JP2003121730A - Multispot range finder - Google Patents

Multispot range finder

Info

Publication number
JP2003121730A
JP2003121730A JP2001317597A JP2001317597A JP2003121730A JP 2003121730 A JP2003121730 A JP 2003121730A JP 2001317597 A JP2001317597 A JP 2001317597A JP 2001317597 A JP2001317597 A JP 2001317597A JP 2003121730 A JP2003121730 A JP 2003121730A
Authority
JP
Japan
Prior art keywords
light receiving
distance
receiving means
phase difference
distance measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001317597A
Other languages
Japanese (ja)
Inventor
Takashi Ichinomiya
敬 一宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2001317597A priority Critical patent/JP2003121730A/en
Publication of JP2003121730A publication Critical patent/JP2003121730A/en
Pending legal-status Critical Current

Links

Landscapes

  • Focusing (AREA)
  • Automatic Focus Adjustment (AREA)

Abstract

PROBLEM TO BE SOLVED: To precisely measure the distance to a center subject among respective subjects positioned in different measurement visual fields and to greatly shorten the arithmetic time needed for the distance measurement. SOLUTION: The multispot range finder has a couple of photodetecting means which receive light beams from the respective subjects positioned in the different measurement visual fields and a phase difference arithmetic means which computes the phase difference between image signals outputted from the couple of photodetecting means and measures the distances to the subjects in the respective measurement visual fields according to the arithmetic result of the phase difference arithmetic means; and the photodetecting means has a plurality of photoelectric converting elements arrayed at specified pitch and is characterized in that the photoelectric converting element pitch (p) at the center part c1 of the photodetecting means is smaller than the photoelectric converting element pitches 2p at peripheral parts r1 and l1. Then the distance to the center subject among the respective subjects in the respective measurement visual fields is measured with the image signal outputted from the center part of the photodetecting means and the distances to circumferential subjects among the subjects in the measurement visual fields are measured with the image signals outputted from the peripheral parts of the photodetecting means.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、異なる測定視野に
位置する各被写体の距離を測定する多点測距装置の改良
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement of a multi-point distance measuring device for measuring the distance between objects located in different measurement visual fields.

【0002】[0002]

【従来の技術】従来、カメラの測距装置として、外光を
利用したパッシブ型の三角測距方式を用いたものが知ら
れている。この種の測距装置は、オートフォーカス光学
系を有し、取り込んだ被写体像を一対の受光センサで受
光し、それぞれで得られた画素データに対して相関演算
を実行して測距データを求めるように構成されている。
2. Description of the Related Art Conventionally, as a distance measuring device for a camera, a device using a passive type triangular distance measuring method using external light is known. This type of distance measuring device has an autofocus optical system, receives the captured subject image with a pair of light receiving sensors, and performs a correlation calculation on the pixel data obtained by each to obtain the distance measuring data. Is configured.

【0003】図7は、一般的なパッシブ型の測距装置に
ついて説明するための図である。
FIG. 7 is a diagram for explaining a general passive distance measuring device.

【0004】図7において、701は第1の受光セン
サ、702は第2の受光センサ、703は第1の受光レ
ンズ、704は第2の受光レンズ、705は被写体であ
る。
In FIG. 7, 701 is a first light receiving sensor, 702 is a second light receiving sensor, 703 is a first light receiving lens, 704 is a second light receiving lens, and 705 is a subject.

【0005】いま、第1の受光センサ701によって検
出された被写体705の輝度分布に関する信号像Aの、
第1の受光レンズ703の光軸T1からの変位量をx
1、第2の受光センサ702によって検出された被写体
705の輝度分布に関する信号像Bの、第2の受光レン
ズ704の光軸T2からの変位量をx2とする。
Now, of the signal image A relating to the luminance distribution of the object 705 detected by the first light receiving sensor 701,
The displacement amount of the first light receiving lens 703 from the optical axis T1 is x
The displacement amount of the signal image B regarding the luminance distribution of the subject 705 detected by the first and second light receiving sensors 702 from the optical axis T2 of the second light receiving lens 704 is x2.

【0006】これらの変位量x1,x2は、第1の受光
センサ701および第2の受光センサ702によって検
出された被写体705から信号象の位相差を表わす。そ
して、T1,T2のそれぞれの間隔をB、第1,第2の
受光レンズと第1,第2の受光センサの受光面との間隔
をf、第1第2の受光レンズから被写体705までの距
離をL、光軸T1から被写体705までの距離をxとす
ると、三角測量の原理から、 x1=x/L×f …………(1) となる。また、光軸T1を基準にして出力信号の像が現
われた方向の符号を含めて、 −x2={(B−x)/L}×f …………(2) となる。これら(1)式および(2)式より L=f×B/(x1−x2) …………(3) を算出することができる。
These displacement amounts x1 and x2 represent the phase difference of the signal image from the object 705 detected by the first light receiving sensor 701 and the second light receiving sensor 702. The distance between T1 and T2 is B, the distance between the first and second light receiving lenses and the light receiving surfaces of the first and second light receiving sensors is f, and the distance from the first and second light receiving lenses to the subject 705 is Given that the distance is L and the distance from the optical axis T1 to the subject 705 is x, x1 = x / L × f (1) from the principle of triangulation. Further, including the sign of the direction in which the image of the output signal appears with reference to the optical axis T1, -x2 = {(B-x) / L} xf (2). From these equations (1) and (2), L = f * B / (x1-x2) ... (3) can be calculated.

【0007】そして、上記(x1−x2)を求めること
で、すなわち、信号像Aと信号像Bの位相差を求めるこ
とで、被写体705までの距離Lを算出することができ
る。
Then, the distance L to the object 705 can be calculated by obtaining the above (x1-x2), that is, the phase difference between the signal image A and the signal image B.

【0008】信号像の位相差を検出する方法の一例とし
ては、少なくとも一方の信号像情報を所定のずらし量
(以降、相関シフト量と記す)の範囲で1bit(ビッ
ト)単位でずらし、その時の相関量を演算し、何bit
ずらしたときに一対の画像情報が一致するかを検出する
ものが知られている。
As an example of the method of detecting the phase difference between the signal images, at least one of the signal image information is shifted by a unit of 1 bit (bit) within a range of a predetermined shift amount (hereinafter referred to as a correlation shift amount). Calculate how many bits by calculating the correlation amount
It is known to detect whether a pair of image information matches when they are shifted.

【0009】また、一般的に受光センサは電荷蓄積型の
光電素子が所定の画素ピッチを有して配列されて構成さ
れており、画素ピッチをより小さくすることにより微細
パターンの被写体も検出が可能になると同時に、受光セ
ンサで得られた信号像の位相差検出の分解能を上げるこ
とができ、被写体までの距離を精度良く測定することが
できる。
In general, the light receiving sensor is composed of charge storage type photoelectric elements arranged with a predetermined pixel pitch, and by making the pixel pitch smaller, it is possible to detect an object having a fine pattern. At the same time, the resolution of the phase difference detection of the signal image obtained by the light receiving sensor can be increased, and the distance to the subject can be accurately measured.

【0010】[0010]

【発明が解決しようとする課題】しかしながら、受光セ
ンサの画素ピッチを小さくしていくと、得られた像信号
の位相差を求めるための相関シフト量が大きくなると共
に、受光センサにおける画素数も増大する。特に、多点
測距装置では、各測距点毎に相関演算する必要があり、
多くの演算時間だけでかなりの時間を要し、カメラのレ
リーズタイムラグを長くする大きな要因となってしま
う。
However, when the pixel pitch of the light receiving sensor is reduced, the amount of correlation shift for obtaining the phase difference of the obtained image signals increases and the number of pixels in the light receiving sensor also increases. To do. Especially, in a multi-point distance measuring device, it is necessary to perform a correlation calculation for each distance measuring point.
It takes a considerable amount of time only with a lot of calculation time, which is a major factor in increasing the release time lag of the camera.

【0011】(発明の目的)本発明の第1の目的は、異
なる測定視野に位置する各被写体のうち中央の被写体に
ついては精度よく距離測定を行うと共に、距離測定に要
する演算時間を大幅に短縮することのできる多点測距装
置を提供しようとするものである。
(Object of the Invention) A first object of the present invention is to perform accurate distance measurement for a central object among objects located in different measurement fields of view and to significantly reduce the calculation time required for distance measurement. The present invention is intended to provide a multi-point distance measuring device that can be used.

【0012】本発明の第2の目的は、第1の目的を達成
すると共に、光電変換素子ピッチの異なる中央部分と周
辺部分よりぞれぞれ出力される像信号を合成して被写体
距離を測定する場合でも、光電変換素子ピッチの違いに
よる像信号の不連続および歪みを補正して距離測定を行
うことのできる多点測距装置を提供しようとするもので
ある。
A second object of the present invention is to achieve the first object and to measure the object distance by synthesizing image signals respectively output from the central portion and the peripheral portion having different photoelectric conversion element pitches. Even in such a case, it is an object of the present invention to provide a multipoint distance measuring device capable of performing distance measurement by correcting discontinuity and distortion of an image signal due to a difference in photoelectric conversion element pitch.

【0013】[0013]

【課題を解決するための手段】上記第1の目的を達成す
るために、請求項1に記載の発明は、異なる測定視野に
位置する各被写体からの光を受光する一対の受光手段
と、該一対の受光手段から出力される像信号の位相差を
演算する位相差演算手段とを有し、前記位相差演算手段
での演算結果から、前記各測定視野に位置する被写体の
距離を測定する多点測距装置において、前記受光手段は
複数の光電変換素子が所定ピッチで複数配列されてお
り、前記受光手段の中央部分の光電変換素子ピッチを、
周辺部分の光電変換素子ピッチよりも小さく構成し、前
記受光手段の中央部分から出力される像信号により前記
各測定視野に位置する各被写体うち中央の被写体の距離
を測定し、前記受光手段の周辺部分から出力される像信
号により前記各測定視野に位置する各被写体のうち周辺
の被写体の距離を測定する多点測距装置とするものであ
る。
In order to achieve the first object, the invention described in claim 1 is a pair of light receiving means for receiving light from each subject located in a different measurement visual field, and a pair of light receiving means. A phase difference calculating means for calculating the phase difference between the image signals output from the pair of light receiving means, and the distance between the objects located in the respective measurement visual fields is measured from the calculation result by the phase difference calculating means. In the point distance measuring device, the light receiving means has a plurality of photoelectric conversion elements arranged at a predetermined pitch, and the photoelectric conversion element pitch in the central portion of the light receiving means is
The photoelectric conversion element pitch of the peripheral portion is made smaller, and the distance of the central object among the objects positioned in each of the measurement visual fields is measured by the image signal output from the central portion of the light receiving means, and the periphery of the light receiving means is measured. A multi-point distance measuring device for measuring the distances of peripheral objects among the objects positioned in the respective measurement visual fields by the image signal output from the part.

【0014】また、上記第2の目的を達成するために、
請求項2〜4に記載の発明は、異なる測定視野の各被写
体からの光を受光する一対の受光手段と、該一対の受光
手段から出力される像信号の位相差を演算する位相差演
算手段とを有し、前記位相差演算手段の結果から、前記
各測定視野の被写体の距離を測定する多点測距装置にお
いて、前記受光手段は複数の光電変換素子が所定ピッチ
で複数配列されており、前記受光手段の中央部分の光電
変換素子ピッチを、周辺部分の光電変換素子ピッチより
も小さく構成し、前記受光手段の中央部分から出力され
る像信号により前記各測定視野に位置する各被写体のう
ち中央の被写体の距離を測定し、前記受光手段の周辺部
分から出力される像信号により前記各測定視野に位置す
る各被写体のうち周辺の被写体の距離を測定する第1の
測距処理機能と、前記受光手段の中央部分から出力され
る像信号と前記受光手段の周辺部分から出力される像信
号を合成した像信号により、被写体距離を測定する第2
の測距処理機能を有し、前記第2の測距処理により像信
号を合成する際、中央部分と周辺部分の光電変換素子ピ
ッチの違いによる像信号の不連続および歪みを補正する
多点測距装置とするものである。
In order to achieve the above second object,
The inventions according to claims 2 to 4 include a pair of light receiving means for receiving light from respective subjects in different measurement fields of view, and a phase difference calculating means for calculating a phase difference between image signals output from the pair of light receiving means. And a multi-point distance measuring device for measuring the distance of an object in each of the measurement fields of view from the result of the phase difference calculation means, in the light receiving means, a plurality of photoelectric conversion elements are arranged at a predetermined pitch. , The photoelectric conversion element pitch of the central portion of the light receiving means is configured to be smaller than the photoelectric conversion element pitch of the peripheral portion, and by the image signal output from the central portion of the light receiving means, A first distance measurement processing function of measuring the distance of the central object and measuring the distance of the peripheral objects among the objects positioned in the respective measurement visual fields by the image signal output from the peripheral portion of the light receiving means; , The serial image signal obtained by synthesizing the image signals output from the peripheral portion of the image signal and said light receiving means to be output from the central portion of the light receiving means, first measuring the subject distance 2
The multi-point measurement for correcting the discontinuity and distortion of the image signal due to the difference in the photoelectric conversion element pitch between the central portion and the peripheral portion when the image signals are combined by the second distance measuring processing. This is a distance device.

【0015】[0015]

【発明の実施の形態】以下、本発明を図示の実施の形態
に基づいて詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will now be described in detail based on the illustrated embodiments.

【0016】図1は本発明の実施の一形態に係る多点測
距装置の主要部分を示す構成図である。
FIG. 1 is a block diagram showing a main part of a multipoint distance measuring apparatus according to an embodiment of the present invention.

【0017】図1において、101は第1の受光セン
サ、102は第2の受光センサ、103は第1の受光レ
ンズ、104は第2の受光レンズ、105は左方向にあ
る被写体(以下、被写体Lと記す)、106は中央方向
にある被写体(以下、被写体Cと記す)、107は右方
向にある被写体(以下、被写体Rと記す)である。
In FIG. 1, 101 is a first light receiving sensor, 102 is a second light receiving sensor, 103 is a first light receiving lens, 104 is a second light receiving lens, 105 is a subject in the left direction (hereinafter referred to as subject L denotes a subject, 106 denotes a subject in the central direction (hereinafter, referred to as subject C), and 107 denotes a subject in the right direction (hereinafter, referred to as subject R).

【0018】前記第1の受光センサ101と第2の受光
センサ102は、r1,c1,l1とr2,c2,l2
の各部(領域)に分かれており、通常の撮影距離におけ
る被写体Lの輝度分布は、第1、第2の受光レンズによ
り、第1の受光センサの101のl1部と第2の受光セ
ンサ102のl2部分で受光する。また、通常の撮影距
離における被写体Cの輝度分布は、第1、第2の受光レ
ンズにより、第1の受光センサ101のc1部と第2の
受光センサ102のc2部で受光する。また、通常の撮
影距離における被写体Rの輝度分布は、第1、第2の受
光レンズにより、第1の受光センサ101のr1部と第
2の受光センサのr2部で受光する。
The first light receiving sensor 101 and the second light receiving sensor 102 are r1, c1, l1 and r2, c2, l2.
The brightness distribution of the subject L at a normal photographing distance is divided by the first and second light receiving lenses into the l1 part of the first light receiving sensor 101 and the second light receiving sensor 102. Light is received at the l2 portion. Further, the luminance distribution of the subject C at a normal shooting distance is received by the first and second light receiving lenses at the c1 portion of the first light receiving sensor 101 and the c2 portion of the second light receiving sensor 102. Further, the luminance distribution of the subject R at a normal shooting distance is received by the first and second light receiving lenses at the r1 portion of the first light receiving sensor 101 and the r2 portion of the second light receiving sensor.

【0019】さらに、図1における第1の受光センサ1
01の画素数と画素ピッチについて、図3(a)を用い
て説明する。
Further, the first light receiving sensor 1 in FIG.
The number of pixels of 01 and the pixel pitch will be described with reference to FIG.

【0020】図3(a)において、第1の受光センサ1
01のr1およびl1部の画素ピッチは2pであり、c
1部の画素ピッチは、r1および11部の画素ピッチを
1/2にしたpである。
In FIG. 3A, the first light receiving sensor 1
The pixel pitch of r1 and l1 parts of 01 is 2p, and c
The pixel pitch of 1st part is p which is 1/2 the pixel pitch of r1 and 11th part.

【0021】なお、左方向、中央方向、右方向の受光範
囲が同じになるように、第1の受光センサの各r1,c
1,l1部のセンサの長さは等しくしている。そのた
め、c1部の画素数は、r1,r2部の画素数に比べて
2倍になっている。
It should be noted that the r1, c of the first light receiving sensor are arranged so that the light receiving ranges in the left direction, the center direction and the right direction are the same.
The lengths of the sensors in the 1 and 11 parts are the same. Therefore, the number of pixels in the c1 portion is twice the number of pixels in the r1 and r2 portions.

【0022】また、図3(a)では、図1の第1の受光
センサ101のみを示しているが、第2の受光センサ1
02においても、同図(a)と同じような構成になって
いる。
Further, in FIG. 3A, only the first light receiving sensor 101 of FIG. 1 is shown, but the second light receiving sensor 1
02 also has the same configuration as that shown in FIG.

【0023】次に、図2のフローチャートを用いて、上
記構成における測距装置の動作について説明する。
Next, the operation of the distance measuring device having the above configuration will be described with reference to the flowchart of FIG.

【0024】まず、ステップ#201では、第1の受光
センサ101および第2の受光センサ102で、測距の
ための信号蓄積動作を行なう。詳しくは、第1の受光セ
ンサ101と第2の受光センサ102で信号蓄積開始
後、第1の受光センサの各領域(r1,c1,l1)と
第2の受光センサ102の各領域(r2,c2,l2)
毎に受光信号のピークを不図示のCPUで検出し、その
ピーク信号が所定量を超えたらその領域での信号蓄積動
作を終了する。受光センサのすべての領域での蓄積動作
が終了すると、ステップ#202に移る。
First, in step # 201, the first light receiving sensor 101 and the second light receiving sensor 102 perform a signal accumulating operation for distance measurement. Specifically, after the first light receiving sensor 101 and the second light receiving sensor 102 start signal accumulation, each region (r1, c1, l1) of the first light receiving sensor and each region (r2, r2 of the second light receiving sensor 102). c2, 12)
A CPU (not shown) detects the peak of the received light signal every time, and when the peak signal exceeds a predetermined amount, the signal accumulating operation in the area is finished. When the accumulation operation in all areas of the light receiving sensor is completed, the process proceeds to step # 202.

【0025】ステップ#202では、c1部で得られた
信号像とc2部で得られた信号像の位相差を検出し、被
写体Cまでの距離を算出する。ここで、上記位相差の検
出を行なう手段や、位相差検出結果から被写体Cまでの
距離を算出する手段は、不図示のCPU内にあるものと
する。続くステップ#203では、r1部で得られた信
号像とr2部で得られた信号像の位相差を検出すること
で、被写体Rまでの距離を算出する。
At step # 202, the phase difference between the signal image obtained at the c1 portion and the signal image obtained at the c2 portion is detected, and the distance to the subject C is calculated. Here, it is assumed that the means for detecting the phase difference and the means for calculating the distance to the subject C from the phase difference detection result are in a CPU (not shown). In the following step # 203, the distance to the subject R is calculated by detecting the phase difference between the signal image obtained in the r1 portion and the signal image obtained in the r2 portion.

【0026】次のステップ#204では、l1部で得ら
れた信号像とl2部で得られた信号像の位相差を検出す
ることで、被写体Lまでの距離を算出する。そして、次
のステップ#205では、上記ステップ#202〜#2
04での測距結果から、不図示のCPUにより主被写体
を判定してレンズピント位置を決定し、一連の測距動作
を終了する。
In the next step # 204, the distance to the subject L is calculated by detecting the phase difference between the signal image obtained in the l1 part and the signal image obtained in the l2 part. Then, in the next step # 205, the above steps # 202 to # 2.
Based on the result of the distance measurement in 04, the CPU (not shown) determines the main subject, determines the lens focus position, and ends the series of distance measurement operations.

【0027】上記実施の形態によれば、図3(a)の第
1の受光センサ101のように、c1部および第2の受
光センサ102のc2部の画素ピッチを、r1,l1
部,r2,l2部の画素ピッチよりも小さくすること
で、主要被写体が存在する頻度の高い中央方向の被写体
を精度良く測距できる。
According to the above embodiment, the pixel pitches of the c1 portion and the c2 portion of the second light receiving sensor 102 are r1, l1 as in the first light receiving sensor 101 of FIG. 3 (a).
By making the pixel pitch smaller than the pixel portion, r2, and l2 portion, it is possible to accurately measure the distance of the subject in the central direction in which the main subject frequently exists.

【0028】さらに、図3(b)の受光センサ101’
のように、受光センサ全ての領域で画素ピッチを小さく
したものに対して、受光センサの総画素数が減るため、
測距演算時間が短縮できる。
Further, the light receiving sensor 101 'shown in FIG.
, The total number of pixels of the light receiving sensor is reduced as compared to the case where the pixel pitch is made smaller in the entire area of the light receiving sensor.
The distance calculation time can be shortened.

【0029】ところで、被写体までの距離が通常の撮影
距離以外の距離、つまり至近距離の場合、図2のフロー
チャートの測距動作では、測距できなくなる。
By the way, when the distance to the subject is a distance other than the normal photographing distance, that is, the closest distance, the distance measurement cannot be performed by the distance measurement operation of the flowchart of FIG.

【0030】ここで、被写体距離と受光位置と受光セン
サの関係を、図4を用いて説明する。なお、図1と同一
符号のものは説明を省略する。
Now, the relationship between the object distance, the light receiving position and the light receiving sensor will be described with reference to FIG. The description of the same reference numerals as those in FIG. 1 is omitted.

【0031】同図において、406、406’、40
6”は被写体であり、受光レンズ103,104からの
距離Lpを境にして、Lpより遠側を通常撮影モードで
の距離範囲とし、Lpより近側をマクロ撮影モードでの
距離範囲とする。被写体406は通常撮影モードでの距
離範囲内に存在し、被写体406’,406”はマクロ
撮影モードでの距離範囲内に存在する。
In the figure, 406, 406 ', 40
Reference numeral 6 ″ denotes a subject, and with the distance Lp from the light receiving lenses 103 and 104 as a boundary, the far side from Lp is the distance range in the normal shooting mode, and the near side is the distance range in the macro shooting mode. The subject 406 exists within the distance range in the normal shooting mode, and the subjects 406 ′ and 406 ″ exist within the distance range in the macro shooting mode.

【0032】まず、通常撮影モードでの距離範囲内にあ
る被写体406からの信号像は、c1,c2部で受光し
ているので、図2のフローチャートの動作で測距可能で
ある。
First, since the signal image from the subject 406 within the distance range in the normal photographing mode is received by the c1 and c2 portions, the distance can be measured by the operation of the flowchart of FIG.

【0033】一方、マクロ撮影モードでの距離範囲内に
ある被写体406’からの信号像は、第1の受光センサ
101のc1部とr1部の境界付近で、第2の受光セン
サ102においてはc2部とl2部の境界付近で受光し
ている。さらに近距離にある被写体406”の場合で
は、r1部とl2部で受光している。
On the other hand, the signal image from the subject 406 'within the distance range in the macro photography mode is near the boundary between the c1 portion and the r1 portion of the first light receiving sensor 101, and c2 in the second light receiving sensor 102. Light is received near the boundary between the 1 and 2 parts. In the case of a subject 406 ″ at a closer distance, the light is received by the r1 portion and the l2 portion.

【0034】そのため、図2のフローチャートの動作の
ように、c1とc2部で得られた信号像のみの演算(#
202)では、被写体406’や406”の距離は測定
できない。
Therefore, as in the operation of the flowchart of FIG. 2, only the signal image obtained by the c1 and c2 parts is calculated (#
In 202), the distance of the subject 406 ′ or 406 ″ cannot be measured.

【0035】そこで、図4の測距装置において、マクロ
撮影モード撮影時の測距動作を、図5のフローチャート
に従って以下に説明する。
Therefore, in the distance measuring apparatus of FIG. 4, the distance measuring operation in the macro photographing mode will be described below with reference to the flowchart of FIG.

【0036】まず、ステップ#501では、第1の受光
センサ101のr1,c1部、および第2の受光センサ
102のc2,l2部で、測距のための信号蓄積動作を
行なう。詳しくは、c1,r1部とc2,l2部(図4
参照)で信号蓄積開始後、r1,c1部の受光信号のピ
ークと、c2,l2部の受光信号のピークを不図示のC
PUで検出し、そのピーク信号が所定量を超えたら、そ
の領域での信号蓄積動作を終了する。各受光センサのr
1,c1部とc2,l2部での蓄積動作が終了すると、
ステップ#502に移る。
First, in step # 501, the r1 and c1 portions of the first light receiving sensor 101 and the c2 and l2 portions of the second light receiving sensor 102 perform a signal accumulating operation for distance measurement. For details, see c1, r1 and c2, 12 (see FIG.
After the signal accumulation is started in C), the peaks of the received light signals of the r1 and c1 parts and the peaks of the received light signal of the c2 and l2 parts are indicated by C (not shown).
When it is detected by the PU and the peak signal exceeds a predetermined amount, the signal accumulating operation in that area is ended. R of each light receiving sensor
When the accumulating operation in the 1, c1 section and the c2, 12 section is completed,
Move to step # 502.

【0037】ステップ#502では、上記ステップ#5
01で得られた受光信号が、画素のピッチが変化する境
界で不連続あるいは歪むため、受光信号を補正する。
In step # 502, the above step # 5 is executed.
The light receiving signal obtained in 01 is discontinuous or distorted at the boundary where the pixel pitch changes, so the light receiving signal is corrected.

【0038】補正方法の例を以下に詳細に説明する。An example of the correction method will be described in detail below.

【0039】図6(a)および(b)は、第1の受光セ
ンサ101のc1,r1部と第2の受光センサ102の
c2,l2部上に受光される受光像である。図6(c)
および(d)は、同図(a),(b)の受光像を各受光
センサにより蓄積した信号量を画素に対応して表したも
のである。
FIGS. 6A and 6B are received light images received on the c1 and r1 portions of the first light receiving sensor 101 and the c2 and l2 portions of the second light receiving sensor 102, respectively. FIG. 6 (c)
And (d) show the amount of signals accumulated by the light receiving sensors of the light receiving images of FIGS.

【0040】ここで、受光像によるセンサ面照度と信号
蓄積時間が同じである場合、各画素の信号量は、画素面
積に比例する。本実施の形態では、第1の受光センサ1
01のc1部の画素面積はr1部に比べて1/2である
ため、c1部の信号量は、r1部に比べ、1/2になっ
ている(c1部の画素ピッチがr1に比べて1/2にな
っているため)。
Here, when the sensor surface illuminance by the received light image and the signal storage time are the same, the signal amount of each pixel is proportional to the pixel area. In the present embodiment, the first light receiving sensor 1
Since the pixel area of the c1 portion of 01 is 1/2 that of the r1 portion, the signal amount of the c1 portion is 1/2 that of the r1 portion (the pixel pitch of the c1 portion is smaller than that of r1). Because it is 1/2).

【0041】したがって、r1部の信号量に対してc1
部の信号量が低くなって、c1部とr1部の境界での信
号が不連続になってしまう。そこで、画素面積比からc
1部の信号量を2倍にすることで、各画素の信号から信
号像を形成したときの不連続や歪みを補正する。
Therefore, c1 is added to the signal amount of the r1 part.
The signal amount of the part becomes low, and the signal at the boundary between the c1 part and the r1 part becomes discontinuous. Therefore, from the pixel area ratio, c
By doubling the signal amount of one part, the discontinuity and the distortion when the signal image is formed from the signal of each pixel are corrected.

【0042】また、第2の受光センサ102のc2部と
l2部についても、同様に補正を行なう。
Further, the c2 portion and the l2 portion of the second light receiving sensor 102 are similarly corrected.

【0043】図6(e),(f)に補正後の信号像をに
示してあるが、画素ピッチの異なる境界での信号量の不
連続が補正されていることがわかる。
FIGS. 6 (e) and 6 (f) show the signal images after correction, and it can be seen that the discontinuity of the signal amount at the boundary where the pixel pitch is different is corrected.

【0044】図5に戻り、上記のように受光信号を補正
した後は、ステップ#503に移り、ここではc1,c
2部とr1,l2部の画素ピッチを等しくするため、信
号の処理を行なう。なぜなら、次のステップ#504
で、r1,c1部で得られた信号像とc2,l2で得ら
れた信号像の位相差を検出する際、異なる画素ピッチ同
士の相関は演算できないためである。
Returning to FIG. 5, after the received light signal is corrected as described above, the process proceeds to step # 503, where c1 and c
Signal processing is performed in order to equalize the pixel pitches of the two parts and the r1 and l2 parts. Because next step # 504
Then, when detecting the phase difference between the signal image obtained at the r1 and c1 portions and the signal image obtained at c2 and l2, the correlation between different pixel pitches cannot be calculated.

【0045】そこで、r1部とl2部の画素信号に対し
て以下のような式で補間処理を行ない、見かけ上の画素
ピッチを1/2にし、c1部とc2部の画素ピッチに合
わせる。
Therefore, interpolation processing is performed on the pixel signals of the r1 portion and the l2 portion by the following equation to reduce the apparent pixel pitch to ½ and match the pixel pitch of the c1 portion and the c2 portion.

【0046】[0046]

【数式1】 ここで、I(n)は補間処理前のn番目の信号量、I’
(m)は補間処理後のm番目の信号量とする。補間処理
後の信号像を、図6の(g),(h)に示す。これによ
り画素ピッチが均一になり、相関演算が可能になる。
[Formula 1] Here, I (n) is the n-th signal amount before interpolation processing, I ′
(M) is the m-th signal amount after interpolation processing. The signal images after the interpolation processing are shown in (g) and (h) of FIG. This makes the pixel pitch uniform and enables correlation calculation.

【0047】このように、r1,c1部とc2,l2部
の画素ピッチを均一になるように処理し、ステップ#5
04に移る。そして、このステップ#504では、上記
ステップ#502,503で補正、補間処理した信号像
の位相差を検出することで、被写体までの距離を算出
し、ピントレンズ位置を決定し、一連の測距動作を終了
する。
In this way, the pixel pitches of the r1, c1 part and the c2, l2 part are processed to be uniform, and step # 5 is performed.
Move to 04. Then, in this step # 504, the distance to the subject is calculated by detecting the phase difference between the signal images corrected and interpolated in the above steps # 502 and 503, the focus lens position is determined, and a series of distance measurement is performed. The operation ends.

【0048】以上述べたように、図1のような測距装置
において、マクロ撮影モード時(被写体が至近距離に存
在する場合)は、画素ピッチの不連続な部分での受光像
の不連続,歪みを補正し、画素ピッチが均一になるよう
に補間することで、測距を可能にしている。
As described above, in the distance measuring device as shown in FIG. 1, in the macro photography mode (when the subject is in a close range), the received light image is discontinuous at the pixel pitch discontinuous portion. Distance correction is enabled by correcting distortion and interpolating so that the pixel pitch becomes uniform.

【0049】尚、以上に説明してきた本実施の形態で
は、パッシブ方式の装置として説明しているが、投光手
段を備えたアクティブ方式の測距装置への適用も可能で
ある。
In the present embodiment described above, the passive type device is described, but the present invention can also be applied to an active type distance measuring device having a light projecting means.

【0050】また、受光センサでの信号蓄積時に、信号
のピークを検出して制御しているが、その他の制御方法
で蓄積してもよい。また、受光センサの画素面積の比に
よって信号像の不連続や歪みを補正しているが、その他
の方法で補正してもよい。
Further, while the signal peak is detected and controlled when the signal is accumulated in the light receiving sensor, the signal may be accumulated by other control methods. Further, although the discontinuity and the distortion of the signal image are corrected by the ratio of the pixel area of the light receiving sensor, they may be corrected by other methods.

【0051】以上の実施の形態によれば、受光センサの
中央部分の画素ピッチを、周辺部分の画素ピッチよりも
小さく構成することで、中央の被写体Cの測距において
は精度が向上し、周辺の被写体L,Rにおいては演算時
間を短縮することでき、全体としての演算時間も短縮す
ることができる。
According to the above embodiment, the pixel pitch in the central portion of the light receiving sensor is made smaller than the pixel pitch in the peripheral portion, so that the accuracy in distance measurement of the subject C in the center is improved and the peripheral portion is improved. For the subjects L and R, the calculation time can be shortened, and the calculation time as a whole can also be shortened.

【0052】また、被写体が通常の撮影距離でなく、至
近距離に位置した場合、具体的には、マクロ撮影モード
においては、図4に示した様に、画素のピッチの異なる
部分にまたがって受光像が形成されるため、その画素ピ
ッチが変化する境界で受光信号は不連続あるいは歪む。
その為、図6で説明したようにして、受光センサの中央
部分と周辺部分の境界での信号像の不連続,歪みを補正
するようにしているので、適正な測距を可能にしてい
る。
Further, when the subject is located at a close range instead of the normal shooting distance, specifically, in the macro shooting mode, as shown in FIG. 4, the light is received over the portions having different pixel pitches. Since an image is formed, the received light signal is discontinuous or distorted at the boundary where the pixel pitch changes.
Therefore, as described with reference to FIG. 6, since the discontinuity and distortion of the signal image at the boundary between the central portion and the peripheral portion of the light receiving sensor are corrected, proper distance measurement is possible.

【0053】[0053]

【発明の効果】以上説明したように、請求項1に記載の
発明によれば、異なる測定視野に位置する各被写体のう
ち中央の被写体については精度よく距離測定を行うと共
に、距離測定に要する演算時間を大幅に短縮することが
できる多点測距装置を提供できるものである。
As described above, according to the first aspect of the present invention, the distance measurement is performed accurately for the central object among the objects positioned in different measurement fields, and the calculation required for the distance measurement is performed. It is possible to provide a multi-point distance measuring device that can significantly reduce the time.

【0054】また、請求項2〜4の何れかに記載の発明
は、異なる測定視野に位置する各被写体のうち中央の被
写体については精度よく距離測定を行うと共に、距離測
定に要する演算時間を大幅に短縮するができ、しかも、
光電変換素子ピッチの異なる中央部分と周辺部分よりぞ
れぞれ出力される像信号を合成して被写体距離を測定す
る場合でも、光電変換素子ピッチの違いによる像信号の
不連続および歪みを補正して距離測定を行うことができ
る多点測距装置を提供できるものである。
Further, according to the invention described in any one of claims 2 to 4, the distance measurement is performed accurately for the central object among the objects positioned in the different measurement visual fields, and the calculation time required for the distance measurement is significantly increased. Can be shortened to
Even when the subject distance is measured by combining the image signals output from the central part and peripheral part with different photoelectric conversion element pitches, the discontinuity and distortion of the image signal due to the difference in photoelectric conversion element pitch are corrected. It is possible to provide a multi-point distance measuring device capable of performing distance measurement by using the above method.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施の一形態に係わる多点測距装置の
主要部分を示す構成図である。
FIG. 1 is a configuration diagram showing a main part of a multipoint distance measuring apparatus according to an embodiment of the present invention.

【図2】本発明の実施の一形態に係わる多点測距装置の
一連の動作を示すフローチャートである。
FIG. 2 is a flowchart showing a series of operations of the multipoint distance measuring apparatus according to the embodiment of the present invention.

【図3】本発明の実施の一形態に係わる多点測距装置の
受光センサの画素ピッチについて説明する為の図であ
る。
FIG. 3 is a diagram for explaining a pixel pitch of a light receiving sensor of the multi-point distance measuring apparatus according to the embodiment of the present invention.

【図4】本発明の実施の一形態において被写体距離と受
光位置の関係を説明する図である。
FIG. 4 is a diagram illustrating a relationship between a subject distance and a light receiving position in the embodiment of the present invention.

【図5】本発明の実施の一形態においてマクロモード時
の動作を示すフローチャートである。
FIG. 5 is a flowchart showing an operation in a macro mode according to the embodiment of the present invention.

【図6】本発明の実施の一形態においてマクロ撮影モー
ド時における補正前の受光信号と補正後の受光信号を示
した図である。
FIG. 6 is a diagram showing a light reception signal before correction and a light reception signal after correction in the macro photography mode in the embodiment of the present invention.

【図7】従来のパッシブ型の測距装置を示す構成図であ
る。
FIG. 7 is a configuration diagram showing a conventional passive distance measuring device.

【符号の説明】 101,102 第1、第2の受光センサ 103,104 第1、第2の受光レンズ 105(L) 被写体 106(C) 被写体 107(R) 被写体 r1,c1,l1 各受光センサの領域 r2,c2,l2 各受光センサの領域[Explanation of symbols] 101, 102 First and second light receiving sensors 103, 104 First and second light receiving lenses 105 (L) subject 106 (C) Subject 107 (R) Subject r1, c1, l1 Area of each light receiving sensor r2, c2, l2 Area of each light receiving sensor

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 異なる測定視野に位置する各被写体から
の光を受光する一対の受光手段と、該一対の受光手段か
ら出力される像信号の位相差を演算する位相差演算手段
とを有し、前記位相差演算手段での演算結果から、前記
各測定視野に位置する被写体の距離を測定する多点測距
装置において、 前記受光手段は複数の光電変換素子が所定ピッチで複数
配列されており、前記受光手段の中央部分の光電変換素
子ピッチを、周辺部分の光電変換素子ピッチよりも小さ
く構成し、前記受光手段の中央部分から出力される像信
号により前記各測定視野に位置する各被写体うち中央の
被写体の距離を測定し、前記受光手段の周辺部分から出
力される像信号により前記各測定視野に位置する各被写
体のうち周辺の被写体の距離を測定することを特徴とす
る多点測距装置。
1. A pair of light receiving means for receiving light from respective subjects located in different measurement fields of view, and a phase difference calculating means for calculating a phase difference of image signals output from the pair of light receiving means. In the multi-point distance measuring device that measures the distance of the subject located in each measurement visual field from the calculation result of the phase difference calculating means, the light receiving means has a plurality of photoelectric conversion elements arranged at a predetermined pitch. , The photoelectric conversion element pitch in the central portion of the light receiving means is configured to be smaller than the photoelectric conversion element pitch in the peripheral portion, and among the subjects located in each of the measurement visual fields by the image signal output from the central portion of the light receiving means. It is characterized in that the distance to the central object is measured, and the distance to the peripheral object among the objects located in the respective measurement visual fields is measured by the image signal output from the peripheral portion of the light receiving means. Point distance measuring device.
【請求項2】 異なる測定視野に位置する各被写体から
の光を受光する一対の受光手段と、該一対の受光手段か
ら出力される像信号の位相差を演算する位相差演算手段
とを有し、前記位相差演算手段での演算結果から、前記
各測定視野に位置する被写体の距離を測定する多点測距
装置において、 前記受光手段は複数の光電変換素子が所定ピッチで複数
配列されており、前記受光手段の中央部分の光電変換素
子ピッチを、周辺部分の光電変換素子ピッチよりも小さ
く構成し、 前記受光手段の中央部分から出力される像信号により前
記各測定視野に位置する各被写体のうち中央の被写体の
距離を測定し、前記受光手段の周辺部分から出力される
像信号により前記各測定視野に位置する各被写体のうち
周辺の被写体の距離を測定する第1の測距処理機能と、 前記受光手段の中央部分から出力される像信号と前記受
光手段の周辺部分から出力される像信号を合成した像信
号により、被写体距離を測定する第2の測距処理機能を
有し、 前記第2の測距処理により像信号を合成する際、中央部
分と周辺部分の光電変換素子ピッチの違いによる像信号
の不連続および歪みを補正することを特徴とする多点測
距装置。
2. A pair of light receiving means for receiving light from respective subjects located in different measurement fields of view, and a phase difference calculating means for calculating a phase difference of image signals output from the pair of light receiving means. In the multi-point distance measuring device that measures the distance of the subject located in each measurement visual field from the calculation result of the phase difference calculating means, the light receiving means has a plurality of photoelectric conversion elements arranged at a predetermined pitch. , The photoelectric conversion element pitch in the central portion of the light receiving means is configured to be smaller than the photoelectric conversion element pitch in the peripheral portion, and an image signal output from the central portion of the light receiving means is applied to each of the subjects located in each measurement visual field. A first distance measuring process for measuring the distance of the central object and measuring the distance of the peripheral object among the objects positioned in the respective measurement visual fields by the image signal output from the peripheral portion of the light receiving means. And a second distance measurement processing function for measuring the subject distance by an image signal obtained by combining an image signal output from the central portion of the light receiving unit and an image signal output from the peripheral portion of the light receiving unit. A multipoint distance measuring apparatus, wherein when the image signals are combined by the second distance measuring process, the discontinuity and the distortion of the image signals due to the difference in the photoelectric conversion element pitch between the central portion and the peripheral portion are corrected.
【請求項3】 前記第2の測距処理は、カメラの所定の
撮影モードでのみ実行されることを特徴とする請求項2
に記載の多点測距装置。
3. The second distance measuring process is executed only in a predetermined photographing mode of the camera.
The multi-point distance measuring device described in.
【請求項4】 前記カメラの所定の撮影モードは、マク
ロ撮影モードであることを特徴とする請求項3に記載の
多点測距装置。
4. The multi-point distance measuring apparatus according to claim 3, wherein the predetermined shooting mode of the camera is a macro shooting mode.
JP2001317597A 2001-10-16 2001-10-16 Multispot range finder Pending JP2003121730A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001317597A JP2003121730A (en) 2001-10-16 2001-10-16 Multispot range finder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001317597A JP2003121730A (en) 2001-10-16 2001-10-16 Multispot range finder

Publications (1)

Publication Number Publication Date
JP2003121730A true JP2003121730A (en) 2003-04-23

Family

ID=19135439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001317597A Pending JP2003121730A (en) 2001-10-16 2001-10-16 Multispot range finder

Country Status (1)

Country Link
JP (1) JP2003121730A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004104668A1 (en) * 2003-05-23 2004-12-02 Seiko Precision Inc. Projector and image adjusting method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004104668A1 (en) * 2003-05-23 2004-12-02 Seiko Precision Inc. Projector and image adjusting method

Similar Documents

Publication Publication Date Title
JP6021780B2 (en) Image data processing device, distance calculation device, imaging device, and image data processing method
JP4131214B2 (en) Inclination angle detection apparatus and inclination angle detection method
US8144212B2 (en) White balance adjustment apparatus and white balance coefficient calculation method
EP1391778A1 (en) Apparatus for detecting the inclination angle of a projection screen and projector comprising the same
JP6014452B2 (en) FOCUS DETECTION DEVICE, LENS DEVICE HAVING THE SAME, AND IMAGING DEVICE
JP2013037166A (en) Focus detector, and lens device and imaging device having the same
JP2003247823A (en) Method and device for detecting phase difference, range finder, and image pickup device
JP2017021052A (en) Image data processing device, distance calculation device, imaging device, and image data processing method
JP2013218082A (en) Imaging apparatus and control method for the same
JP4785266B2 (en) Multi-point distance measuring device
JP2003121730A (en) Multispot range finder
JPH11109218A (en) Automatic focus detector
JP4632640B2 (en) Ranging device
JP4817552B2 (en) Phase difference detection method, phase difference detection device, distance measuring device, and imaging device
JP4127808B2 (en) Ranging device
JP2753544B2 (en) Focus detection device
JP5098714B2 (en) Ranging device and imaging device
JP2005249432A (en) Projector device and distance measuring method
JPH09211316A (en) Image signal processor
JP5854679B2 (en) Phase difference detector
JP2001356260A (en) Focusing device and range-finding device
JP2001154225A (en) Deflection detecting device and device with deflection detecting function
JP2005348379A (en) Projector and distance data correction method
JPH04230715A (en) Focus detector
JP2005250296A (en) Focusing device and focusing method