JP2003125785A - ブタTSH(Thyroid−stimulatinghormone)レセプターをコードする断片およびその用途 - Google Patents

ブタTSH(Thyroid−stimulatinghormone)レセプターをコードする断片およびその用途

Info

Publication number
JP2003125785A
JP2003125785A JP2001340847A JP2001340847A JP2003125785A JP 2003125785 A JP2003125785 A JP 2003125785A JP 2001340847 A JP2001340847 A JP 2001340847A JP 2001340847 A JP2001340847 A JP 2001340847A JP 2003125785 A JP2003125785 A JP 2003125785A
Authority
JP
Japan
Prior art keywords
primer
leu
receptor
tsh receptor
dna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001340847A
Other languages
English (en)
Inventor
Makoto Igarashi
誠 五十嵐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamasa Shoyu KK
Original Assignee
Yamasa Shoyu KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamasa Shoyu KK filed Critical Yamasa Shoyu KK
Priority to JP2001340847A priority Critical patent/JP2003125785A/ja
Publication of JP2003125785A publication Critical patent/JP2003125785A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Peptides Or Proteins (AREA)

Abstract

(57)【要約】 【課題】ブタTSH(Thyroid-stimulating hormone)レ
セプターをコードするDNA断片およびその用途を提供
する。 【解決手段】配列番号1で示されるアミノ酸配列をコー
ドする塩基配列、配列番号2で示される塩基配列、また
はこれらの配列において、1個もしくは数個の塩基が欠
失、置換、挿入または付加された配列、あるいはこれら
のDNAとストリンジェントな条件下でハイブリダイズ
するDNAであって、かつブタ由来TSHレセプターを
コードするDNA断片に関する。さらに、本発明は、上
記いずれかのDNA断片をプラスミドもしくはファージ
に挿入して調製した発現ベクター、及び当該発現ベクタ
ーを用い、宿主細胞を形質転換し、得られた形質転換体
を培養して得られる組換えブタTSHレセプターおよび
その製造法に関するものである。

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は、ブタTSH(Thyroid-s
timulating hormone)レセプターをコードするDNA断
片およびその用途に関するものである。
【0002】
【従来の技術】甲状腺刺激ホルモンレセプター(Thyroi
d-Stimulating Hormone Receptor;以下TSHレセプタ
ーとする)は甲状腺細胞膜上に存在する甲状腺刺激ホル
モン(TSH)の受容体である。甲状腺の代表的な疾患
であるグレ−ブス(Graves)病〔バセドウ(Basedow)病〕
は、甲状腺機能が亢進する疾患であり、TSHレセプタ
ーに対する自己抗体が原因となって発症するとされてい
る。
【0003】TSHレセプターに対する自己抗体には、
TSHレセプターに結合して甲状腺刺激活性を示す抗体
(甲状腺刺激抗体)とTSHレセプターに結合してTS
HのTSHレセプターに対する刺激活性を妨げる抗体
(甲状腺刺激阻害抗体)の少なくとも2種類の異なった
活性を持つ抗体が存在していることが知られている。T
SHレセプターに対する自己抗体の測定は、グレ−ブス
病の診断、病勢把握、病因解析などに利用されており、
測定原理により大きく2つに分類することができる。
【0004】すなわち、1つの方法は、可溶化ブタ甲状
腺細胞膜画分に患者血清とアイソト−プ標識したTSH
を加えて反応させ、被検血清中のTSHレセプター自己
抗体による標識化TSHのTSHレセプターへの結合阻
害率をTSHレセプター自己抗体値として測定する方法
(Methods in Enzymology,74,405〜420(1981)、Endoc
r.Rev.,9,106-120,(1988))である。
【0005】また、他の方法は、ポリエチレングリコ−
ル処理により分画した被検血清を測定サンプルとし、こ
れをブタ甲状腺細胞に反応させると、サンプル中の甲状
腺刺激抗体(TSAb)がブタ甲状腺細胞膜上のTSH
レセプターに結合して細胞中のアデニレートシクラーゼ
が活性化されてcAMPが産生されるので、被検血清と
コントロール血清におけるcAMP産生量の比率からT
SAb活性を算出する方法(Endoclin.Vol.125,No.1,pp
410-(1985))である。
【0006】
【発明が解決しようとする課題】しかしながら、上記の
方法で使用するブタ由来の甲状腺細胞あるいはその膜画
分の調製は必ずしも簡便とはいえなかった。たとえば、
屠殺したブタより甲状腺組織を取得し、さらに組織をコ
ラゲナ−ゼおよびトリプシン処理により細胞を個々に分
離させた後に凍結させて保存し、これを解凍させてアッ
セイに用いていた。また、細胞調製に用いるブタの個体
差、処理操作時の状況、保存状態等により細胞のロット
間に差が生じる可能性も否定できなかった。
【0007】このため、組換えTSHレセプターを用い
ることができれば、TSHレセプターに対する自己抗体
測定のための試薬あるいはキットの調製が簡便になり、
ロット差を生じる危険性も小さくできることが期待され
る。特に、ヒトやイヌ等由来の組換えTSHレセプター
を使用するよりも、ブタ由来の組換えTSHレセプター
を使用した方が、従来法による測定値との解離が少ない
と考えられるため、組換えTSHレセプターとしてはブ
タ由来のものを使用するのが好ましいと考えられてい
た。
【0008】しかしながら、ヒトやイヌなどのTSHレ
セプター遺伝子に関する報告および当該遺伝子を含むウ
イルスを用いてCHO細胞やミエローマ細胞を形質転換
し、これら細胞を培養することでヒトTSHレセプター
などを生産する試みは報告されているものの(特表平4
−506752、特表平5−504683など)、ブタ
由来のTSHレセプターに関しては、当該レセプターを
コードする遺伝子の解析はもとより、そのアミノ酸配列
さえ報告されていないのが現状である。
【0009】
【課題を解決するための手段】そこで本発明者は、ブタ
甲状腺細胞由来のTSHレセプターをコードする遺伝子
をクローニングすべく、ウシ、ヒツジ、ヒト、マウス、
ラット由来の甲状腺TSHレセプター遺伝子配列をもと
にプライマーを作製し、ブタ甲状腺細胞のRNAを鋳型
にして合成したcDNAをスクリーニングした結果、ア
ミノ酸764個、分子量86,641のタンパク質をコ
−ドする遺伝子を見出し、当該遺伝子の塩基配列は、公
知の動物由来のTSHレセプター遺伝子と類似している
ことを確認した。さらに、この遺伝子を発現させ、その
機能を確認した結果、当該遺伝子はブタTSHレセプタ
ーをコードする遺伝子であることを確認し、得られた組
換えブタTSHレセプターがTSHレセプターに対する
自己抗体の測定に使用できることを見出し、本発明を完
成させた。
【0010】したがって、本発明は、配列番号1で示さ
れるアミノ酸配列、または配列番号1で示されるアミノ
酸配列において、1個もしくは数個のアミノ酸が欠失、
置換、挿入または付加されたアミノ酸配列からなるブタ
TSHレセプターをコードするDNA断片に関するもの
である。
【0011】また、本発明は、配列番号2で示される塩
基配列、または配列番号2で示される塩基配列におい
て、1個もしくは数個の塩基が欠失、置換、挿入または
付加された塩基配列を有し、あるいはこれらのDNAと
ストリンジェントな条件下でハイブリダイズするDNA
であって、かつブタ由来TSHレセプターをコードする
DNA断片に関するものである。
【0012】さらに、本発明は、上記いずれかのDNA
断片をプラスミドもしくはファージに挿入して調製した
発現ベクター、及び当該発現ベクターを用い、宿主細胞
を形質転換し、得られた形質転換体を培養して得られる
組換えブタTSHレセプターおよびその製造法に関する
ものである。
【0013】
【発明の実施の形態】本発明は、配列番号1で示される
アミノ酸配列からなるブタTSHレセプターをコードす
るDNA断片に関するものである。配列番号1で示され
るアミノ酸配列からなるレセプターは、TSHレセプタ
ー活性を維持する限りにおいて、配列番号1で示される
アミノ酸配列に限定されるものではなく、配列番号1に
示されるアミノ酸配列における1個もしくは数個のアミ
ノ酸が欠失、置換、修飾または付加されたアミノ酸配列
であってもかまわない。
【0014】本発明のDNA断片を塩基配列をもって例
示すれば、配列番号2で示される塩基配列を有するDN
A断片を挙げることができる。配列番号2で示される塩
基配列を有するDNA断片は、後述の実施例に詳述する
ように、ブタ甲状腺細胞のRNAを鋳型として合成した
cDNAから調製されたものであって、図1の塩基番号
54〜2345番目で示される配列と同一のものであ
り、TSHレセプターの構造遺伝子に相当する。
【0015】本発明においては、ブタTSHレセプター
を産生することができる限りにおいて、配列番号2で示
される塩基配列中の1個もしくは複数個の塩基が欠失、
置換、挿入または付加されたDNA断片、またはそれら
のDNA断片とストリンジェントな条件下でハイブリダ
イズするDNA断片も利用することができる。なお、こ
こでいうストリンジェントな条件下でハイブリダイズす
るとは、5×SSC(1×SSCは塩化ナトリウム8.
76g、クエン酸ナトリウム4.41gを1リットルの
水に溶解させたもの)、0.1%w/v N−ラウロイ
ルザルコシン・ナトリウム塩、0.02% w/v SD
S、0.5% w/vブロッキング試薬を含む溶液を用
い、60℃で20時間程度ハイブリダイゼーション反応
を行ったときにハイブリダイズすることを意味する。
【0016】本発明のDNA断片の調製、すなわち、動
物組織より抽出・精製したRNAを鋳型として合成した
cDNAからの目的遺伝子のクローニング、クローン化
したDNA断片を用いた発現ベクターの調製、および発
現ベクターを用いた組換えTSHレセプターの生産など
は、分子生物学の分野に属する技術者にとっては周知の
技術であり、具体的には、例えば、「Molecular Clonin
g」(Maniatisら編、Cold Spring Harbor Laboratorie
s, Cold Spring Harbor、New York(1982))に記載の方
法に従って行うことができる。
【0017】例えば、まず、既にクロ−ニングされてい
る類似の遺伝子の配列を参考にプライマーを合成する。
具体的には、ウシ、ヒツジ、ヒト等のTSHレセプター
遺伝子は既にクロ−ニングされているので(Biochemica
l and Biophysical ResearchCommunications,165,1184
(1984)等を参照)、それらの配列をそのまま用いてプラ
イマーを合成しても良いし、公知動物のTSHレセプタ
ー遺伝子どうしを比較し、共通部分の塩基配列を用いて
プライマーを合成してもよい。
【0018】次に、合成したプライマーをプローブとし
て、ブタ甲状腺細胞から抽出したRNAを鋳型として合
成したcDNA(もしくはcDNAから公知の方法で作
製されたcDNAライブラリ−)よりTSHレセプター
をコードする遺伝子を含有するDNA断片をクローニン
グする。クローニングの方法としては、公知の方法、例
えば、アミノ酸配列にもとづいて化学合成したオリゴヌ
クレオチドをプローブとして用いたプラークまたはコロ
ニーハイブリダイゼーション法〔Molecular Cloning,C
old Spring Harbor Laboratory,(1982)〕等が挙げられ
る。
【0019】このようにして得られたDNAの塩基配列
は、公知の方法、例えばMaxam-Gilbert法(Pro. Natl.
Acad.Sci., U.S.A. 74,560(1977))、ジデオキシ法(Nu
cl.Acids. Res.,9,309(1981))、あるいはデアザ法(Nu
cl. Acids. Res.,14,1319(1986))などによって決定す
る。
【0020】決定した塩基配列もしくはそこから推定さ
れるアミノ酸配列を、公知の動物由来TSHレセプター
のそれと比較することにより、ブタ由来のTSHレセプ
ターをコ−ドするDNA断片の存在を確認する。上述の
方法を繰り返し行うことにより、ブタTSHレセプター
遺伝子の塩基配列を決定する。
【0021】遺伝子の両端、つまり5’周辺、N末端、
C末端あるいは3’周辺の領域はPCRのプライマーの
設定が困難なため、上述の方法では塩基配列が決定でき
ない場合が多い。そのような場合には、これらの領域の
配列は、5’RACE法及び3’RACE法(宝酒造
(株)製の3'-Full RACE Core Set及び5'-Full RACE Co
re Set等)を用いることにより決定することができる。
【0022】TSHレセプターの調製は、プロモーター
等を保有する公知のプラスミドもしくはファージに、上
記クローン化したTSHレセプター遺伝子を挿入して発
現ベクターを調製し、該発現ベクターを用いて形質転換
した細胞(CHO、COSなどの哺乳類由来細胞もしくはSf
9、Sf21等の昆虫細胞等)を自体公知の方法に従って培
養し、TSHレセプターを産生させる方法をあげること
ができる(例えば、Biochemical and Biophysical Rese
arch Communications Vol.165,No.3,1250-1255(1989)、
特表平4−506752、J.Immunol.158,2798-2804(19
97)などを参考)。
【0023】調製した培養物から、膜分離あるいは遠心
分離処理などによりTSHレセプターが産生した細胞を
回収する。回収した細胞はそのまま抗TSHレセプター
抗体の測定に使用することもでき、また、超音波処理等
により細胞を破砕し、遠心分離、ゲルろ過等を行い種々
の夾雑物を分離後、熱処理、硫安塩析処理、透析処理、
各種クロマトグラフィー処理等を数種組み合わせて単離
精製し、該測定に使用することもできる。
【0024】
【発明の効果】本発明者によって、初めてブタ由来TS
HレセプターをコードするDNA断片を特定することが
でき、このようなDNA断片を用いて調製した組換えビ
タTSHレセプターは、抗TSHレセプター抗体測定に
有用である。特に、通常のブタ甲状腺細胞を用いた従来
法と比較すると、組換えビタTSHレセプターを用いた
方がcAMPの産生量が高く、より高感度に測定可能で
ある。
【0025】
【実施例】以下、実施例を挙げて本発明を具体的に説明
するが、本願発明が実施例に限定されないことは明らか
である。
【0026】実施例1:ブタTSHレセプター遺伝子の
塩基配列の決定 (1)プライマー 図2に示すように、既にクローン化されているヒト、ウ
シ、ヒツジ、イヌ、マウス及びラットのTSHレセプタ
ー遺伝子の塩基配列を比較して、20〜30塩基の範囲
において5種類の動物でほぼ100%保存されている領
域を選び、5’プライマーを3種類、3’プライマーを
3種類、合計6種類のプライマーを合成した。5’プラ
イマーにはプライマー番号として奇数を、3’プライマ
ーには偶数を用いた。また、対応箇所として、各プライ
マーがヒトTSHレセプター遺伝子のどの箇所に対応し
ているかを、開始コドンATGのAを+1として表し
た。
【0027】 プライマー1:5'-GACTTCAGAGTCACCTGCAAGG -3' (22塩基、対応箇所+106〜+127、GC含量54.5%) プライマー2:5'-CAGATGCCAAACTTGCTGAG -3' (20塩基、対応箇所+2074〜+2093、GC含量50.0%) プライマー3:5' -ATGGGCTACAAGTTCCTGAG -3' (20塩基、対応箇所+1234〜+1253、GC含量50.0%) プライマー4:5'-GCCAGTCGATGGCATGGTTGT -3' (21塩基、対応箇所+1445〜+1465、GC含量57.1%) プライマー5:5'-CTGGATGCTGTTTACCTGAAC -3' (21塩基、対応箇所+604〜+624、GC含量47.6%) プライマー6:5'-GGATTCCTCTGATTTTCTTCTG -3' (22塩基、対応箇所+865〜+886、GC含量40.9%)
【0028】(2)ブタ甲状腺細胞からのRNAの調製 ブタ甲状腺組織をコラゲナ−ゼおよびトリプシン等のプ
ロテア−ゼで処理して個々の細胞に分散させた。約6g
のブタ甲状腺細胞を初発材料として、AGPC法(実験
医学(羊土社)Vol.9 No.15 p99(1991)、バイオ実験イ
ラストレイテッド(秀潤社)第2巻 p161)によってRN
Aを調製した。この結果、1.75mgの全RNAが得
られた。さらにOligotex-dT30(宝酒造(株)製)を用
いてこの全RNAよりmRNAを精製した。この結果、
約40mgのmRNAが得られ、OD260/OD280値は
1.758であった。
【0029】(3)PCR RNA LA PCRTMKit (AMV) ver.
1.1(宝酒造(株)製)を用いて、ブタ甲状腺細胞よ
り調製した全RNAを鋳型としてcDNAを合成した。
逆転写反応のプライマーはOligo dT-Adaptor primer
(キットに添付)を、酵素はAvian Myeloblastosis Vir
us由来のRiverse transcriptaseを使用し、反応は55
℃、30分間行った。
【0030】次に、合成したcDNAを鋳型とし、前述
のプライマーを、No.1とNo.6、No.3とNo.2、No.5とNo.4
をペアにしてPCRを行った。PCRによる遺伝子の増
幅は、熱変性(94℃、30秒)、アニ−リング(55
℃、1分)、伸長反応(72℃、1分)のステップを5
0回繰り返すことにより行った。
【0031】ヒトTSHレセプター遺伝子の塩基配列か
ら計算すると、プライマー1とプライマー6の場合は7
81塩基、プライマー3とプライマー2の場合は864
塩基、プライマー5とプライマー4の場合は862塩基
の大きさの断片が増幅されることが予想される。PCR
で増幅された3つのDNA断片を各々アガロ−ス電気泳
動を行ったところ、予想と一致する大きさのDNA断片
が検出された。それぞれのDNA断片をアガロ−ス電気
泳動により分離し、その断片を含む箇所をDNACEL
L(第一化学薬品製)を用いて回収・精製した。精製し
たDNA断片の塩基配列を決定し、対応するアミノ酸配
列を推定し、他の動物由来の塩基配列およびアミノ酸配
列と比較したところ、良く似ていることが示された。そ
こで、得られた塩基配列をもとに、さらに下記のプライ
マーを合成して上記と同様にPCRを行い、TSHレセ
プター構造遺伝子のほぼ全領域の塩基配列を決定した。
【0032】 プライマー9 5'-CACTGACTTCATGTGCATGGC-3' (21塩基、対応箇所+1893〜+1913、52.4%) プライマー10 5'-GGACTGTGATTCCAGCTGCTG-3' (21塩基、対応箇所+268〜+288、57.1%) プライマー11 5'-GACATCAATCCCTGCGAATGC-3' (21塩基、対応箇所+492〜+512、52.4%) プライマー13 5'-GTGAATGCTGTAAATGGTCCC-3' (21塩基、対応箇所+943〜+963、47.6%) プライマー15 5'-ACGCCTACGCCATCATGGCTG-3' (21塩基、対応箇所+1610〜+1630、61.9%) プライマー16 5'-AACAGCATCCAGCTTTGTCCC-3' (21塩基、対応箇所+595〜+615、52.4%) プライマー18 5'-GTCGTAATGGCTGTCAAAGGC-3' (21塩基、対応箇所+1138〜+1158、52.4%) プライマー20 5'-AGAGGAGTCTCAGTGTCCATG-3' (21塩基、対応箇所+1713〜+1733、52.4%)
【0033】(4)C末端及び3’周辺領域の塩基配列
の決定 構造遺伝子の両側にあたる5’および3’周辺領域に関
しては、比較した動物間でアミノ酸をコ−ドしている領
域とは異なっていた。得られた構造遺伝子の塩基配列が
比較的ヒト、マウス、ラットに比べてウシやヒツジに近
い傾向が観察されたため、ウシもしくはヒツジの塩基配
列をもとに、3’周辺領域に対応するプライマーの設定
を行った。
【0034】 プライマー12 5'-CAGCCTAAGTCCTTGTACCACTTA-3' (24塩基、GC含量45.8%) プライマー14 5'-GTGTCGATGGTTGGAATGATGCTC-3' (24塩基、GC含量50.0%) 上記の2つの3’プライマーを上記のプライマー9およ
びプライマー15と組み合わせてPCRを行ったとこ
ろ、プライマー14を用いた時に予想される大きさのD
NA断片の増幅が観察された。プライマー9とプライマ
ー14を用いて得られたDNA断片の塩基配列を決定し
たところ、得られたブタTSHレセプター遺伝子のC末
端領域の塩基配列と一致する箇所が存在し、該遺伝子由
来であることが示された。これにより、C末端領域およ
びその下流の塩基配列が明らかになった。
【0035】(5)N末端領域および5’周辺領域の塩
基配列の決定 3’周辺領域の塩基配列を決定した時と同様に、ウシも
しくはヒツジ由来の塩基配列を参考にして5’周辺領域
に3種類の5’プライマーを設定した。
【0036】 プライマー7 5'-ATCGCCGAGCACGCAGAGGTAG-3' (22塩基、GC含量63.6%) プライマー17 5'-ATGAGAGGGAGGCGATC-3' (17塩基、GC含量58.8%) プライマー19 5'-GGGCCCGGAGGACGATG-3' (17塩基、GC含量76.5%)
【0037】cDNAを鋳型として上記プライマーを
5’プライマーとして、これに対する3’プライマーと
してプライマー10および16を用いてPCRを行った
が、明確に増幅されるDNA断片は検出されなかったた
め、cDNA PCR Library KitおよびcDNA Synthesis kit
(いずれも宝酒造(株)製)を用いてcDNA PCR Library
の作製を行った。作製したブタ甲状腺細胞由来cDNA PCR
Libraryを鋳型として、5’プライマーとしてCAプラ
イマー(cDNA PCR Library Kitに添付)を、3’プライ
マーとしてプライマー20を用いてPCRを行った。P
CR反応液をアガロ−ス電気泳動に供し、ゲルより約1
500塩基以上のDNA断片を回収・精製した。
【0038】この調製したDNAを鋳型として、さらに
CAプライマーおよびプライマー16を用いてPCRを
行い、得られたDNA断片を鋳型として、CAプライマ
ーとプライマー10を用いてPCRを行ったところ、ほ
ぼ予想される大きさのDNA断片の増幅が観察された。
DNA断片を回収・精製し、塩基配列を決定したとこ
ろ、既に明らかになっているプライマー10より上流の
塩基配列が検出され、この断片がTSHレセプター遺伝
子由来であることが示された。これにより、TSHレセ
プター遺伝子のN末端領域とATG開始コドンより53
塩基上流までの塩基配列が明らかになった。
【0039】実施例2:ブタTSHレセプター遺伝子の
クロ−ニング 上記で明らかになった塩基配列をもとに、5’周辺領域
に対応する5’プライマーであるプライマー21と、
3’周辺領域に対応する3’プライマーであるプライマ
ー22を設計・合成した。
【0040】 プライマー21 5'-GCTGAAGATGAAGAGATAGCC-3' (21塩基、対応箇所-18〜-38、GC含量47.6%) プライマー22 5'-CTAAGACACCAGCCTAAGTCC-3' (21塩基、対応箇所+2312〜+2332、GC含量52.4%)
【0041】ブタ甲状腺細胞より調製したmRNAを鋳
型として、Oligo dT-アダプタ− プライマー(cDNA PCR
Library Kitに添付)、Avian Myeloblastosis Virus由
来のRiverse transcriptaseを用いてcDNAを合成し
た。さらにこのcDNAを鋳型として、プライマー21
及びプライマー22を用いてPCR反応を行った。PC
R反応は、熱変性(98℃、10秒)、アニ−リング
(55℃、30秒)、伸長反応(72℃、2分)のステ
ップを25回繰り返すことにより行った。増幅したTS
Hレセプター遺伝子(cDNA)はアガロ−ス電気泳動
により分離し、回収・精製した。
【0042】精製したTSHレセプター遺伝子断片を、
パ−フェクトリ− ブラント クロ−ニング キット(Nov
agen社製、宝酒造(株)販売)を用いてプラスミドへク
ローン化した。得られたTSHレセプター遺伝子の塩基
配列は、上記で決定された塩基配列と同一であり、変異
は起こっていなかった。
【0043】実施例3:組換えブタTSHレセプターの
調製 (1)クロ−ン化したブタTSHレセプタ−遺伝子(c
DNA)のpCMV−Scriptへの組み込み クロ−ン化したブタ甲状腺組織由来のTSHレセプタ−
cDNAを鋳型とし、下に示したプライマー23(TS
R37)とプライマー24(TSR22)を用いて常法
に従いPCRを行った。 プライマー23 5'-GCC CGG CCA CCA TGG GTC TGA CGC
CC-3' プライマー24 5'-CTA AGA CAC CAG CCT AAG TCC-3'
【0044】増幅されたPCR断片をTSHR37/2
2と名付けた。TSHR37/22は、アガロ−ス電気
泳動を行って同DNA断片を分離・切り出した後にDN
ACELLにより回収・精製した。得られたTSHR3
7/22をpCMV−Script PCR Clon
ing kit (ストラタジ−ン社)を用いて、pC
MV−Scriptへクロ−ン化し、得られたプラスミ
ドをpCMV:pTSHRと名付けた。なお、クローニ
ングの方法はキットに付随している説明書にしたがって
行った。
【0045】(2)pCMV:pTSHRのCHO−K
1細胞へのトランスフェクション及びG−418耐性株
の単離 リポフェクトアミン(GIBCO BRL社)を用いて
pCMV:pTSHRDNAをCHO−K1細胞(第日
本製薬)へ導入した。トランスフェクション方法はリポ
フェクトアミンに付随している説明書にしたがって行っ
た。トランスフェクション操作後、処理した細胞を48
時間Ham'sF−12培地(GIBCO BRL)で
培養した。トリプシン処理によってCHO細胞をプレ−
トから剥がした後、10分の1量の細胞を新たにG−4
18(ゲンタマイシン誘導体、160mg/L)を添加
した培地に植え継ぎ培養を行った。
【0046】2〜3日ごとに培地を交換し、死滅した細
胞を除き、G−418存在下で生育する細胞の培養を続
けた。ある程度G−418を含む培地で細胞が生育した
ら、トリプシン処理によってトランスフェクトしたCH
O細胞を剥がし、細胞数を計測した。細胞濃度に応じて
G−418添加培地で段階的に希釈を行い、それぞれの
希釈液を96wellプレ−トで培養した。さらに2〜
3日後に顕微鏡で観察し、1つのwellに1個のコロ
ニ−しかないものを探し、11株ほど単離した。この単
離した11株を培養し、ある程度wellの底面に覆う
ように生育した段階で、トリプシン処理によって剥がし
て直径100mmのプレ−トに植え継ぎ培養を続けた。
【0047】(3)pCMV:pTSHRを導入された
CHO細胞(トランスフェクタント)の探索 単離した11個のG−418耐性CHO細胞株を直径2
2mmのwellに25,000個/wellになるよ
うにそれぞれを植え継いで培養した。3日間培養後、培
地を除去し、各wellに0.5mlの下記組成のBi
nding buffer(以下、単にBinding
bufferという)を添加した。さらに5mlのI
125ラベルしたウシ由来TSH(以後I125−bT
SHと表記)を添加して37℃で2時間インキュベ−シ
ョンした。
【0048】インキュベ−ション後、培地を除去し、さ
らに0.5mlの氷冷したBinding buffe
rで1回洗浄した。洗浄後に各wellに0.5mlの
Lysis buffer(0.1N NaOH,1%
SDS、以下、単にLysis bufferという)
を加えて底面に付着している細胞を可溶化した。可溶化
した細胞を試験管に回収後、さらにwellに0.5m
lの氷冷したBinding bufferを加えて洗
浄した。可溶化細胞液とこの洗浄液を合わせてg−カウ
ンタ−でTSHレセプタ−に結合したI125−bTS
H量を計測した。なお、コントロ−ルとしてpCMV−
Scriptをトランスフェクトした細胞4株も同様に
培養・検討を行った。この結果を下記表1に示す。
【0049】表1から明らかなように、pCMV−Sc
ript cDNAをトランスフェクションした4株の
結合量(cpm)が基準値(basal level)
と考えられるため、これよりも明らかに高い結合量を示
すpCMV:pTSHRトランスフェクタント No.
2、No.3、No.4、No.5、No.6、No.
7、No.8、No.9及びNo.11の計9株が、T
SHレセプタ−を発現していることが示唆された。この
中からより高い結合を示したNo.3、No.5、N
o.6及びNo.8株を選び、さらに検討した。
【0050】
【表1】 なお、表中、PorcineはpCMV:pTSHR
を、ScriptはpCMV−Scriptをそれぞれ
トランスフェクトしたCHO細胞株を示す。
【0051】 Binding bufferの組成(g/L) KCl 0.40 KHPO 0.06 NaHCO 0.35 NaHPO 0.048 D−Glucose 1.00 Sucrose 95.84 Bovine Serum Albumin (BSA) 2.5
【0052】(4)CHO/pCMV:pTSHRトラ
ンスフェクタントの確認 pCMV:pTSHRトランスフェクタント No.
3、No.5、No.6、No.8の計4株(以後、そ
れぞれP3、P5、P6、P8と表記)とコントロ−ル
としてpCMV−ScriptトランスフェクタントN
o.1と2株(以後、C1、C2と表記)を用いて、I
125−bTSHとの結合およびアイソト−プで修飾さ
れていないbTSH(cold bTSH)添加による
125−bTSH結合阻害効果の検討を行った。
【0053】すなわち、直径100mmのプレ−トへ5
×10cells/プレ−トになるように各トランス
フェクタントを植え継いだ。37℃で3日間COイン
キュベ−タ−で培養した。培養後培地を除去し、4ml
の37℃で保温していたBinding buffer
に置換した。これに40mlのI125−bTSHを添
加して37℃で2時間インキュベ−ションして結合を検
討した。さらにこの他に20mlのcoldTSH(5
0mIU/ml)添加によるI125−bTSHの結合
阻害も検討した。なお、何れの試験も2連で行った。ま
た。コントロ−ルのC1,C2株は結合のみ検討した。
【0054】インキュベ−ション後、培地を除去し、さ
らに2mlの氷冷Bindingbufferで1回洗
浄した。これに2mlのLysis bufferを添
加してプレ−ト底面に付着している細胞を可溶化し回収
した。さらに1mlの氷冷Binding buffe
rで洗浄した。これら細胞可溶化液と洗浄液を合わせて
g−カウンタ−でI125量を計測し、その結果を下記
表2に示す。なお、表2における(−)はcold b
TSH無添加を、(+)は添加を示している。したがっ
て、(−)ではI125−bTSHとの結合能を、
(+)ではcold TSH添加による阻害効果を表し
ている。表2の結果から、P3、P5、P6及びP8の
各トランスフェクタントは、コントロ−ルに比べて有意
にI125−bTSHとの結合能が高く、またその結合
がbTSHの添加によって阻害されるため、トランスフ
ェクションしたporcineTSHR遺伝子が発現し
ていることが明らかとなった。
【0055】
【表2】
【0056】(5)リガンド(I125−bTSH)と
の結合能の検討 P6及びC1株を直径22mmのwellに25,00
0個/wellになるようにそれぞれを植え継いで培養
した。3日間培養後、培地を除去し、各wellに0.
5mlのBinding bufferを添加した。さ
らに5段階(2、4、6、10及び20ml)にI
125−bTSH量を分けて添加して37℃で2時間イ
ンキュベ−ションした。
【0057】インキュベ−ション後培地を除去し、さら
に0.5mlの氷冷したBinding buffer
で1回洗浄した。洗浄後に各wellに0.5mlのL
ysis bufferを加えて底面に付着している細
胞を可溶化した。可溶化した細胞を試験管に回収後、さ
らにwellに0.5mlの氷冷したBindingb
ufferを加えて洗浄した。可溶化細胞液とこの洗浄
液を合わせてg−カウンタ−でTSHレセプタ−に結合
したI125−bTSH量を計測し、その結果を表3に
示した。なお、何れの試験も2連で行った。
【0058】表3から明らかなように、P6の結合量
は、添加I125−bTSH量が10ml(=約300
0cpm)まで添加量に相関して上昇しており、添加リ
ガンド量が約3000と6000でそれ程差が見られな
いことから、結合が飽和に達していることがわかる。こ
れに対してC1の結合量は、添加リガンド量に関係せず
ほぼ一定であり、非特異的結合であることを示唆してい
る。
【0059】
【表3】
【0060】(6)cold bTSH添加によるリガ
ンド(I125−bTSH)結合阻害効果の検討 P6及びC1株を直径22mmのwellに25,00
0個/wellになるようにそれぞれを植え継いで培養
した。3日間培養後、培地を除去し、各wellに0.
5mlのBinding bufferを添加した。こ
れらに10mlのI125−bTSH量を添加し、さら
に添加cold bTSH量を7段階に分けて添加し3
7℃で2時間インキュベ−ションした。なお、添加co
ld bTSH量は、各wellあたり0、5、15、
50、150、500および1500mIUであり、最
終濃度としては0、0.01、0.03、0.1、0.
3、1.0及び3.0mIU/mlとなる。
【0061】インキュベ−ション後培地を除去し、さら
に0.5mlの氷冷したBinding buffer
で1回洗浄した。洗浄後に各wellに0.5mlのL
ysis bufferを加えて底面に付着している細
胞を可溶化した。可溶化した細胞を試験管に回収後、さ
らにwellに0.5mlの氷冷したBindingb
ufferを加えて洗浄した。可溶化細胞液とこの洗浄
液を合わせてg−カウンタ−でTSHレセプタ−に結合
したI125−bTSH量を計測し、その結果を表4に
示した。なお、何れの試験も2連で検討した。
【0062】表4から明らかなように、コントロ−ルC
1のリガンド結合量がcold bTSH添加量に影響
されず一定なのに対して、P6の方はcold bTS
H添加濃度が高まるにつれて相対的にリガンド結合量が
低下し、ほぼ1mIU/mlの濃度で100%結合が阻
害されている。したがって、P6のI125−bTSH
との結合がpTSHレセプタ−を介した特異的な結合で
あることが示された。
【0063】
【表4】
【0064】(7)bTSH及びTSAb刺激によるc
AMP産生能の検討 体外診断用医薬品TSAbキット「ヤマサ」(ヤマサ醤
油製)(以後、単にキットと表記する)を用いて測定し
た。測定方法はキットに付いている添付文書に従って行
った。すなわち、P6及びC1株を直径11mmのwe
llに6,000個/wellになるようにそれぞれを
植え継いで培養した。6日間培養して細胞がほぼwel
l一杯になったら、培地を除去しさらにキットに付いて
いる0.5mlの細胞洗浄液で洗浄した。wellに5
0mlの細胞洗浄液を添加した後にキットに付いている
200mlの細胞活性判定液(bTSH 100mIU
/ml)もしくはTSAbを含むヒト血清より調製した
IgG分画サンプルを添加して撹拌した。
【0065】37℃で4時間インキュベ−ション後,1
0mlの反応停止液を添加した。この反応液25mlをガ
ラスチュ−ブに移し、100mlのI125−cAMP
液と100mlのcAMP抗体液を添加して良く撹拌し
た。4℃で一晩インキュベ−ションした後に500ml
のcAMP第2抗体液を添加、撹拌した。4℃で30分
間インキュベ−ション後、1860〜1970g、4
℃、15分間の条件で遠心した。アスピレ−タ−で上清
を吸引除去した後に沈殿のI125をg−カウンタ−で
測定した。なお、TOTAL、NSBサンプルの調製及
びcAMP標準曲線の作成はキットの添付文書にしたが
って行った。測定結果は、表5に示す。
【0066】表5から明らかなように、コントロ−ルの
C1ではbTSHやIgG画分で値が変わらないことか
ら、刺激物質に反応していない事が示された。一方、P
6は、bTSHやTSAbに反応して、かなり高いcA
MPを産生することから、本発明のCHO/pTSHR
(P6)細胞は、TSHと特異的に結合し、TSHとの
結合およびTSAbによる刺激により、cAMP産生が
起きることから、pTSHR cDNAをトランスフェ
クションしたCHO細胞で該レセプタ−蛋白が機能を有
した形で発現しているが明らかとなった。さらに、通常
のブタ甲状腺細胞を用いた時よりも組換えビタTSHレ
セプターを用いた方がcAMPの産生量が高く、より高
感度に測定可能である。
【0067】
【表5】
【0068】
【配列表】 SEQUENCE LISTING <110> YAMASA CORPORATION <120> DNA fragment encoding porcine Thyroid-stimulating hormone receptor (TSHR) and use thereof <130> YP2000-019 <140> <141> <160> 23 <170> PatentIn Ver. 2.1 <210> 1 <211> 764 <212> PRT <213> Porcine <400> 1 Met Ser Leu Thr Pro Leu Leu Gln Leu Ala Leu Leu Leu Ala Leu Pro 1 5 10 15 Arg Ser Leu Arg Gly Lys Gly Cys Pro Ser Pro Pro Cys Glu Cys His 20 25 30 Gln Glu Asp Asp Phe Arg Val Thr Cys Lys Asp Ile His Ser Ile Pro 35 40 45 Pro Leu Pro Pro Asn Thr Gln Thr Leu Lys Phe Ile Glu Thr His Leu 50 55 60 Lys Thr Ile Pro Ser Arg Ala Phe Ser Asn Leu Pro Asn Ile Ser Arg 65 70 75 80 Ile Tyr Leu Ser Ile Asp Ala Thr Leu Gln Gln Leu Glu Ser Gln Ser 85 90 95 Phe Tyr Asn Leu Ser Lys Met Thr His Ile Glu Ile Arg Asn Thr Arg 100 105 110 Ser Leu Thr Tyr Ile Asn Pro Gly Ala Leu Lys Asp Leu Pro Leu Leu 115 120 125 Lys Phe Leu Gly Ile Phe Asn Thr Gly Leu Arg Ile Phe Pro Asp Leu 130 135 140 Thr Lys Val Tyr Ser Thr Asp Val Phe Phe Ile Leu Glu Ile Thr Asp 145 150 155 160 Asn Pro Tyr Met Thr Ser Ile Pro Ala Asn Ala Phe Gln Gly Leu Cys 165 170 175 Asn Glu Thr Leu Thr Leu Lys Leu Tyr Asn Asn Gly Phe Thr Ser Val 180 185 190 Gln Gly His Ala Phe Asn Gly Thr Lys Leu Asp Ala Val Tyr Leu Asn 195 200 205 Lys Asn Lys Tyr Leu Thr Val Ile Asp Lys Asp Ala Phe Gly Gly Val 210 215 220 Phe Ser Gly Pro Thr Leu Leu Asp Val Ser Tyr Thr Ser Val Thr Ala 225 230 235 240 Leu Pro Pro Lys Gly Leu Glu His Leu Lys Glu Leu Ile Ala Arg Asn 245 250 255 Thr Trp Thr Leu Lys Lys Leu Pro Leu Ser Leu Ser Phe Leu His Leu 260 265 270 Thr Arg Ala Asp Leu Ser Tyr Pro Ser His Cys Cys Ala Phe Lys Asn 275 280 285 Gln Lys Lys Ile Arg Gly Ile Leu Glu Ser Leu Met Cys Asn Glu Ser 290 295 300 Ser Ile Arg Ser Leu Arg Gln Arg Lys Ser Val Asn Ala Val Asn Gly 305 310 315 320 Pro Phe Tyr Gln Glu Tyr Glu Glu Asp Leu Gly Asp Ser Ser Val Gly 325 330 335 Asn Lys Glu Asn Ser Lys Phe Gln Asp Thr His Ser Asn Ser His Tyr 340 345 350 Tyr Val Phe Phe Glu Glu Gln Glu Asp Glu Ile Ile Gly Phe Gly Gln 355 360 365 Glu Leu Lys Asn Pro Gln Glu Glu Thr Leu Gln Ala Phe Asp Ser His 370 375 380 Tyr Asp Tyr Thr Val Cys Gly Gly Ser Glu Asp Met Val Cys Thr Pro 385 390 395 400 Lys Ser Asp Glu Phe Asn Pro Cys Glu Asp Ile Met Gly Tyr Arg Phe 405 410 415 Leu Arg Ile Val Val Trp Phe Val Ser Leu Leu Ala Leu Leu Gly Asn 420 425 430 Val Phe Val Leu Val Ile Leu Leu Thr Ser His Tyr Lys Leu Thr Val 435 440 445 Pro Arg Phe Leu Met Cys Asn Leu Ala Phe Ala Asp Phe Cys Met Gly 450 455 460 Met Tyr Leu Leu Leu Ile Ala Ser Val Asp Leu Tyr Thr Gln Ser Glu 465 470 475 480 Tyr Tyr Asn His Ala Ile Asp Trp Gln Thr Gly Pro Gly Cys Asn Thr 485 490 495 Ala Gly Phe Phe Thr Val Phe Ala Ser Glu Leu Ser Val Tyr Thr Leu 500 505 510 Thr Val Ile Thr Leu Glu Arg Trp Tyr Ala Ile Thr Phe Ala Met Arg 515 520 525 Leu Asp Arg Lys Ile Arg Leu Arg His Ala Tyr Ala Ile Met Ala Gly 530 535 540 Gly Trp Val Cys Cys Phe Leu Leu Ala Leu Leu Pro Leu Val Gly Ile 545 550 555 560 Ser Ser Tyr Ala Lys Val Ser Ile Cys Leu Pro Met Asp Thr Glu Thr 565 570 575 Pro Leu Ala Leu Ala Tyr Ile Ile Leu Val Leu Leu Leu Asn Ile Val 580 585 590 Ala Phe Thr Ile Val Cys Ser Cys Tyr Val Lys Ile Tyr Ile Thr Val 595 600 605 Arg Asn Pro Gln Tyr Asn Pro Gly Asp Lys Asp Thr Lys Ile Ala Lys 610 615 620 Arg Met Ala Val Leu Ile Phe Thr Asp Phe Met Cys Met Ala Pro Ile 625 630 635 640 Ser Phe Tyr Ala Leu Ser Ala Leu Met Asn Lys Pro Leu Ile Thr Val 645 650 655 Thr Asn Ser Lys Ile Leu Leu Val Leu Phe Tyr Pro Leu Asn Ser Cys 660 665 670 Ala Asn Pro Phe Leu Tyr Ala Ile Phe Thr Lys Ala Phe Gln Arg Asp 675 680 685 Val Phe Ile Leu Leu Ser Lys Phe Gly Phe Cys Lys Arg Gln Ala Gln 690 695 700 Ala Tyr Arg Gly Gln Arg Val Ser Pro Lys Asn Ser Thr Gly Ile Gln 705 710 715 720 Val Gln Lys Val Thr Gln Asn Met Arg Gln Ser Leu Pro Asn Met Gln 725 730 735 Asp Asp Tyr Glu Leu Leu Glu Asn Ser His Leu Thr His Lys Lys His 740 745 750 Asp Gln Ile Ser Lys Glu Tyr Lys Gln Thr Val Leu 755 760 <210> 2 <211> 2292 <212> DNA <213> Porcine <400> 2 atgagtctga cgcccctgtt gcagctggcg ctgcttctcg ccctgcccag gagcctcagg 60 gggaaagggt gtccgtctcc gccctgcgaa tgccaccagg aggacgactt cagagtcacc 120 tgcaaggata tccacagcat ccccccctta ccacccaata ctcagacact aaagtttata 180 gagactcatc tgaaaaccat ccccagtcgt gcattttcaa atctgcccaa tatttccagg 240 atctacctgt caatagatgc aactctacag cagctggaat cacagtcctt ctacaatttg 300 agcaaaatga ctcacataga gattcggaat accagaagct taacgtacat aaaccctggt 360 gccctaaaag atctccccct tctaaagttc cttggcattt tcaacactgg acttagaata 420 ttcccagacc tgaccaaagt gtattccact gatgtattct tcatacttga aattacagac 480 aacccttaca tgacatcaat ccctgcgaat gcttttcagg gcctgtgcaa cgaaaccttg 540 acactgaaac tatacaacaa tggctttact tcagtccaag gacatgcttt caatgggaca 600 aagctggatg ctgtttacct gaacaagaat aaatacctga cagttattga caaagatgca 660 tttggaggag ttttcagtgg accaaccttg ctggatgtct cttataccag tgttactgcc 720 ctgccaccca aaggcctgga acacctgaag gaactgatag caagaaatac ttggactcta 780 aagaaacttc cactgtcctt gagtttcctt cacctcacac gagctgacct ttcttatcca 840 agccactgct gtgcttttaa gaatcagaag aagatcagag gaatccttga gtctttaatg 900 tgtaatgaga gcagtattcg gagcctgcgt cagagaaaat ctgtgaatgc tgtaaatggt 960 cccttttacc aagaatatga agaggatctg ggcgacagca gtgttgggaa taaggaaaac 1020 tccaagttcc aggataccca tagcaactcc cattactacg tcttctttga agaacaagag 1080 gatgagatca ttggttttgg ccaagagctc aaaaaccccc aggaagagac ccttcaggcc 1140 tttgacagcc attacgacta caccgtgtgt gggggcagtg aagacatggt gtgcaccccc 1200 aagtcagatg agttcaaccc ctgtgaagac ataatgggct acaggttcct gagaatcgtg 1260 gtgtggttcg ttagcctgct ggctctcctg ggcaatgtct ttgtcctggt catcctcctc 1320 acgagccact acaaactgac ggtcccacgc tttctcatgt gcaacttggc ctttgcagat 1380 ttctgcatgg ggatgtatct gctcctcatt gcctcggtgg acctctacac tcagtctgag 1440 tactacaacc atgccatcga ctggcagaca ggtcccgggt gcaacacggc tggtttcttc 1500 accgtctttg ccagcgagct gtcagtgtac acactaacag tcatcactct ggagcgctgg 1560 tatgccatca ccttcgccat gcgcctggat cgcaagatcc gcctcaggca cgcctacgcc 1620 atcatggctg gcggctgggt ttgctgcttc ctgctcgccc tgctgccttt ggtggggata 1680 agcagctatg ctaaggtcag catctgcctg cccatggaca ctgagactcc tcttgccctg 1740 gcgtatatta tccttgttct gctgctcaac atagttgcct ttaccatcgt ctgctcctgt 1800 tacgtgaaga tctacatcac agtccgaaat ccccagtata acccgggaga caaagacact 1860 aaaattgcca aaaggatggc tgtgttgatc ttcactgact tcatgtgcat ggccccgatc 1920 tccttttacg ccctctcagc acttatgaac aagcctctca tcactgtcac caactccaaa 1980 atcttgctcg ttctcttcta cccacttaac tcctgtgcca acccgttcct ctatgccatt 2040 ttcaccaaag ccttccagag ggatgtgttt atcctgctca gcaagttcgg cttctgtaaa 2100 cgccaggctc aggcataccg gggtcagaga gtgtctccaa agaacagcac tggtattcag 2160 gtccaaaagg ttacccaaaa catgaggcaa agtctcccca acatgcagga tgactatgaa 2220 ctgcttgaaa actcgcatct aacccacaaa aagcatgacc aaatttcaaa ggagtataag 2280 caaacagttt tg 2292 <210> 3 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> primer for amplification of TSHR gene <400> 3 gacttcagag tcacctgcaa gg 22 <210> 4 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer for amplification of TSHR gene <400> 4 cagatgccaa acttgctgag 20 <210> 5 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer for amplification of TSHR gene <400> 5 atgggctaca agttcctgag 20 <210> 6 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer for amplification of TSHR gene <400> 6 gccagtcgat ggcatggttg t 21 <210> 7 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer for amplification of TSHR gene <400> 7 ctggatgctg tttacctgaa c 21 <210> 8 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> primer for amplification of TSHR gene <400> 8 ggattcctct gattttcttc tg 22 <210> 9 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer for amplification of TSHR gene <400> 9 cactgacttc atgtgcatgg c 21 <210> 10 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer for amplification of TSHR gene <400> 10 ggactgtgat tccagctgct g 21 <210> 11 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer for amplification of TSHR gene <400> 11 gacatcaatc cctgcgaatg c 21 <210> 12 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer for amplification of TSHR gene <400> 12 gtgaatgctg taaatggtcc c 21 <210> 13 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer for amplification of TSHR gene <400> 13 acgcctacgc catcatggct g 21 <210> 14 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer for amplification of TSHR gene <400> 14 aacagcatcc agctttgtcc c 21 <210> 15 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer for amplification of TSHR gene <400> 15 gtcgtaatgg ctgtcaaagg c 21 <210> 16 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer for amplification of TSHR gene <400> 16 agaggagtct cagtgtccat g 21 <210> 17 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> primer for amplification of TSHR gene <400> 17 cagcctaagt ccttgtacca ctta 24 <210> 18 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> primer for amplification of TSHR gene <400> 18 gtgtcgatgg ttggaatgat gctc 24 <210> 19 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> primer for amplification of TSHR gene <400> 19 atcgccgagc acgcagaggt ag 22 <210> 20 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> primer for amplification of TSHR gene <400> 20 atgagaggga ggcgatc 17 <210> 21 <211> 17 <212> DNA <213> Artificial Sequence <220> <223> primer for amplification of TSHR gene <400> 21 gggcccggag gacgatg 17 <210> 22 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer for amplification of TSHR gene <400> 22 gctgaagatg aagagatagc c 21 <210> 23 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer for amplification of TSHR gene <400> 23 ctaagacacc agcctaagtc c 21 <210> 24 <211> 27 <212> DNA <213> Artificial Sequence <220> <223> primer for amplification of TSHR gene <400> 24 gcccggcca ccatgggtct gacgccc 27 <210> 25 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer for amplification of TSHR gene <400> 25 ctaagacacc agcctaagtc c 21
【図面の簡単な説明】
【図1】図1は、ブタ由来TSHレセプター構造遺伝子
(2292bp、764個のアミノ酸からなる分子量8
6,641のポリペプチドをコードする)を含有するD
NA断片の塩基配列を示したものである。図中、Met
はブタ由来TSHレセプター構造遺伝子の翻訳開始コド
ンを、stopはその停止コドンを示す。
【図2】図2は、本発明のブタ由来TSHレセプターの
アミノ酸配列を、ヒト、ウシ、ヒツジ、マウス、ラッ
ト、イヌ由来TSHレセプターのアミノ酸配列と比較し
て示したものである。図中、porcine はブタ、Humanは
ヒト、Bos taurusはウシ、Ovis ariesはヒツジ、Mus mu
sculusはマウス、Rattusはラット、Canineはイヌ由来の
それぞれのTSHレセプターのアミノ酸配列を示す。ま
た、図中のアルファベットはアミノ酸の1文字記号で、
以下のアミノ酸を示す。 A:アラニン、R:アルギニン、N:アスパラギン、
D:アスパラギン酸、C:システイン、Q:グルタミ
ン、E:グルタミン酸、G:グリシン、H:ヒスチジ
ン、I:イソロイシン、L:ロイシン、K:リジン、
M:メチオニン、F:フェニルアラニン、P:プロリ
ン、S:セリン、T:スレオニン、W:トリプトファ
ン、Y:チロシン、V:バリン

Claims (8)

    【特許請求の範囲】
  1. 【請求項1】 配列番号1で示されるアミノ酸配列から
    なるブタTSH(Thyroid-stimulating hormone)レセプ
    ターをコードするDNA断片。
  2. 【請求項2】 配列番号1で示されるアミノ酸配列にお
    いて、1個もしくは数個のアミノ酸が欠失、置換、挿入
    または付加されたアミノ酸配列からなるブタTSHレセ
    プターをコードするDNA断片。
  3. 【請求項3】 配列番号2で示される塩基配列を有する
    ブタTSHレセプターをコードするDNA断片。
  4. 【請求項4】 配列番号2で示される塩基配列におい
    て、1個もしくは数個の塩基が欠失、置換、挿入または
    付加された塩基配列を有するブタTSHレセプターをコ
    ードするDNA断片。
  5. 【請求項5】 請求項3または4記載のDNAとストリ
    ンジェントな条件下でハイブリダイズし、かつブタTS
    HレセプターをコードするDNA断片。
  6. 【請求項6】 請求項1〜5いずれか1項に記載のDN
    A断片をプラスミドもしくはファージに挿入して調製し
    た発現ベクター。
  7. 【請求項7】 請求項6記載の発現ベクターを用い、宿
    主細胞を形質転換し、得られた形質転換体を培養して得
    られた組換えブタTSHレセプター。
  8. 【請求項8】 請求項6記載の発現ベクターを用い、宿
    主細胞を形質転換し、得られた形質転換体を培養してT
    SHレセプターを産生させ、培養物からTSHレセプタ
    ーを得ることを特徴とする、組換えブタTSHレセプタ
    ーの製造法。
JP2001340847A 2000-11-09 2001-11-06 ブタTSH(Thyroid−stimulatinghormone)レセプターをコードする断片およびその用途 Pending JP2003125785A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001340847A JP2003125785A (ja) 2000-11-09 2001-11-06 ブタTSH(Thyroid−stimulatinghormone)レセプターをコードする断片およびその用途

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000342471 2000-11-09
JP2000-342471 2000-11-09
JP2001340847A JP2003125785A (ja) 2000-11-09 2001-11-06 ブタTSH(Thyroid−stimulatinghormone)レセプターをコードする断片およびその用途

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007179616A Division JP2007314548A (ja) 2000-11-09 2007-07-09 ブタTSH(Thyroid−stimulatinghormone)レセプターをコードする断片およびその用途

Publications (1)

Publication Number Publication Date
JP2003125785A true JP2003125785A (ja) 2003-05-07

Family

ID=26603692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001340847A Pending JP2003125785A (ja) 2000-11-09 2001-11-06 ブタTSH(Thyroid−stimulatinghormone)レセプターをコードする断片およびその用途

Country Status (1)

Country Link
JP (1) JP2003125785A (ja)

Similar Documents

Publication Publication Date Title
KR100529270B1 (ko) 혈관신생 및 심혈관형성의 촉진 또는 억제
JP2001512307A (ja) プロエキセンジンをコードするポリヌクレオチドならびにその作製方法および使用
WO1998049185A1 (en) Lepidopteran gaba-gated chloride channels
JP2004121225A (ja) 副甲状腺ホルモンのレセプターとそれをコードしているdna
HU219674B (hu) Glukagon-receptort kódoló DNS-molekulák, glukagon-receptor peptidek, glukagon-receptort blokkoló monoklonális ellenanyagok, és eljárások előállításukra
JP2005503137A (ja) Gタンパク質共役レセプターおよびそのdna配列
KR20040088077A (ko) 혈관신생 및 심혈관형성의 촉진 또는 억제
JP2003508026A (ja) ヒトg−タンパク質共役型受容体
JP2004500039A (ja) ヒトg−タンパク質共役型受容体
JP4999688B2 (ja) 細胞表面糖タンパク質
US20080045699A1 (en) Interleukin-1 Related Gene and Protein
US20030202971A1 (en) Novel polypeptides and nucleic acids encoding same
EP1364963B1 (en) A novel natural antibacterial peptide, the nucleotide sequence encoding it and the use thereof
JP2003125785A (ja) ブタTSH(Thyroid−stimulatinghormone)レセプターをコードする断片およびその用途
JP2002511271A (ja) 新規膜メタロプロテアーゼnepii及び治療において有用な阻害因子のスクリーニングのためのその使用
JP3634361B2 (ja) プロスタグランジンレセプターをコードするdna、それにより形質転換された宿主細胞およびその発現産生物
JP2003521894A (ja) 新規のヒトg−タンパク質共役型受容体
JP2007314548A (ja) ブタTSH(Thyroid−stimulatinghormone)レセプターをコードする断片およびその用途
JP4157192B2 (ja) 中性アミノ酸トランスポーター及びその遺伝子
JPH1175866A (ja) マウスFrizzled−6 遺伝子に類似したヒト7TM受容体
JP2005505253A (ja) 呼吸系ムチン産生に関連する症状の治療方法と組成物
JP4278906B2 (ja) 酸性アミノ酸を輸送するナトリウム非依存性トランスポーター及びその遺伝子
WO2002044212A2 (en) Human g-protein coupled receptor and uses thereof
JP4161103B2 (ja) 小型中性アミノ酸を輸送するナトリウム非依存性トランスポーター及びその遺伝子、及びその機能特定を可能にした融合タンパク質作製によるトランスポーターの機能解析法
JP2003024081A (ja) 新規ポリペプチド

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060710

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060821

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070607

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070607

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070709

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070821

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20070914