JP2003117836A - Resin bond type grinding wheel for high efficiency grinding process - Google Patents

Resin bond type grinding wheel for high efficiency grinding process

Info

Publication number
JP2003117836A
JP2003117836A JP2001350798A JP2001350798A JP2003117836A JP 2003117836 A JP2003117836 A JP 2003117836A JP 2001350798 A JP2001350798 A JP 2001350798A JP 2001350798 A JP2001350798 A JP 2001350798A JP 2003117836 A JP2003117836 A JP 2003117836A
Authority
JP
Japan
Prior art keywords
grinding
abrasive grains
grindstone
resin
resin bond
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001350798A
Other languages
Japanese (ja)
Inventor
Tetsuji Miyazawa
徹二 宮澤
Toru Mochida
徹 持田
Isao Nakada
勲 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Die Co Ltd
Original Assignee
Fuji Die Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Die Co Ltd filed Critical Fuji Die Co Ltd
Priority to JP2001350798A priority Critical patent/JP2003117836A/en
Publication of JP2003117836A publication Critical patent/JP2003117836A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polishing Bodies And Polishing Tools (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a resin bond type diamond and cBN grinding wheel capa ble of performing high efficiency grinding. SOLUTION: Abrasive grains for the resin bond grinding wheel are structured so that fine alumina particles smaller than abrasive grains are attached fast to the surface of each abrasive grain. A binding material is filled with a filler consisting of one or two sorts of silicon carbide and alumina having at least a mean particle size of 20 μm or less.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、超硬合金、サーメ
ット、セラミックス、高硬度鋼などの硬質材料の研削加
工に用いられるレジンボンド砥石に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a resin bond grindstone used for grinding hard materials such as cemented carbide, cermet, ceramics and high hardness steel.

【0002】[0002]

【従来の技術】研削加工用の砥石としては、炭化ケイ素
を砥粒としたGC砥石、アルミナを砥粒としたWA砥
石、ダイヤモンドを砥粒としたダイヤモンド砥石、立方
晶窒化ホウ素(cBN)を砥粒としたcBN砥石などが
知られている。更に、ダイヤモンド砥石およびcBN砥
石に関しては、砥粒結合材の種類によってレジンボンド
砥石、メタルボンド砥石、ビトリファイド砥石などが知
られている。これらの中では、レジンボンド砥石が比較
的に研削抵抗が低く、高能率の加工ができることから、
超硬合金、サーメット、セラミックスなどの硬質材料の
研削加工には、主にレジンボンドのダイヤモンド砥石
が、高硬度鋼など鉄系硬質材料の研削加工には、主にレ
ジンボンドのcBN砥石が用いられてきた。
2. Description of the Related Art As a grindstone for grinding, a GC grindstone using silicon carbide as an abrasive grain, a WA grindstone using alumina as an abrasive grain, a diamond grindstone using diamond as an abrasive grain, and cubic boron nitride (cBN) as a grindstone. Granulated cBN grindstones and the like are known. Furthermore, regarding the diamond grindstone and the cBN grindstone, a resin bond grindstone, a metal bond grindstone, a vitrified grindstone, etc. are known depending on the type of the abrasive grain binder. Of these, the resin bond grindstone has a relatively low grinding resistance and can be processed with high efficiency.
Resin bond diamond wheels are mainly used for grinding hard materials such as cemented carbide, cermet and ceramics, and resin bond cBN wheels are mainly used for grinding iron-based hard materials such as high hardness steel. Came.

【0003】[0003]

【発明が解決しようとする課題】レジンボンド砥石に
は、研削能率を向上させるために種々の改良が加えられ
てきたが、例えば、外周部に砥石層を配置したストレー
ト型レジンボンド砥石を用いて超硬合金を研削する場
合、砥石の切込み量は、一般に砥粒の平均粒度の10〜
15%程度であり、通常の粗加工に用いられる砥粒粒度
140/170メッシュ(約105〜90μm)程度の
砥石においては、その研削条件は砥石周速1200〜1
800m/min、テーブル送り速度10〜18m/m
in、テーブル前後送り速度60〜120mm/min
であり、この場合1pass(テーブル前後送りの一方
向移動分)当たりの切込み量は約15μmが限界であっ
た。特開平6−206166には、高精度、高能率の研
削性能を示す芳香族炭化水素変性マレイミド樹脂を結合
剤とする研削砥石が開示されているが、その実施例によ
れば、切込み量は0.025mmであり、大幅な切込み
量の改善は実現されていない。これは、通常、切込み量
を大きくしようとすると研削抵抗が高くなり、砥石にビ
ビリ振動が生じたり、被研削材にクラックが生じたり、
更には砥石が破損することもあるからである。このよう
な従来のレジンボンド砥石の切込み量の制約は、研削加
工費が切削加工費に比べて著しく高価にならざるを得な
い一大要因であるため、その改善が求められていた。
Various improvements have been made to the resin bond grindstone in order to improve the grinding efficiency. For example, a straight type resin bond grindstone in which a grindstone layer is arranged on the outer peripheral portion is used. When grinding cemented carbide, the cutting depth of the grindstone is generally 10 to 10 of the average grain size of the abrasive grains.
In the case of a grindstone having an abrasive grain size of 140/170 mesh (about 105 to 90 μm), which is about 15% and is used for ordinary roughing, the grinding condition is the grindstone peripheral speed of 1200 to 1
800 m / min, table feed speed 10-18 m / m
in, table forward / backward feed speed 60 to 120 mm / min
In this case, the cut amount per 1 pass (the one-way movement of the table front-back feed) was about 15 μm. Japanese Unexamined Patent Publication No. 6-206166 discloses a grinding wheel using an aromatic hydrocarbon-modified maleimide resin as a binder, which exhibits high-precision and high-efficiency grinding performance. According to the embodiment, the cutting depth is 0. Since it is 0.025 mm, a significant improvement in the depth of cut has not been realized. This is because when you try to increase the depth of cut, the grinding resistance increases, which causes chattering vibrations in the grindstone and cracks in the material to be ground.
Further, the grindstone may be damaged. Such a restriction on the cutting amount of the conventional resin bond grindstone is a major factor in which the grinding cost is inevitably expensive as compared with the cutting cost, and therefore improvement has been demanded.

【0004】[0004]

【課題を解決するための手段】本発明は、上記の事情に
鑑み鋭意研究を重ねた結果、従来の砥石に比べて著しく
高能率の研削加工が可能なレジンボンド砥石を開発した
ものである。
DISCLOSURE OF THE INVENTION As a result of intensive studies in view of the above circumstances, the present invention has developed a resin-bonded grindstone capable of significantly higher efficiency grinding than conventional grindstones.

【0005】まず、通常の研削条件で研削能率を上げる
ために切込み量を大きくすると、研削抵抗が増大し、前
記のような不具合が生じる原因を詳細に調べた結果、そ
の主たる原因は砥粒の脱落であるという知見を得た。そ
こでレジン系結合材による砥粒の保持力を向上させる方
法を種々検討した。その結果、砥粒の表面部に該砥粒よ
り微粒のアルミナ粒子を固着させると、該アルミナ粒子
により砥粒表面に凹凸が形成され、このアルミナ粒子固
着砥粒をレジンボンド砥石に用いると、砥粒の結合材に
よる機械的保持力が向上すると共に、アルミナも硬質で
あるのでそれによる研削効果と相俟って、研削加工時の
切込み量を飛躍的に大きくすることが可能となり、した
がって研削能率を著しく高めることができるようになる
ことを見出した。
First, when the depth of cut is increased in order to increase the grinding efficiency under normal grinding conditions, the grinding resistance increases, and as a result of detailed investigation of the cause of the above-mentioned inconvenience, the main cause is the abrasive grains. We obtained the knowledge that it was a dropout. Therefore, various methods of improving the holding force of the abrasive grains by the resin-based binder were investigated. As a result, when finer particles of alumina particles are fixed to the surface of the abrasive grains than the abrasive particles, irregularities are formed on the surface of the abrasive grains by the alumina particles. The mechanical holding force of the grain binder is improved, and because alumina is also hard, it is possible to dramatically increase the depth of cut during grinding, in combination with the grinding effect due to this, and therefore the grinding efficiency. It has been found that can be significantly increased.

【0006】ここで、砥粒表面部に固着させるアルミナ
粒子の平均粒度は、砥粒よりも微粒であることが必要で
あり、砥粒平均粒度の約1/5〜1/20が好適であ
る。アルミナ粒子平均粒度が砥粒平均粒度の約1/5を
超えると、砥粒表面全体にアルミナ粒子を固着させるこ
とが困難となり、約1/20より微粒では得られるアル
ミナ粒子固着砥粒の表面の凹凸が小さくなり、いずれの
場合も結合材による砥粒の機械的保持力が低下するから
である。したがって、例えば特開平3−95288に、
耐火金属酸化物を、有機金属化合物を用いて被覆した研
摩材粒子(砥粒)が開示されているが、このような砥粒
はその被覆層表面が平滑であるので、本発明に係るレジ
ンボンド砥石の砥粒としては適さない。
Here, the average particle size of the alumina particles fixed to the surface of the abrasive grains needs to be finer than that of the abrasive grains, and is preferably about 1/5 to 1/20 of the average grain size of the abrasive grains. . When the average particle size of the alumina particles exceeds about 1/5 of the average particle size of the abrasive grains, it becomes difficult to adhere the alumina particles to the entire surface of the abrasive grains. This is because the unevenness becomes small, and in any case, the mechanical holding force of the abrasive grains by the bonding material is lowered. Therefore, for example, in Japanese Patent Application Laid-Open No. 3-95288,
Abrasive particles (abrasive grains) obtained by coating a refractory metal oxide with an organic metal compound are disclosed. However, since such abrasive grains have a smooth coating layer surface, the resin bond according to the present invention is disclosed. Not suitable as an abrasive grain for a whetstone.

【0007】一方、現在市販されているアルミナ粉末に
は、その粒子形状が球類似形状、片状、多角形状などの
種々のものがあるが、本発明に係る砥粒に固着させるア
ルミナ粒子の形状は、片状であることが好ましい。これ
は、片状である方が砥粒との固着面積を比較的大きくで
きるので、砥粒に対するアルミナ粒子の固着強度が高く
なるためである。
On the other hand, currently available alumina powders have various particle shapes such as a spherical shape, a flake shape and a polygonal shape. The shape of the alumina particles fixed to the abrasive grains according to the present invention. Is preferably flaky. This is because the flake shape can make the fixing area with the abrasive grains relatively large, so that the fixing strength of the alumina particles with respect to the abrasive grains becomes high.

【0008】砥粒に対するアルミナ粒子の固着量は、砥
粒との合計量の約25〜35質量%が好ましく、約30
質量%とするのがより好ましい。これは、アルミナ粒子
固着量が少なすぎるとアルミナ粒子による砥粒保持力が
低下し、同固着量が多すぎると研削加工時にアルミナ粒
子固着層が破壊されやすくなり、結果的に砥粒が脱落し
やすくなるからである。
The amount of the alumina particles fixed to the abrasive grains is preferably about 25 to 35% by mass of the total amount of the abrasive grains, and about 30%.
It is more preferable to set it as the mass%. This is because if the amount of adhered alumina particles is too small, the abrasive grain retention force by the alumina particles is reduced, and if the amount of adhered alumina particles is too large, the alumina particle adhered layer is easily broken during grinding, resulting in the removal of abrasive grains. Because it will be easier.

【0009】更に、アルミナ粒子固着砥粒は、結合材に
よる砥粒の保持力が著しく向上するため、研削加工中の
砥粒の脱落を有効に防止できるばかりでなく、砥粒が少
しずつ欠落することにより新しい切れ刃が生じる結果、
通常用いられる砥粒よりも粒度の粗い砥粒を用いても良
好な被研削材面粗さが得られることが分かった。
[0009] Further, the alumina particle-fixed abrasive grains not only can effectively prevent the abrasive grains from falling off during the grinding process because the holding force of the abrasive grains by the bonding material is remarkably improved, but the abrasive grains are gradually dropped. The result is a new cutting edge,
It was found that good surface roughness of the material to be ground can be obtained even by using abrasive grains having a coarser grain size than the commonly used abrasive grains.

【0010】したがって、例えば通常の粗研削加工用砥
石の砥粒粒度すなわち140/170メッシュよりも粗
い粒度100/120メッシュ(約150〜125μ
m)程度の砥粒を使用しても、140/170メッシュ
砥粒を用いた従来の砥石で得られると同程度の被研削材
面粗さが得られるため、砥粒粒度が粗い分、切込み量を
大きくできるので、この点においても研削加工能率に対
して有利となる。
Therefore, for example, the grain size of 100/120 mesh (about 150 to 125 μ), which is coarser than the grain size of a normal grinding wheel for rough grinding, that is, 140/170 mesh.
Even if m) is used, the surface roughness of the material to be ground is similar to that obtained with a conventional grindstone using 140/170 mesh abrasive, so the amount of coarse abrasive grain cuts Since the amount can be increased, this is also advantageous in terms of grinding efficiency.

【0011】また、レジンボンド砥石には、被研削材と
の摩擦抵抗の軽減、熱伝導率の向上、研削加工時に生じ
る砥粒砕片や研削屑による結合材の損耗抑制などの目的
で、一般に無機化合物や金属などの種々の充填材が添加
されるが、上記のアルミナ粒子固着砥粒を用いる場合に
は、通常添加される粒状黒鉛や銅粉末などのほかに、該
アルミナ粒子よりも微粒の、特に平均粒度20μm以下
の炭化ケイ素およびアルミナから選ばれる1種または2
種を充填材として添加すると、高い研削比(被研削材除
去体積/砥石減耗体積)が得られることが分かった。こ
れらの充填材が本発明に係るレジンボンド砥石に対して
特に好適である理由は、必ずしも詳らかではないが、充
填材の粒度に関しては、それらの平均粒度が上記の値を
超えると、砥粒表面部に固着させたアルミナ粒子の粒度
に近くなり結合材による砥粒保持力を損なうためか、研
削加工時に砥粒が脱落しやすくなるので好ましくない。
これら充填材の添加量は、多すぎると結合材全体の強度
が低下してかえって砥石が損耗されやすくなり、少なす
ぎると充填材による結合材の損耗抑制効果が得られなく
なるので、結合材および他の充填材との合計量に対して
15〜25体積%であることが好ましい。
In addition, a resin bond grindstone is generally made of an inorganic material for the purpose of reducing frictional resistance with a material to be ground, improving thermal conductivity, and suppressing wear of a binder due to abrasive particles and grits generated during grinding. Although various fillers such as compounds and metals are added, when using the above-mentioned alumina particle fixed abrasive grains, in addition to granular graphite or copper powder that is usually added, finer particles than the alumina particles, Particularly, one or two selected from silicon carbide and alumina having an average particle size of 20 μm or less.
It was found that a high grinding ratio (abraded material removal volume / grinding wheel wear volume) was obtained when seeds were added as a filler. The reason why these fillers are particularly suitable for the resin-bonded grindstone according to the present invention is not necessarily clear, but with respect to the particle size of the filler, when their average particle size exceeds the above value, the abrasive grain surface It is not preferable because the abrasive grains tend to fall off during the grinding process, probably because the grain size of the alumina particles adhered to the part becomes close to that of the abrasive grain holding force of the binder.
If the addition amount of these fillers is too large, the strength of the entire binder will be reduced and the grindstone will be more likely to be worn, and if it is too small, the effect of suppressing the wear of the binder by the filler will not be obtained. It is preferably 15 to 25% by volume based on the total amount of the filler.

【0012】本発明に係るレジンボンド砥石の結合材に
は、従来より知られているフェノール樹脂、フェノール
アラルキル樹脂、ポリイミド樹脂など、いずれの熱硬化
性樹脂も適用できるが、これらの内、フェノール樹脂と
フェノールアラルキル樹脂とを組み合わせた、いわゆる
耐熱性フェノール樹脂が、砥石の経済性、成形性および
砥石性能のバランスがよく、最も好適である。
As the binder for the resin bond grindstone according to the present invention, any thermosetting resin such as a phenol resin, a phenol aralkyl resin, a polyimide resin, etc., which have been conventionally known, can be applied. Among them, the phenol resin is used. A so-called heat-resistant phenol resin, which is a combination of a phenol aralkyl resin and a phenol aralkyl resin, is most suitable because it has a good balance between the economic efficiency of the grindstone, the moldability and the grindstone performance.

【0013】また、本発明に係るレジンボンド砥石中の
ダイヤモンドまたはcBN砥粒の粒度は、通常用いられ
る粒度範囲のいずれでも適用できるが、粗加工用砥石に
おいては80〜120メッシュ(約180〜125μ
m)程度とすると、本発明に係るレジンボンド砥石の高
能率加工が可能という特徴が最大限に発揮されるので、
特に好ましい。このとき砥粒の含有量は、アルミナ粒子
固着分を含まない体積率で、砥粒以外の成分との合計量
に対して15〜38%(砥粒集中度60〜150)とす
るのが好適であり、特に粗加工用砥石には19〜23%
(砥粒集中度75〜90)とすることがより好ましい。
The particle size of the diamond or cBN abrasive grains in the resin bond grindstone according to the present invention can be applied in any of the commonly used grain size ranges, but in the roughing grindstone, it is 80 to 120 mesh (about 180 to 125 μm).
m), the feature that the resin-bonded grindstone according to the present invention can be processed at high efficiency is maximized.
Particularly preferred. At this time, the content of the abrasive grains is preferably a volume ratio that does not include the adhered amount of alumina particles, and is 15 to 38% (abrasive grain concentration degree of 60 to 150) with respect to the total amount of the components other than the abrasive grains. 19% to 23% especially for roughing grindstones
(Abrasive grain concentration degree of 75 to 90) is more preferable.

【0014】[0014]

【発明の実施の形態】本発明に係るレジンボンド砥石に
用いられるアルミナ粒子固着砥粒を得るには、例えば、
砥粒に水ガラスやシリカゾルをまず被覆した後、これに
所定量のアルミナ粉末を加えて混合し、砥粒表面部にア
ルミナ粒子を付着させる。次いでアルミナ粒子付着砥粒
を加熱処理して、表面部にアルミナ粒子が固着した砥粒
を得る。
BEST MODE FOR CARRYING OUT THE INVENTION To obtain the alumina particle-fixed abrasive grains used in the resin bond grindstone according to the present invention, for example,
After the abrasive grains are first coated with water glass or silica sol, a predetermined amount of alumina powder is added and mixed therewith to adhere the alumina particles to the surface of the abrasive grains. Next, the alumina particle-attached abrasive grains are heat-treated to obtain the abrasive grains having the alumina particles adhered to the surface portion.

【0015】上記のようにして得られた砥粒を用いたレ
ジンボンド砥石を作製するには、従来の方法によればよ
い。例えば、台金の外周部に砥石層を配置するストレー
ト型の砥石を作製するには、該砥粒と熱硬化性樹脂と充
填材を乾式攪拌混合機により混合した後、ホットプレス
により台金と砥石層が一体となるように成形・焼成す
る。これを金型から取り出し高温乾燥器中で更に焼成す
る。その後、旋盤加工、砥石成形加工などの加工を施し
て最終製品に仕上げる。ここで、砥石層と台金との間に
砥粒を含まない結合材のみよりなる中間層を設けてもよ
いことは言うまでもない。
A conventional method may be used to produce a resin bond grindstone using the abrasive grains obtained as described above. For example, in order to produce a straight type grindstone in which a grindstone layer is arranged on the outer peripheral portion of the base metal, after mixing the abrasive grains, the thermosetting resin, and the filler with a dry stirring mixer, the base metal with a hot press is used. Form and fire so that the grindstone layer is integrated. This is taken out of the mold and further baked in a high temperature dryer. After that, processing such as lathe processing and grindstone forming processing is performed to finish the final product. Here, it goes without saying that an intermediate layer made only of a binder containing no abrasive grains may be provided between the grindstone layer and the base metal.

【0016】[0016]

【実施例】以下に、実施例によって本発明に係るレジン
ボンド砥石をより詳細に説明する。 (例1) <本発明砥石1>ダイヤモンド砥粒として、粒度100
/120メッシュ(約150〜125μm)のIRVダ
イヤモンド砥粒(東名ダイヤモンド製)に12体積%の
水ガラス(ケイ酸ナトリウム)を加え、混練機で混練し
て砥粒表面部に水ガラス被膜を形成させ、次いでこれに
平均粒度25μmのアルミナ粉末を加えて撹拌して砥粒
の表面にアルミナ粉末を付着させた。これを温度120
℃とした乾燥器中で十分乾燥後、電気炉に移し、450
℃に加熱して水ガラス被膜を溶融ガラス化してアルミナ
粒子をダイヤモンド砥粒の表面部に固着させた。このよ
うにして得られたアルミナ粒子固着ダイヤモンド砥粒に
おいて、アルミナ粒子の固着量は、3〜5質量%のガラ
ス質成分を含めて約30質量%であった。
EXAMPLES Hereinafter, the resin bond grindstone according to the present invention will be described in more detail by way of examples. (Example 1) <Inventive grindstone 1> As a diamond abrasive grain, a grain size of 100
/ 120 mesh (about 150-125 μm) IRV diamond abrasive grains (manufactured by Tomei Diamond), 12% by volume of water glass (sodium silicate) is added and kneaded by a kneader to form a water glass film on the surface of the abrasive grains. Then, alumina powder having an average particle size of 25 μm was added thereto and stirred to adhere the alumina powder to the surface of the abrasive grains. This is the temperature 120
After fully drying in a drier at ℃, transfer to an electric furnace, 450
The water glass coating was melted and vitrified by heating to ° C to fix the alumina particles to the surface of the diamond abrasive grains. In the alumina particle-fixed diamond abrasive grains thus obtained, the amount of the alumina particles fixed was about 30% by mass including 3 to 5% by mass of the vitreous component.

【0017】別に、フェノール樹脂/フェノールアラル
キル樹脂の質量比60/40の混合樹脂60体積%、粒
度−2000メッシュ(約8μm以下)の炭化ケイ素粉
末20体積%、粒状黒鉛(粒度15〜20μm)11体
積%および銅粉(粒度8〜20μm)9体積%からなる
混合粉末を準備し、これに上記アルミナ粒子固着ダイヤ
モンド砥粒をその体積率が26.6%となるように加え
て混合することにより、砥石成形用混合粉末を得た。
Separately, 60% by volume of a mixed resin of phenol resin / phenol aralkyl resin in a mass ratio of 60/40, 20% by volume of silicon carbide powder having a grain size of −2000 mesh (about 8 μm or less), and granular graphite (grain size of 15 to 20 μm) 11 By preparing a mixed powder composed of 9% by volume of copper powder and 9% by volume of copper powder (particle size 8 to 20 μm), the above-mentioned alumina particle-fixed diamond abrasive grains are added and mixed so that the volume ratio becomes 26.6%. A mixed powder for forming a grindstone was obtained.

【0018】内径200mmの砥石成形用金型内中央部
にアルミニウム合金製の砥石台金を配置し、金型内壁と
台金の外周部とで構成される空間に該砥石成形用混合粉
末を充填した後、加圧しつつ180℃にて1時間加熱し
た。これにより、該混合粉末中の樹脂成分は一旦溶融し
た後硬化し、台金の外周部に砥石層が一体に接着成形さ
れたレジンボンド砥石を得ることができた。
An aluminum alloy grinding stone base metal is placed in the center of the grinding stone molding die having an inner diameter of 200 mm, and the space formed by the inner wall of the die and the outer periphery of the base metal is filled with the grinding stone molding mixed powder. Then, it was heated at 180 ° C. for 1 hour while applying pressure. As a result, the resin component in the mixed powder was once melted and then cured, and a resin bond grindstone in which the grindstone layer was integrally bonded and molded on the outer peripheral portion of the base metal could be obtained.

【0019】金型から取り出したレジンボンド砥石を、
高温乾燥器中、180℃で数時間更に加熱し、樹脂成分
を完全に硬化させた。その後、所定寸法になるように台
金部分の旋盤加工、砥石層の研ぎ出し加工を施して完成
品に仕上げた。
The resin bond grindstone taken out from the mold is
The resin component was completely cured by further heating at 180 ° C. for several hours in a high temperature dryer. After that, the base metal portion was lathe-processed and the grindstone layer was sharpened so as to have a predetermined size, and a finished product was obtained.

【0020】このようにして得た、ダイヤモンド粒度1
00/120メッシュ、砥粒集中度75(砥粒体積率1
9%)、寸法200D(砥石外径)×6T(砥石幅)×
3X(砥石層厚)×50.8Hmm(台金孔径)の本発
明砥石1を使用して、下記の条件で研削試験を行った。
Diamond grain size 1 thus obtained
00/120 mesh, abrasive grain concentration 75 (abrasive grain volume ratio 1
9%), size 200D (grinding wheel outer diameter) x 6T (grinding wheel width) x
A grinding test was performed under the following conditions using the present grinding wheel 1 of 3 × (grinding wheel layer thickness) × 50.8 Hmm (base metal hole diameter).

【0021】研削盤:ワシノ製平面研削盤 SG52
F−II 被研削材:WC−10質量%Co超硬合金板(硬さHR
A90.0)、寸法:150×150×30mm 研削方式:湿式往復平面研削 砥石回転数:2700rpm(周速1700m/mi
n) テーブル送り速度:18m/min テーブル前後送り速度:80mm/min 切込み量:20,40μm/pass 総研削量:2mm
Grinding machine: Surface grinder SG52 made by Washino
F-II Grinding material: WC-10 mass% Co cemented carbide plate (hardness HR
A90.0), dimensions: 150 × 150 × 30 mm Grinding method: Wet reciprocating surface grinding wheel rotation speed: 2700 rpm (peripheral speed 1700 m / mi
n) Table feed rate: 18 m / min Table front-rear feed rate: 80 mm / min Depth of cut: 20,40 μm / pass Total grinding amount: 2 mm

【0022】この研削条件では、試験が終了するまで本
発明砥石1を再ドレッシングすることなく研削加工する
ことができた。得られた結果を表1に示す。
Under these grinding conditions, the grinding wheel 1 of the present invention could be ground without redressing until the end of the test. The results obtained are shown in Table 1.

【0023】[0023]

【表1】 [Table 1]

【0024】本実施例では請求項2に係る充填材のう
ち、炭化ケイ素のみを添加する場合について示したが、
炭化ケイ素の代わりにアルミナ、または炭化ケイ素とア
ルミナの2種を添加した場合でも、本発明砥石1と同等
の研削性能を示すことが確かめられた。
In this embodiment, among the fillers according to claim 2, the case where only silicon carbide is added is shown.
It was confirmed that even when alumina or two kinds of silicon carbide and alumina were added instead of silicon carbide, the same grinding performance as that of the present grinding wheel 1 was exhibited.

【0025】<比較砥石1>本発明砥石1のダイヤモン
ド砥粒をアルミナ粒子の固着なし砥粒に変えた以外は、
本発明砥石1と同仕様の比較砥石1を作製し、本発明砥
石1で行った試験と同条件の研削試験を行った。
<Comparative Grinding Stone 1> Except that the diamond abrasive grains of the present invention Abrasive Stone 1 were changed to those without fixing of alumina particles.
A comparative grindstone 1 having the same specifications as the grindstone 1 of the present invention was produced, and a grinding test under the same conditions as the test performed with the grindstone 1 of the present invention was performed.

【0026】この場合は、研削時間の増加と共に研削抵
抗が著しく上昇し、総研削量1mm前後で研削試験を中
断せざるを得なかった。この中断時点での試験結果は、
表2に示したように本発明砥石1に比べて研削比が低下
し、研削面粗さが劣化したが、これはダイヤモンド砥粒
の脱落によるものと考えられた。
In this case, the grinding resistance remarkably increased as the grinding time increased, and the grinding test had to be interrupted when the total grinding amount was about 1 mm. The test results at the time of this interruption are
As shown in Table 2, the grinding ratio was decreased and the grinding surface roughness was deteriorated as compared with the grindstone 1 of the present invention, which was considered to be due to the falling of diamond abrasive grains.

【0027】[0027]

【表2】 [Table 2]

【0028】<比較砥石2>砥粒として、アルミナ粒子
固着なしの粒度140/170メッシュ(約105〜9
0μm)IRVダイヤモンド砥粒(東名ダイヤモンド
製)を使用し、充填材として粒度400/500メッシ
ュ程度(約40〜30μm)の炭化ケイ素を用いた以外
は本発明砥石1と同仕様にして、砥粒集中度75の従来
型の比較砥石2を作製し、本発明砥石1で行った試験と
同様の研削試験を試みた。
<Comparative Grinding Stone 2> As the abrasive grains, a grain size of 140/170 mesh (about 105 to 9) without fixing alumina particles
(0 μm) IRV diamond abrasive grains (manufactured by Tomei Diamond Co., Ltd.) were used, and the same specifications as those of the present grindstone 1 were used except that silicon carbide having a particle size of about 400/500 mesh (about 40 to 30 μm) was used as the filler. A conventional comparative grindstone 2 having a concentration of 75 was prepared, and a grinding test similar to the test performed with the grindstone 1 of the present invention was tried.

【0029】しかし、いずれの切込み量においても研削
開始後急速に研削抵抗が上昇し、研削を中断せざるを得
なかったので、切込み量を10μm/passとした試
験を行ったが、この場合は総研削量が1mmを超えた時
点で研削抵抗が著しく上昇した。これは、従来型のレジ
ンボンド砥石を用いて連続研削する場合に通常現れる、
目詰まりによるものと思われた。
However, since the grinding resistance rapidly increased after the start of grinding at any of the cutting depths and the grinding had to be interrupted, a test was conducted with the cutting depth of 10 μm / pass. When the total grinding amount exceeded 1 mm, the grinding resistance remarkably increased. This usually appears when continuously grinding with a conventional resin bond wheel.
It was probably due to clogging.

【0030】<比較砥石3>砥粒として、本発明砥石1
と同じくアルミナ粒子を固着させた100/120メッ
シュのIRVダイヤモンド砥粒(東名ダイヤモンド製)
を使用し、充填材の炭化ケイ素の粒度を砥粒粒度よりや
や微粒の230/270メッシュ(約65〜50μm)
とした以外は、本発明砥石1と同仕様の比較砥石3を作
製した。
<Comparison grindstone 3> As the abrasive grains, the grindstone of the present invention 1
100/120 mesh IRV diamond abrasive grains (made by Tomei Diamond Co., Ltd.) to which alumina particles are fixed
The particle size of the filler silicon carbide is 230/270 mesh (about 65 to 50 μm), which is slightly finer than the abrasive grain size.
A comparative grindstone 3 having the same specifications as the grindstone 1 of the present invention was manufactured except for the above.

【0031】この砥石を使用し、本発明砥石1で行った
試験と同様の研削試験を行った結果、研削抵抗は、本発
明砥石1よりかなり高くなり、総研削量2mm近くで試
験を中断せざるを得なかったが、これは炭化ケイ素の粒
度が不適切であったため、アルミナ粒子固着ダイヤモン
ド砥粒の保持力が十分でなく、砥粒が脱落しやすかった
ためと判断できた。
Using this grindstone, a grinding test similar to the test carried out with the grindstone 1 of the present invention was carried out. As a result, the grinding resistance was considerably higher than that of the grindstone 1 of the present invention, and the test was interrupted when the total grinding amount was close to 2 mm. Although it was unavoidable, it could be judged that this was because the particle size of silicon carbide was inappropriate, so that the retention of the alumina particle-fixed diamond abrasive grains was insufficient and the abrasive grains were likely to fall off.

【0032】(例2) <本発明砥石2>研削砥粒として、100/120メッ
シュのcBN砥粒(昭和電工製SBN)の表面部を次の
ように調製したシリカゾルで薄く被覆し、これに平均粒
度25μmのアルミナ粉末を加えて撹拌して砥粒の表面
にアルミナ粒子を付着させた。これを室温の乾燥器に装
入し昇温速度1℃/minで120℃に至るまで加熱・
乾燥後、電気炉に移し、0.5℃/minの昇温速度で
1050℃に加熱してシリカ被膜を溶融ガラス化するこ
とによって、アルミナ粒子をcBN砥粒の表面部に固着
させた。このようにして得られたアルミナ粒子固着cB
N砥粒において、アルミナ粒子の固着量は、3〜5質量
%のシリカガラス成分を含めて約33質量%であった。
(Example 2) <Inventive grindstone 2> As grinding abrasive grains, a surface portion of 100/120 mesh cBN abrasive grains (SBN manufactured by Showa Denko) was thinly coated with silica sol prepared as follows. Alumina powder having an average particle size of 25 μm was added and stirred to adhere the alumina particles to the surface of the abrasive grains. Charge this into a room temperature dryer and heat it up to 120 ° C at a heating rate of 1 ° C / min.
After drying, it was transferred to an electric furnace and heated to 1050 ° C. at a temperature rising rate of 0.5 ° C./min to melt and vitrify the silica coating, thereby fixing the alumina particles to the surface portion of the cBN abrasive grains. Alumina particle-fixed cB thus obtained
In the N abrasive grains, the amount of alumina particles fixed was about 33 mass% including the silica glass component of 3 to 5 mass%.

【0033】ここで、アルミナ粒子を付着させるための
シリカゾル液の調製法は、次の通りである。 テトラエトキシシラン 100g 水 10g DMF(N,N−ジメチルホルムアミド) 2g アンモニア 1g
Here, the method for preparing the silica sol liquid for adhering the alumina particles is as follows. Tetraethoxysilane 100 g Water 10 g DMF (N, N-dimethylformamide) 2 g Ammonia 1 g

【0034】上記の混合液を攪拌しつつ約40℃に加温
すると、混合液は徐々に粘度が上昇し粘稠液となる。こ
のように調製したシリカゾルをcBN砥粒とアルミナ粒
子の固着材として使用した。
When the above mixed liquid is heated to about 40 ° C. while being stirred, the mixed liquid gradually increases in viscosity and becomes a viscous liquid. The silica sol thus prepared was used as a fixing material for cBN abrasive grains and alumina particles.

【0035】別に、フェノール樹脂60体積%、粒度−
2000メッシュの炭化ケイ素粉末20体積%、粒状黒
鉛(粒度15〜20μm)11体積%および銅粉(粒度
8〜20μm)9体積%からなる砥石結合材を準備し、
これに上記アルミナ粒子固着cBN砥粒を31体積%と
なるよう加えて混合し、砥石成形用混合粉末を得た。
Separately, 60% by volume of phenol resin, particle size-
A grindstone binder comprising 20% by volume of 2000-mesh silicon carbide powder, 11% by volume of granular graphite (particle size 15 to 20 μm) and 9% by volume of copper powder (particle size 8 to 20 μm),
The above-mentioned alumina particle-fixed cBN abrasive grains were added and mixed so as to be 31% by volume to obtain a mixed powder for forming a grinding stone.

【0036】本発明砥石1と同様に、内径200mmの
砥石成形用金型内中央部にアルミニウム合金製の砥石台
金を配置して、金型内壁と台金の外周部とで構成される
空間に該砥石成形用混合粉末を充填し、加圧しつつ18
0℃にて1時間加熱することにより、砥石成形用混合粉
末中の樹脂成分は一旦溶融した後硬化し、台金の外周部
にレジンボンド砥石層が一体に接着成形された砥石を得
ることができた。
Similar to the grindstone 1 of the present invention, a space formed by an inner wall of the mold and an outer peripheral portion of the base metal by arranging a whetstone base metal made of an aluminum alloy in the center of the inside of the grinding stone molding die having an inner diameter of 200 mm. To the grinding stone mixed powder and pressurize
By heating at 0 ° C. for 1 hour, the resin component in the powder for forming a grindstone is once melted and then hardened to obtain a grindstone in which the resin bond grindstone layer is integrally bonded and molded on the outer peripheral portion of the base metal. did it.

【0037】砥石層を形成した後、金型から取り出した
レジンボンド砥石を高温乾燥器中に装入し、180℃で
数時間加熱して樹脂成分を完全に硬化させた。その後、
所定の仕上げ寸法になるように台金部分の旋盤加工、砥
粒層の研ぎ出し加工を施して得られた、砥粒集中度75
の200D×6T×3X×50.8H mmの本発明砥
石2を使用して、下記の条件で研削試験を行った。
After forming the grindstone layer, the resin-bonded grindstone taken out from the mold was placed in a high temperature dryer and heated at 180 ° C. for several hours to completely cure the resin component. afterwards,
Abrasive grain concentration of 75 obtained by lathe processing of the base metal and polishing of the abrasive grain layer so as to have a predetermined finishing dimension.
Using 200D × 6T × 3X × 50.8H mm of the present grindstone 2 of the present invention, a grinding test was performed under the following conditions.

【0038】研削盤:ワシノ製平面研削盤 SG52
F−II 被研削材:SKD11焼入れ鋼板(硬さHRC60〜6
1)、寸法:150×150×20mm 研削方式:湿式往復平面研削 砥石回転数:2700rpm(周速1700m/mi
n) テーブル送り速度:18m/min テーブル前後送り速度:80mm/min 切込み量:20,40μm/pass 総研削量:2mm
Grinder: Wasino surface grinder SG52
F-II Grinding material: SKD11 hardened steel plate (hardness HRC60 to 6
1), dimensions: 150 × 150 × 20 mm Grinding method: wet reciprocating surface grinding wheel rotation speed: 2700 rpm (peripheral speed 1700 m / mi
n) Table feed rate: 18 m / min Table front-rear feed rate: 80 mm / min Depth of cut: 20,40 μm / pass Total grinding amount: 2 mm

【0039】この研削条件で本発明砥石2は、試験が終
了するまで再ドレッシングすることなく研削加工するこ
とができた。得られた結果を表3に示す。
Under these grinding conditions, the grinding wheel 2 of the present invention could be ground without redressing until the end of the test. The results obtained are shown in Table 3.

【0040】[0040]

【表3】 [Table 3]

【0041】<比較砥石4>本発明砥石2の砥粒をアル
ミナ粒子固着なしの市販SBN100/120メッシュ
のcBNに変えたほかは、本発明砥石2と同仕様の比較
砥石4を作製し、上記と同様の研削試験を行った。
<Comparative Grinding Stone 4> A comparative grindstone 4 having the same specifications as the grinding stone 2 of the present invention was prepared, except that the abrasive grains of the grinding stone 2 of the present invention were changed to cBN of commercially available SBN100 / 120 mesh without fixing alumina particles. The same grinding test was performed.

【0042】この場合は、切込み量が20μm/pas
sでもcBN砥粒の脱落により研削抵抗の著しい上昇と
砥石の過大消耗を生じたばかりでなく、研削面粗さが劣
化して、研削面にかなりの焼け割れ現象の発生が認めら
れるようになったため、総研削量0.8mm前後で研削
試験を中断せざるを得なかった。この中断時点での結果
を表4に示した。
In this case, the cutting depth is 20 μm / pas
Even in s, not only the grinding resistance was significantly increased and the grindstone was excessively consumed due to the falling of the cBN abrasive grains, but also the roughness of the grinding surface was deteriorated and a considerable burn crack phenomenon was observed on the grinding surface. The grinding test had to be interrupted when the total grinding amount was about 0.8 mm. The results at the time of this interruption are shown in Table 4.

【0043】[0043]

【表4】 [Table 4]

【0044】[0044]

【発明の効果】以上説明したように、本発明に係るレジ
ンボンド砥石は、通常の研削加工条件下で、切込み量を
従来のレジンボンド砥石に比べて約2〜4倍と飛躍的に
大きくすることが可能であり、更に、研削加工中に目詰
まりが極めて発生しにくく、研削加工を中断して再ドレ
ッシングする必要がないので、この点においても研削加
工能率に優れるという効果が得られ、産業上の利用価値
が極めて高い。
As described above, the resin bond grindstone according to the present invention dramatically increases the depth of cut by about 2 to 4 times as much as the conventional resin bond grindstone under normal grinding conditions. In addition, clogging is extremely unlikely to occur during the grinding process, and there is no need to interrupt the grinding process and perform redressing. Therefore, in this respect, the effect of excellent grinding process efficiency can be obtained. The utility value above is extremely high.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 3C063 AA02 AB05 BB02 BB19 BC03 BD01    ─────────────────────────────────────────────────── ─── Continued front page    F term (reference) 3C063 AA02 AB05 BB02 BB19 BC03                       BD01

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 熱硬化性樹脂で砥粒を結合してなる研削
砥石において、砥粒表面部に、該砥粒より微粒のアルミ
ナ粒子を固着させたことを特徴とするレジンボンド砥
石。
1. A resin-bonded grindstone in which abrasive grains are bonded with a thermosetting resin, and finer alumina particles than the abrasive grains are fixed to the surface of the abrasive grains.
【請求項2】 熱硬化性樹脂よりなる結合材に対する充
填材として、少なくとも平均粒度20μm以下の炭化ケ
イ素およびアルミナから選ばれる1種または2種を添加
したことを特徴とする請求項1に記載のレジンボンド砥
石。
2. The filler according to claim 1, wherein at least one kind selected from silicon carbide and alumina having an average particle size of 20 μm or less is added as a filler for the binder made of a thermosetting resin. Resin bond whetstone.
【請求項3】 前記砥粒がダイヤモンドである請求項1
または2に記載のレジンボンド砥石。
3. The abrasive grain is diamond.
Alternatively, the resin bond grindstone according to 2.
【請求項4】 前記砥粒が立方晶窒化ホウ素である請求
項1または2に記載のレジンボンド砥石。
4. The resin bond grindstone according to claim 1, wherein the abrasive grains are cubic boron nitride.
JP2001350798A 2001-10-12 2001-10-12 Resin bond type grinding wheel for high efficiency grinding process Pending JP2003117836A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001350798A JP2003117836A (en) 2001-10-12 2001-10-12 Resin bond type grinding wheel for high efficiency grinding process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001350798A JP2003117836A (en) 2001-10-12 2001-10-12 Resin bond type grinding wheel for high efficiency grinding process

Publications (1)

Publication Number Publication Date
JP2003117836A true JP2003117836A (en) 2003-04-23

Family

ID=19163222

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001350798A Pending JP2003117836A (en) 2001-10-12 2001-10-12 Resin bond type grinding wheel for high efficiency grinding process

Country Status (1)

Country Link
JP (1) JP2003117836A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008528304A (en) * 2005-01-27 2008-07-31 アトランティック ゲゼルシャフト ミト ベシュレンクテル ハフツング Method and apparatus for polishing ceramic spheres
JP2009096993A (en) * 2007-10-16 2009-05-07 Center For Abrasives & Refractories Research & Development Carrd Gmbh Coated abrasive grain, method for production thereof and use thereof for producing abrasive
CN103567889A (en) * 2012-07-24 2014-02-12 沈阳中科超硬磨具磨削研究所 High-precision resin diamond micro-drilling excircle grinding wheel and application
CN105290984A (en) * 2015-10-10 2016-02-03 薛典荣 Inorganic compounded abrasive resin grinding wheel and preparation method thereof
CN105382711A (en) * 2015-10-09 2016-03-09 芜湖市鸿坤汽车零部件有限公司 Modified silicon oxide resin grinding wheel and preparing method thereof
WO2020051729A1 (en) * 2018-09-10 2020-03-19 中材高新氮化物陶瓷有限公司 Ceramic sphere abrasive, preparation method therefor, and use thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008528304A (en) * 2005-01-27 2008-07-31 アトランティック ゲゼルシャフト ミト ベシュレンクテル ハフツング Method and apparatus for polishing ceramic spheres
JP2009096993A (en) * 2007-10-16 2009-05-07 Center For Abrasives & Refractories Research & Development Carrd Gmbh Coated abrasive grain, method for production thereof and use thereof for producing abrasive
US8864862B2 (en) 2007-10-16 2014-10-21 Center For Abrasives And Refractories Research & Development C.A.R.R.D. Gmbh Coated abrasive grains, method and for the production thereof as well as the use thereof for producing abrasives
CN103567889A (en) * 2012-07-24 2014-02-12 沈阳中科超硬磨具磨削研究所 High-precision resin diamond micro-drilling excircle grinding wheel and application
CN103567889B (en) * 2012-07-24 2016-06-29 沈阳中科超硬磨具磨削研究所 A kind of emery wheel for processing drill bit for printed circuit board sword footpath cylindrical
CN105382711A (en) * 2015-10-09 2016-03-09 芜湖市鸿坤汽车零部件有限公司 Modified silicon oxide resin grinding wheel and preparing method thereof
CN105290984A (en) * 2015-10-10 2016-02-03 薛典荣 Inorganic compounded abrasive resin grinding wheel and preparation method thereof
WO2020051729A1 (en) * 2018-09-10 2020-03-19 中材高新氮化物陶瓷有限公司 Ceramic sphere abrasive, preparation method therefor, and use thereof

Similar Documents

Publication Publication Date Title
TW461845B (en) Abrasive tools for grinding electronic components
JP2005525242A (en) Porous polishing tool and manufacturing method thereof
JP2006346857A (en) Polishing tool
JPH10113875A (en) Super abrasive grain abrasive grindstone
CN1652897A (en) Method of roll grinding
JP3779329B2 (en) Vitreous grinding tool containing metal coated abrasive
JP2003117836A (en) Resin bond type grinding wheel for high efficiency grinding process
JPS63256364A (en) Porous grindstone of super abrasive grain
JP7391850B2 (en) Agglomerated abrasive grain
JP2000198075A (en) Composite bond grinding wheel and grind wheel having resin binder phase
JP2004268200A (en) Composite resinoid grinding tool
JP3101145B2 (en) Method for producing porous iron-based metal bond diamond wheel
JPH0857768A (en) Vitrified bond grinding wheel for heavy grinding
JP3209437B2 (en) Manufacturing method of resin bonded super abrasive wheel
JPH0624700B2 (en) Vitrified grindstone
JP2678288B2 (en) Superabrasive vitrified bond grindstone and manufacturing method
JPH0615572A (en) Grinding wheel
JPH05277956A (en) Resin bond grinding wheel
JP2000246647A (en) Vitrified extra-abrasive grain grinding wheel and manufacture thereof
JPH085012B2 (en) Metal bond whetstone
JP2000317843A (en) Porous iron system metal bond diamond grinding wheel
JPS5815672A (en) Resinoid bonded flat shaped rotary grinding stone
JP2005144653A (en) Resin bond diamond grinding wheel
JP2003094341A (en) Metal bond super abrasive grain grinding wheel
JP3952721B2 (en) Vitrified Bond Super Abrasive Wheel

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040608

A02 Decision of refusal

Effective date: 20041026

Free format text: JAPANESE INTERMEDIATE CODE: A02