JP2003119566A - Reflecting mirror - Google Patents

Reflecting mirror

Info

Publication number
JP2003119566A
JP2003119566A JP2002192234A JP2002192234A JP2003119566A JP 2003119566 A JP2003119566 A JP 2003119566A JP 2002192234 A JP2002192234 A JP 2002192234A JP 2002192234 A JP2002192234 A JP 2002192234A JP 2003119566 A JP2003119566 A JP 2003119566A
Authority
JP
Japan
Prior art keywords
silicon carbide
carbide film
film
reflecting mirror
residual stress
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002192234A
Other languages
Japanese (ja)
Other versions
JP3696843B2 (en
Inventor
Kazuhiko Mikami
一彦 三上
Hiroshi Aida
比呂史 会田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2002192234A priority Critical patent/JP3696843B2/en
Publication of JP2003119566A publication Critical patent/JP2003119566A/en
Application granted granted Critical
Publication of JP3696843B2 publication Critical patent/JP3696843B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Optical Elements Other Than Lenses (AREA)
  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a reflecting mirror superior in long-term reliability, which has a low residual stress in a silicon carbide film applied on the surface of a substrate, does not generate cracking or the like during manufacturing or operation, and stably acquires a super flat surface with satisfactory reproducibility. SOLUTION: This reflecting mirror is characterized in that crystals with particle diameters of 3 μm or more occupy 20% or more in the polished surface area of the silicon carbide film applied on the surface of the substrate, and the silicon carbide film has the residual stress of 40 kg/mm<2> or less.

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、表面の平滑性を要
求されるX線やレーザー等に好適な反射鏡に関するもの
である。 【0002】 【従来技術】近年、セラミックスは高強度で耐熱性、耐
摩耗性等に優れた特性を有することから、セラミック製
品の利用分野が拡大され、各種製品の展開が進められて
いるが、その中でも気相合成法、例えば化学気相成長法
や物理的気相成長法等の手段により基体表面にセラミッ
クスを被覆し、基体表面がセラミック特性を有する反射
鏡とすることが提案されている。 【0003】例えば、化学気相成長法により形成した炭
化珪素膜は、緻密質でボイドがなく、表面研磨加工を施
すことにより高い平滑性を有する超平滑面が得られるこ
とが知られている。 【0004】その表面粗さは、表面形状にもよるが、非
球面、球面、平面の順により平滑な面が得られ、非球面
では100Å以下、平面では10Å以下の面粗さが得ら
れるため、高精度な反射率の高い反射鏡として使用され
ている。 【0005】しかしながら、化学気相成長法により形成
した炭化珪素膜は、セラミックスの中でも硬度が極めて
高いことから、研磨に要する労力と時間が多大であり、
その上、結晶と結晶との境界部にチッピング等の欠陥を
生じ易く、そのために高精度な反射率の高い反射鏡を得
ることが困難であった。 【0006】そこで、研磨加工を容易にし、かつチッピ
ング等の欠陥発生率を低減するために、被覆する炭化珪
素膜の結晶粒を超平滑面が得やすい微粒とすることが追
求されるようになってきており、例えば、化学気相成長
法の処理条件を工夫して、得られた炭化珪素膜の結晶を
最大幅で3μm以下とすることが特開平4−35806
8号公報等に提案されている。 【0007】 【発明が解決しようとする課題】しかしながら、化学気
相成長法では、得られる炭化珪素膜の結晶粒を微細にす
ればすれ程、X線回折により同定される(111)面に
配向した結晶を含む膜、あるいは一般に成膜時の残留応
力が高く成りがちな(220)面に配向した結晶を含む
膜等では、より一層残留応力が高くなり、研磨加工時に
は更に加圧応力が前記炭化珪素膜に加わる結果、炭化珪
素膜にクラックが発生する恐れがある。 【0008】また、炭化珪素膜の結晶粒を微細にした反
射鏡を、高温での熱履歴を繰り返すような条件下で使用
した場合にも、熱応力が加わるためにクラックが発生し
易く、長期間にわたる使用に対して信頼性が乏しいとい
う課題があった。 【0009】 【発明の目的】本発明は前記課題に鑑みなされたもの
で、その目的は、(111)面に配向した結晶からなる
膜や、成膜時の残留応力が高く成りがちな(220)面
に配向した結晶からなる膜、それらの混合した結晶から
成る膜等においても残留応力が低く、製造時にも稼働時
にもクラック等が発生せず、超平滑面が容易に得られ、
長期信頼性に優れた炭化珪素膜を被覆した反射鏡を提供
することにある。 【0010】 【課題を解決するための手段】本発明者等は、基体に被
覆する炭化珪素膜の結晶粒の大きさと残留応力の相関関
係から、結晶粒の大きさとその占有面積を特定すること
により炭化珪素膜の残留応力を低減することができ、そ
の結果、適宜、研磨加工方法を選択することにより研磨
加工時のクラックやチッピングを防止でき、ASTMの
規格に準じた二乗平均値の平方根から求めた面粗さRM
S値も、平面研磨では5Å以下、曲面研磨でも50Å以
下の超平滑面が実現できることを見出し、本発明に至っ
た。 【0011】即ち、本発明の反射鏡は、基体表面に被覆
した炭化珪素膜の研磨面が、円に換算した時の粒子径が
3μm以上の結晶で膜表面積の20%以上を占め、かつ
炭化珪素膜の残留応力が、例えばX線応力測定法等で測
定して40kg/mm2以下であることを特徴とするも
のである。 【0012】 【作用】本発明の反射鏡によれば、炭化珪素膜の研磨面
が3μm以上の粒子径を有する結晶が膜表面積の20%
以上を占有し、かつ炭化珪素膜の残留応力が40kg/
mm2以下であることから、研磨加工時にチッピングを
発生したり、あるいは研磨加工時の加圧応力や、稼働時
の熱応力が加わっても、炭化珪素膜にクラックが発生し
たりしないようになる。 【0013】 【実施例】以下、本発明の反射鏡を詳述する。 【0014】本発明の反射鏡は、基体表面に被覆した炭
化珪素膜の研磨面が、3μm以上の粒子径を有する結晶
で膜表面積の20%以上を占め、かつ炭化珪素膜には4
0kg/mm2を越える残留応力が認められないもので
ある。 【0015】本発明おいて、前記炭化珪素膜の研磨面に
おける3μm以上の粒子径を有する結晶の膜表面積に対
する占有率が20%未満になると、残留応力が高くなる
ことから、膜表面を研磨する時や、反射鏡を使用してい
る時にクラックやチッピング等の欠陥を生じ易くなり、
適当でない。 【0016】尚、基体表面に被覆した炭化珪素膜の研磨
面は、X線回折測定において、例えば(111)面や
(220)面、(311)面等が観察され、検出される
結晶面は単一であっても複数であっても良い。 【0017】前述のような炭化珪素膜は研磨加工するこ
とにより、表面粗さが100Å以下の優れた表面平滑性
を得ることができ、ASTMの規格に準じた二乗平均値
の平方根から求めた面粗さRMS値は、平面研磨では5
Å以下、曲面研磨でも50Å以下の超平滑面が実現でき
る。 【0018】一方、基体としては、被覆する炭化珪素膜
と熱膨張の点で近似するものが良く、該炭化珪素膜と同
種の焼結体や、それと熱膨張特性が近似する他のセラミ
ック材料やカーボン、金属等が採用できる。 【0019】また、本発明の反射鏡を製造する方法とし
ては、イオンプレーティング等のPVD法でも、プラズ
マCVD、光CVD、熱CVD、MO(Metal−O
rganic)CVD等のCVD法でも良い。但し、本
発明によれば、被覆する炭化珪素膜の結晶の成長方向が
基体に対してほぼ垂直であることが望ましく、一般的な
製法において、非晶質化しないレベルで成膜させれば良
く、原料ガスの濃度などにより適宜調整することが可能
である。 【0020】本発明の反射鏡を評価するに際し、先ず、
炭化珪素質焼結体を基体とし、熱CVD法により炭化珪
素膜を被覆した。 【0021】前記熱CVD法による被覆条件として、具
体的には、反応ガスとしてメチルトリクロロシランと水
素を使用し、これらの流量比を1:3〜1:10の割合
とし、基体温度を1300〜1500℃として10〜2
00Torrの減圧下で約0.2〜0.3mmの炭化珪
素膜を得た。 【0022】得られた炭化珪素膜について、X線回折測
定を行って結晶の配向性を調査するとともに、X線応力
測定法により残留応力を測定した。 【0023】次いで、炭化珪素膜表面をダイヤモンド砥
粒を用いて研磨加工し、得られた研磨面の表面粗さRM
Sを測定するとともに、クラック等の欠陥の有無をノマ
ルスキー微分干渉顕微鏡及び走査型電子顕微鏡により調
査した。 【0024】その後、炭化珪素膜の研磨面に化学的処理
を施し、それを走査型電子顕微鏡を用いて写真撮影し、
得られた写真から粒子径分布測定装置を用いて結晶粒子
径を測定し、一定視野内に占める3μm以上の粒子径の
結晶の面積比率を占有率として算出した。以上の結果を
表1に示す。 【0025】 【表1】【0026】表1の結果から明らかなように、粒子径が
3μm以上の結晶の占有率が20%未満の試料番号1、
2、15、16、29、30では、いずれも炭化珪素膜
の残留応力が43kg/mm2以上となり、該炭化珪素
膜にクラックが認められるのに対して、本発明ではいず
れも炭化珪素膜の残留応力が40kg/mm2以下であ
り、該炭化珪素膜にもクラック等の欠陥は認められなか
った。 【0027】 【発明の効果】叙上の如く、本発明の反射鏡は、基体表
面に被覆した炭化珪素膜の研磨面が、3μm以上の結晶
で膜表面積の20%以上を占め、かつ炭化珪素膜の残留
応力が、40kg/mm2以下であることから、(11
1)面に配向した結晶からなる炭化珪素膜のみならず、
(220)面に配向した結晶からなる炭化珪素膜等にお
いても残留応力を低く抑えることができ、製造時、ある
いは稼働時においてもクラック等が発生せず、超平滑面
が再現性良く安定して得られ、長期信頼性に優れた炭化
珪素反射鏡を提供することができる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a reflecting mirror suitable for an X-ray, a laser or the like which requires a smooth surface. [0002] In recent years, ceramics have high strength and excellent properties such as heat resistance and abrasion resistance. Therefore, the application fields of ceramic products have been expanded and various products have been developed. Among them, it has been proposed to coat a ceramic on the surface of a substrate by means of a vapor phase synthesis method, for example, a chemical vapor deposition method or a physical vapor deposition method, so that a reflecting mirror having a ceramic surface on the substrate surface is proposed. [0003] For example, it is known that a silicon carbide film formed by a chemical vapor deposition method is dense and free from voids, and an ultra-smooth surface having high smoothness can be obtained by performing surface polishing. Although the surface roughness depends on the surface shape, a smooth surface can be obtained in the order of aspherical surface, spherical surface, and flat surface, and an aspherical surface can have a surface roughness of 100 ° or less, and a flat surface can have a surface roughness of 10 ° or less. It is used as a high-precision, high-reflectance reflecting mirror. However, since the silicon carbide film formed by the chemical vapor deposition method is extremely high in hardness among ceramics, it requires a large amount of labor and time for polishing.
In addition, defects such as chipping are likely to occur at the boundary between the crystals, which makes it difficult to obtain a highly accurate reflecting mirror having a high reflectance. Therefore, in order to facilitate polishing and reduce the incidence of defects such as chipping, it has been sought to make the crystal grains of the silicon carbide film to be coated into fine grains that can easily obtain an ultra-smooth surface. For example, it is disclosed in Japanese Patent Application Laid-Open No. 4-35806 that the crystal of the obtained silicon carbide film has a maximum width of 3 μm or less by devising the processing conditions of the chemical vapor deposition method.
No. 8 has been proposed. However, in the chemical vapor deposition method, the finer the crystal grains of the obtained silicon carbide film, the more the crystal grains are oriented to the (111) plane identified by X-ray diffraction. In a film containing a crystal which has undergone crystal growth, or a film which contains a crystal which is generally oriented to the (220) plane where the residual stress tends to be high at the time of film formation, the residual stress is further increased. As a result of the addition to the silicon carbide film, cracks may occur in the silicon carbide film. Further, even when a reflecting mirror in which the crystal grains of the silicon carbide film are made fine is used under conditions in which thermal history at high temperatures is repeated, cracks are liable to occur because thermal stress is applied. There was a problem that reliability was poor for use over a period. SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems, and has as its object the purpose of forming a film made of a crystal oriented in the (111) plane, or having a high residual stress during film formation (220). ) The residual stress is low even in a film composed of crystals oriented in the plane and a film composed of a mixture thereof, and cracks do not occur during production and operation, and an ultra-smooth surface can be easily obtained.
An object of the present invention is to provide a reflecting mirror coated with a silicon carbide film having excellent long-term reliability. The present inventors specify the size of crystal grains and the area occupied by the correlation between the size of the crystal grains of the silicon carbide film coated on the base and the residual stress. Can reduce the residual stress of the silicon carbide film. As a result, cracks and chipping during polishing can be prevented by appropriately selecting the polishing method, and the square root of the root mean square value according to the ASTM standard can be reduced. Calculated surface roughness RM
The present inventors have also found that an S value can realize an ultra-smooth surface of 5 ° or less by plane polishing and 50 ° or less by curved surface polishing, and have reached the present invention. That is, in the reflector of the present invention, the polished surface of the silicon carbide film coated on the substrate surface is a crystal having a particle diameter of 3 μm or more when converted to a circle, occupying 20% or more of the film surface area, and The residual stress of the silicon film is not more than 40 kg / mm 2 as measured by, for example, an X-ray stress measuring method. According to the reflector of the present invention, the crystal having a grain size of 3 μm or more on the polished surface of the silicon carbide film accounts for 20% of the film surface area.
And the residual stress of the silicon carbide film is 40 kg /
Since it is not more than mm 2 , chipping does not occur during polishing processing, or even if pressure stress during polishing processing or thermal stress during operation is applied, cracks do not occur in the silicon carbide film. . Hereinafter, a reflector according to the present invention will be described in detail. In the reflector of the present invention, the polished surface of the silicon carbide film coated on the substrate surface is a crystal having a particle diameter of 3 μm or more and occupies 20% or more of the film surface area.
No residual stress exceeding 0 kg / mm 2 was observed. In the present invention, when the occupation ratio of the crystal having a particle diameter of 3 μm or more on the polished surface of the silicon carbide film to the film surface area is less than 20%, the residual stress increases, so the film surface is polished. And when using a reflector, it is easy to cause defects such as cracks and chipping,
Not suitable. In the polished surface of the silicon carbide film coated on the substrate surface, for example, (111) plane, (220) plane, (311) plane, etc. are observed in X-ray diffraction measurement, and the detected crystal plane is It may be single or plural. By polishing the silicon carbide film as described above, excellent surface smoothness with a surface roughness of 100 ° or less can be obtained, and the surface determined from the square root of the root mean square value according to the ASTM standard can be obtained. The roughness RMS value is 5 for planar polishing.
Ultra-smooth surface of 50 ° or less can be realized even by polishing a curved surface. On the other hand, it is preferable that the substrate is similar to the silicon carbide film to be coated in terms of thermal expansion, such as a sintered body of the same kind as the silicon carbide film, or another ceramic material having similar thermal expansion characteristics to that of the silicon carbide film. Carbon, metal, etc. can be adopted. As a method of manufacturing the reflecting mirror of the present invention, a plasma CVD, a photo CVD, a thermal CVD, an MO (Metal-O
rganic) CVD or the like. However, according to the present invention, it is desirable that the growth direction of the crystal of the silicon carbide film to be coated is substantially perpendicular to the substrate, and in a general manufacturing method, the film may be formed at a level that does not become amorphous. It can be appropriately adjusted depending on the concentration of the raw material gas and the like. In evaluating the reflector of the present invention, first,
Using a silicon carbide sintered body as a base, a silicon carbide film was coated by a thermal CVD method. As the coating conditions by the thermal CVD method, specifically, methyltrichlorosilane and hydrogen are used as reaction gases, the flow rate ratio thereof is 1: 3 to 1:10, and the substrate temperature is 1300 to 1300. 10 to 2 at 1500 ° C
A silicon carbide film of about 0.2 to 0.3 mm was obtained under a reduced pressure of 00 Torr. The obtained silicon carbide film was subjected to X-ray diffraction measurement to investigate the crystal orientation, and the residual stress was measured by an X-ray stress measurement method. Next, the surface of the silicon carbide film is polished using diamond abrasive grains, and the surface roughness RM of the obtained polished surface is obtained.
S was measured, and the presence or absence of defects such as cracks was examined with a Nomarski differential interference microscope and a scanning electron microscope. Thereafter, the polished surface of the silicon carbide film is subjected to a chemical treatment, and a photograph is taken using a scanning electron microscope.
From the obtained photograph, the crystal particle diameter was measured using a particle diameter distribution measuring device, and the area ratio of crystals having a particle diameter of 3 μm or more in a fixed visual field was calculated as the occupancy. Table 1 shows the above results. [Table 1] As is clear from the results shown in Table 1, the sample Nos.
In any of 2, 15, 16, 29, and 30, the residual stress of the silicon carbide film was 43 kg / mm 2 or more, and cracks were observed in the silicon carbide film. The residual stress was 40 kg / mm 2 or less, and no defects such as cracks were found in the silicon carbide film. As described above, in the reflecting mirror of the present invention, the polished surface of the silicon carbide film coated on the substrate surface is a crystal of 3 μm or more, occupies 20% or more of the film surface area, and Since the residual stress of the film is 40 kg / mm 2 or less, (11
1) Not only a silicon carbide film composed of crystals oriented in the plane,
Residual stress can be suppressed low even in a silicon carbide film or the like made of a crystal oriented in the (220) plane, and no crack or the like occurs during manufacturing or operation, and an ultra-smooth surface can be stably reproduced with good reproducibility. Thus, a silicon carbide reflecting mirror having excellent long-term reliability can be provided.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C23C 14/58 C23C 14/58 Z 16/56 16/56 G02B 5/08 G02B 5/08 A Fターム(参考) 2H042 DA12 4K029 AA04 BA56 BD09 CA03 EA01 GA00 4K030 AA06 AA17 BA37 CA05 DA08 FA10 HA03 JA01 JA09 JA10 LA11 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C23C 14/58 C23C 14/58 Z 16/56 16/56 G02B 5/08 G02B 5/08 A F term ( Reference) 2H042 DA12 4K029 AA04 BA56 BD09 CA03 EA01 GA00 4K030 AA06 AA17 BA37 CA05 DA08 FA10 HA03 JA01 JA09 JA10 LA11

Claims (1)

【特許請求の範囲】 【請求項1】基体表面に被覆した炭化珪素膜を表面研磨
して成る反射鏡において、炭化珪素膜の研磨面に3μm
以上の粒子径を有する結晶が、膜表面積の20%以上を
占め、かつ炭化珪素膜の残留応力が40kg/mm2
下であることを特徴とする反射鏡。
Claims: 1. A reflecting mirror formed by polishing the surface of a silicon carbide film coated on the surface of a substrate, wherein the polishing surface of the silicon carbide film has a thickness of 3 μm.
A reflector having a crystal having the above-mentioned particle diameter occupying 20% or more of the film surface area, and having a residual stress of the silicon carbide film of 40 kg / mm 2 or less.
JP2002192234A 2002-07-01 2002-07-01 Reflector Expired - Fee Related JP3696843B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002192234A JP3696843B2 (en) 2002-07-01 2002-07-01 Reflector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002192234A JP3696843B2 (en) 2002-07-01 2002-07-01 Reflector

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP13983694A Division JP3347475B2 (en) 1994-06-22 1994-06-22 Covering member

Publications (2)

Publication Number Publication Date
JP2003119566A true JP2003119566A (en) 2003-04-23
JP3696843B2 JP3696843B2 (en) 2005-09-21

Family

ID=19195525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002192234A Expired - Fee Related JP3696843B2 (en) 2002-07-01 2002-07-01 Reflector

Country Status (1)

Country Link
JP (1) JP3696843B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102242348A (en) * 2011-06-30 2011-11-16 山东理工大学 Preparation method of silicon carbide composite film of reflector used in space

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102242348A (en) * 2011-06-30 2011-11-16 山东理工大学 Preparation method of silicon carbide composite film of reflector used in space

Also Published As

Publication number Publication date
JP3696843B2 (en) 2005-09-21

Similar Documents

Publication Publication Date Title
EP0752293B1 (en) Diamond coated article and process for its production
KR100193546B1 (en) Ultra hard membrane coating member and manufacturing method thereof
CN112223133A (en) CMP pad conditioner and method of making the same
JP3696843B2 (en) Reflector
JPS61281030A (en) Mold for molding optical element
JP2000073171A (en) Production of chemical vapor deposition multilayer silicon carbide film
JP3347475B2 (en) Covering member
TW522451B (en) Monitoring wafer for measuring film thickness
JP3500278B2 (en) Corrosion resistant materials for semiconductor manufacturing
JP3857742B2 (en) Glass mold for optical element molding
JP2738629B2 (en) Composite members
JPH04358068A (en) Member coated with sic by cvd
JP2000327459A (en) Silicon carbide jig for low pressure cvd and its production
Hickey et al. Polishing of filament-assisted CVD diamond films
JPH08290968A (en) Composite material
JP4651145B2 (en) Corrosion resistant ceramics
WO2011046191A1 (en) Jig for semiconductor production and method for producing same
JPH06262525A (en) Grinding wheel and its manufacture
WO2024203038A1 (en) Tantalum carbide coating material and compound semiconductor growth device
JP3735627B2 (en) Method for manufacturing reflector member
JPS61251528A (en) Mold for forming glass lens and production thereof
KR20120046007A (en) A corrosion-resistant article coated with aluminum nitride and method for producing the same
JPH09227140A (en) Mold for molding optical element
JP3523614B2 (en) Reflector member
JP3696807B2 (en) Sliding member and manufacturing method thereof

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Effective date: 20041122

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20050121

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050628

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050630

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080708

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090708

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090708

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100708

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20100708

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110708

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees