JP2003125796A - Method for estimating growth of organism, and method for utilizing the same for evaluation of environment - Google Patents

Method for estimating growth of organism, and method for utilizing the same for evaluation of environment

Info

Publication number
JP2003125796A
JP2003125796A JP2001329298A JP2001329298A JP2003125796A JP 2003125796 A JP2003125796 A JP 2003125796A JP 2001329298 A JP2001329298 A JP 2001329298A JP 2001329298 A JP2001329298 A JP 2001329298A JP 2003125796 A JP2003125796 A JP 2003125796A
Authority
JP
Japan
Prior art keywords
growth
environment
test piece
micro
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001329298A
Other languages
Japanese (ja)
Inventor
Keiko Abe
恵子 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2001329298A priority Critical patent/JP2003125796A/en
Publication of JP2003125796A publication Critical patent/JP2003125796A/en
Pending legal-status Critical Current

Links

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for estimating the growth of organisms by which it is precisely judged whether the examined environment is the one for promoting or stopping the growth of microorganisms or not, or whether the examined environment is the one for the microorganisms dying out or not, and further to provide a method for utilizing the method for evaluation of the environment. SOLUTION: A test specimen is formed out of a covering material having a filter through which water vapor permeates but the microorganisms, natural enemies thereof and liquid water do not permeate, and contains the microorganisms, or a temperature sensor, a humidity sensor, and a recorder or a sender of the data measured by them instead of the microorganisms inside the specimen. The test specimen is exposed to the environment to be examined, and the influence of the environment to be tested on the growth of the microorganisms is displayed by using the growth of the microorganisms in the test specimen, or the growth estimated from the measured data.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、被調査環境が微小
生物の発育を進行または停止させる環境であるか否か、
あるいは、被調査環境が微小生物を死滅させる環境であ
るか否かなどを推定できる生物発育の推定方法およびこ
れを環境評価に利用する方法に関する。
TECHNICAL FIELD The present invention relates to whether or not the environment to be investigated is an environment for advancing or stopping the growth of microbes.
Alternatively, the present invention relates to a method for estimating biological growth that can estimate whether or not the environment to be investigated is an environment in which microbes are killed, and a method for using this for environmental evaluation.

【0002】[0002]

【従来の技術】例えば、カビによる人の疾病として真菌
感染症、真菌アレルギー症、食中毒症などが、また、ダ
ニによる人の疾病として刺咬症、喘息、アレルギー、ア
トピー性湿疹などが知られているように、微小生物の中
には環境や人にさまざまな害を与え、悪影響を及ぼすも
のが少なからず存在している。しかしながら、そうした
有害な微小生物の生育および繁殖を防ぐための従前の対
策は、漠然とした経験に頼っていたため、汚染が目に見
えるほどになったり、アレルギー疾患を起こしたり、食
料や飼料がこれらの微小生物により汚染され消費者から
のクレームが出たりしてから初めて気が付くので、この
ような被害に対する対策は遅れがちになっていた。この
ため、被調査環境が微小生物の発育を進行または停止さ
せる環境であるか否か、あるいは、被調査環境が微小生
物を死滅させる環境であるか否かをあらかじめ正確に判
断し、問題になりそうな箇所は汚染被害を受ける前に対
応することが望まれていたものである。
2. Description of the Related Art For example, fungal infections, fungal allergies, food poisoning and the like are known as human diseases caused by mold, and bites, asthma, allergies and atopic eczema are known as human diseases caused by mites. As described above, there are quite a few micro-organisms that cause various damages to the environment and humans and have an adverse effect. However, previous measures to prevent the growth and reproduction of such harmful micro-organisms have relied on vague experience, resulting in visible pollution, allergic disease, and food and feed I noticed it only after the complaints from the consumer that it was contaminated by microscopic organisms, so the countermeasures against such damage tended to be delayed. For this reason, it is necessary to accurately determine in advance whether or not the environment under investigation is an environment in which the growth of microbes progresses or stops, or whether the environment under investigation is an environment in which microbes die. It was hoped that such areas would be dealt with before they were damaged by pollution.

【0003】[0003]

【発明が解決しようとする課題】本発明は、微小生物が
発育する可能性のある被調査環境に、微小生物およびそ
の天敵を通過させないフィルターを備える被覆材により
形成され、内部に微小生物を封じ込んでなる試験片を曝
露し、試験片中の微小生物の発育速度あるいは発育状態
から、被調査環境が微小生物の発育に与える影響力を定
量的あるいは定性的に表示することにより、被調査環境
が微小生物の発育を進行または停止させる環境であるか
否か、あるいは、被調査環境が微小生物を死滅させる環
境であるか否かをあらかじめ正確に判断できる生物発育
の推定方法およびこれを環境評価に利用する方法を提供
することをその目的とするものである。また、本発明
は、請求項1に記載の試験片を用いて或環境中におかれ
た微小生物の発育とその環境の温度および相対湿度との
相関関係を調査することによって、前記温度および相対
湿度と微小生物の発育を示すデータを予め作成し、その
後このデータを被調査環境で計測した温度と相対湿度と
照合し、温度および相対湿度から導かれる微小生物の推
定発育速度あるいは推定発育状態から被調査環境が微小
生物発育に与える影響力を定量的あるいは定性的に表示
する生物発育の推定方法およびこれを環境評価に利用す
る方法を提供することをその目的とするものである。ま
た、本発明は、請求項3に記載の試験片(請求項1に記
載の試験片と同じ構成の試験片)を用いて或環境中にお
かれた微小生物の発育とその環境の温度および相対湿度
との相関関係を調査することによって、前記温度および
相対湿度と微小生物の発育を示すデータを予め作成し、
その後このデータを被調査環境で計測した温度と相対湿
度と照合し、微小発育が発育できない環境であることか
ら被調査環境が非汚染環境であることを呈示する生物発
育の推定方法およびこれを環境評価に利用する方法を提
供することをその目的とするものである。本発明は、微
小生物を死滅させるべき被調査環境に、微小生物および
その天敵を通過させないフィルターを備える被覆材によ
り形成され、内部に微小生物を封じ込んでなる試験片を
曝露し、その後に、試験片を発育可能環境に移して発育
が確認できる充分な期間培養し、この発育可能環境下に
おいて微小生物発育の無いことから被調査環境が微小生
物死滅環境であったことを呈示する生物発育の推定方法
およびこれを環境評価に利用する方法を提供することを
その目的とするものである。また、本発明は、微小生物
およびその天敵を通過させないフィルターを備える被覆
材により形成され、内部に微小生物を封じ込んでなる試
験片を曝露し、試験片中の特定微小生物の発育速度、発
育状態あるいは生存状況から、被調査環境が他の生物の
発育あるいは生存に与える影響を推定し呈示することを
特徴とする生物発育の推定方法およびこれを環境評価に
利用する方法を提供することをその目的とするものであ
る。本発明は、或環境中におかれた、特定の微小生物の
発育と温度および相対湿度との相関関係を調査すること
によって、前記温度および相対湿度と前記微小生物の発
育を示すデータを予め作成し、その後これらのデータを
被調査環境の温度と相対湿度と照合し、温度および相対
湿度から導かれる特定の微小生物の推定発育速度あるい
は推定発育状態から被調査環境が他の生物の発育あるい
は生存に与える影響を推定し呈示することを特徴とする
生物発育の推定方法およびこれを環境評価に利用する方
法を提供することをその目的とするものである。そし
て、請求項1〜7で用いる微小生物は、チリダニ、好湿
性真菌、好乾性真菌、胞子を作る性質を持つ細菌その他
の微小生物を選択できる。本発明は、液体状態の水を通
過させず、水蒸気を通過させるフィルターを少なくとも
一部に備える被覆材により形成される内部に、温度セン
サー、湿度センサーおよびこれらにより測定されたデー
タの記録装置を封入することにより、液体状態の水は侵
入させず水蒸気は通過させる環境評価用試験片を提供す
ることをその目的とするものである。また本発明は、液
体状態の水を通過させず、水蒸気を通過させるフィルタ
ーを少なくとも一部に備える被覆材により形成される内
部に、温度センサー、湿度センサーおよびこれらにより
測定されるデータの発信装置が封入することにより、液
体状態の水は侵入させず水蒸気は通過させる環境評価用
試験片を提供することをその目的とするものである。そ
して、請求項12および13の試験片は、前記被覆材が
熱可溶性の成分により構成されていてもよい。本発明
は、或環境中におかれた微小生物の発育とその環境の温
度および相対湿度との相関関係を調査することによっ
て、前記温度および相対湿度と微小生物の発育を示すデ
ータを予め作製し、その後これらのデータを被調査環境
で請求項13〜15に記載の試験片を用いて計測した温
度と相対湿度と照合し、温度および相対湿度から導かれ
る微小生物の推定発育速度あるいは推定発育状態から被
調査環境が微小生物発育に与える影響力を表示する生物
発育の推定方法およびこれを環境評価に利用する方法を
提供することをその目的とするものである。
DISCLOSURE OF THE INVENTION The present invention is formed by a covering material provided with a filter that does not allow microbes and their natural enemies to pass through the environment to be investigated in which microbes may grow, and the microbes are sealed inside. By exposing a complicated test piece and displaying quantitatively or qualitatively the influence of the environment to be examined on the growth of the microbe from the growth rate or growth state of the microbe in the test piece, Estimate method of biological growth that can accurately determine in advance whether or not is an environment that progresses or stops the growth of small organisms, or whether the environment under investigation is an environment that kills small organisms and an environmental evaluation The purpose is to provide a method to be used for. Further, the present invention uses the test piece according to claim 1 to investigate the correlation between the growth of a micro-organism placed in an environment or the temperature and relative humidity of the environment to determine the temperature and relative humidity. Data indicating the humidity and the growth of micro-organisms is created in advance, and then this data is compared with the temperature and relative humidity measured in the environment under study, and the estimated growth rate or estimated growth state of micro-organisms derived from the temperature and relative humidity is used. It is an object of the present invention to provide a method for estimating biological growth that quantitatively or qualitatively displays the influence of the environment under investigation on the growth of micro-organisms, and a method for using the method for environmental evaluation. Further, the present invention uses the test piece according to claim 3 (the test piece having the same configuration as the test piece according to claim 1) to grow a micro-organism placed in an environment and the temperature of the environment. By investigating the correlation with the relative humidity, to create in advance the data showing the temperature and relative humidity and the growth of microbes,
After that, by comparing this data with the temperature and relative humidity measured in the surveyed environment, it is shown that the surveyed environment is a non-polluting environment because it is an environment in which microdevelopment cannot be developed. Its purpose is to provide a method used for evaluation. The present invention, the environment to be investigated to kill the micro-organism, formed by a coating material comprising a filter that does not pass the micro-organisms and their natural enemies, exposing a test piece containing the micro-organisms inside, after which, Transfer the test piece to a growth-friendly environment and incubate for a sufficient period of time so that growth can be confirmed.Because there is no growth of micro-organisms in this environment, it is possible to demonstrate that the environment to be examined was a micro-organism-killing environment. It is an object of the present invention to provide an estimation method and a method of using it for environmental evaluation. Further, the present invention is formed by a coating material provided with a filter that does not allow microbes and their natural enemies to pass through, and exposes a test piece that encloses the microbe inside, and the growth rate and growth of the specific microbe in the test piece. It is an object of the present invention to provide a method for estimating biological growth, which is characterized by estimating and presenting the effect of the environment under investigation on the growth or survival of other organisms from the state or survival status, and a method of using this for environmental assessment. It is intended. The present invention preliminarily prepares data indicating the temperature and relative humidity and the growth of the micro-organism by investigating the correlation between the growth of the specific micro-organism and the temperature and the relative humidity in an environment. After that, these data are compared with the temperature and relative humidity of the environment under investigation, and the environment under investigation shows the growth or survival of other organisms based on the estimated growth rate or estimated growth state of a specific micro-organism derived from the temperature and relative humidity. It is an object of the present invention to provide a method for estimating biological growth, which is characterized by estimating and presenting the effect on the environment, and a method for utilizing the method for environmental evaluation. The micro-organisms used in claims 1 to 7 can be selected from dust mites, hygrophilic fungi, psychrophilic fungi, spore-forming bacteria and other micro-organisms. According to the present invention, a temperature sensor, a humidity sensor, and a recording device for recording data measured by the temperature sensor and the humidity sensor are enclosed inside a coating material having at least a part of a filter that allows water vapor to pass but not water in a liquid state. By doing so, an object thereof is to provide a test piece for environmental evaluation in which liquid water does not enter and water vapor passes through. Further, the present invention provides a temperature sensor, a humidity sensor, and a device for transmitting data measured by the humidity sensor, which is formed by a covering material having a filter that allows water vapor to pass therethrough, at least a portion of which does not pass liquid water. It is an object of the present invention to provide an environment-evaluating test piece which is sealed so that water in a liquid state does not enter and water vapor passes through. In the test pieces of claims 12 and 13, the coating material may be composed of a heat-soluble component. The present invention preliminarily prepares data indicating the growth of a micro-organism placed in an environment and the temperature and relative humidity of the environment to investigate the correlation between the temperature and the relative humidity. Then, these data are collated with the temperature and the relative humidity measured by using the test piece according to claim 13 to 15 in the environment to be investigated, and the estimated growth rate or estimated growth state of the micro-organism derived from the temperature and the relative humidity. It is an object of the present invention to provide a method for estimating the growth of a living organism, which displays the influence of the environment under investigation on the growth of a small organism, and a method for using it for environmental evaluation.

【0004】[0004]

【問題を解決するための手段】本発明に係る生物発育の
推定方法およびこれを環境評価に利用する方法は、微小
生物が発育する可能性のある被調査環境に、微小生物お
よびその天敵を通過させないフィルターを備える被覆材
により形成され、内部に微小生物を封じ込んでなる試験
片を曝露し、試験片中の微小生物の発育速度あるいは発
育状態から、被調査環境が微小生物の発育に与える影響
力を定量的あるいは定性的に表示するようにしたもので
ある。また、請求項1に記載の試験片を用いて或環境中
におかれた微小生物の発育速度とその環境の温度および
相対湿度との相関関係を調査することによって、前記温
度および相対湿度と微小生物の発育速度を示すデータを
予め作成し、その後このデータを被調査環境で計測した
温度と相対湿度と照合し、温度および相対湿度から導か
れる微小生物の推定発育速度あるいは推定発育状態から
被調査環境が微小生物発育に与える影響力を定量的に表
示するようにしたものである。本発明に係る生物発育の
推定方法およびこれを環境評価に利用する方法は、微小
生物による汚染を避けるべき被調査環境に、微小生物お
よびその天敵を通過させないフィルターを備える被覆材
により形成され、内部に微小生物を封じ込んでなる試験
片を曝露し、当該試験片中の微小生物が被調査環境で発
育しないことから被調査環境が非汚染環境であることを
呈示するものである。また、請求項3に記載の試験片を
用いて或環境中におかれた微小生物の発育とその環境の
温度および相対湿度との相関関係を調査することによっ
て、前記温度および相対湿度と微小生物の発育速度を示
すデータを予め作成し、その後このデータを被調査環境
で計測した温度と相対湿度と照合し、微小発育が発育で
きない環境であることから被調査環境が非汚染環境であ
ることを呈示するものである。本発明に係る生物発育の
推定方法およびこれを環境評価に利用する方法は、微小
生物を死滅させるべき被調査環境に、微小生物およびそ
の天敵を通過させないフィルターを備える被覆材により
形成され、内部に微小生物を封じ込んでなる試験片を曝
露し、その後に、試験片を発育可能環境に移して発育が
確認できる充分な期間培養し、この発育可能環境下にお
いて微小生物発育の無いことから被調査環境が微小生物
死滅環境であったことを呈示するものである。また、微
小生物およびその天敵を通過させないフィルターを備え
る被覆材により形成され、内部に微小生物を封じ込んで
なる試験片を曝露し、試験片中の特定微小生物の発育速
度、発育状態あるいは生存状況から、被調査環境が他の
異種生物の発育あるいは生存に与える影響を推定方法し
呈示するものである。そしてまた、或環境中におかれ
た、特定の微小生物の発育速度と温度および相対湿度と
の相関関係を調査することによって、前記温度および相
対湿度と前記微小生物の発育速度を示すデータを予め作
成し、その後これらのデータを被調査環境の温度と相対
湿度と照合し、温度および相対湿度から導かれる特定の
微小生物の推定発育速度あるいは推定発育状態から被調
査環境が他の微小生物の発育あるいは生存に与える影響
を推定し呈示するものである。本発明に係る環境評価用
試験片は、液体状態の水を通過させず、水蒸気を通過さ
せるフィルターを少なくとも一部に備える被覆材により
形成される内部に、温度センサー、湿度センサーおよび
これらにより測定されたデータの記録装置が封入されな
るものである。また本発明に係る環境評価用試験片は、
液体状態の水を通過させず、水蒸気を通過させるフィル
ターを少なくとも一部に備える被覆材により形成される
内部に、温度センサー、湿度センサーおよびこれらによ
り測定されるデータの発信装置が封入されてなるもので
ある。本発明に係る生物発育の推定方法およびこれを環
境評価に利用する方法は、或環境中におかれた微小生物
の発育とその環境の温度および相対湿度との相関関係を
調査することによって、前記温度および相対湿度と微小
生物の発育を示すデータを予め作製し、その後これらの
データを被調査環境で請求項13〜15に記載の試験片
を用いて計測した温度と相対湿度と照合し、温度および
相対湿度から導かれる微小生物の推定発育速度あるいは
推定発育状態から被調査環境が微小生物発育に与える影
響力を表示するようにしたものである。
[MEANS FOR SOLVING THE PROBLEMS] The method of estimating the growth of a living organism according to the present invention and the method of using the same for environmental evaluation pass through a living creature and its natural enemies into a research environment where the living creature may grow. The test piece formed by the covering material with a filter that does not allow the microscopic organisms to be contained inside is exposed, and the influence of the environment under investigation on the growth of the microscopic organisms depends on the growth rate or the growth state of the microscopic organisms in the test piece. The force is displayed quantitatively or qualitatively. Further, by investigating the correlation between the growth rate of a micro organism placed in an environment using the test piece according to claim 1 and the temperature and relative humidity of the environment, the temperature and relative humidity Data indicating the growth rate of living organisms is created in advance, and then this data is compared with the temperature and relative humidity measured in the environment under investigation, and the estimated growth rate or estimated growth state of micro-organisms derived from the temperature and relative humidity is investigated. The influence of the environment on the growth of micro-organisms is displayed quantitatively. The method for estimating biological growth according to the present invention and the method for utilizing the same for environmental evaluation are formed by a covering material provided with a filter that does not allow microbes and their natural enemies to pass through in an environment to be investigated where contamination by microbes should be avoided. The test piece containing the micro-organisms is exposed to, and the micro-organisms in the test piece do not grow in the environment to be inspected, which indicates that the environment to be inspected is a non-polluting environment. Further, by using the test piece according to claim 3 to investigate the correlation between the growth of a microbe placed in an environment or the temperature and relative humidity of the environment, the temperature and the relative humidity and the microbe. The data indicating the growth rate of the plant is created in advance, and then this data is compared with the temperature and relative humidity measured in the surveyed environment. It is presented. The method for estimating biological growth according to the present invention and the method for utilizing the same in an environmental assessment include an environment to be investigated in which microbes are to be killed, formed by a covering material having a filter that does not allow microbes and their natural enemies to pass through, and Expose the test piece containing the micro-organisms, and then move the test piece to a growth-friendly environment and incubate for a sufficient period of time to confirm the growth. It is an indication that the environment was a micro-organism dead environment. In addition, a test piece formed of a covering material equipped with a filter that does not allow microbes and its natural enemies to pass through is exposed to the test piece, and the growth rate, growth state, or survival status of the specific microbe in the test piece is exposed. Therefore, the influence of the environment under investigation on the growth or survival of other heterogeneous organisms is estimated and presented. Also, by investigating the correlation between the growth rate of a specific microbe and the temperature and relative humidity in an environment, data indicating the temperature and relative humidity and the growth rate of the microbe are previously obtained. After making these data, these data are compared with the temperature and relative humidity of the environment under investigation, and the estimated growth rate or the estimated growth state of a specific micro-organism derived from the temperature and relative humidity indicates that the environment under investigation is related to the growth of other micro-organisms. Alternatively, the effect on survival is estimated and presented. The test piece for environmental evaluation according to the present invention does not allow water in a liquid state to pass therethrough, but is formed by a coating material having a filter that allows water vapor to pass therethrough at least in part, and is measured by a temperature sensor, a humidity sensor and these. The data recording device is enclosed. Further, the environmental evaluation test piece according to the present invention,
A structure in which a temperature sensor, a humidity sensor, and a device for transmitting data measured by the temperature sensor and the humidity sensor are enclosed inside a coating material having at least a part of a filter that allows water vapor not to pass but water vapor to pass therethrough. Is. The method for estimating biological growth according to the present invention and the method for utilizing the same for environmental evaluation are carried out by investigating the correlation between the growth of a micro-organism placed in an environment and the temperature and relative humidity of the environment. Data indicating the temperature and the relative humidity and the growth of micro-organisms are prepared in advance, and then these data are collated with the temperature and the relative humidity measured by using the test piece according to claim 13 to 15 in the environment to be examined, and the temperature Also, the influence of the environment under investigation on the growth of microbes is displayed based on the estimated growth rate of microbes or the estimated growth state derived from relative humidity.

【0005】[0005]

【発明の実施の形態】本発明の生物発育の推定方法およ
びこれを環境評価に利用する方法、微小生物を封じ込め
る試験片の構成を実施例に基づいて説明する。
BEST MODE FOR CARRYING OUT THE INVENTION The method for estimating biological growth of the present invention, the method for using the same for environmental evaluation, and the structure of a test piece for containing microbes will be described based on Examples.

【0006】(指標微小生物について)本発明において
は、生きている生物を環境評価用の試験片中に指標微小
生物として封じ込めた。指標微小生物の種類は、チリダ
ニ、好湿性真菌、好乾性真菌、胞子を作る性質を持つ細
菌は勿論のこと、それ以外の微小生物でも可能で、ま
た、指標微小生物の生存状態は、休眠状態でも発育過程
にある状態でもいずれも可能であり、指標微小生物の栄
養源は与えた場台も与えない場合も可能である。例え
ば、住環境がカビやダニなどの微小生物の発育をどの程
度促すかを調べるために用いる指標微小生物として、カ
ビの胞子やダニ卵などの休止状態、あるいはダニ成虫な
どの発育過程にある状態の微小生物を試験片内部に入れ
ることができる。上記したように、本発明において使用
する微小生物は、原則としてどの微小生物でも使用でき
るが、真菌胞子とダニが好ましく用いられる。指標微小
生物として真菌胞子を用いる場合、好乾性菌、中湿性
菌、好湿性菌の何れでも使用できるが、土壌中、温泉、
食品製造箇所、水槽など水分の多い環境では好湿性菌が
好ましい。好湿性菌としては、クラドスポリウム・ヘル
バルム(Cladosporium herbarum)、アルタナリア・アル
タナータ(Alternaria alternata)などが挙げられる。住
居、倉庫、収蔵庫のように乾燥した箇所の評価には好乾
性菌が好ましい。好乾性菌としてはアスベルギルス・ベ
ニシロイデス(Aspergillus penicilloides)、ユーロチ
ウム・ヘルバリオルム(Eurotium herbariorum)、などが
挙げられる。住居内の乾燥した環境では、チリダニが好
ましく、チリダニとしてヤケヒョウヒダニ(Drtmatophag
oides pteronyssinus)とコナヒョウヒダニ(Drtmatophag
oides farinae)、が挙げられる。
(Regarding Indicator Microorganisms) In the present invention, a living organism is contained as a marker microorganism in a test piece for environmental evaluation. The types of indicator microbes can be dust mites, hygrophilic fungi, psychrophilic fungi, bacteria having the property of forming spores, and other microbes, and the survival state of the indicator microbes can be dormant. However, both are possible in the state of development, and it is possible that the nutrient sources of the indicator microbes are given with or without the platform. For example, as an indicator microbe used to investigate how much the living environment promotes the growth of microbes such as molds and mites, the spores and mite eggs of molds are in a dormant state, or the state of developing mites such as adults. Micro-organisms can be placed inside the test piece. As described above, the micro-organism used in the present invention can be any micro-organism in principle, but fungal spores and mites are preferably used. When using fungal spores as indicator microbes, any of psychrophilic bacteria, mesophilic bacteria, and humorous bacteria can be used, but in soil, hot springs,
In environments with high water content such as food manufacturing sites and aquariums, humophilous bacteria are preferred. Examples of the thermophilic bacterium include Cladosporium herbarum and Alternaria alternata. Phytophilic bacteria are preferred for evaluation of dry places such as houses, warehouses, and storages. Examples of the psychrophilic bacteria include Aspergillus penicilloides, Eurotium herbariorum, and the like. In the dry environment of the house, dust mites are preferred, as the dust mites, Drtmatophag
oides pteronys sinus) and Dermatophag (Drtmatophag)
oides farinae).

【0007】(指標微小生物の発育について)本発明に
おいては、環境曝露に伴う指標微小生物の発育速度およ
び発育状態から被調査環境が微小生物の発育を進行また
は停止させる環境であるか否か、あるいは、被調査環境
が微小生物を死滅させる環境であるか否かなどを推定で
きる。本発明の試験片をー定期間調査環境に曝露した後
回収し、その曝露期間中に試験片内部において生じた生
物の発育状態などを観察し測定すると、その曝露場所が
どの程度微小生物の発育を促すかあるいは抑制するかを
定量的に表すことができる。
(Regarding the Growth of Indicator Microorganisms) In the present invention, it is determined whether or not the environment under investigation is an environment for advancing or stopping the growth of the microorganisms based on the growth rate and the state of growth of the indicator microorganisms associated with environmental exposure. Alternatively, it can be estimated whether or not the environment to be investigated is an environment in which microbes are killed. The test piece of the present invention was recovered after being exposed to the investigation environment for a fixed period of time, and the growth state of the organisms generated inside the test piece during the exposure period was observed and measured, and the extent to which the exposed place is the growth of micro organisms Can be quantitatively expressed as to whether to promote or suppress.

【0008】(指標微小生物を封じ込める試験片の構成
について)本発明においては、指標微小生物ないし支持
体に付着させた指標微小生物が漏れだし、周囲の環境に
移行するのを防止するために、指標微小生物を通過させ
ない、熱可溶性のフィルターからなる被覆材で、あるい
は熱可溶性のフィルターを一部に含む被覆材で覆い、こ
れらの被覆材周囲をヒートシールしてなる試験片により
指標微小生物を内部に封じ込めた。また、指標微小生物
を付着させた支持体の周縁部分と、指標微小生物とその
天敵を通過させないフィルターの周縁部分を、額縁状の
両面接着シートを用いて指標微小生物を囲むようにシー
ルしてなる試験片により指標微小生物を内部に封じ込め
た。試験片内部の指標微小生物の置かれた環境を、試験
片をさらした環境と同一条件にするため、種々の部材を
研究した結果、真菌ないしダニを指標微小生物に用いる
場合のフィルターの素材は不織布(タイベック1073B 旭
デュポン・フラッシュスパンプロダクツ)が好適である
こと、支持体はろ紙および透明な塩化ビニル板(ライオ
ンパスケース (株)ライオン)が好適であることが分か
った。フィルターとシートを用いて指標微小生物を覆う
場合のシートはポリエチレンフィルムが好適であること
がわかった。さらに、試験片を液体状態の水を通過させ
ず、水蒸気を通過させる素材、例えば、上記したよう
に、熱可溶性のフィルターからなる被覆材で、あるいは
熱可溶性のフィルターを一部に含む被覆材で覆い、これ
らの被覆材周囲をヒートシールしたものとすれば、この
試験片内部に指標微小生物のかわりに温度センサー、湿
度センサーおよびこれらにより測定されたデータの記録
装置を封入し、あるいは、試験片内部に温度センサー、
湿度センサーおよびこれらにより測定されるデータの発
信装置を封入して、水にかかる恐れがある調査環境にお
いても故障無く使用できる。
(Regarding Structure of Test Piece Containing Indicator Microorganisms) In the present invention, in order to prevent the indicator microorganisms or the indicator microbes attached to the support from leaking out and shifting to the surrounding environment, The indicator microbes are covered with a covering material that consists of a heat-soluble filter that does not allow the indicator micro-organisms to pass through, or a covering material that partially contains the heat-soluble filter, and the test pieces that are heat-sealed around these covering materials Contained inside. In addition, the periphery of the support to which the indicator microbes are attached and the periphery of the filter that does not allow the indicator microbes and their natural enemies to pass through are sealed using a frame-shaped double-sided adhesive sheet so as to surround the indicator microbes. The indicator micro-organism was enclosed inside by the test piece. In order to make the environment in which the indicator microbes inside the test piece are placed the same as the environment to which the test piece was exposed, as a result of research on various members, the material of the filter when fungi or mites are used as the indicator microbes It was found that a non-woven fabric (Tyvek 1073B Asahi DuPont Flashspun Products) is preferable, and a filter paper and a transparent vinyl chloride plate (Lion Pass Case Co., Ltd. Lion) are preferable as the support. It was found that a polyethylene film is suitable as a sheet when covering the indicator microbes using a filter and a sheet. Furthermore, the test piece is a material that does not allow water in a liquid state to pass therethrough, but allows water vapor to pass, for example, as described above, a coating material composed of a heat-soluble filter, or a coating material partially containing a heat-soluble filter. If it is covered and heat-sealed around these coating materials, a temperature sensor, a humidity sensor and a recording device for the data measured by these instead of indicator microbes are enclosed inside the test piece, or Temperature sensor inside,
A humidity sensor and a device for transmitting data measured by these can be enclosed, and it can be used without trouble even in a research environment where there is a risk of splashing with water.

【0009】(本発明に係る試験片の用途について)本
発明に係る試験片は、或環境中、すなわち或温度および
水分状態などの条件により支配された箇所が、微小生物
の発育、例えばカビやダニの発育速度あるいは発育状態
から、被調査環境が微小生物の発育に与える影響力を定
量的に表示するものである。また、微小生物による汚染
を避けるべき被調査環境において、試験片中の微小生物
が被調査環境で発育しないことから、被調査環境が非汚
染環境であることを呈示できる。さらに、微小生物を死
滅させるべき被調査環境に試験片を曝露し、その後に、
試験片を発育可能環境に移して発育が確認できる充分な
期間培養し、この発育可能環境下において微小生物発育
の無いことから被調査環境が微小生物死滅環境であった
ことを呈示できる。さらにまた、液体状態の水を通過さ
せず、水蒸気を通過させるフィルターを少なくとも一部
に備える被覆材により形成される内部に、指標微小生物
のかわりに、温度センサー、湿度センサーおよびこれら
により測定されたデータの記録装置が封入された環境評
価用試験片を使用すれば、水がかかる被調査環境におい
ても使用できる。また、液体状態の水を通過させず、水
蒸気を通過させるフィルターを少なくとも一部に備える
被覆材により形成される内部に、指標微小生物のかわり
に、温度センサー、湿度センサーおよびこれらにより測
定されるデータの発信装置が封入された環境評価用試験
片を使用すれば、水がかかる被調査環境においても使用
できる。本発明を住居内、あるいは食品製造工場などに
適用すれば、これらの微小生物による汚染可能性の高い
箇所が検出できる。さらに汚染可能性の高い箇所に乾燥
など物理的な対策を施した場合の効果について検証する
ことができる。また、穀物や飼料などの輸送時のラベル
を本発明の試験片で作製、あるいは袋内部に本発明の試
験片を入れることで、流通の開始の段階から消費者が受
け取る段階まで通しての期間中にどの程度、カビによる
汚染が可能であったかを推定することができる。仮に、
輸入段階でー時的に劣悪な環境になったり場合、あるい
はー時的な保管状態が劣悪な場合でも、通常の保管状態
に戻されていれば検出することができないが、試験片内
部あるいはラベルに添付された指標微小生物の発育程度
を知ること、あるいは試験片内部のセンサーを用いて得
られた温湿度から推定される微小生物の発育可能性を知
ることで流通過程の履歴が推定でき、汚染可能性の判断
が的確になる。対象商品でカビ毒の分析が必要かどうか
の判断材料にもでき、カビ毒の分析の効率化を図ること
ができる。そしてまた、衣類、皮具、木製や布製玩具、
家具などの、物品の流通過程および保管過程の場合も同
様で、一時的に劣悪な環境になった場合、通常の保管状
態に房されていれば検知することができないが、試験片
内部の指標微小生物の発育程度を知ること、あるいは試
験片内部のセンサーを用いて得られた温湿度から推定さ
れる微小生物の発育可能性を知ることで流通過程の履歴
を推定でき、汚染されたかどうかの判断が可能になる。
本試験片は、農業の分野でも有効で、キノコや野菜など
の温室栽培環境では、その環境の水分が多すぎる場合も
少なすぎる場合も有害な病原菌を発育させてしまう。栽
培環境の評価には、好乾性カビと好湿性カビの両方を指
標微小生物に用い、それぞれの指標微小生物の発育環境
を定量的に計測することで、対象栽培植物の最適な環境
を知ることが可能で、最適環境から外れた場合には、好
乾性あるいは好湿性のいずれかの指標微小生物の発育が
高まることが考えられる。特定の病原菌を指標微小生物
に用いれば、その病原菌の繁殖しやすい環境を検出で
き、栽培環境全体に病原菌が蔓延する前にくい止めるこ
とができるようになる。さらに、指標微小生物の競り応
答から発育を推定方法する方法は.汚染の場合だけでな
く、地中の水分状態の検出にも適用できる。土壌改良材
をいれ土壌の保湿能力を高めた場合、真菌胞子を指標微
小生物として用いると、生長速度の遅い植物体を用いる
より迅速に土壌環境を検出することが可能になり、本試
験片は土壌改良剤の開発にも適用できる。以下、実施例
を参照して本発明をさらに詳細に説明するが、本発明は
もちろんこれらの実施例によって限定されない。
(Regarding the Use of the Test Piece of the Present Invention) The test piece of the present invention is a test piece according to the present invention. The influence of the environment under investigation on the growth of micro-organisms is quantitatively displayed from the growth rate or development state of ticks. Further, in the environment to be inspected in which contamination by microbes is to be avoided, the microbes in the test piece do not grow in the environment to be inspected, so it can be shown that the environment to be inspected is a non-polluting environment. In addition, exposing the test piece to the environment under investigation where the micro-organisms should be killed,
The test piece was transferred to a growth-prone environment and cultured for a sufficient period of time so that growth could be confirmed. Since there is no growth of micro-organisms in this growth-prone environment, it can be shown that the environment to be investigated was a micro-organism-killing environment. Furthermore, instead of indicator microbes, a temperature sensor, a humidity sensor, and these were measured inside, formed by a coating material that has a filter that does not allow water in a liquid state to pass therethrough and that allows water vapor to pass therethrough. By using an environmental evaluation test piece with a data recording device enclosed, it can be used even in an environment where water is to be investigated. Also, instead of indicator microbes, a temperature sensor, a humidity sensor, and data measured by these are formed inside the coating material that has a filter that allows water vapor to pass therethrough, at least a portion of which does not pass liquid water. If the environment-evaluating test piece in which the transmitter of (1) is enclosed is used, it can be used even in an environment where water is to be investigated. When the present invention is applied to a house, a food manufacturing factory, or the like, it is possible to detect a portion having a high possibility of being contaminated by these microscopic organisms. Furthermore, it is possible to verify the effect of applying physical measures such as drying to places where there is a high possibility of contamination. In addition, a label for transportation of grains, feeds, etc. is produced from the test piece of the present invention, or the test piece of the present invention is put in a bag, so that the period from the start of distribution to the step of receipt by the consumer It can be estimated to what extent mold contamination was possible. what if,
Even if the environment becomes poor at the import stage, or even if the storage condition is bad at the time of import, it cannot be detected if it is returned to the normal storage condition, but inside the test piece or the label. The history of the distribution process can be estimated by knowing the degree of growth of the indicator microbes attached to, or by knowing the growth potential of the microbes estimated from the temperature and humidity obtained using the sensor inside the test piece, Accurate judgment of possible contamination. It can also be used as a basis for determining whether or not a target product requires analysis of mycotoxin, and the efficiency of mycotoxin analysis can be improved. And also clothing, leather, wooden and cloth toys,
The same applies to the distribution process and storage process of items such as furniture.In the case of a temporarily bad environment, it cannot be detected if it is kept in a normal storage state, but it is an index inside the test piece. The history of distribution process can be estimated by knowing the degree of growth of micro-organisms, or by knowing the growth potential of micro-organisms estimated from the temperature and humidity obtained by using the sensor inside the test piece. Judgment becomes possible.
This test piece is also effective in the field of agriculture, and in a greenhouse cultivation environment such as mushrooms and vegetables, it causes harmful pathogens to grow even when the environment has too much or too little water. To evaluate the cultivated environment, both dry and humid molds are used as indicator microbes, and the growth environment of each indicator microbe is quantitatively measured to know the optimal environment of the target cultivated plant. It is conceivable that the growth of indicator microbes of either dryness or humidity is enhanced when the optimal environment is not met. By using a specific pathogen as an indicator microbe, it is possible to detect an environment in which the pathogen is likely to reproduce and to prevent the pathogen from spreading before it spreads throughout the cultivation environment. Furthermore, how to estimate the growth from the bid response of the indicator microbes? It can be applied not only in the case of pollution, but also in the detection of water condition in the ground. When a soil conditioner is added to increase the moisturizing capacity of the soil, using fungal spores as the indicator microorganisms makes it possible to detect the soil environment more quickly than using plants with a slow growth rate. It can also be applied to the development of soil conditioners. Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.

【0010】(実施例1) 飽和塩溶液を用いて湿度を調節した密閉容器内部空間の
調査 飽和塩溶液を入れた密閉容器内部の空間は平衡状態にな
り特定の温度では特定の平衡相対湿度になることが知ら
れている(ASTM E 104-85)。塩の種類により平衡相対
湿度は異なる。好乾性菌Eurotium herbariorum J-183を
環境のセンサーに用いて環境を定量的に示す指標として
カビ指数(Abe, Indoor air 3:344-348 1993)がある。25
℃で様々な塩を用いて密閉容器内に一定の気候を作り、
その温度と相対湿度から推定されるカビ指数と、密閉容
器中に試験片を入れて測定した実測カビ指数およびコナ
ヒョウヒダニ試験片を比較した。環境のセンサーとして
用いる菌が曝露環境中に漏れ出さないように菌を封じ込
めた環境調査用試験片を作製した。試験片作製方法は以
下のとおりである。Aspergillus penicilloides K-712
を平板培地に培養し、胞子を分離、3回洗浄後、胞子懸
濁液(ブドウ糖とゼラチンそれぞれ0.5%を含む液体培
地中に分散)を作成した。透明プラスチック板(13×33m
m)に、胞子懸濁液3.5μlを中央部分に接種、風乾後、
胞子分散スポット(スポット直径は約3mm)をガス透過
性シートで覆い、額縁状の両面接着シート(厚さ0.3m
m、外寸13×23mmの内側7×17mmを切り抜いたもの)で透
明板とガス透過性シートを接着させた。プラスチック板
上の胞子分散スポットはガス透過性シートと両面接着シ
ートで囲まれた内部に閉じこめられた状態になり、内部
で菌が発育し新しい胞子が着生した場合でも胞子が周囲
の環境中に散ることは無かった。本実施例ではガス透過
性シートとして不織布(タイベック1073B、旭デュポン
フラッシュスパンプロダクツ(株))を用いた。コナヒ
ョウヒダニ試験片は、上記不織布で作製した小袋(内寸
5cm×4cm)にコナヒョウヒダニ雌雄各10匹と餌50mg
を入れ、袋の口をヒートシールしたものである。表1に
25℃で、相対湿度の異なる気候におけるカビ指数推定値
と実測値および総ダニ数を示す。
(Example 1) Investigation of the internal space of a closed container in which the humidity was adjusted using a saturated salt solution The space inside the closed container containing the saturated salt solution was in an equilibrium state, and at a specific temperature, a specific equilibrium relative humidity was obtained. It is known to become (ASTM E 104-85). The equilibrium relative humidity varies depending on the type of salt. The mold index (Abe, Indoor air 3: 344-348 1993) is an index that quantitatively indicates the environment by using the psychrophilic bacterium Eurotium herbariorum J-183 as a sensor for the environment. twenty five
Create a constant climate in a closed container with various salts at ℃,
The mold index estimated from the temperature and the relative humidity was compared with the measured mold index and the Dermatophagoides farinae test piece measured by putting the test piece in a closed container. A test piece for environmental investigation was prepared in which bacteria used as an environmental sensor were contained so that they did not leak into the exposed environment. The test piece manufacturing method is as follows. Aspergillus penicilloides K-712
Was cultured in a plate medium, spores were separated, washed three times, and then a spore suspension (dispersed in a liquid medium containing 0.5% each of glucose and gelatin) was prepared. Clear plastic plate (13 x 33m
m) was inoculated with 3.5 μl of the spore suspension in the central part, air-dried,
The spore dispersion spot (spot diameter is about 3 mm) is covered with a gas permeable sheet, and a frame-shaped double-sided adhesive sheet (thickness 0.3 m
A transparent plate and a gas permeable sheet were bonded together by cutting out an inner 7 x 17 mm with an outer dimension of 13 x 23 mm. The spore dispersion spots on the plastic plate are confined inside the gas-permeable sheet and double-sided adhesive sheet, and even if bacteria grow inside and new spores settle in, the spores will not enter the surrounding environment. It didn't scatter. In this example, a non-woven fabric (Tyvek 1073B, Asahi DuPont Flash Span Products Co., Ltd.) was used as the gas permeable sheet. The Dermatophagoides farinae test piece is a small bag made of the above non-woven fabric (inner size
5 cm x 4 cm), 10 female and 10 female Dermatophagoides farinae and 50 mg of food
, And the mouth of the bag was heat-sealed. In Table 1
The estimated and measured fungal indices and the total number of mites in climates with different relative humidity at 25 ° C are shown.

【0011】[0011]

【表1】 [Table 1]

【0012】カビ指数推定値は論文(Abe, Indoor air
3:344-348 1993)のFig. 3 のデータから得た。カビ指数
実測には論文(防菌防黴、 21巻 p.557-563)記載の
方法を用いた。カビ指数の実測値は3回の実験での平均
値で、カッコ内に標準偏差を示す。総ダニ数は、コナヒ
ョウヒダニ試験片を同じ気候下で4週間培養後のダニ数
で、卵は除く。カビ指数は実測値のほうが全体にやや高
めの値になったが、推定値と実測値はほぼ一致してい
た。ダニ数はカビ指数が検出された環境では10倍以上
に増えていたがカビ指数が検出されなかった環境では全
く増加しないか、増加しても2倍未満であった。カビ発
育環境では、ダニも速やかに繁殖することがわかる。
Estimates of mold index are available in the paper (Abe, Indoor air
3: 344-348 1993). The method described in the paper (Antibacterial and Antifungal, Volume 21, p.557-563) was used for the measurement of the mold index. The actual value of the mold index is the average value of three experiments, and the standard deviation is shown in parentheses. The total number of mites is the number of mites after culturing the test piece of Dermatophagoides farinae for 4 weeks in the same climate, excluding eggs. The measured values of mold index were slightly higher overall, but the estimated values and measured values were almost the same. The number of mites increased 10 times or more in the environment in which the mold index was detected, but did not increase at all in the environment in which the mold index was not detected, or was less than 2 times even if it increased. It can be seen that mites quickly reproduce in the mold growing environment.

【0013】(実施例2) ホルムアルデヒドガスによる殺菌効果の検証 栄養分を含ませた濾紙(15mm×15mm)にCladosporium s
pp.を接種し、シリカゲル上で乾燥させた後、不織布と
透明フィルムで作製した袋に入れ、袋の口をヒートシー
ルし、環境調査用試験片を作製した。袋の内部に入れた
濾紙は、Cladosporium spp.を接種した側を透明フィル
ムに向けた。1mlのホルマリン溶液(ホルムアルデヒド
含量37%以上)を入れたシャーレの蓋の裏側に環境調査
用試験片の不織布側をホルマリン溶液に向けて貼り、室
温で気化するホルムアルデヒドガスに曝露した。曝露時
間は2分間、および5分間とした。ホルムアルデヒドガ
スに曝露後の試験片を室内空気中に24時間曝露し試験
片に吸着したホルムアルデヒドガスを放散させた後、25
℃・相対湿度100%の湿室内に入れ48時間培養した。培
養後のセンサー菌Cladosporium spp.の発育を観察する
と下記のようになった(表2)。
(Example 2) Verification of sterilization effect by formaldehyde gas Cladosporium s was applied to a filter paper (15 mm x 15 mm) containing nutrients.
After being inoculated with pp. and dried on silica gel, it was placed in a bag made of a non-woven fabric and a transparent film, and the mouth of the bag was heat-sealed to produce a test piece for environmental investigation. The filter paper placed inside the bag had the side inoculated with Cladosporium spp. Facing the transparent film. The non-woven fabric side of the environmental test piece was attached to the back side of the lid of a petri dish containing 1 ml of formalin solution (formaldehyde content of 37% or more) facing the formalin solution, and exposed to formaldehyde gas that vaporizes at room temperature. The exposure time was 2 minutes and 5 minutes. After exposing the test piece after exposure to formaldehyde gas in room air for 24 hours to dissipate the formaldehyde gas adsorbed on the test piece, 25
The cells were placed in a humid chamber at ℃ and 100% relative humidity and cultured for 48 hours. The growth of the sensor bacterium Cladosporium spp. After culturing was as follows (Table 2).

【0014】[0014]

【表2】 [Table 2]

【0015】表2において、写真上段は、ホルムアルド
ヒドガス存在環境下に2分間および5分間曝露した試験
片、下段はホルムアルデヒドガスに曝露していない試験
片である。内部の菌が生存していれば相対湿度100%の
環境下48時間培養後には多量の胞子を着生しスポット
(胞子着生による色)が現れる。内部の菌が死滅してい
ればスポットは現れない。ホルムアルデヒドガス存在下
の環境に2分間曝露では試験片中に生存する胞子が残
り、5分間曝露でCladosporium spp.はすべて死滅した
ことがわかる。
In Table 2, the upper photograph shows a test piece exposed to formaldehyde gas for 2 minutes and 5 minutes, and the lower photograph shows a test piece not exposed to formaldehyde gas. If the fungus inside is alive, after culturing for 48 hours in an environment of 100% relative humidity, a large amount of spores settle and spots (color due to spore settling) appear. If the bacteria inside are dead, the spot will not appear. It can be seen that when exposed to the environment in the presence of formaldehyde gas for 2 minutes, spores that survived remained in the test piece and all Cladosporium spp. Were killed by the exposure for 5 minutes.

【0016】(実施例3) カビ発育によるダニ繁殖環境の推定方法 カビ発育環境とダニ繁殖環境は重なりあっていることが
知られている(森谷清樹訳 ハウスダストの生物学 西
村書店)。そこで、カビ発育からダニ繁殖を推定できる
かどうかを調べる目的で、夏期の収納布団を対象に、カ
ビ発育とダニ糞アレルゲン濃度変化を調査した。調査時
期は、2000年の夏期である。カビ発育環境調査のため A
spergillus penicillodes K-712を環境のセンサーとす
る環境調査用試験片を、実施例1と同様に作製し、その
試験片を16軒の住宅の収納布団(押入に収納している冬
用の掛け布団)に8週間挟み込んだ。ダニ糞アレルゲン
(Der1)調査を、カビ発育調査のための試験片を挟み
込む布団で行った。カビ発育調査用試験片を布団に挟み
込む直前と8週間後の試験片回収直後の2回、布団表面
で集塵し、集めた塵中のチリダニ糞由来のダニアレルゲ
ン濃度をELISA法により測定した。塵1g当たりのダニア
レルゲン量(μg)に換算し、その変化から布団表面で
のダニ繁殖状況を判断した。表3に、8週間曝露後の試
験片中のAspergillus penicillodes K-712の菌糸長と、
布団表面のダニアレルゲン濃度変化を示す。カビが発芽
生長していた箇所とダニアレルゲン濃度が増加した箇所
は灰色に塗った。カビが発芽していた全ての収納布団で
ダニアレルゲン濃度が増加し、カビが発芽していなかっ
た収納布団ではダニアレルゲン濃度は減少した。ダニが
繁殖できない環境ではダニアレルゲンが自然減衰したと
思われる。菌糸長とダニアレルゲン変化量との相関性は
認められなかったが、カビ発育調査からカビとダニ汚染
可能性の有無は推定可能と考えられる。
(Example 3) Method for estimating mite breeding environment due to mold growth It is known that the mold growth environment and mite breeding environment overlap with each other (translated by Kiyoki Moriya House Biology of House Dust Nishimura Shoten). Therefore, for the purpose of investigating whether mite reproduction could be estimated from mold growth, we investigated mold growth and changes in mite fecal allergen concentration in summer storage futons. The survey period is the summer of 2000. For mold development environment survey A
A test piece for environmental research using spergillus penicillodes K-712 as an environmental sensor was prepared in the same manner as in Example 1, and the test piece was stored in a comforter of 16 houses (a comforter for winter stored in a closet). Sandwiched for 8 weeks. The mite fecal allergen (Der1) survey was performed with a futon sandwiching a test piece for a mold development study. Immediately before sandwiching the test piece for mold growth investigation into a futon and immediately after collecting the test piece 8 weeks later, dust was collected on the surface of the futon, and the mite allergen concentration derived from dust mite feces in the collected dust was measured by the ELISA method. It was converted to the amount of mite allergen per 1 g of dust (μg), and the mite breeding condition on the futon surface was judged from the change. Table 3 shows the hyphae of Aspergillus penicillodes K-712 in the test pieces after 8 weeks of exposure,
The change in the mite allergen concentration on the futon surface is shown. The areas where mold had sprouted and the areas where the mite allergen concentration increased were painted gray. The mite allergen concentration increased in all the storage futons that had germinated, and the mite allergen concentration decreased in the storage futons that had not germinated. It is considered that mite allergen naturally diminished in the environment where mites could not reproduce. No correlation was observed between mycelial length and the amount of mite allergen change, but it is considered possible to estimate the possibility of mold and mite contamination from the mold growth survey.

【0017】[0017]

【表3】 [Table 3]

【0018】(実施例4) 夏期の室内環境の評価 夏期冷房時の室内は乾燥しているが、このような環境で
カビは生存し続けるのか死滅するのかを明らかにするた
め、試験片を用いて調査した。 Aspergilluspenicillo
des K-712、 Eurotium herbariorum J-183、 Cladospor
ium herbarumIFO 8155およびAlternaria alternata S-7
8の4種類のカビそれぞれで、実施例1と同様の試験片
を作製した。実験は1999年7月1日に開始した。4種類
の試験片各8枚を、冷房期間中の環境生物学研究所の壁
面に貼り、2週間ごとに各1枚ずつ取り外した。壁面に
貼っていた期間中に胞子が発芽すれば調査環境はカビの
発育する環境であることを表し、発芽しなければ発育し
ない環境であることを表すが、発芽していない場合、そ
の曝露環境で胞子が生存したか死滅したかは判らない。
そこで壁面から外した直後、顕微鏡で観察し、発芽が認
められなかった場合は、生存調査のため25℃で相対湿度
93.6%に調節した密閉容器内に入れ、1週間培養した。
壁面に貼った期間中に胞子が生存していれば培養後の試
験片内部で発芽生長し、死滅していれば発芽しない。壁
面から外した直後の試験片中で発芽の認められたものは
無かったので、壁面から外した全ての試験片を25℃・相
対湿度93.6%で1週間培養した。表4に壁面に貼った期
間と各センサー菌を25℃・相対湿度93.6%で1週間培養
後の発育の有無を示す。
(Example 4) Evaluation of indoor environment in summer Although the room is dry during cooling in summer, a test piece is used to clarify whether the mold continues to survive or die in such an environment. I investigated. Aspergilluspenicillo
des K-712, Eurotium herbariorum J-183, Cladospor
ium herbarum IFO 8155 and Alternaria alternata S-7
A test piece similar to that of Example 1 was prepared from each of the four types of molds of No. 8. The experiment started on July 1, 1999. Eight pieces of each of the four types of test pieces were attached to the wall of the Institute for Environmental Biology during the cooling period, and one piece was removed every two weeks. If the spores germinate during the period of being attached to the wall, it means that the survey environment is a mold-growing environment, and if it does not germinate, it does not grow. I don't know if the spores survived or died.
Immediately after removing it from the wall, microscopic observation revealed that if no germination was observed, relative humidity was measured at 25 ° C for survival studies.
The cells were placed in a closed container adjusted to 93.6% and cultured for 1 week.
If the spores are still alive during the period of being attached to the wall surface, they will germinate and grow inside the test piece after culturing, and if they are dead, they will not germinate. Immediately after removal from the wall surface, no test piece was found to germinate, so all the test pieces removed from the wall surface were cultured for 1 week at 25 ° C. and 93.6% relative humidity. Table 4 shows the period of application on the wall surface and the presence or absence of growth after culturing each sensor bacterium for 1 week at 25 ° C and 93.6% relative humidity.

【0019】[0019]

【表4】 [Table 4]

【0020】表4において、調査室は24間冷房で、調査
期間中の室内温度は約25℃、相対湿度は55%付近を保っ
ていた。菌の種類により生存期間は異なるが、12週間後
には全ての菌が死滅した。翌年に、12週間曝露を再調査
したところ、同様に全ての菌が死滅した。夏期の室内で
冷房していれば、室内に入り込んだカビ胞子は発育せ
ず、徐々に死滅すると思われる。
In Table 4, the investigation room was air-conditioned for 24 hours, and the room temperature during the investigation period was about 25 ° C. and the relative humidity was kept around 55%. Although the survival time varied depending on the type of bacteria, all the bacteria died after 12 weeks. The next year, when the exposure was re-examined for 12 weeks, all bacteria were killed as well. If the room is air-conditioned during the summer, the mold spores that enter the room will not grow and gradually die.

【0021】尚、上記実施例においては、指標微小生物
の支持体として、ろ紙あるいは塩化ビニルを、そして微
小生物およびその天敵を通過させないフィルターとして
不織布を、そして裏面を覆うフィルムとしてポリエチレ
ンフィルムを使用したが、これらに限らないことはいう
までもない。また、実施例1に記載した「カビ指数」の
ように、あらかじめ温湿度と指標微小生物発育の相関関
係を調査しておけば、試験片内部に生きている指標微小
生物を封入せず、温湿度のセンサーとその記録あるいは
発信装置を封入した試験片を用いることも可能である。
In the above examples, a filter paper or vinyl chloride was used as a support for the indicator microbes, a non-woven fabric was used as a filter that did not allow the microbes and their natural enemies to pass, and a polyethylene film was used as the film covering the back surface. However, it goes without saying that it is not limited to these. In addition, if the correlation between temperature and humidity and the growth of the indicator microbes is investigated in advance, as in the “mold index” described in Example 1, the temperature of the temperature will not be increased by encapsulating the living indicator microbes inside the test piece. It is also possible to use a test piece containing a humidity sensor and its recording or transmitting device.

【0022】[0022]

【発明の効果】以上述べた説明からわかるように、本発
明によれば従来あいまいであった種々の環境の微小生物
に与える影響を、その場所に指標微小生物を放出するこ
と無く、被調査環境が微小生物の発育を進行または停止
させる環境であるか否か、あるいは、被調査環境が微小
生物を死滅させる環境であるか否かなどを簡単迅速に、
かつ定量的あるいは定性的に測定することができ、生物
発育の推定およびこれを環境評価に利用できる顕著な効
果が得られる。
As can be seen from the above description, according to the present invention, the influence of various ambiguous environments on micro-organisms, which has been ambiguous in the past, can be evaluated without releasing the indicator micro-organisms to the location. Whether or not is an environment that progresses or stops the growth of micro-organisms, or whether the environment under investigation is an environment that kills micro-organisms, etc.
In addition, it can be quantitatively or qualitatively measured, and a remarkable effect that biological growth can be estimated and used for environmental evaluation can be obtained.

Claims (16)

【特許請求の範囲】[Claims] 【請求項1】 微小生物が発育する可能性のある被調査
環境に、微小生物およびその天敵を通過させないフィル
ターを備える被覆材により形成され、内部に微小生物を
封じ込んでなる試験片を曝露し、試験片中の微小生物の
発育速度あるいは発育状態から、被調査環境が微小生物
の発育に与える影響力を定量的あるいは定性的に表示す
ることを特徴とする生物発育の推定方法およびこれを環
境評価に利用する方法。
1. A test piece, which is formed by a covering material having a filter that does not allow microbes and their natural enemies to pass through, is exposed to the environment to be examined in which the microbes may grow. , A method for estimating biological growth characterized by quantitatively or qualitatively displaying the influence of the environment under investigation on the growth of microbes from the growth rate or growth state of the microbes in the test piece Method used for evaluation.
【請求項2】 請求項1に記載の試験片を用いて或環境
中におかれた微小生物の発育とその環境の温度および相
対湿度との相関関係を調査することによって、前記温度
および相対湿度と微小生物の発育を示すデータを予め作
成し、その後このデータを被調査環境で計測した温度と
相対湿度と照合し、温度および相対湿度から導かれる微
小生物の推定発育速度あるいは推定発育状態から被調査
環境が微小生物発育に与える影響力を定量的あるいは定
性的に表示することを特徴とする生物発育の推定方法お
よびこれを環境評価に利用する方法。
2. The temperature and relative humidity are investigated by investigating the correlation between the growth of a micro-organism placed in an environment using the test piece according to claim 1 and the temperature and the relative humidity of the environment. And the data indicating the growth of micro-organisms are created in advance, and then this data is compared with the temperature and relative humidity measured in the environment under study, and the estimated growth rate of micro-organisms or the estimated growth state of micro-organisms derived from the temperature and relative humidity is used. A method for estimating biological growth, characterized by quantitatively or qualitatively displaying the influence of the research environment on the growth of micro-organisms, and a method for using this in environmental assessment.
【請求項3】 微小生物による汚染を避けるべき被調査
環境に、微小生物およびその天敵を通過させないフィル
ターを備える被覆材により形成され、内部に微小生物を
封じ込んでなる試験片を曝露し、当該試験片中の微小生
物が被調査環境で発育しないことから被調査環境が非汚
染環境であることを呈示することを特徴とする生物発育
の推定方法およびこれを環境評価に利用する方法。
3. A test piece, which is formed by a covering material having a filter that does not allow microbes and their natural enemies to pass through, is exposed to an environment to be examined in which microbes are to be contaminated, A method for estimating biological growth, characterized by indicating that the environment under investigation is a non-polluting environment because the micro-organisms in the test piece do not grow in the environment under investigation, and a method of using the method for environmental evaluation.
【請求項4】 請求項3に記載の試験片を用いて或環境
中におかれた微小生物の発育とその環境の温度および相
対湿度との相関関係を調査することによって、前記温度
および相対湿度と微小生物の発育を示すデータを予め作
成し、その後このデータを被調査環境で計測した温度と
相対湿度と照合し、微小発育が発育できない環境である
ことから被調査環境が非汚染環境であることを呈示する
ことを特徴とする生物発育の推定方法およびこれを環境
評価に利用する方法。
4. The temperature and relative humidity are investigated by investigating the correlation between the growth of a micro-organism placed in an environment using the test piece according to claim 3 and the temperature and relative humidity of the environment. And the data indicating the growth of micro-organisms are created in advance, and then this data is collated with the temperature and relative humidity measured in the environment under investigation, and the environment under investigation is a non-polluting environment because micro-growth cannot develop. A method for estimating biological growth, which is characterized by presenting the following, and a method for using the method for environmental evaluation.
【請求項5】 微小生物を死滅させるべき被調査環境
に、微小生物およびその天敵を通過させないフィルター
を備える被覆材により形成され、内部に微小生物を封じ
込んでなる試験片を曝露し、その後に、試験片を発育可
能環境に移して発育が確認できる充分な期間培養し、こ
の発育可能環境下において微小生物発育の無いことから
被調査環境が微小生物死滅環境であったことを呈示する
ことを特徴とする生物発育の推定方法およびこれを環境
評価に利用する方法。
5. A test piece, which is formed by a covering material having a filter that does not allow microbes and their natural enemies to pass through, is exposed to an environment to be inspected in which the microbes are to be killed, and then exposed. , The test piece is transferred to a growth-friendly environment and cultured for a sufficient period of time so that growth can be confirmed. Since there is no growth of micro-organisms in this growth-friendly environment, it is shown that the environment under investigation was a micro-organism-killing environment. A method of estimating the characteristic biological growth and a method of using it for environmental evaluation.
【請求項6】 微小生物およびその天敵を通過させない
フィルターを備える被覆材により形成され、内部に微小
生物を封じ込んでなる試験片を曝露し、試験片中の特定
微小生物の発育速度、発育状態あるいは生存状況から、
被調査環境が他の微小生物の発育あるいは生存に与える
影響を推定し呈示することを特徴とする生物発育の推定
方法およびこれを環境評価に利用する方法。
6. A test piece formed of a covering material provided with a filter that does not allow microbes and their natural enemies to pass through, and exposing a test piece containing the microbe inside, exposing the growth rate and growth state of the specific microbe in the test piece. Or from the survival situation,
A method for estimating biological growth, characterized by estimating and presenting the effect of the environment under investigation on the growth or survival of other micro-organisms, and a method of using this for environmental assessment.
【請求項7】 或環境中におかれた、特定の微小生物の
発育と温度および相対湿度との相関関係を調査すること
によって、前記温度および相対湿度と前記微小生物の発
育を示すデータを予め作成し、その後これらのデータを
被調査環境の温度と相対湿度と照合し、温度および相対
湿度から導かれる特定の微小生物の推定発育速度あるい
は推定発育状態から被調査環境が他の生物の発育あるい
は生存に与える影響を推定し呈示することを特徴とする
生物発育の推定方法およびこれを環境評価に利用する方
法。
7. The data indicating the growth of the temperature and relative humidity and the growth of the micro-organism is previously investigated by investigating the correlation between the growth of the specific micro-organism and the temperature and the relative humidity in a certain environment. After making these data, these data are compared with the temperature and relative humidity of the environment under investigation, and the environment under investigation is evaluated for the growth of other organisms based on the estimated growth rate or estimated growth state of a specific microbe derived from the temperature and relative humidity. A method for estimating biological growth, which comprises estimating and presenting an effect on survival, and a method of using the method for environmental assessment.
【請求項8】 請求項7記載の特定の微小生物が好乾性
真菌で、請求項7記載の他の生物がチリダニであること
を特徴とする請求項7記載の生物発育の推定方法および
これを環境評価に利用する方法。
8. The method for estimating biological development according to claim 7, wherein the specific microorganism according to claim 7 is a psychrophilic fungus, and the other organism according to claim 7 is a dust mite. Method used for environmental assessment.
【請求項9】 請求項1〜7で用いる微小生物がチリダ
ニである生物発育の推定方法およびこれを環境評価に利
用する方法。
9. A method for estimating biological development in which the microbe used in claims 1 to 7 is dust mites, and a method of using the same for environmental assessment.
【請求項10】 請求項1〜7で用いる微小生物が、好
湿性真菌である生物発育の推定方法およびこれを環境評
価に利用する方法。
10. A method for estimating the growth of a living organism, wherein the microorganism used in any one of claims 1 to 7 is a hygrophilic fungus, and a method of using the same for environmental evaluation.
【請求項11】 請求項1〜7で用いる微小生物が、好
乾性真菌である生物発育の推定方法およびこれを環境評
価に利用する方法。
11. A method for estimating biological growth, wherein the microorganism used in any one of claims 1 to 7 is a psychrophilic fungus, and a method of using the same for environmental evaluation.
【請求項12】 請求項1〜7で用いる微小生物が、胞
子を作る性質を持つ細菌である生物発育の推定方法およ
びこれを環境評価に利用する方法。
12. A method for estimating biological growth, wherein the microorganism used in any one of claims 1 to 7 is a bacterium having a property of forming spores, and a method of using the same for environmental evaluation.
【請求項13】 液体状態の水を通過させず、水蒸気を
通過させるフィルターを少なくとも一部に備える被覆材
により形成される内部に、温度センサー、湿度センサー
およびこれらにより測定されたデータの記録装置が封入
されていることを特徴とする環境評価用試験片。
13. A temperature sensor, a humidity sensor, and a recording device for recording data measured by the temperature sensor, the humidity sensor, and the interior thereof, which is formed by a coating material having a filter that allows water vapor to pass therethrough but does not allow liquid water to pass therethrough. An environmental evaluation test piece characterized by being enclosed.
【請求項14】 液体状態の水を通過させず、水蒸気を
通過させるフィルターを少なくとも一部に備える被覆材
により形成される内部に、温度センサー、湿度センサー
およびこれらにより測定されるデータの発信装置が封入
されていることを特徴とする環境評価用試験片。
14. A temperature sensor, a humidity sensor, and a device for transmitting data measured by these sensors are formed inside a coating material having at least a part of a filter that allows water vapor to pass therethrough but does not allow liquid water to pass therethrough. An environmental evaluation test piece characterized by being enclosed.
【請求項15】 前記被覆材が熱可溶性の成分により構
成される請求項13および14の試験片。
15. The test piece according to claim 13, wherein the coating material is composed of a heat-soluble component.
【請求項16】 或環境中におかれた微小生物の発育と
その環境の温度および相対湿度との相関関係を調査する
ことによって、前記温度および相対湿度と微小生物の発
育を示すデータを予め作製し、その後これらのデータを
被調査環境で請求項13〜15に記載の試験片を用いて
計測した温度と相対湿度と照合し、温度および相対湿度
から導かれる微小生物の推定発育速度あるいは推定発育
状態から被調査環境が微小生物発育に与える影響力を表
示することを特徴とする生物発育の推定方法およびこれ
を環境評価に利用する方法。
16. Preliminary data is prepared which shows the growth of a micro-organism placed in an environment and the temperature and relative humidity of the environment, by investigating the correlation between the temperature and the relative humidity of the environment. After that, these data are collated with the temperature and the relative humidity measured by using the test piece according to claim 13 to 15 in the environment to be investigated, and the estimated growth rate or estimated growth of the micro-organism derived from the temperature and the relative humidity is estimated. A method for estimating biological growth, which is characterized by displaying the influence of the environment under investigation on the growth of microscopic organisms from the state, and a method for using the same for environmental assessment.
JP2001329298A 2001-10-26 2001-10-26 Method for estimating growth of organism, and method for utilizing the same for evaluation of environment Pending JP2003125796A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001329298A JP2003125796A (en) 2001-10-26 2001-10-26 Method for estimating growth of organism, and method for utilizing the same for evaluation of environment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001329298A JP2003125796A (en) 2001-10-26 2001-10-26 Method for estimating growth of organism, and method for utilizing the same for evaluation of environment

Publications (1)

Publication Number Publication Date
JP2003125796A true JP2003125796A (en) 2003-05-07

Family

ID=19145225

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001329298A Pending JP2003125796A (en) 2001-10-26 2001-10-26 Method for estimating growth of organism, and method for utilizing the same for evaluation of environment

Country Status (1)

Country Link
JP (1) JP2003125796A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004033713A1 (en) * 2002-10-11 2004-04-22 Keiko Abe Method of investigating growable level of microorganism in environment under investigation, investigation display device and investigation system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004033713A1 (en) * 2002-10-11 2004-04-22 Keiko Abe Method of investigating growable level of microorganism in environment under investigation, investigation display device and investigation system

Similar Documents

Publication Publication Date Title
Lacey et al. Spore concentrations in the air of farm buildings
Lacey et al. Isolation of actinomycetes and fungi from moldy hay using a sedimentation chamber
JP3850465B2 (en) Simple medium and microorganism detection method
Furuya et al. Suppression of Fusarium solani f. sp. phaseoli on bean by aluminum in acid soils
CN109563533B (en) System and method for in situ detection of microorganisms
Hunt et al. Inferring trophic transfers from pulse-dynamics in detrital food webs
JP2003125796A (en) Method for estimating growth of organism, and method for utilizing the same for evaluation of environment
Lian et al. In-vitro and in-planta Botrytis cinerea Inoculation Assays for Tomato
CN108486008A (en) Dipel YN108, cultural method and its application to the high virulence of lepidoptera pest
JPH06113886A (en) Method for estimating growth rate and growth condition of mold and utilizing the same for antifungal countermeasure
Rathore et al. Original Research Article Isolation, Screening and relative capacity of fungi which causes infestation of finished leather
BR112018013147B1 (en) METHOD OF SCREENING AN ANTIMICROBIAL AGENT IN AN AIR CONDITIONING SYSTEM TO ELIMINATE ODORS GENERATED IN THE AIR CONDITIONING SYSTEM
Trivedy et al. In vitro testing of common disinfectants used in sericulture to control the growth of fungi in rearing houses
JP2002065296A (en) Test specimen for environmental environmental assessment and method of environmental assessment
Beales Detection of fungal plant pathogens from plants, soil, water and air.
JP4633645B2 (en) Plant seed pathogen testing method
Gams et al. Cephalosporium-like hyphomycetes-2 species of acremonium from heated substrates
Stottlemyer et al. Reducing airborne ectomycorrhizal fungi and growing non-mycorrhizal loblolly pine (Pinus taeda L.) seedlings in a greenhouse
JP2001343382A (en) Test piece for environmental investigation using micro- organism as indicator, and environmental investingation method using it
RU2485182C1 (en) Method of indirect estimation of strains virulence of pathogenic burkholderia on grounds of cytopathogenicity
Hwu et al. Maintenance and Quantitative Phenotyping of the Oomycete-plant Model Pathosystem Hyaloperonospora arabidopsidis–Arabidopsis
Gregory et al. Terminal velocity of fall of didymella-exitialis ascospores in air
JP2008301772A (en) Test specimen using fungus belonging to the genus wallemia, and method of environmental assessment using the same
Magan et al. The influence of water and temperature on the growth of fungi causing spoilage of stored products.
Bansal et al. Methods in study of viability of VAM fungal spores