JP2003116792A - Fundus camera with compensating optical device - Google Patents

Fundus camera with compensating optical device

Info

Publication number
JP2003116792A
JP2003116792A JP2001316745A JP2001316745A JP2003116792A JP 2003116792 A JP2003116792 A JP 2003116792A JP 2001316745 A JP2001316745 A JP 2001316745A JP 2001316745 A JP2001316745 A JP 2001316745A JP 2003116792 A JP2003116792 A JP 2003116792A
Authority
JP
Japan
Prior art keywords
phase modulation
light
adaptive optics
fundus camera
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001316745A
Other languages
Japanese (ja)
Other versions
JP3627014B2 (en
Inventor
Tomohiro Shirai
智宏 白井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2001316745A priority Critical patent/JP3627014B2/en
Publication of JP2003116792A publication Critical patent/JP2003116792A/en
Application granted granted Critical
Publication of JP3627014B2 publication Critical patent/JP3627014B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)
  • Eye Examination Apparatus (AREA)

Abstract

PROBLEM TO BE SOLVED: To effectively correct wave surface distortion of the imaging light due to an aberration of a cornea and a crystalline lens becoming a cause of impairing resolution of a fundus camera in real time with high resolution. SOLUTION: This fundus camera has a fundus camera optical system, and a compensating optical device composed of an optical writing spatial phase modulation element and a light wave interferometer. The phase distribution for generating wave surface distortion in the inverse direction to the wave surface distortion of the imaging light reflected from a retina caused by the complicated aberration existing in the cornea and the crystalline lens of a person's eye is formed on a phase modulation surface of the optical writing spatial phase modulation element by the compensating optical device. The wave surface distortion of the imaging light is offset by reflecting the imaging light on the phase modulation surface, and the resolution is improved by compensating for the wave surface distortion.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、眼底カメラに関す
る、特に、光書き込み型空間位相変調素子と光波干渉計
から成る補償光学装置を利用して、人の眼の角膜及び水
晶体に存在する複雑な収差やゆらぎの影響による分解能
の低下を防止する補償光学装置付き眼底カメラに関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fundus camera, and more particularly, to a complex optic that exists in the cornea and lens of the human eye by utilizing an adaptive optics device composed of an optical writing type spatial phase modulator and a light wave interferometer. The present invention relates to a fundus camera with an adaptive optics device that prevents a reduction in resolution due to the influence of aberration and fluctuation.

【0002】[0002]

【従来の技術】光の波面歪みを実時間で検出し補正する
補償光学技術の研究は、主に大気ゆらぎの影響によりぼ
やけた天体像の改善を目的として行われてきた。その典
型例である波面センサーと形状可変鏡を組み合わせたシ
ステムは、主に天文学の分野では実用化されている。
2. Description of the Related Art Research on adaptive optics technology for detecting and correcting wavefront distortion of light in real time has been conducted mainly for the purpose of improving a blurred celestial image due to atmospheric fluctuations. A typical example is a system that combines a wavefront sensor and a deformable mirror, and has been put to practical use mainly in the field of astronomy.

【0003】この従来技術を図3に示す。光路中の媒質
の位相変動の影響によって乱された波面60を形状可変
鏡61で反射させ、その反射光の一部をビームスプリッ
ター(BS)62によって取り出し、それを波面センサ
ー63に入射させる。ここで、形状可変鏡61とは、薄
い鏡64の背面に電歪素子65が多数取り付けられ、そ
れぞれの電歪素子65に印可する電圧に応じて鏡の形状
を任意に変化させることができる装置である。
This prior art is shown in FIG. The wavefront 60 disturbed by the influence of the phase variation of the medium in the optical path is reflected by the variable shape mirror 61, a part of the reflected light is extracted by the beam splitter (BS) 62, and it is incident on the wavefront sensor 63. Here, the deformable mirror 61 is a device in which a large number of electrostrictive elements 65 are attached to the back surface of a thin mirror 64, and the shape of the mirror can be arbitrarily changed according to the voltage applied to each electrostrictive element 65. Is.

【0004】波面センサー63では波面の乱れが計測さ
れ、そのデータが制御装置66へと導かれる。制御装置
66では、そのデータに基づいて波面を補正するために
必要な鏡の形状、すなわち各電歪素子65に印可する電
圧が計算され、それに基づいて形状可変鏡の形状を変化
させる。この一連の動作を素早く行うことで、反射光の
波面を実時間で補正することができる。この形状可変鏡
61を映像システムに組み込むことにより、波面の乱れ
によって低下した映像システムの分解能を向上させるこ
とができる。
The wavefront sensor 63 measures the disturbance of the wavefront, and the data is guided to the control device 66. The controller 66 calculates the shape of the mirror necessary for correcting the wavefront, that is, the voltage applied to each electrostrictive element 65 based on the data, and changes the shape of the deformable mirror based on the calculated voltage. By performing this series of operations quickly, the wavefront of the reflected light can be corrected in real time. By incorporating the deformable mirror 61 in the image system, it is possible to improve the resolution of the image system which is lowered due to the disturbance of the wavefront.

【0005】一方、眼底カメラの分野では、人の眼の角
膜や水晶体に存在する複雑な収差の影響により、眼球内
に照射し網膜で反射して得られる撮像光の波面が歪みを
生じ、これに起因して撮影される網膜像の分解能が制限
されることが知られており、このような収差の影響を除
去して高分解能の網膜像を得ることが求められている。
On the other hand, in the field of fundus cameras, the wavefront of the imaging light obtained by being irradiated into the eyeball and reflected by the retina is distorted due to the influence of complicated aberrations existing in the cornea and crystalline lens of the human eye. It is known that the resolution of the retinal image captured is limited due to the above, and it is required to remove the influence of such aberrations to obtain a high-resolution retinal image.

【0006】[0006]

【発明が解決しようとする課題】このような眼底カメラ
におけるニーズに対応するために、従来の波面センサー
と形状可変鏡を組み合わせたシステムを、眼底カメラに
適用して収差を補正する構成も考えられるが、従来の波
面センサー及び補償システムは、大型、高価、大消費電
力、波面の高精度制御が困難、コンピュータによる膨大
な計算が必要などの理由により、広く一般には普及して
いない。特に、眼底カメラ等の精密医療機器の分野に
は、従来のシステムは大型すぎて適用は困難である。
In order to meet the needs of such a fundus camera, it is possible to apply a conventional system combining a wavefront sensor and a deformable mirror to the fundus camera to correct the aberration. However, the conventional wavefront sensor and compensation system have not been widely used because of their large size, high cost, large power consumption, difficulty in controlling the wavefront with high precision, and enormous calculation by a computer. Particularly, in the field of precision medical equipment such as a fundus camera, the conventional system is too large to be applied.

【0007】本発明は、このような眼底カメラにおける
従来の問題を解決することを目的とするものであり、小
形で安価な装置であって消費電力が少なく、眼底カメラ
の分解能を損なう原因となる角膜及び水晶体の歪みをコ
ンピュータによる計算を必要とせずに、高分解能かつ実
時間で効果的に補正することができるようにした補償光
学装置付き眼底カメラを実現することである。
An object of the present invention is to solve the conventional problems in such a fundus camera, and it is a small and inexpensive device which consumes less power and causes the resolution of the fundus camera to be impaired. It is an object of the present invention to realize a fundus camera with an adaptive optics device capable of effectively correcting the distortion of the cornea and the crystalline lens in high resolution and in real time without the need for calculation by a computer.

【0008】ところで、本発明者等は、各種の工業計測
等に適用できる汎用的な補償光学装置の実現を目指し
て、高分解能の光書き込み型液晶空間位相変調素子とそ
の駆動原理としてフィードバック干渉法を利用した光駆
動型波面補正映像方法及び装置に係る発明についてすで
に出願をしている(特願2000−227874)が、
本発明は、この先行する発明を、眼底カメラに適用する
具体的な構成に新規性、進歩性を有する発明である。
By the way, the inventors of the present invention aim to realize a general-purpose adaptive optical device applicable to various industrial measurements and the like, and a high-resolution optical writing type liquid crystal spatial phase modulator and a feedback interference method as its driving principle. A patent application has already been filed for an invention relating to a light-driven wavefront-corrected image method and apparatus using the above (Japanese Patent Application No. 2000-227874).
The present invention is an invention having novelty and inventive step in a specific configuration in which the preceding invention is applied to a fundus camera.

【0009】[0009]

【課題を解決するための手段】本発明は上記課題を解決
するために、眼底カメラ光学系、及び光書き込み型空間
位相変調素子と光波干渉計で構成される補償光学装置と
を有し、人の眼の角膜及び水晶体に存在する複雑な収差
に起因する網膜から反射された撮像光の波面歪みに対し
て逆方向の波面歪みを生み出す位相分布を上記補償光学
装置によって上記光書き込み型空間位相変調素子の位相
変調面に形成し、上記撮像光を上記位相変調面で反射さ
せることにより、上記撮像光の波面歪みを相殺して波面
歪みの補償を行い分解能を向上させる補償光学装置付き
眼底カメラであって、上記眼底カメラ光学系は、照明光
を眼球内に照射し、網膜からの反射光を眼の瞳孔と共役
な位置にある上記光書き込み型空間位相変素子の位相変
調面で反射させ、それを眼底観察用カメラに結像させる
光学系を有し、さらに、上記眼底カメラ光学系は、補償
光学装置駆動用レーザー光を眼球内に照射し、網膜状の
1点に収束させ、その反射光を上記位相変調面で反射さ
せ、それを補償光学装置に導入する光学系とを有し、上
記補償光学装置は、上記位相変調面で反射した上記補償
光学装置駆動用レーザ光を上記光波干渉計に導入するこ
とにより角膜及び水晶体に存在する収差を反映した干渉
縞を得て、上記光書き込み型空間位相変調素子の書き込
み面にこれを照射することにより角膜及び水晶体に存在
する収差を打ち消すような位相分布を上記位相変調面に
形成することを特徴とする補償光学装置付き眼底カメラ
を提供する。
In order to solve the above-mentioned problems, the present invention has a fundus camera optical system, and an adaptive optical device composed of an optical writing type spatial phase modulator and a light wave interferometer. The optical writing type spatial phase modulation is performed by the adaptive optics device to generate a phase distribution that produces a wavefront distortion in the opposite direction to the wavefront distortion of the imaging light reflected from the retina due to the complex aberrations existing in the cornea and lens of the human eye. A fundus camera with an adaptive optics device that is formed on a phase modulation surface of an element and reflects the imaging light on the phase modulation surface to cancel the wavefront distortion of the imaging light to compensate the wavefront distortion and improve the resolution. There, the fundus camera optical system, illuminating the illumination light into the eyeball, reflected light from the retina is reflected by the phase modulation surface of the optical writing type spatial phase changing element at a position conjugate with the pupil of the eye, The fundus observation optical system has an optical system for forming an image on the fundus observation camera. Further, the fundus camera optical system irradiates a laser beam for driving an adaptive optics device into the eyeball and converges it on a retina-shaped point and reflects it. An optical system for reflecting light on the phase modulation surface and introducing it to an adaptive optics apparatus, wherein the adaptive optics apparatus uses the optical wave interference to drive the adaptive optics device driving laser light reflected on the phase modulation surface. Introduced into the meter to obtain interference fringes that reflect the aberrations existing in the cornea and lens, and irradiate the writing surface of the above-mentioned optical writing type spatial phase modulator to cancel the aberrations existing in the cornea and lens. There is provided a fundus camera with an adaptive optics device, characterized in that a different phase distribution is formed on the phase modulation surface.

【0010】そして、本発明に係る補償光学装置付き眼
底カメラは、上記干渉縞を高感度CCDカメラで撮像
し、この撮像データを投影装置により上記光書き込み型
空間位相変調素子の書き込み面に書き込む構成としても
よい。
In the fundus camera with an adaptive optics device according to the present invention, the interference fringes are imaged by a high-sensitivity CCD camera, and the imaged data is written on the writing surface of the optical writing type spatial phase modulator by a projection device. May be

【0011】[0011]

【発明の実施の形態】本発明に係る補償光学装置付き眼
底カメラ装置の実施の形態を図面を参照して以下説明す
る。本カメラ装置は全体的には、図1、2に示すよう
に、眼底カメラ光学系、位相変調器ユニットと光波干渉
計とから成る補償光学装置によって構成される。なお、
位相変調器ユニットには、光書き込み型液晶空間位相変
調素子と、結像レンズ系、液晶ディスプレイ、光源等で
構成される投影装置が含まれている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a fundus camera device with an adaptive optics device according to the present invention will be described below with reference to the drawings. As shown in FIGS. 1 and 2, the present camera device is generally composed of a fundus camera optical system, an adaptive optical device including a phase modulator unit and a light wave interferometer. In addition,
The phase modulator unit includes a light-writing type liquid crystal spatial phase modulator, a projection device including an imaging lens system, a liquid crystal display, a light source and the like.

【0012】眼底カメラでは、人の眼の角膜や水晶体に
存在する複雑な収差の影響により、その分解能が制限さ
れることが知られている。本発明では、その収差の影響
を除去して高分解能の網膜像を得るものである。
It is known that the fundus camera has a limited resolution due to the influence of complicated aberrations existing in the cornea and lens of the human eye. In the present invention, the influence of the aberration is removed to obtain a high resolution retinal image.

【0013】その基本的な原理は、眼底カメラにおいて
人の眼の角膜や水晶体に存在する複雑な収差やゆらぎの
影響により、網膜からの反射光(撮像光)は光波の波面
歪みを生じるが、この波面歪みと逆方向の波面歪みを生
み出す位相分布を補償光学装置によって位相変調器ユニ
ットにある光書き込み型液晶空間位相変調素子の位相変
調面に形成し、撮像光をその位相変調面で反射させるこ
とにより、撮像光の波面歪みを相殺して波面歪みの補償
を行い分解能を向上させるものである。
The basic principle is that the reflected light (imaging light) from the retina causes wavefront distortion of the light wave due to the effects of complicated aberrations and fluctuations existing in the cornea and crystalline lens of the human eye in the fundus camera. A phase distribution that causes wavefront distortion in the opposite direction to this wavefront distortion is formed on the phase modulation surface of the optical writing type liquid crystal spatial phase modulation element in the phase modulator unit by the adaptive optical device, and the imaging light is reflected by the phase modulation surface. As a result, the wavefront distortion of the imaging light is canceled to compensate for the wavefront distortion and the resolution is improved.

【0014】上記のとおり、本カメラ装置は全体的に
は、眼底カメラ光学系と補償光学装置とから構成され、
さらに詳細には、本カメラ装置は、補償光学装置駆動用
のレーザー光源、眼底照明用のハロゲン光源、レンズL
1、ビームスプリッターBS1、ビームスプリッターB
S2、偏光板、レンズL2、レンズL3、ビームスプリ
ッターBS3、ビームスプリッターBS4、レンズL
4、眼底観察用カメラ、レンズL5、レンズL6、高感
度CCDカメラ、マッハ・ツェンダー型干渉計、及び位
相変調器ユニットとから構成される。
As described above, the camera device as a whole is composed of the fundus camera optical system and the adaptive optical device.
More specifically, this camera device includes a laser light source for driving an adaptive optics device, a halogen light source for fundus illumination, and a lens L.
1, beam splitter BS1, beam splitter B
S2, polarizing plate, lens L2, lens L3, beam splitter BS3, beam splitter BS4, lens L
4, a fundus observation camera, a lens L5, a lens L6, a high-sensitivity CCD camera, a Mach-Zehnder interferometer, and a phase modulator unit.

【0015】眼底照明用の光源は、空間的にインコーヒ
レントなハロゲン光源を利用しているが、レーザー光の
ような空間的にコーヒレントな光源を用いてもよい。ま
た、連続光のみならず、フラッシュ光源のような非連続
光でも良い。レンズL2、L3は、眼の瞳孔と光書き込
み型液晶空間位相変調素子の位相変調面が互いに光学的
に共役の位置、即ち結像関係となるように配置されてい
る。
The light source for illuminating the fundus of the eye uses a spatially incoherent halogen light source, but a spatially coherent light source such as a laser beam may be used. Further, not only continuous light but also discontinuous light such as a flash light source may be used. The lenses L2 and L3 are arranged such that the pupil of the eye and the phase modulation surface of the optical writing type liquid crystal spatial phase modulation element are optically conjugate with each other, that is, in an image forming relationship.

【0016】ハロゲン光源からの照明光は、レンズL
1、ビームスプリッターBS1、ビームスプリッターB
S2を通して、眼球内に照射される。この照明光は、角
膜及び水晶体を通して網膜に照射され、その反射光が再
度水晶体、角膜を通して眼球から出て、ビームスプリッ
ターBS2、偏光板、レンズL2、L3、ビームスプリ
ッターBS3、BS4を通過し、位相変調器ユニット中
の光書き込み型液晶空間位相変調素子の位相変調面で反
射される。その反射光が、ビームスプリッターBS4で
反射し、レンズL4を通して眼底観察用カメラに結像さ
れ、網膜像が撮影される。
The illumination light from the halogen light source is the lens L.
1, beam splitter BS1, beam splitter B
The light is irradiated into the eyeball through S2. This illuminating light is applied to the retina through the cornea and the crystalline lens, and its reflected light again exits from the eyeball through the crystalline lens and the cornea, passes through the beam splitter BS2, the polarizing plate, the lenses L2 and L3, the beam splitters BS3 and BS4, and the phase The light is reflected by the phase modulation surface of the optical writing type liquid crystal spatial phase modulator in the modulator unit. The reflected light is reflected by the beam splitter BS4, is focused on the fundus observation camera through the lens L4, and a retinal image is captured.

【0017】補償光学装置駆動用のレーザー光は、ビー
ムスプリッターBS1、ビームスプリッターBS2を通
して眼球内に照射され、角膜及び水晶体を通して網膜上
の1点に収束され、網膜からの反射光は、再度水晶体、
角膜を通し眼球から出て、ビームスプリッターBS2、
偏光板、レンズL2、レンズL3、ビームスプリッター
BS3、ビームスプリッターBS4を通してから位相変
調器ユニット中の光書き込み型液晶空間位相変調素子の
位相変調面で反射される。
The laser light for driving the adaptive optics device is irradiated into the eyeball through the beam splitter BS1 and the beam splitter BS2 and is converged to one point on the retina through the cornea and the crystalline lens, and the reflected light from the retina is again reflected by the crystalline lens and the crystalline lens.
Through the cornea and out of the eye, the beam splitter BS2,
After passing through the polarizing plate, the lens L2, the lens L3, the beam splitter BS3, and the beam splitter BS4, the light is reflected by the phase modulation surface of the optical writing type liquid crystal spatial phase modulation element in the phase modulator unit.

【0018】補償光学装置駆動用レーザー光は直線偏光
であり、上記偏光板はその偏光方向と直交した偏光成分
の光波のみを透過させるように配置される。このことに
より、角膜表面で反射したレーザー光を遮断し、網膜状
の1点から反射したレーザー光のみを透過させることが
できる。
The laser light for driving the adaptive optics device is linearly polarized light, and the polarizing plate is arranged so as to transmit only the light wave of the polarization component orthogonal to the polarization direction. As a result, the laser light reflected on the corneal surface can be blocked, and only the laser light reflected from a single point of the retina can be transmitted.

【0019】位相変調面で反射された補償光学装置駆動
用のレーザー光がビームスプリッターBS4を通過して
ビームスプリッターBS3により反射し、レンズL5、
レンズL6、反射鏡を通して、マッハ・ツェンダー型干
渉計に入射する。そして、後述する位相変調器ユニット
中の光書き込み型液晶空間位相変調素子の位相変調動作
を行い、撮像光の波面歪みを相殺して波面歪みの補償を
行い分解能を向上させるものである。
The laser light for driving the adaptive optics device reflected by the phase modulation surface passes through the beam splitter BS4 and is reflected by the beam splitter BS3, and the lens L5,
The light enters the Mach-Zehnder interferometer through the lens L6 and the reflecting mirror. Then, the optical writing type liquid crystal spatial phase modulator in the phase modulator unit, which will be described later, performs the phase modulation operation to cancel the wavefront distortion of the imaging light to compensate the wavefront distortion and improve the resolution.

【0020】位相変調器ユニットをさらに詳細に説明す
る。上記光書き込み型液晶空間位相変調素子は、書き込
み面Wに照射した光の強さに依存して、その裏側の位相
変調面Rの変調位相が変化する素子である。ただし、位
相変調には偏光依存性があり、液晶分子の配向方向と平
行な偏光成分の光波のみの位相を変調させる。また、こ
の素子は書き込み面Wに照射する強度パターンに応じて
任意に位相変調を行うことができるため、高分解能な波
面補正能力を持つ。
The phase modulator unit will be described in more detail. The optical writing type liquid crystal spatial phase modulation element is an element in which the modulation phase of the phase modulation surface R on the back side thereof changes depending on the intensity of light applied to the writing surface W. However, the phase modulation has polarization dependency, and modulates only the phase of the light wave of the polarization component parallel to the alignment direction of the liquid crystal molecules. Further, since this element can arbitrarily perform phase modulation according to the intensity pattern irradiated on the writing surface W, it has a high resolution wavefront correction capability.

【0021】波面を乱す擾乱媒質となる収差をもった人
の眼の角膜及び水晶体は、上述のとおり、レンズL2と
L3により位相変調面Rに結像されるように配置され
る。
As described above, the cornea and lens of the human eye having an aberration that becomes a disturbing medium that disturbs the wavefront are arranged so as to form an image on the phase modulation surface R by the lenses L2 and L3.

【0022】この光学系においては、光書き込み型液晶
空間位相変調素子の位相変調面Rの位相が角膜及び水晶
体に存在する収差と向きが反対で大きさがその半分の分
布となると、反射の過程で両者が相殺し合い、このカメ
ラ装置における角膜及び水晶体の収差の影響が除去され
る。このとき、角膜および水晶体の収差の影響によって
ぼやけていた眼底観察用カメラ上の像は、鮮明な像へと
変化する。
In this optical system, when the phase of the phase modulation surface R of the optical writing type liquid crystal spatial phase modulator is opposite in direction to the aberration existing in the cornea and the crystalline lens and its size is half the distribution, the reflection process is performed. The two cancel each other out, and the influence of the aberration of the cornea and the crystalline lens in this camera device is removed. At this time, the image on the fundus observing camera, which was blurred due to the influence of the aberration of the cornea and the crystalline lens, changes to a clear image.

【0023】次に補償光学装置について説明する。補償
光学装置駆動用レーザー光は、上記のとおり、光書き込
み型液晶空間位相変調素子の位相変調面Rで反射されビ
ームスプリッターBS4を通過し、ビームスプリッター
BS3を経て、レンズL5とレンズL6、反射鏡を介し
てマッハ・ツェンダー型干渉計に入射する。
Next, the adaptive optics device will be described. As described above, the laser light for driving the adaptive optics device is reflected by the phase modulation surface R of the optical writing type liquid crystal spatial phase modulation element, passes through the beam splitter BS4, passes through the beam splitter BS3, and the lenses L5, L6 and the reflecting mirror. And enters the Mach-Zehnder interferometer via.

【0024】この干渉計では、光波の垂直偏光成分が偏
光ビームスプリッターPBSで反射され、レンズL7、
反射鏡とレンズL8、半波長板、さらにビームスプリッ
ターBS5を介して高感度CCDカメラに入射される。
一方、水平偏光成分は偏光ビームスプリッターPBSを
透過し、レンズL9とL10によりその大きさが拡大さ
れ乱れた波面から擬似的に参照平面波が形成され、反射
鏡及びビームスプリッターBS5を介して高感度CCD
カメラに入射される。これらの二つの光波により角膜及
び水晶体に存在する収差を忠実に反映した干渉縞が形成
され、この干渉縞が高感度CCDカメラによって撮影さ
れる。
In this interferometer, the vertically polarized component of the light wave is reflected by the polarization beam splitter PBS, and the lens L7,
The light enters the high-sensitivity CCD camera through the reflecting mirror, the lens L8, the half-wave plate, and the beam splitter BS5.
On the other hand, the horizontal polarization component transmits through the polarization beam splitter PBS, the size of which is enlarged by the lenses L9 and L10 and a pseudo reference plane wave is formed from the disturbed wavefront, and the high sensitivity CCD is transmitted through the reflecting mirror and the beam splitter BS5.
It is incident on the camera. These two light waves form interference fringes that faithfully reflect the aberrations existing in the cornea and crystalline lens, and these interference fringes are photographed by a high-sensitivity CCD camera.

【0025】なお、干渉縞を形成するためには重ね合わ
せられる二光波の偏光方向を揃える必要があるため、半
波長板を導入して一方の光波の偏光方向を90度回転さ
せ、二光波の偏光方向を揃えている。また、この補償光
学装置を駆動するためのレーザー光源の偏光方向と、そ
れと直交する偏光成分の光波を透過するように配置され
た偏光板は重ね合わせられる二光波の強度が等しくなる
ように調整する。
Since it is necessary to align the polarization directions of the two light waves to be superimposed in order to form the interference fringes, a half-wave plate is introduced to rotate the polarization direction of one light wave by 90 degrees and The polarization directions are aligned. Further, the polarization direction of the laser light source for driving this adaptive optics device and the polarizing plate arranged so as to transmit the light wave of the polarization component orthogonal to it are adjusted so that the two light waves to be superposed have the same intensity. .

【0026】上記のように高感度CCDカメラで撮影さ
れた干渉縞の電気的映像信号は、液晶ディスプレイ上に
二次元画像として表示される。この液晶ディスプレイ上
の二次元画像は光源からの投光で結像レンズ系L11、
L12を通して光書き込み型液晶空間位相変調素子の書
き込み面W(位相変調面Rの裏側)に結像される。
The electrical image signal of the interference fringes photographed by the high sensitivity CCD camera as described above is displayed as a two-dimensional image on the liquid crystal display. The two-dimensional image on the liquid crystal display is projected by a light source to form an imaging lens system L11,
An image is formed on the writing surface W (the back side of the phase modulation surface R) of the optically writable liquid crystal spatial phase modulation element through L12.

【0027】レンズL9とL10については、参照平面
波を作成するための拡大率に合わせて決定する(例え
ば、5倍の拡大率を得るためには、レンズL9とL10
の焦点距離の比を1対5にする)。以上を実現すると、
光書き込み型液晶空間位相変調素子の偏光依存性によ
り、素子の位相変調面では、入射光のうち垂直偏光成分
の光波のみの位相が変調されることになり、フィードバ
ック干渉計が実現される。その結果、光書き込み型液晶
空間位相変調素子の位相変調面の位相分布が角膜及び水
晶体に存在する収差やゆらぎを打ち消すような分布とな
り、補償光学システムとして動作することになる。
The lenses L9 and L10 are determined according to the magnifying power for creating the reference plane wave (for example, to obtain a magnifying power of 5 times, the lenses L9 and L10 are determined).
The ratio of the focal lengths is 1 to 5). When the above is realized,
Due to the polarization dependence of the optical writing type liquid crystal spatial phase modulation element, the phase of only the light wave of the vertically polarized component of the incident light is modulated on the phase modulation surface of the element, and a feedback interferometer is realized. As a result, the phase distribution of the phase modulation surface of the optical writing type liquid crystal spatial phase modulation element becomes a distribution that cancels the aberrations and fluctuations existing in the cornea and the crystalline lens, and operates as an adaptive optical system.

【0028】以上本発明に係る眼底カメラ装置の実施の
形態を実施例に基づいて説明したが、本発明はこのよう
な実施例に限定されることなく特許請求の範囲記載の範
囲内でいろいろな実施例があることは言うまでもない。
Although the embodiments of the fundus camera device according to the present invention have been described based on the embodiments, the present invention is not limited to such embodiments and various modifications can be made within the scope of the claims. It goes without saying that there are examples.

【0029】[0029]

【発明の効果】以上の構成から成る本発明によると、小
形で安価な装置であって消費電力が少なく、眼底カメラ
の分解能を損なう原因となる角膜及び水晶体の歪みをコ
ンピュータによる計算を必要とせずに高分解能かつ実時
間で効果的に補正することができるようにした補償光学
装置付き眼底カメラを実現できる。
According to the present invention having the above-described structure, a small and inexpensive device which consumes less power and does not require calculation by a computer of distortion of the cornea and crystalline lens, which causes deterioration of resolution of the fundus camera. In addition, it is possible to realize a fundus camera with an adaptive optics device capable of effectively performing correction with high resolution and in real time.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の基本的構成において、主に眼底カメラ
光学系を示す光学機器構成図である。
FIG. 1 is a configuration diagram of an optical device mainly showing a fundus camera optical system in a basic configuration of the present invention.

【図2】本発明の基本的構成において、主に、位相変調
器ユニットと光波干渉計から成る補償光学装置を示す光
学機器構成図である。
FIG. 2 is a configuration diagram of an optical device showing a compensating optical device mainly including a phase modulator unit and a light wave interferometer in a basic configuration of the present invention.

【図3】形状可変鏡を用いた従来の補償光学システムの
概念図である。
FIG. 3 is a conceptual diagram of a conventional adaptive optics system using a deformable mirror.

【符号の説明】[Explanation of symbols]

BS1、BS2、BS3、BS4、BS5 ビームス
プリッター L1、L2、L3、L4、L5、L6、L7、L8、L
9、L10、L11、L12 レンズ PBS 偏光ビームスプリッター R 光書込み型液晶空間位相変調素子の位相変調面 W 光書込み型液晶空間位相変調素子の書込み面
BS1, BS2, BS3, BS4, BS5 Beam splitters L1, L2, L3, L4, L5, L6, L7, L8, L
9, L10, L11, L12 Lens PBS Polarization beam splitter R Phase modulation surface of optical writing type liquid crystal spatial phase modulation element W Writing surface of optical writing type liquid crystal spatial phase modulation element

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 眼底カメラ光学系、及び光書き込み型空
間位相変調素子と光波干渉計で構成される補償光学装置
とを有し、人の眼の角膜及び水晶体に存在する複雑な収
差に起因する網膜から反射された撮像光の波面歪みに対
して逆方向の波面歪みを生み出す位相分布を上記補償光
学装置によって上記光書き込み型空間位相変調素子の位
相変調面に形成し、上記撮像光を上記位相変調面で反射
させることにより、上記撮像光の波面歪みを相殺して波
面歪みの補償を行い分解能を向上させる補償光学装置付
き眼底カメラであって、 上記眼底カメラ光学系は、照明光を眼球内に照射し、網
膜からの反射光を眼の瞳孔と共役な位置にある上記光書
き込み型空間位相変調素子の位相変調面で反射させ、そ
れを眼底観察用カメラに結像させる光学系を有し、 さらに、上記眼底カメラ光学系は、補償光学装置駆動用
レーザー光を眼球内に照射し、網膜上の1点に収束さ
せ、その反射光を上記位相変調面で反射させ、それを補
償光学装置に導入する光学系とを有し、 上記補償光学装置は、上記位相変調面で反射した上記補
償光学装置駆動用レーザー光を上記光波干渉計に導入す
ることにより角膜及び水晶体に存在する収差を反映した
干渉縞を得て、上記光書き込み型空間位相変調素子の書
き込み面にこれを照射することにより角膜及び水晶体に
存在する収差を打ち消すような位相分布を上記位相変調
面に形成することを特徴とする補償光学装置付き眼底カ
メラ。
1. A fundus camera optical system, and an adaptive optical device composed of an optical writing type spatial phase modulator and a light wave interferometer, which are caused by complicated aberrations existing in the cornea and lens of the human eye. A phase distribution that produces a wavefront distortion in a direction opposite to the wavefront distortion of the imaging light reflected from the retina is formed on the phase modulation surface of the optical writing type spatial phase modulation element by the adaptive optics device, and the imaging light is converted into the phase. A fundus camera with an adaptive optics device for compensating the wavefront distortion of the imaging light to improve the resolution by reflecting the wavefront distortion of the imaging light by reflecting the light on the inside of the eyeball. It has an optical system that irradiates the retina and reflects the reflected light from the retina on the phase modulation surface of the optical writing type spatial phase modulation element at a position conjugate with the pupil of the eye and forms an image on the fundus observation camera. Further, the fundus camera optical system irradiates the adaptive optics driving laser light into the eyeball, converges it on one point on the retina, reflects the reflected light on the phase modulation surface, and makes it the adaptive optics. And an optical system to be introduced, wherein the adaptive optics device reflects the aberration existing in the cornea and the crystalline lens by introducing the adaptive optics device driving laser beam reflected by the phase modulation surface into the light wave interferometer. By obtaining interference fringes and irradiating the writing surface of the optical writing type spatial phase modulation element with this, a phase distribution that cancels aberrations existing in the cornea and the crystalline lens is formed on the phase modulation surface. Fundus camera with adaptive optics.
【請求項2】 上記干渉縞を高感度CCDカメラで撮像
し、この撮像データを投影装置により上記光書き込み型
空間位相変調素子の書き込み面に書き込むことを特徴と
する請求項1記載の補償光学装置付き眼底カメラ。
2. The adaptive optics apparatus according to claim 1, wherein the interference fringes are imaged by a high-sensitivity CCD camera, and the imaged data is written on a writing surface of the optical writing type spatial phase modulator by a projection device. Fundus camera with.
JP2001316745A 2001-10-15 2001-10-15 Fundus camera with adaptive optics Expired - Lifetime JP3627014B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001316745A JP3627014B2 (en) 2001-10-15 2001-10-15 Fundus camera with adaptive optics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001316745A JP3627014B2 (en) 2001-10-15 2001-10-15 Fundus camera with adaptive optics

Publications (2)

Publication Number Publication Date
JP2003116792A true JP2003116792A (en) 2003-04-22
JP3627014B2 JP3627014B2 (en) 2005-03-09

Family

ID=19134704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001316745A Expired - Lifetime JP3627014B2 (en) 2001-10-15 2001-10-15 Fundus camera with adaptive optics

Country Status (1)

Country Link
JP (1) JP3627014B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004096034A1 (en) * 2003-04-30 2004-11-11 Kabushiki Kaisha Topcon Eyeground observation device and eyeground observation method
JP2007014569A (en) * 2005-07-08 2007-01-25 Nidek Co Ltd Ophthalmologic imaging apparatus
DE102006061932A1 (en) 2006-12-21 2008-07-10 Carl Zeiss Meditec Ag Arrangement of ophthalmic devices for improving fundus images
JP2010259543A (en) * 2009-04-30 2010-11-18 Nidek Co Ltd Fundus photographing device
CN103284687A (en) * 2009-10-23 2013-09-11 佳能株式会社 Ophthalmology imaging device and ophthalmology imaging method
JP2013230402A (en) * 2013-08-19 2013-11-14 Canon Inc Ophthalmologic imaging apparatus

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004096034A1 (en) * 2003-04-30 2004-11-11 Kabushiki Kaisha Topcon Eyeground observation device and eyeground observation method
US7270415B2 (en) 2003-04-30 2007-09-18 Kabushiki Kaisha Topcon Retina observation apparatus and retina observation method
JP2007014569A (en) * 2005-07-08 2007-01-25 Nidek Co Ltd Ophthalmologic imaging apparatus
JP4653577B2 (en) * 2005-07-08 2011-03-16 株式会社ニデック Ophthalmic imaging equipment
DE102006061932A1 (en) 2006-12-21 2008-07-10 Carl Zeiss Meditec Ag Arrangement of ophthalmic devices for improving fundus images
JP2010512878A (en) * 2006-12-21 2010-04-30 カール ツァイス メディテック アクチエンゲゼルシャフト Optical device for improving the quality of fundus images for various ophthalmic devices
JP2010259543A (en) * 2009-04-30 2010-11-18 Nidek Co Ltd Fundus photographing device
CN103284687A (en) * 2009-10-23 2013-09-11 佳能株式会社 Ophthalmology imaging device and ophthalmology imaging method
JP2013230402A (en) * 2013-08-19 2013-11-14 Canon Inc Ophthalmologic imaging apparatus

Also Published As

Publication number Publication date
JP3627014B2 (en) 2005-03-09

Similar Documents

Publication Publication Date Title
US7367672B2 (en) Ophthalmic observation apparatus
US8716677B2 (en) Wavefront correction of light beam
TWI564539B (en) Optical system, method for illumination control in the same and non-transitory computer-readable medium
US20060274408A1 (en) Microscope for diffracting objects
JP4664031B2 (en) Optical pattern forming method and apparatus, and optical tweezers
JP6097542B2 (en) Compensating optical device, compensating optical device control method, image acquisition device, and program
US6911637B1 (en) Wavefront phase sensors using optically or electrically controlled phase spatial light modulators
JP6963506B2 (en) Display system and display method
JP2011087830A5 (en) Compensating optical device, imaging device including compensating optical device, and compensating optical method
JP2011087829A5 (en) Compensating optical device, imaging device, and compensating optical method
JP4920461B2 (en) Wavefront aberration correction device
CN105785609B (en) Wavefront correction method and device based on transmission type liquid crystal spatial light modulator
US6486943B1 (en) Methods and apparatus for measurement and correction of optical aberration
US7490939B2 (en) Eye characteristics measuring system
JP2008220770A (en) Wavefront aberration correction apparatus
JP2007518998A (en) Apparatus and method for measuring fringe contrast in a Michelson interferometer and optometry system having the apparatus
JP3627014B2 (en) Fundus camera with adaptive optics
US9618743B2 (en) Adaptive optics system with polarization sensitive spatial light modulators
JP3455775B2 (en) Optically driven wavefront correction imaging method and apparatus
CN102188231A (en) Zoom multi-channel microscopic imaging system of eye retina
CN113805346A (en) Light field real-time detection regulation and control method and device
JP3951021B2 (en) How to create a reference point light source for adaptive optics
JP6102369B2 (en) Fundus photographing device
CN115120177A (en) Miniaturized retina imaging device and imaging method
JP6572560B2 (en) Fundus imaging device with wavefront compensation

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041102

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350