard wastewater
US5584914A (en) Membrane deaerator apparatus
JPH06500049A (en) Apparatus and method for processing emulsions
WO2014145584A1 (en) Refrigeration purger monitor
US10267548B2 (en) Oil management for heating ventilation and air conditioning system
US3620038A (en) Purging apparatus for refrigeration system
US5724821A (en) Compressor oil pressure control method
CN1251386C (en) Device for recycling exhaust air and cooling fluid of condensator for evaporative cooling electric motor
RU2690922C2 (en) Multi-stage distillation unit and method of its operation
JP2008183512A (en) Vacuum distillation regenerating apparatus
JP2003126843A (en) Oil water separating system
JP4058422B2 (en) Oil / water separator
US8863538B2 (en) Ammonia recycling still for a refrigeration system and method therefor
JP2004148181A (en) Oil-water separation method and oil-water separator
CN106092248B (en) Method and system for measuring volume of fluid discharged from an air conditioning service unit
US2767554A (en) Purging system for refrigerant
US6457326B1 (en) Purge system for absorption unit
JP4240351B2 (en) Evaporation concentration device
JP6595855B2 (en) Distillation equipment with distillation tower
JP2757589B2 (en) Oil absorption type bleeding device for refrigerator
CN108571840B (en) Refrigerant purification equipment
US1731546A (en) Refrigeration
SU903298A1 (en) Distillation unit for producing sweet water

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050512

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050607

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050613

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080617

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080617

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080617

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080617

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090617

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100617

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110617

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees