JP2003119293A - Cross-linked fluororesin composite material and its production method - Google Patents

Cross-linked fluororesin composite material and its production method

Info

Publication number
JP2003119293A
JP2003119293A JP2001314837A JP2001314837A JP2003119293A JP 2003119293 A JP2003119293 A JP 2003119293A JP 2001314837 A JP2001314837 A JP 2001314837A JP 2001314837 A JP2001314837 A JP 2001314837A JP 2003119293 A JP2003119293 A JP 2003119293A
Authority
JP
Japan
Prior art keywords
fluororesin
composite material
fiber
crosslinked
fluorinated pitch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001314837A
Other languages
Japanese (ja)
Other versions
JP3679043B2 (en
Inventor
Akihiro Oshima
明博 大島
Shigetoshi Ikeda
重利 池田
Masaichi Washio
方一 鷲尾
Chie Udagawa
千恵 宇田川
Yoneo Tabata
米穂 田畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
REITEKKU KK
Raytech Corp
Original Assignee
REITEKKU KK
Raytech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by REITEKKU KK, Raytech Corp filed Critical REITEKKU KK
Priority to JP2001314837A priority Critical patent/JP3679043B2/en
Publication of JP2003119293A publication Critical patent/JP2003119293A/en
Application granted granted Critical
Publication of JP3679043B2 publication Critical patent/JP3679043B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Paints Or Removers (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a fluororesin having high toughness, abrasion resistance, radiation resistance, etc., without detriment to the properties inherent in a fluororesin, such as heat resistance, chemical resistance, water repellency, stain resistance, and lubricity. SOLUTION: The cross-linked fluororesin composite material is produced by adding a fluorinated pitch powder to a fluororesin and cross-linking the fluororesin containing the fluorinated pitch powder by heating and/or by irradiating with a radiation and has a molecularly composited network structure formed by the reaction of the fluororesin and the fluorinated pitch.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はフッ素樹脂に加熱処
理または放射線処理を施すことにより靭性や摺動特性、
耐熱性などが向上した架橋フッ素樹脂複合材料に関す
る。
TECHNICAL FIELD The present invention relates to the toughness and sliding characteristics of a fluororesin by heat treatment or radiation treatment.
The present invention relates to a crosslinked fluororesin composite material having improved heat resistance and the like.

【0002】[0002]

【従来の技術】ポリテトラフルオロエチレンなどのフッ
素樹脂は、優れた耐熱性、耐薬品性、撥水性、防汚性、
潤滑性、耐摩擦性を有するプラスチックであり、これら
の特徴を利用して、産業用や民生用のパッキン、ガスケ
ット、チューブ、絶縁テープ、軸受けなどの材料として
利用が拡大されつつある。しかし、ポリテトラフルオロ
エチレンは放射線に対する感受性が高く、照射線量が1
kGyを超えると力学特性が低下するため、原子力施設
などにおける放射線環境下で使用することはできない。
また、摺動環境下では摩耗やクリープ変形が起こるため
に使用できない場合がある。また、ポリテトラフルオロ
エチレンは靭性が低く、材料にごくわずかな傷などの欠
陥がある状態で応力が加わると、すぐに破壊してしま
う。
Fluorine resins such as polytetrafluoroethylene are excellent in heat resistance, chemical resistance, water repellency, antifouling property,
It is a plastic having lubricity and abrasion resistance, and by utilizing these characteristics, its use is expanding as a material for packings for industrial and consumer use, gaskets, tubes, insulating tapes, bearings and the like. However, polytetrafluoroethylene is highly sensitive to radiation, and the irradiation dose is 1
If it exceeds kGy, the mechanical properties deteriorate, and therefore it cannot be used in a radiation environment in a nuclear facility.
In addition, it may not be used in a sliding environment due to wear and creep deformation. Further, polytetrafluoroethylene has low toughness, and if stress is applied to the material in a state where there are defects such as slight scratches, the material is immediately broken.

【0003】これらの欠点を克服するために、放射線架
橋によるフッ素樹脂の改質、あるいは充填剤や添加剤を
加えるなどの方策が採られている。しかし、放射線架橋
によって摺動環境下での摩耗やクリープ変形の問題は改
善できるものの、靭性は改善されない。また、靭性を改
善するために充填剤や添加剤を加えた場合、フッ素樹脂
の優れた耐熱性や耐薬品性のために充填剤や添加剤がフ
ッ素樹脂と化学反応することはなく、しかも、フッ素樹
脂本来の優れた特徴、すなわち耐熱性、耐薬品性、撥水
性、防汚性、潤滑性、力学特性などを低下させてしま
う。
In order to overcome these drawbacks, measures have been taken such as modifying the fluororesin by radiation crosslinking or adding a filler or an additive. However, although radiation crosslinking can improve the problems of wear and creep deformation in a sliding environment, it does not improve toughness. When a filler or an additive is added to improve the toughness, the filler and the additive do not chemically react with the fluororesin due to the excellent heat resistance and chemical resistance of the fluororesin, and, The original excellent characteristics of the fluororesin, that is, heat resistance, chemical resistance, water repellency, antifouling property, lubricity, mechanical properties, etc. are deteriorated.

【0004】[0004]

【発明が解決しようとする課題】上記の問題点に鑑み、
本発明の目的は、フッ素樹脂の優れた特徴である耐熱
性、耐薬品性、撥水性、防汚性、潤滑性などを低下せし
めることなく、フッ素樹脂の従来からの欠点であった低
い靭性、摺動環境下での摩耗やクリープ変形、低い耐放
射線性などの問題を一挙に解決し、フッ素樹脂の利用に
制限があった工業分野においてこれを利用できるように
することである。
In view of the above problems,
The object of the present invention is to lower the toughness, which has been a conventional defect of fluororesin, without deteriorating the excellent characteristics of fluororesin such as heat resistance, chemical resistance, water repellency, antifouling property and lubricity. The object is to solve problems such as abrasion and creep deformation in a sliding environment and low radiation resistance all at once, so that the fluororesin can be used in the industrial field where the use is limited.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するた
め、本発明によれば、フッ化ピッチの粉体を添加したフ
ッ素樹脂に加熱処理および/または放射線照射処理を施
すことによってフッ素樹脂が架橋したフッ素樹脂複合材
料であって、フッ化ピッチがフッ素樹脂と化学反応する
ことによって分子複合化した網目構造を有することを特
徴とする架橋フッ素樹脂複合材料が提供される。フッ素
樹脂としてはポリテトラフルオロエチレン樹脂またはテ
トラフルオロエチレン系共重合樹脂を用いるのが好まし
い。また、フッ化ピッチの粉体の添加量は、フッ素樹脂
の量に対して0.05〜50重量%であるのが好まし
い。
In order to solve the above-mentioned problems, according to the present invention, the fluororesin is crosslinked by subjecting the fluororesin containing the powder of fluorinated pitch to heat treatment and / or irradiation treatment. A cross-linked fluororesin composite material is provided, which is characterized in that it has a network structure in which molecular structure is formed by chemically reacting fluorinated pitch with fluororesin. As the fluororesin, it is preferable to use a polytetrafluoroethylene resin or a tetrafluoroethylene copolymer resin. The amount of fluorinated pitch powder added is preferably 0.05 to 50% by weight with respect to the amount of fluororesin.

【0006】また、本発明によれば、上記のフッ素樹脂
が連続繊維材料または短繊維材料と混合して繊維強化さ
れている複合材料が提供される。連続繊維材料または短
繊維材料としては、PTFE繊維、ガラス繊維、炭素繊
維、炭化ケイ素繊維、窒化ケイ素繊維、アラミド繊維、
PBO繊維、および金属繊維から選択された1種または
2種以上を用いるのが好ましい。
Further, according to the present invention, there is provided a composite material in which the above-mentioned fluororesin is mixed with a continuous fiber material or a short fiber material to be fiber-reinforced. As the continuous fiber material or the short fiber material, PTFE fiber, glass fiber, carbon fiber, silicon carbide fiber, silicon nitride fiber, aramid fiber,
It is preferable to use one or more selected from PBO fibers and metal fibers.

【0007】さらに、本発明によれば、金属部材の表面
に上記の架橋フッ素樹脂複合材料がコーティングされて
いる複合部材、すなわちフッ化ピッチの粉体を添加した
フッ素樹脂に加熱処理および/または放射線照射処理を
施すことによってフッ素樹脂が架橋したフッ素樹脂複合
材料であってフッ化ピッチがフッ素樹脂と化学反応する
ことによって分子複合化した網目構造を有するフッ素樹
脂複合材料が金属部材の表面にコーティングされている
ことを特徴とする複合部材が提供される。金属部材とし
ては例えば、アルミニウム、ステンレススチール、銅な
どからなる板材や筒状の部材を用いる。
Further, according to the present invention, a composite member in which the surface of a metal member is coated with the above-mentioned cross-linked fluororesin composite material, that is, a fluororesin to which a powder of fluorinated pitch is added is subjected to heat treatment and / or radiation. The surface of the metal member is coated with a fluororesin composite material in which the fluororesin is cross-linked by the irradiation treatment, and the fluororesin composite material having a network structure in which the fluorinated pitch chemically reacts with the fluororesin has a molecular composite structure. A composite member is provided. As the metal member, for example, a plate member made of aluminum, stainless steel, copper or the like or a tubular member is used.

【0008】また、本発明によれば、上記の架橋フッ素
樹脂複合材料の製造方法であって、フッ化ピッチの粉体
を添加したフッ素樹脂に加熱処理および/または放射線
照射処理を施すことによってフッ素樹脂を架橋させると
ともに、フッ化ピッチとフッ素樹脂を化学反応させるこ
とを特徴とする製造方法が提供される。加熱処理は12
0〜400℃の温度範囲で行われるのが好ましい。ま
た、放射線照射処理は0〜200torrの酸素濃度の雰囲
気中で室温から400℃の温度範囲で行われ、放射線の
照射線量は0.1kGy〜10MGyであるのが好ましい。
Further, according to the present invention, there is provided the above method for producing a crosslinked fluororesin composite material, wherein the fluororesin to which the powder of fluorinated pitch is added is subjected to heat treatment and / or irradiation treatment to produce fluorine. A manufacturing method is provided, which comprises cross-linking a resin and chemically reacting a fluorinated pitch with a fluororesin. Heat treatment is 12
It is preferably carried out in a temperature range of 0 to 400 ° C. Further, it is preferable that the radiation irradiation treatment is performed in a temperature range of room temperature to 400 ° C. in an atmosphere of oxygen concentration of 0 to 200 torr, and the irradiation dose of radiation is 0.1 kGy to 10 MGy.

【0009】また、本発明によれば、フッ化ピッチの粉
体を添加したフッ素樹脂を連続繊維材料または短繊維材
料に含浸し、この混合体に加熱処理および/または放射
線照射処理を施すことによってフッ素樹脂を架橋させる
とともに、フッ化ピッチとフッ素樹脂を化学反応させる
ことを特徴とする架橋フッ素樹脂複合材料の製造方法が
提供される。
Further, according to the present invention, the continuous fiber material or the short fiber material is impregnated with the fluororesin to which the powder of fluorinated pitch is added, and the mixture is subjected to heat treatment and / or radiation irradiation treatment. Provided is a method for producing a crosslinked fluororesin composite material, which comprises cross-linking a fluororesin and chemically reacting a fluorinated pitch with a fluororesin.

【0010】さらに、本発明によれば、フッ化ピッチの
粉体を添加したフッ素樹脂を金属部材の表面にコーティ
ングし、次いで、フッ素樹脂に加熱処理および/または
放射線照射処理を施すことによってフッ素樹脂を架橋さ
せるとともに、フッ化ピッチとフッ素樹脂を化学反応さ
せ、また同時にフッ素樹脂のコーティングと金属部材を
強固に接着させることを特徴とする複合部材の製造方法
が提供される。
Further, according to the present invention, the surface of the metal member is coated with fluororesin to which powder of fluorinated pitch is added, and then the fluororesin is subjected to heat treatment and / or radiation irradiation treatment. There is provided a method for producing a composite member, characterized in that fluorinated pitch and a fluororesin are chemically reacted with each other while the fluororesin coating and the metal member are firmly bonded together.

【0011】[0011]

【発明の実施の形態】以下、本発明に係る架橋フッ素樹
脂複合材料、複合部材、およびそれらの製造方法につい
ての具体的な態様を説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Specific embodiments of a crosslinked fluororesin composite material, a composite member, and a method for producing them according to the present invention will be described below.

【0012】ポリテトラフルオロエチレン樹脂やテトラ
フルオロエチレン系共重合樹脂などのフッ素樹脂にフッ
化ピッチを添加する工程は、フッ素樹脂の粉体が均一に
分散した分散液にフッ化ピッチの粉体を添加して混合す
ることにより行われる。粉体を効率よく分散するための
液体すなわち分散媒は、水と乳化剤、水とアルコール、
水とアセトン、または水とアルコールとアセトンの混合
溶媒などであり、いずれも当業者であれば容易に選択し
調製し得る。あるいは、分散液を用いずに、フッ素樹脂
の微粉末にフッ化ピッチの粉体を添加して混合してもよ
い。フッ化ピッチの粉体の添加量は、フッ素樹脂の量に
対して0.05〜50重量%であるのが好ましい。0.0
5重量%未満であるとフッ化ピッチとフッ素樹脂が反応
して分子複合化した網目構造の架橋密度が低くなり、フ
ッ素樹脂の欠点である低い靭性、クリープ特性、摩耗特
性などが十分に改善されない。一方、50重量%を超え
ると架橋密度が大きくなり、硬くなるとともに脆くなる
ため、フッ素樹脂本来の特性を失ってしまう。
In the step of adding fluorinated pitch to a fluororesin such as polytetrafluoroethylene resin or tetrafluoroethylene-based copolymer resin, the fluorinated pitch powder is added to a dispersion liquid in which the fluororesin powder is uniformly dispersed. It is carried out by adding and mixing. The liquid for efficiently dispersing the powder, that is, the dispersion medium, is water and an emulsifier, water and an alcohol,
A mixed solvent of water and acetone or a mixture of water, alcohol and acetone can be selected and prepared by those skilled in the art. Alternatively, without using the dispersion liquid, powder of fluorinated pitch may be added to and mixed with fine powder of fluororesin. The amount of the fluorinated pitch powder added is preferably 0.05 to 50% by weight with respect to the amount of the fluororesin. 0.0
If it is less than 5% by weight, the cross-linking density of the network structure in which the fluorinated pitch and the fluororesin react to form a molecular composite becomes low, and the disadvantages of the fluororesin, such as low toughness, creep properties and abrasion properties, are not sufficiently improved. . On the other hand, if it exceeds 50% by weight, the crosslink density becomes large, and it becomes hard and brittle, so that the original characteristics of the fluororesin are lost.

【0013】本発明で用いるフッ化ピッチの粉体は、平
均分子量2000〜3000程度で平均粒径約1.2ミ
クロンのものである。その軟化温度は270℃程度であ
り、300℃以上で分解し始める。フッ化ピッチは、フ
ッ素ガス中でコールタール中の水素をフッ素に置換する
ことによって得られる。このようなフッ化ピッチの粉体
は大阪ガスケミカル(株)からリノベスP(登録商標)と
いう商品名で市販されている。
The fluorinated pitch powder used in the present invention has an average molecular weight of about 2000 to 3000 and an average particle size of about 1.2 microns. Its softening temperature is about 270 ° C., and it begins to decompose at 300 ° C. or higher. Fluorinated pitch is obtained by replacing hydrogen in coal tar with fluorine in fluorine gas. Such fluorinated pitch powder is commercially available from Osaka Gas Chemicals Co., Ltd. under the trade name of Linoves P (registered trademark).

【0014】フッ素樹脂を連続繊維材料または短繊維材
料に含浸する工程は、上記のようにしてフッ化ピッチを
添加したフッ素樹脂の分散液に繊維を浸すか、あるいは
この分散液を繊維に塗布することにより行われる。繊維
材料として用いられるものは上記の通りであるが、15
0℃以上の耐熱性を有する繊維であって従来の繊維強化
プラスチックにおいて用いられる全ての繊維を用いるこ
とができる。150℃以上の耐熱性が必要な理由は、フ
ッ化ピッチとフッ素樹脂を反応させる際に行う熱処理に
よって繊維の強度が低下するのを防ぐためである。
In the step of impregnating the continuous resin material or the short fiber material with the fluororesin, the fiber is dipped in the dispersion liquid of the fluororesin to which the fluorinated pitch is added as described above, or the dispersion liquid is applied to the fiber. It is done by Although the materials used as the fiber material are as described above,
It is possible to use all fibers that have heat resistance of 0 ° C. or higher and that are used in conventional fiber reinforced plastics. The reason why the heat resistance of 150 ° C. or higher is necessary is to prevent the strength of the fiber from being lowered by the heat treatment performed when reacting the fluorinated pitch and the fluororesin.

【0015】フッ素樹脂を金属部材の表面にコーティン
グする工程は、フッ化ピッチを添加したフッ素樹脂の分
散液を金属部材の表面に塗布するか、あるいは均一にス
プレーすることなどにより行われる。金属部材として用
いられるものは上記の通りであるが、150℃以上の融
点を有する全ての金属を用いることができる。
The step of coating the surface of the metal member with the fluororesin is carried out by coating the surface of the metal member with a dispersion liquid of the fluororesin to which fluorinated pitch has been added, or by spraying it uniformly. The material used as the metal member is as described above, but any metal having a melting point of 150 ° C. or higher can be used.

【0016】かくして混合分散溶液を風乾あるいは熱風
乾燥することによって分散媒を除去したもの、またはフ
ッ素樹脂とフッ化ピッチを混合した粉体、またはフッ素
樹脂と繊維の混合体のいずれかを任意の形状に成形した
もの、あるいはフッ素樹脂を金属部材の表面にコーティ
ングしたものを120〜400℃、好ましくはフッ化ピ
ッチの軟化点以上である270〜360℃の温度範囲で
加熱処理する。これによって、フッ素樹脂が架橋すると
ともにフッ化ピッチとフッ素樹脂も熱化学反応して架橋
する。すなわち、フッ素樹脂中に均一に分散したフッ化
ピッチがフッ素樹脂と共有結合によって結びつけられる
とともに、フッ素樹脂自体もフッ化ピッチによって誘起
されたラジカルを介して共有結合により結合した状態に
なる。従って、分子複合的に橋かけした網目構造を有す
る複合材料、あるいはこの複合材料と金属部材が強固に
接着した複合部材が得られる。加熱温度が400℃を超
えるとフッ素樹脂の熱分解が進行するため好ましくな
い。また加熱温度が120℃未満ではフッ化ピッチの分
解が起きず、フッ素樹脂との間で反応が起きない。加熱
手段としては、通常の気体循環式の恒温槽、赤外線ヒー
ター、パネルヒーターなどの間接的または直接的な熱源
を用いることができる。あるいは熱プレス成形機のよう
なもので成形と加熱処理を同時に実施してもよい。
Thus, the dispersion medium is removed by air-drying or hot-air-drying the mixed dispersion solution, a powder obtained by mixing the fluororesin and the fluorinated pitch, or a mixture of the fluororesin and the fiber is formed into an arbitrary shape. Or a fluorocarbon resin coated on the surface of a metal member is heat-treated at a temperature range of 120 to 400 ° C., preferably 270 to 360 ° C. which is higher than the softening point of fluorinated pitch. As a result, the fluororesin is crosslinked, and the fluoropitch and the fluororesin are thermochemically reacted to be crosslinked. That is, the fluorinated pitch uniformly dispersed in the fluororesin is bound to the fluororesin by a covalent bond, and the fluororesin itself is also bound by a covalent bond via radicals induced by the fluorinated pitch. Therefore, it is possible to obtain a composite material having a network structure that is crosslinked in a molecular composite manner, or a composite member in which the composite material and the metal member are firmly bonded. When the heating temperature exceeds 400 ° C., thermal decomposition of the fluororesin proceeds, which is not preferable. Further, when the heating temperature is lower than 120 ° C., decomposition of fluorinated pitch does not occur and reaction with the fluororesin does not occur. As a heating means, an indirect or direct heat source such as a normal gas circulation type constant temperature bath, an infrared heater or a panel heater can be used. Alternatively, the molding and the heat treatment may be carried out at the same time by using a hot press molding machine.

【0017】また上記の成形体を0〜200torrの酸素
濃度の雰囲気中で室温から400℃の温度範囲、好まし
くはフッ化ピッチの軟化点以上である270〜360℃
の温度範囲に保ちながら放射線を0.1kGy〜10MGyの
照射線量で照射することによって、上記と同様の網目構
造を有する複合材料あるいは複合部材が得られる。この
方法によれば、より高い網目密度が得られる。0〜20
0torrの酸素濃度の雰囲気とは、真空の他、ヘリウムや
窒素などの不活性ガスで大気中の酸素を置き換えること
によって酸素濃度を200torr以下に制御した雰囲気を
いう。このような雰囲気を用いることによって、照射中
にフッ素樹脂の架橋反応が抑制されることなくフッ素樹
脂の酸化分解が起こることが防がれる。酸素濃度が20
0torrを超えると放射線によって誘起されたラジカルが
酸素と優先的に結合し、架橋反応が著しく抑制されてし
まう。照射線量が0.1kGy未満であると反応に寄与する
ラジカルの濃度が希薄となり、得られる複合材料の特性
が十分に改善されない。一方、10MGyを超えると架橋
密度が大きくなり、硬くなるとともに脆くなり、フッ素
樹脂として好ましい材料特性が失われる。放射線として
は、電子線、X線、中性子線、高エネルギーイオンなど
の電離性放射線を用い、これらのいずれかを単独で、あ
るいは混合して用いる。温度制御のための加熱手段とし
ては、通常の気体循環式の恒温槽、赤外線ヒーター、パ
ネルヒーターなどの間接的または直接的な熱源を用いる
ことができる。あるいは、電子加速器またはイオン加速
器から発生させる放射線のエネルギーを制御することに
よって発生する熱をそのまま熱源として利用してもよ
い。
Further, the above-mentioned molded body is subjected to a temperature range of room temperature to 400 ° C. in an atmosphere of oxygen concentration of 0 to 200 torr, preferably 270 to 360 ° C. which is higher than the softening point of fluorinated pitch.
By irradiating radiation with an irradiation dose of 0.1 kGy to 10 MGy while maintaining the temperature range of 1, the composite material or the composite member having the same network structure as described above can be obtained. According to this method, a higher mesh density can be obtained. 0-20
The atmosphere having an oxygen concentration of 0 torr refers to an atmosphere in which the oxygen concentration is controlled to 200 torr or less by replacing oxygen in the atmosphere with an inert gas such as helium or nitrogen in addition to vacuum. By using such an atmosphere, oxidative decomposition of the fluororesin is prevented from occurring without suppressing the crosslinking reaction of the fluororesin during irradiation. Oxygen concentration is 20
If it exceeds 0 torr, radicals induced by radiation preferentially bond with oxygen, and the crosslinking reaction is significantly suppressed. If the irradiation dose is less than 0.1 kGy, the concentration of radicals that contribute to the reaction will be low, and the properties of the resulting composite material will not be sufficiently improved. On the other hand, if it exceeds 10 MGy, the crosslink density becomes large, and it becomes hard and brittle, and the material properties preferable as a fluororesin are lost. As the radiation, ionizing radiation such as an electron beam, an X-ray, a neutron beam, and a high-energy ion is used, and any one of them may be used alone or in combination. As the heating means for controlling the temperature, an indirect or direct heat source such as a normal gas circulation type constant temperature bath, an infrared heater or a panel heater can be used. Alternatively, the heat generated by controlling the energy of the radiation generated from the electron accelerator or the ion accelerator may be used as it is as a heat source.

【0018】かくして得られる複合材料または複合部材
における架橋フッ素樹脂の網目密度は、フッ化ピッチの
添加量、加熱温度、あるいは放射線照射線量を制御する
ことによって任意に調整することができる。
The network density of the crosslinked fluororesin in the composite material or composite member thus obtained can be arbitrarily adjusted by controlling the addition amount of fluorinated pitch, the heating temperature, or the radiation irradiation dose.

【0019】本発明のフッ素樹脂複合材料においては、
従来のフッ素樹脂よりも靭性、摺動環境下での摩耗やク
リープ変形、耐放射線性などが著しく改善されている。
その理由は次のように考えられる。 耐放射線性について:フッ化ピッチとフッ素樹脂が化学
反応によって橋かけして分子複合化することにより分子
内の架橋点でのイオン化ポテンシャルが低下し、架橋部
位で放射線のエネルギー吸収が緩和される。従って、放
射線に対する耐性が向上する。特にフッ化ピッチは分子
中に芳香環を有していて、この芳香環を有する材料とフ
ッ素樹脂が化学結合して網目構造が形成されるため、耐
放射線性が向上しやすい。 靭性について:フッ素樹脂、特にポリテトラフルオロエ
チレンは剛直な分子であり、分子鎖間での相互作用性が
低い。このためフッ素樹脂単体での架橋によっては、そ
の剛直性や分子鎖間での相互作用性の低さがあだとな
り、橋かけしても割れやすい、裂けやすいといった特徴
が現れてしまう。本発明によれば、フッ化ピッチとフッ
素樹脂が分子複合化することによって、フッ素樹脂にお
ける前記の欠点が構造的に緩和され、非常に粘り強い材
料に変化する。 摩耗性について:フッ素樹脂は分子鎖間での相互作用性
が低いため分子鎖集団が容易に脱離してしまうが、網目
構造が形成されることによって分子鎖間での相互作用性
が高められ、摩擦による分子鎖集団の脱離が防がれ、摩
耗し難くなる。クリープ変形について:網目構造が形成
されることによって、分子鎖間での相互作用性の低さに
起因する分子鎖間での滑りが抑制され、耐クリープ変形
性が向上する。
In the fluororesin composite material of the present invention,
The toughness, wear and creep deformation under sliding environment, and radiation resistance have been remarkably improved as compared with conventional fluororesins.
The reason is considered as follows. Regarding radiation resistance: When the fluorinated pitch and the fluororesin are cross-linked by a chemical reaction to form a molecular complex, the ionization potential at the cross-linking point in the molecule is lowered, and the energy absorption of radiation is relaxed at the cross-linking site. Therefore, resistance to radiation is improved. In particular, fluorinated pitch has an aromatic ring in the molecule, and the material having this aromatic ring and the fluororesin are chemically bonded to each other to form a network structure, so that the radiation resistance is easily improved. Toughness: Fluororesin, especially polytetrafluoroethylene, is a rigid molecule and has low interaction between molecular chains. Therefore, depending on the cross-linking of the fluororesin alone, the rigidity and the low interactivity between the molecular chains become unfavorable, and the characteristics such as easy cracking and bridging even when cross-linked appear. According to the present invention, the drawbacks of the fluororesin are structurally alleviated by forming a molecular composite of the fluorinated pitch and the fluororesin, and the material is changed to a very tenacious material. Abrasion resistance: Fluororesin has a low interaction between molecular chains, so the group of molecular chains is easily desorbed, but the interaction between molecular chains is enhanced by the formation of a network structure, Detachment of molecular chain groups due to friction is prevented, and abrasion is less likely to occur. Creep deformation: By forming a network structure, slippage between molecular chains due to low interaction between molecular chains is suppressed, and creep deformation resistance is improved.

【0020】[0020]

【実施例】以下に例を挙げて本発明を具体的に説明す
る。もっとも本発明はこれらの実施例に限定されず、当
業者が容易に想到し得る種々の変更、改良、組み合わせ
等も本発明の範囲内である。
EXAMPLES The present invention will be specifically described below with reference to examples. However, the present invention is not limited to these examples, and various modifications, improvements, combinations and the like that can be easily conceived by those skilled in the art are also within the scope of the present invention.

【0021】実施例1 水と乳化剤からなる分散媒100部(重量部、以下同
様)に対して平均粒径0.25μmのポリテトラフルオ
ロエチレン(以下ではPTFEという)のファインパウ
ダー60部およびフッ化ピッチ粉体(大阪ガスケミカル
(株)製、リノベスP、以下ではFPという)5部を均
一に分散させた液体を調製した。この液体を乾燥させて
得たPTFE/FPブレンド体をPTFEの結晶融点以
上の350℃において窒素気流中で15分間焼成して、
厚さ0.2mmのシート状に成形した。この成形シートお
よび市販のPTFEシート((株)ニチアス製、厚さ
0.2mm)の熱特性を示差走査熱量分析装置(DSC)
を用いて分析した。得られた結果は表1の通りであり、
ブレンド成形シートにおいては市販のPTFEシートに
比べて結晶化温度の低下および結晶融点の低下が観測さ
れた。
Example 1 60 parts of fine powder of polytetrafluoroethylene (hereinafter referred to as PTFE) having an average particle diameter of 0.25 μm and 100 parts of a dispersion medium composed of water and an emulsifier (weight part, the same applies hereinafter) and fluorinated. A liquid was prepared by uniformly dispersing 5 parts of pitch powder (Rinoveth P, manufactured by Osaka Gas Chemicals Co., Ltd., hereinafter referred to as FP). The PTFE / FP blend obtained by drying this liquid is fired for 15 minutes in a nitrogen stream at 350 ° C. which is higher than the crystal melting point of PTFE,
It was formed into a sheet having a thickness of 0.2 mm. The thermal characteristics of this molded sheet and a commercially available PTFE sheet (manufactured by Nichias Co., Ltd., thickness: 0.2 mm) were measured by a differential scanning calorimeter (DSC).
Was analyzed using. The results obtained are shown in Table 1,
In the blended molded sheet, lower crystallization temperature and lower crystalline melting point were observed as compared with the commercially available PTFE sheet.

【0022】[0022]

【表1】 [Table 1]

【0023】実施例2 実施例1のPTFE/FPブレンド成形シートおよび市
販のPTFEシートについて、引き裂き試験を実施し
た。この引き裂き試験は、短辺4cm×長辺10cmのシー
トの短辺の中央に縁から2cmの切り込みを入れて、切り
込みの両側をチャックでつかみ、クロスヘッドスピード
100cm/分で引き裂くことによって、シートの強度を
求めたものである。得られた結果は表2の通りであり、
ブレンド成形シートの引き裂き強度は市販のPTFEシ
ートよりも著しく高い。
Example 2 A tear test was conducted on the PTFE / FP blend molded sheet of Example 1 and a commercially available PTFE sheet. This tear test is performed by making a 2 cm cut from the edge in the center of the short side of a sheet with a short side of 4 cm and a long side of 10 cm, gripping both sides of the cut with a chuck, and tearing at a crosshead speed of 100 cm / min. It is a measure of strength. The obtained results are shown in Table 2,
The tear strength of the blend molded sheet is significantly higher than the commercially available PTFE sheet.

【0024】[0024]

【表2】 [Table 2]

【0025】実施例3 実施例1のPTFE/FPブレンド成形シートおよび市
販のPTFEシートについて、摩擦係数と摩耗係数の測
定を行った。試験にはスラスト型摩擦摩耗試験装置を使
用し、JIS K7218に準じ、S45C製の円筒状リン
グ(外径25.6mm、内径20.6mm)を被試験体シート
に20kgf/cm2の圧力で押し付け、リングを10m/minの
速度で回転させた。得られた結果は表3の通りであり、
ブレンド成形シートは良好な潤滑性を裏付ける低い摩擦
係数を示し、かつ優れた耐摩耗性を有している。
Example 3 With respect to the PTFE / FP blend molded sheet of Example 1 and a commercially available PTFE sheet, the friction coefficient and wear coefficient were measured. For the test, a thrust type friction wear tester is used, and according to JIS K7218, a cylindrical ring made of S45C (outer diameter 25.6 mm, inner diameter 20.6 mm) is pressed against the test sheet at a pressure of 20 kgf / cm 2. , The ring was rotated at a speed of 10 m / min. The results obtained are shown in Table 3,
The blended molded sheet has a low coefficient of friction that confirms good lubricity and has excellent wear resistance.

【0026】[0026]

【表3】 [Table 3]

【0027】実施例4 実施例1のPTFE/FPブレンド成形シートおよび市
販のPTFEシートをアルゴン気流中で340℃に加熱
し、2MeVの電子線を300kGyおよび500kGy照射し
て架橋させた。それぞれについてDSCを用いて熱特性
を分析した。得られた結果は表4の通りであり、市販の
PTFEシートと比較してブレンド成形シートにおいて
は融解温度および結晶化温度の低下、および結晶化熱量
の低下の促進が観測された。
Example 4 The PTFE / FP blend molded sheet of Example 1 and a commercially available PTFE sheet were heated to 340 ° C. in an argon stream and irradiated with an electron beam of 2 MeV at 300 kGy and 500 kGy to be crosslinked. Thermal characteristics were analyzed using DSC for each. The obtained results are shown in Table 4, and it was observed that the blended molded sheet had a lower melting temperature and a lower crystallization temperature, and a lowering of the crystallization heat amount as compared with the commercially available PTFE sheet.

【0028】[0028]

【表4】 [Table 4]

【0029】実施例5 実施例4で300kGy照射して架橋させたPTFE/FP
ブレンド成形シートおよび市販のPTFEシートについ
て、実施例2と同様の引き裂き試験を実施した。得られ
た結果は表5の通りであり、ブレンド成形シートの引き
裂き強度は市販のPTFEシートよりも著しく高い。
Example 5 PTFE / FP crosslinked by irradiation with 300 kGy in Example 4
The same tear test as in Example 2 was performed on the blend molded sheet and the commercially available PTFE sheet. The obtained results are shown in Table 5, and the tear strength of the blend molded sheet is significantly higher than that of the commercially available PTFE sheet.

【0030】[0030]

【表5】 [Table 5]

【0031】実施例6 水と乳化剤からなる分散媒100部に対して平均粒径
0.5μmのPTFEファインパウダー55部およびF
P15部を均一に分散させた液体を調製した。この液体
を乾燥させて得たPTFE/FPブレンド体をPTFE
の結晶融点以上の300℃において窒素気流中で30分
間焼成して、厚さ0.3mmのシート状に成形した。この
成形シートおよび市販のPTFEシート(旭硝子(株)
製、フロロポリマーズ(登録商標)、厚さ0.3mm)の
熱特性をDSCを用いて分析した。得られた結果は表6
の通りであり、ブレンド成形シートにおいては市販のP
TFEシートに比べて結晶化熱量の低下および結晶融点
の低下が観測された。
Example 6 55 parts of PTFE fine powder having an average particle diameter of 0.5 μm and F based on 100 parts of a dispersion medium composed of water and an emulsifier.
A liquid in which 15 parts of P was uniformly dispersed was prepared. The PTFE / FP blend obtained by drying this liquid is PTFE
Was fired for 30 minutes in a nitrogen stream at a temperature of 300 ° C. or higher, which is higher than the crystal melting point, to form a sheet having a thickness of 0.3 mm. This molded sheet and a commercially available PTFE sheet (Asahi Glass Co., Ltd.)
Manufactured by Fluoropolymers (registered trademark, thickness: 0.3 mm) was analyzed for thermal characteristics by DSC. The results obtained are shown in Table 6.
In the blended molded sheet, commercially available P
A decrease in the heat of crystallization and a decrease in the melting point of the crystal were observed as compared with the TFE sheet.

【0032】[0032]

【表6】 [Table 6]

【0033】実施例7 実施例6のPTFE/FPブレンド成形シートおよび市
販のPTFEシートについて、実施例3と同様の摩擦係
数と摩耗係数の測定を行った。得られた結果は表7の通
りであり、ブレンド成形シートは良好な潤滑性を裏付け
る低い摩擦係数を示し、かつ優れた耐摩耗性を有してい
る。
Example 7 With respect to the PTFE / FP blend molded sheet of Example 6 and the commercially available PTFE sheet, the same friction coefficient and wear coefficient as in Example 3 were measured. The results obtained are shown in Table 7, and the blended molded sheet has a low coefficient of friction that supports good lubricity and has excellent wear resistance.

【0034】[0034]

【表7】 [Table 7]

【0035】実施例8 実施例6のPTFE/FPブレンド成形シートおよび市
販のPTFEシートをヘリウム気流中で340℃に加熱
し、2MeVの電子線を100kGyおよび300kGy照射し
て架橋させた。それぞれについてDSCを用いて熱特性
を分析した。得られた結果は表8の通りであり、市販の
PTFEシートと比較してブレンド成形シートにおいて
は融解温度および結晶化温度の低下、および結晶化熱量
の低下の促進が観測された。
Example 8 The PTFE / FP blend molded sheet of Example 6 and a commercially available PTFE sheet were heated to 340 ° C. in a helium gas stream and irradiated with an electron beam of 2 MeV at 100 kGy and 300 kGy to be crosslinked. Thermal characteristics were analyzed using DSC for each. The obtained results are shown in Table 8, and it was observed that the blended molded sheet had a lower melting temperature and a lower crystallization temperature, and a lowering of the crystallization heat amount as compared with the commercially available PTFE sheet.

【0036】[0036]

【表8】 [Table 8]

【0037】実施例9 水と乳化剤からなる分散媒100部に対して平均粒径
0.2μmのPTFEのファインパウダー50部および
FP10部を均一に分散させた液体を調製した。この液
体に炭素繊維織布(東レ(株)製、トレカT-300
(登録商標))1枚を浸しては乾燥する操作を6回繰り
返し、炭素繊維織布100部に対してPTFE/FPブ
レンドパウダー100部を含浸させたシートを調製し
た。このシートを6枚積層して、PTFEの結晶融点以
上の340℃において窒素気流中で15分間焼成して板
状(厚さ1.4mm)に成形した。比較のために、炭素繊
維織布とPTFEファインパウダーのみからなる積層体
も同じ製造条件で成形した。両者の成形板について、支
点間距離50mm、クロスヘッドスピード1mm/分で三点
曲げ試験を実施した。得られた結果は表9の通りであ
り、炭素繊維強化PTFE/FP複合シートにおいては
炭素繊維強化PTFEシートに比べて著しく高い強度が
示された。
Example 9 A liquid was prepared by uniformly dispersing 50 parts of fine powder of PTFE having an average particle diameter of 0.2 μm and 10 parts of FP in 100 parts of a dispersion medium composed of water and an emulsifier. To this liquid, carbon fiber woven cloth (Toray Industries, Inc., trading card T-300
An operation of dipping one sheet (registered trademark)) and drying was repeated 6 times to prepare a sheet in which 100 parts of the carbon fiber woven cloth was impregnated with 100 parts of the PTFE / FP blend powder. Six sheets were laminated and fired for 15 minutes in a nitrogen stream at 340 ° C., which is higher than the crystal melting point of PTFE, to form a plate (thickness 1.4 mm). For comparison, a laminate made of only carbon fiber woven fabric and PTFE fine powder was also molded under the same manufacturing conditions. A three-point bending test was performed on both of the molded plates at a fulcrum distance of 50 mm and a crosshead speed of 1 mm / min. The obtained results are shown in Table 9, and the carbon fiber-reinforced PTFE / FP composite sheet showed significantly higher strength than the carbon fiber-reinforced PTFE sheet.

【0038】[0038]

【表9】 [Table 9]

【0039】実施例10 実施例10の炭素繊維強化PTFE/FP複合シートお
よび炭素繊維強化PTFEシートのそれぞれを340℃
に加熱した窒素雰囲気の照射容器に移し、2MeVの電子
線を500kGy照射して架橋させた。それぞれのシート
について実施例9と同様の三点曲げ試験を実施した。得
られた結果は表10の通りであり、炭素繊維強化PTF
E/FP複合シートにおいて高い強度が示された。
Example 10 Each of the carbon fiber reinforced PTFE / FP composite sheet and the carbon fiber reinforced PTFE sheet of Example 10 was heated to 340 ° C.
The mixture was transferred to an irradiation container heated in a nitrogen atmosphere and irradiated with an electron beam of 2 MeV at 500 kGy for crosslinking. The same three-point bending test as in Example 9 was performed on each sheet. The obtained results are shown in Table 10, and carbon fiber reinforced PTF
High strength was shown in the E / FP composite sheet.

【0040】[0040]

【表10】 [Table 10]

【0041】実施例11 水と乳化剤からなる分散媒100部に対して平均粒径
0.25μmのPTFEファインパウダー60部および
FP5部を均一に分散させた液体を調製した。この液体
を10cm四方で厚さ2mmのステンレススチール(SUS30
4)の表面に塗布し、50℃で風乾した後、PTFEの
結晶融点以上の330℃において空気中で10分間焼成
し、これによって20μmの厚さのコーティングを施し
た。比較のために、PTFEファインパウダーのみをコ
ーティングしたコート材も同じ製造条件で作製した。そ
れぞれのコート材について剥離試験を実施した。この剥
離試験は、10cm四方のコーティング面にカッターナイ
フで1cm間隔で縦横に線を入れて100個の升目を作
り、0℃の冷水に5分間浸した後、および100℃の沸
騰水に5分間浸した後、室温で粘着テープを用いて10
0個の升目のうちいくつが剥離するかを試験したもので
ある。得られた結果は表11の通りであり、PTFE/
FPブレンド体コート材における剥離強度は著しく高か
った。
Example 11 A liquid was prepared by uniformly dispersing 60 parts of PTFE fine powder having an average particle size of 0.25 μm and 5 parts of FP in 100 parts of a dispersion medium composed of water and an emulsifier. This liquid is 10 cm square and 2 mm thick stainless steel (SUS30
After being applied to the surface of 4) and air-dried at 50 ° C., it was baked in air at 330 ° C. above the crystalline melting point of PTFE for 10 minutes, whereby a coating with a thickness of 20 μm was applied. For comparison, a coating material coated only with PTFE fine powder was also produced under the same manufacturing conditions. A peeling test was performed on each coating material. In this peel test, 100 squares were made by putting lines on the coated surface of 10 cm square with a cutter knife at 1 cm intervals in the vertical and horizontal directions, immersed in cold water at 0 ° C for 5 minutes, and in boiling water at 100 ° C for 5 minutes. After soaking, use adhesive tape at room temperature for 10
It was tested how many of 0 squares would peel off. The obtained results are as shown in Table 11, and PTFE /
The peel strength of the coating material for the FP blend was extremely high.

【0042】[0042]

【表11】 [Table 11]

【0043】実施例12 実施例11のPTFE/FPブレンド体コート材とPT
FEコート材のそれぞれを340℃に加熱した窒素雰囲
気の照射容器に移し、250keVの電子線を100kGy照
射して架橋させた。それぞれのコート材について実施例
11と同様の剥離試験を実施した。得られた結果は表1
2の通りであり、ブレンド体コート材において高い強度
が示された。
Example 12 PTFE / FP blend body coating material and PT of Example 11
Each of the FE coating materials was transferred to an irradiation container in a nitrogen atmosphere heated to 340 ° C. and irradiated with an electron beam of 250 keV by 100 kGy to be crosslinked. A peeling test similar to that in Example 11 was performed on each coating material. The results obtained are shown in Table 1.
2 and the blend coating material showed high strength.

【0044】[0044]

【表12】 [Table 12]

【0045】[0045]

【発明の効果】以上説明した通り、本発明に係る架橋フ
ッ素樹脂複合材料は、従来のフッ素樹脂の特徴である高
い耐熱性、耐薬品性、撥水性、防汚性、潤滑性などを備
えているのみならず、耐放射線性、耐摩耗性、さらには
引き裂き強度や曲げ強度において優れた材料である。従
って、フッ素樹脂の用途を大幅に拡大させるものであ
る。また、この架橋フッ素樹脂複合材料をコーティング
した複合部材においては基材とコーティングの接着強度
が極めて高く、上記の特性を備えた信頼性の高い複合部
材である。
As described above, the crosslinked fluororesin composite material according to the present invention has high heat resistance, chemical resistance, water repellency, antifouling property, lubricity, etc. which are characteristics of conventional fluororesins. Not only is it a material that is excellent in radiation resistance, wear resistance, tear strength, and bending strength. Therefore, the application of fluororesin is greatly expanded. The composite member coated with the crosslinked fluororesin composite material has a very high adhesive strength between the base material and the coating, and is a highly reliable composite member having the above-mentioned characteristics.

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C08L 27/18 C08L 27/18 C09D 127/12 C09D 127/12 127/18 127/18 (72)発明者 鷲尾 方一 神奈川県横浜市緑区鴨居4丁目31番17号 (72)発明者 宇田川 千恵 群馬県多野郡吉井町南陽台1−10−17 (72)発明者 田畑 米穂 東京都練馬区春日町5−32−1 ヒルズ練 馬春日町601 Fターム(参考) 4F070 AA24 AC04 AC06 AC17 AC22 AC28 AC79 AC90 AD02 AE08 BA02 BB08 GA04 GA06 GB02 GB03 HA04 HB01 HB02 4F072 AA02 AA04 AA08 AB04 AB06 AB08 AB09 AB10 AB11 AD07 AD55 AG03 AH21 AK16 AL12 4J002 BD151 BD152 CL062 DA017 DA067 DD006 DJ007 DL007 FA042 FA047 4J038 CD091 CD121 CD122 DJ022 HA026 HA166 HA436 HA486 JA11 JA13 KA08 KA19 NA05 NA11 NA14 PA19 Continuation of front page (51) Int.Cl. 7 identification code FI theme code (reference) C08L 27/18 C08L 27/18 C09D 127/12 C09D 127/12 127/18 127/18 (72) Inventor Hoichi Washio 4-31-17 Kamoi, Midori-ku, Yokohama-shi, Kanagawa Prefecture (72) Inventor Chie Udagawa 1-10-17 Nanyodai, Yoshii-cho, Tano-gun, Gunma Prefecture (72) Inventor Yoneho Tabata 5-32, Kasuga-cho, Nerima-ku, Tokyo 1 Hills Nerima Kasugacho 601 F Term (reference) 4F070 AA24 AC04 AC06 AC17 AC22 AC28 AC79 AC90 AD02 AE08 BA02 BB08 GA04 GA06 GB02 GB03 HA04 HB01 HB02 4F072 AA02 AA04 AA08 AB04 AB06 AB08 AB09 AB10 AB11 AD21 AD55 AG16 A12 AD05 AD16 AG16 AD02 AD55 AG03 A02 AD55 AD03 A15 AD15 AD03 BD152 CL062 DA017 DA067 DD006 DJ007 DL007 FA042 FA047 4J038 CD091 CD121 CD122 DJ022 HA026 HA166 HA436 HA486 JA11 JA13 KA08 KA19 NA05 NA11 NA14 PA19

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】 フッ化ピッチの粉体を添加したフッ素樹
脂に加熱処理および/または放射線照射処理を施すこと
によってフッ素樹脂が架橋したフッ素樹脂複合材料であ
って、フッ化ピッチがフッ素樹脂と化学反応することに
よって分子複合化した網目構造を有することを特徴とす
る架橋フッ素樹脂複合材料。
1. A fluororesin composite material in which fluororesin is crosslinked by subjecting fluororesin to which fluoropowder powder is added to heat treatment and / or radiation irradiation treatment, wherein fluoropitch is chemically combined with fluororesin. A crosslinked fluororesin composite material having a network structure in which a molecule is compounded by a reaction.
【請求項2】 前記フッ素樹脂はポリテトラフルオロエ
チレン樹脂またはテトラフルオロエチレン系共重合樹脂
である、請求項1に記載の架橋フッ素樹脂複合材料。
2. The crosslinked fluororesin composite material according to claim 1, wherein the fluororesin is a polytetrafluoroethylene resin or a tetrafluoroethylene-based copolymer resin.
【請求項3】 前記フッ化ピッチの粉体の添加量が、フ
ッ素樹脂の量に対して0.05〜50重量%である、請
求項1に記載の架橋フッ素樹脂複合材料。
3. The crosslinked fluororesin composite material according to claim 1, wherein the amount of the fluorinated pitch powder added is 0.05 to 50% by weight with respect to the amount of the fluororesin.
【請求項4】 フッ素樹脂が連続繊維材料または短繊維
材料と混合して繊維強化されている複合材料であって、
前記フッ素樹脂にフッ化ピッチの粉体が添加されてい
て、このフッ素樹脂は加熱処理および/または放射線照
射処理が施されて架橋しているとともに、フッ化ピッチ
がフッ素樹脂と化学反応することによって分子複合化し
た網目構造を有することを特徴とする架橋フッ素樹脂複
合材料。
4. A composite material in which a fluororesin is fiber-reinforced by mixing with a continuous fiber material or a short fiber material,
Powder of fluorinated pitch is added to the fluororesin, and the fluororesin is subjected to a heat treatment and / or a radiation irradiation treatment to crosslink, and the fluorinated pitch chemically reacts with the fluororesin. A crosslinked fluororesin composite material having a network structure of molecular composite.
【請求項5】 前記連続繊維材料または短繊維材料は、
PTFE繊維、ガラス繊維、炭素繊維、炭化ケイ素繊
維、窒化ケイ素繊維、アラミド繊維、PBO繊維、およ
び金属繊維から選択された1種または2種以上である、
請求項4に記載の複合材料。
5. The continuous fiber material or the short fiber material,
One or more selected from PTFE fiber, glass fiber, carbon fiber, silicon carbide fiber, silicon nitride fiber, aramid fiber, PBO fiber, and metal fiber,
The composite material according to claim 4.
【請求項6】 金属部材の表面に請求項1に記載の架橋
フッ素樹脂複合材料がコーティングされていることを特
徴とする複合部材。
6. A composite member, wherein the surface of the metal member is coated with the crosslinked fluororesin composite material according to claim 1.
【請求項7】 フッ化ピッチの粉体を添加したフッ素樹
脂に加熱処理および/または放射線照射処理を施すこと
によってフッ素樹脂を架橋させるとともに、フッ化ピッ
チとフッ素樹脂を化学反応させることを特徴とする架橋
フッ素樹脂複合材料の製造方法。
7. The fluororesin to which the powder of fluorinated pitch is added is subjected to heat treatment and / or irradiation treatment to crosslink the fluororesin and chemically react the fluorinated pitch with the fluororesin. A method for producing a crosslinked fluororesin composite material.
【請求項8】 フッ化ピッチの粉体を添加したフッ素樹
脂を連続繊維材料または短繊維材料に含浸し、この混合
体に加熱処理および/または放射線照射処理を施すこと
によってフッ素樹脂を架橋させるとともに、フッ化ピッ
チとフッ素樹脂を化学反応させることを特徴とする架橋
フッ素樹脂複合材料の製造方法。
8. A continuous resin material or a short fiber material is impregnated with a fluororesin to which powder of fluorinated pitch is added, and the mixture is subjected to heat treatment and / or irradiation treatment to crosslink the fluororesin. A method for producing a crosslinked fluororesin composite material, which comprises chemically reacting fluorinated pitch with a fluororesin.
【請求項9】 前記加熱処理が120〜400℃の温度
範囲で行われる、請求項7または8に記載の架橋フッ素
樹脂複合材料の製造方法。
9. The method for producing a crosslinked fluororesin composite material according to claim 7, wherein the heat treatment is performed in a temperature range of 120 to 400 ° C.
【請求項10】 前記放射線照射処理が0〜200torr
の酸素濃度の雰囲気中で室温から400℃の温度範囲で
行われ、放射線の照射線量が0.1kGy〜10MGyであ
る、請求項7または8に記載の架橋フッ素樹脂複合材料
の製造方法。
10. The radiation irradiation process is 0 to 200 torr
The method for producing a crosslinked fluororesin composite material according to claim 7 or 8, which is carried out in a temperature range of room temperature to 400 ° C in an atmosphere of oxygen concentration of, and the irradiation dose of radiation is 0.1 kGy to 10 MGy.
【請求項11】 フッ化ピッチの粉体を添加したフッ素
樹脂を金属部材の表面にコーティングし、次いで、フッ
素樹脂に加熱処理および/または放射線照射処理を施す
ことによってフッ素樹脂を架橋させるとともに、フッ化
ピッチとフッ素樹脂を化学反応させ、また同時にフッ素
樹脂のコーティングと金属部材を強固に接着させること
を特徴とする複合部材の製造方法。
11. A fluororesin to which a powder of fluorinated pitch is added is coated on the surface of a metal member, and then the fluororesin is subjected to heat treatment and / or radiation irradiation treatment to crosslink the fluororesin and A method for producing a composite member, which comprises chemically reacting a chemical conversion pitch with a fluororesin, and at the same time, firmly adhering a fluororesin coating and a metal member.
【請求項12】 前記加熱処理が120〜400℃の温
度範囲で行われる、請求項11に記載の複合部材の製造
方法。
12. The method for manufacturing a composite member according to claim 11, wherein the heat treatment is performed in a temperature range of 120 to 400 ° C.
【請求項13】 前記放射線照射処理が0〜200torr
の酸素濃度の雰囲気中で室温から400℃の温度範囲で
行われ、放射線の照射線量が0.1kGy〜10MGyであ
る、請求項11に記載の複合部材の製造方法。
13. The radiation irradiation process is 0 to 200 torr.
12. The method for producing a composite member according to claim 11, wherein the method is carried out in a temperature range from room temperature to 400 ° C. in an atmosphere of oxygen concentration, and the irradiation dose of radiation is 0.1 kGy to 10 MGy.
JP2001314837A 2001-10-12 2001-10-12 Cross-linked fluororesin composite material and method for producing the same Expired - Fee Related JP3679043B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001314837A JP3679043B2 (en) 2001-10-12 2001-10-12 Cross-linked fluororesin composite material and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001314837A JP3679043B2 (en) 2001-10-12 2001-10-12 Cross-linked fluororesin composite material and method for producing the same

Publications (2)

Publication Number Publication Date
JP2003119293A true JP2003119293A (en) 2003-04-23
JP3679043B2 JP3679043B2 (en) 2005-08-03

Family

ID=19133089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001314837A Expired - Fee Related JP3679043B2 (en) 2001-10-12 2001-10-12 Cross-linked fluororesin composite material and method for producing the same

Country Status (1)

Country Link
JP (1) JP3679043B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011001450A (en) * 2009-06-18 2011-01-06 Hitachi Cable Fine Tech Ltd Modified fluorocarbon resin composition and molded product
US20120010369A1 (en) * 2010-07-09 2012-01-12 Olympus Corporation Rubber composition and thermoplastic resin composition and production method thereof
EP2527397A1 (en) 2005-10-31 2012-11-28 Daikin Industries, Ltd. Method for molding polytetrafluoroethylene, polytetrafluoroethylene molded body, crosslinkable polytetrafluoroethylene, powdered polytetrafluoroethylene crosslinked body, resin blend composition of matter and resin blend molded body
JP2015194250A (en) * 2014-03-24 2015-11-05 Ntn株式会社 Cage for rolling bearing and rolling bearing
WO2015190597A1 (en) * 2014-06-13 2015-12-17 ダイキン工業株式会社 Material for preventing adhesion of aquatic organisms
JP2016089731A (en) * 2014-11-05 2016-05-23 大豊工業株式会社 Bearing housing of turbocharger
US10465750B2 (en) 2014-02-03 2019-11-05 Ntn Corporation Sliding member, rolling bearing, and cage

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2527397A1 (en) 2005-10-31 2012-11-28 Daikin Industries, Ltd. Method for molding polytetrafluoroethylene, polytetrafluoroethylene molded body, crosslinkable polytetrafluoroethylene, powdered polytetrafluoroethylene crosslinked body, resin blend composition of matter and resin blend molded body
JP2011001450A (en) * 2009-06-18 2011-01-06 Hitachi Cable Fine Tech Ltd Modified fluorocarbon resin composition and molded product
CN101942162A (en) * 2009-06-18 2011-01-12 日立电线精密技术株式会社 Modified fluorocarbon resin composition and molded products
CN101942162B (en) * 2009-06-18 2014-12-10 日立金属株式会社 Modified fluorocarbon resin composition and molded products
US20120010369A1 (en) * 2010-07-09 2012-01-12 Olympus Corporation Rubber composition and thermoplastic resin composition and production method thereof
US8383742B2 (en) * 2010-07-09 2013-02-26 Olympus Corporation Rubber composition and thermoplastic resin composition and production method thereof
US10465750B2 (en) 2014-02-03 2019-11-05 Ntn Corporation Sliding member, rolling bearing, and cage
JP2015194250A (en) * 2014-03-24 2015-11-05 Ntn株式会社 Cage for rolling bearing and rolling bearing
WO2015190597A1 (en) * 2014-06-13 2015-12-17 ダイキン工業株式会社 Material for preventing adhesion of aquatic organisms
JPWO2015190597A1 (en) * 2014-06-13 2017-04-27 ダイキン工業株式会社 Aquatic organism adhesion prevention material
JP2016089731A (en) * 2014-11-05 2016-05-23 大豊工業株式会社 Bearing housing of turbocharger

Also Published As

Publication number Publication date
JP3679043B2 (en) 2005-08-03

Similar Documents

Publication Publication Date Title
JP3641377B2 (en)   Method for producing fiber-reinforced polytetrafluoroethylene composite molded body
JPH09278907A (en) Sliding part material
EP0106046B1 (en) Fluorine-containing synthetic resin shaped articles having improved surface properties and a method for the preparation thereof
Mathieson et al. Pretreatments of fluoropolymers
WO2015104975A1 (en) Modified fluorine-containing copolymer and fluorine resin molded article
CN101942162B (en) Modified fluorocarbon resin composition and molded products
Zaldivar et al. Surface preparation for adhesive bonding of polycyanurate‐based fiber‐reinforced composites using atmospheric plasma treatment
JP2019104170A (en) Metal-resin laminate
US20200200219A1 (en) Sliding bearing and a method for preparing the same
JP2003119293A (en) Cross-linked fluororesin composite material and its production method
JP2002225204A (en) Modified fluororesin coated material and method for producing the same
JPH08506604A (en) Fluorine substitution of radiation-crosslinked perfluoroelastomers
JP3836255B2 (en) Method for producing modified fluororesin
JP2011105012A (en) Reformed fluororesin covering material and method of producing the same
JP6934745B2 (en) Sliding parts and manufacturing method of sliding parts
JP2002327068A (en) Modifying method of fluororesin and article composed of modified fluororesin
JP3948313B2 (en) Sliding member
JPS62252435A (en) Fluorocarbon resin foam, its production and sealing member prepared therefrom
JPS6039015B2 (en) composite laminate
Saunders et al. Radiation‐curable prepreg composites
JP2005113116A (en) Tetrafluoroethylene polymer alloy and method for producing the same
JPH11172065A (en) Molded fluororesin article having high cut-through resistance, insulated wire, and hose
JP4665149B2 (en) Method for producing a modified fluororesin molding
JP4512770B2 (en) Method for producing a novel fiber-reinforced fluororesin composite material
Oshima et al. High performance PI/PTFE layered films fabricated by EB irradiation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040914

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050412

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050511

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080520

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090520

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090520

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100520

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110520

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110520

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120520

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130520

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees