JP2003116222A - Self-sustaining control method for distributed power supply device - Google Patents

Self-sustaining control method for distributed power supply device

Info

Publication number
JP2003116222A
JP2003116222A JP2001308548A JP2001308548A JP2003116222A JP 2003116222 A JP2003116222 A JP 2003116222A JP 2001308548 A JP2001308548 A JP 2001308548A JP 2001308548 A JP2001308548 A JP 2001308548A JP 2003116222 A JP2003116222 A JP 2003116222A
Authority
JP
Japan
Prior art keywords
phase
voltage
control
output
inverter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001308548A
Other languages
Japanese (ja)
Inventor
Norio Sakae
紀雄 栄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Electric Co Ltd
Original Assignee
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electric Co Ltd filed Critical Nissin Electric Co Ltd
Priority to JP2001308548A priority Critical patent/JP2003116222A/en
Publication of JP2003116222A publication Critical patent/JP2003116222A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/50Arrangements for eliminating or reducing asymmetry in polyphase networks

Abstract

PROBLEM TO BE SOLVED: To prevent voltage unbalancing of a three-phase AC output of an inverter by power supply to a single-phase load without using a Scott connection transformer or the like in a distributed power supply device for a photovoltaic power plant or the like. SOLUTION: When the distributed power supply device is disconnected from a system and operated by self-sustaining to supply the AC output to the load, a detected voltage of the AC output is converted into a two-phase voltage by three/two phase conversion and an effective value of the two-phase voltage for every phase is computed. Respective voltage errors of the two-phase voltage are obtained from a gap between a voltage command value of the AC output and the effective value of the two-phase voltage respectively, two-phase control errors of constant voltage control based on the respective voltage errors of the two-phase voltage are obtained, and the respective two-phase control errors are added to the voltage command value to determine the respective control command values for the two-phase voltage and to form three-phase control command values of the constant voltage control for the inverter by the two/ three-phase conversion of the control command values of the two-phase voltage.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、太陽光発電装置等
の分散型電源装置の自立運転制御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an independent operation control method for a distributed power supply such as a photovoltaic power generator.

【0002】[0002]

【従来の技術】一般に、太陽光発電装置等のいわゆる自
家用発電装置が形成する分散型電源装置は、図5のブロ
ック結線図に示すように形成される。
2. Description of the Related Art In general, a distributed power supply device formed by a so-called private power generation device such as a photovoltaic power generation device is formed as shown in a block diagram of FIG.

【0003】図5は太陽光発電装置の場合の概略構成を
示し、直流電源としての太陽電池1の直流出力がブロッ
キングダイオード2,電解コンデンサからなる入力側の
コンデンサ3を介して3相のDC/ACインバータ4に
供給される。
FIG. 5 shows a schematic configuration of a photovoltaic power generator, in which a DC output of a solar cell 1 as a DC power supply is supplied via a blocking diode 2 and an input side capacitor 3 composed of an electrolytic capacitor. It is supplied to the AC inverter 4.

【0004】このインバータ4は、通常は、駆動制御部
5により連系運転制御され、この制御により、FET,
IGBT等の各電力用半導体スイッチ6がスイッチング
し、前記の直流出力を、交流電源7に同期した系統周波
数の3相交流に変換する。
[0004] Normally, the inverter 4 is connected and controlled by a drive control unit 5 to control the FET,
Each power semiconductor switch 6 such as an IGBT is switched to convert the DC output into a three-phase AC having a system frequency synchronized with the AC power supply 7.

【0005】なお、各電力用半導体スイッチ6には、そ
れぞれ放電路用のダイオード8が逆並列接続されてい
る。
[0005] Each power semiconductor switch 6 is connected in reverse parallel with a diode 8 for a discharge path.

【0006】そして、前記の連系運転制御に基づくイン
バータ4の3相交流電力が、3相交流リアクトル9,3
相フィルタコンデンサ10の交流フィルタ,電磁接触型
の第1,第2の連系開閉器11,12を介して系統母線
13の各負荷(図示せず)に給電される。
Then, the three-phase AC power of the inverter 4 based on the above-mentioned interconnection operation control is supplied to the three-phase AC reactors 9, 3
Power is supplied to each load (not shown) of the system bus 13 through the AC filter of the phase filter capacitor 10 and the first and second interconnection switches 11 and 12 of the electromagnetic contact type.

【0007】つぎに、災害の発生等によって系統が停電
すると、主に系統側での感電防止を目的として、図示省
略された開閉器制御部が開閉器11,12を開放し、太
陽光発電装置が系統から切離されるとともに、駆動制御
部5によってインバータ4の運転が一旦停止される。
Next, when a power failure occurs in the system due to a disaster or the like, a switch control unit (not shown) opens switches 11 and 12 mainly for the purpose of preventing electric shock on the system side, and the photovoltaic power generator Is disconnected from the system, and the operation of the inverter 4 is temporarily stopped by the drive control unit 5.

【0008】その後,手動又は自動の運転切換えにより
太陽光発電装置が自立運転に移行し、駆動制御部5がイ
ンバータ4を自立運転制御し、このとき、前記開閉器制
御部により、電磁接触器型の自立給電用開閉器14が閉
成される。
Thereafter, the photovoltaic power generator shifts to a self-sustaining operation by manual or automatic operation switching, and the drive control unit 5 controls the self-sustaining operation of the inverter 4. At this time, the switch control unit controls the electromagnetic contactor type. Is closed.

【0009】そして、駆動制御部5の自立運転制御によ
り、インバータ4は系統定格電圧に定電圧制御された系
統基本波周波数の3相の交流出力を開閉器14を介して
構内の自立給電母線15の負荷に給電する。
Under the independent operation control of the drive control unit 5, the inverter 4 outputs the three-phase AC output of the system fundamental wave frequency, which is constant-voltage controlled to the system rated voltage, via the switch 14, and the self-contained power supply bus 15 in the premises. Power to the load.

【0010】ところで、連系運転時及び自立運転時に発
電装置内,外の電圧,電流を監視検出してインバータ4
の運転を制御するため、図5の一部の詳細な結線を示し
た図6の単線結線図に示すように、駆動制御部5はA/
D変換回路5a,マイクロコンピュータからなるデジタ
ル演算回路5b及び駆動パルス出力回路5cを有する。
During the interconnection operation and the self-sustaining operation, the voltage and the current inside and outside the power generator are monitored and detected, and the inverter 4 is operated.
In order to control the operation of the motor, as shown in the single-line diagram of FIG. 6 showing a part of the detailed connection of FIG.
It has a D conversion circuit 5a, a digital operation circuit 5b composed of a microcomputer, and a drive pulse output circuit 5c.

【0011】また、インバータ4の入力側の直流電圧
(電池電圧)が電圧検出器16により検出され、インバ
ータ4の出力側の各相の交流電流(インバータ電流),
2相又は3相の交流電圧(インバータ電圧)が電流検出
器17,電圧検出器18により検出され、母線13の各
相の系統電圧が電圧検出器19により検出される。
A DC voltage (battery voltage) on the input side of the inverter 4 is detected by a voltage detector 16, and an AC current (inverter current) of each phase on the output side of the inverter 4 is detected.
A two-phase or three-phase AC voltage (inverter voltage) is detected by the current detector 17 and the voltage detector 18, and a system voltage of each phase of the bus 13 is detected by the voltage detector 19.

【0012】そして、検出器16,18,19の電圧検
出信号及び検出器17の電流検出信号は、A/D変換回
路5aによりそれぞれデジタルデータに変換されて演算
回路5bに与えられる。なお、検出器19の電圧検出信
号は前記の開閉器制御部にも与えられる。
The voltage detection signals of the detectors 16, 18, and 19 and the current detection signal of the detector 17 are converted into digital data by an A / D conversion circuit 5a and supplied to an arithmetic circuit 5b. Note that the voltage detection signal of the detector 19 is also supplied to the switch control unit.

【0013】つぎに、演算回路5bは入力された検出電
圧,検出電流のデータを参照して設定された運転制御プ
ログラムを実行し、出力回路5cに3相の駆動制御信号
を供給する。
Next, the arithmetic circuit 5b executes the set operation control program with reference to the input detection voltage and detection current data, and supplies a three-phase drive control signal to the output circuit 5c.

【0014】さらに、出力回路5cは与えられた駆動制
御信号にしたがって3相の駆動パルスを形成し、これら
のパルスをインバータ4に供給して各相の半導体スイッ
チ6をスイッチングする。
Further, the output circuit 5c forms three-phase drive pulses according to the applied drive control signal, and supplies these pulses to the inverter 4 to switch the semiconductor switch 6 of each phase.

【0015】そして、系統正常時は、演算回路5bの連
系運転制御により、出力回路5cが系統に同期した3相
の駆動パルスを形成し、これらの駆動パルスにより、イ
ンバータ4が系統に同期して連系運転される。
When the system is normal, the output circuit 5c forms three-phase drive pulses synchronized with the system by the interconnection operation control of the arithmetic circuit 5b, and the inverter 4 is synchronized with the system by these drive pulses. Connected operation.

【0016】一方、災害等で系統停電が発生すると、開
閉器11,12が開放されて太陽光発電装置が系統から
切離され、演算回路5bが駆動制御信号の出力を停止し
てインバータ4の運転が停止する。
On the other hand, when a system power failure occurs due to a disaster or the like, the switches 11 and 12 are opened to disconnect the photovoltaic power generator from the system, and the arithmetic circuit 5b stops outputting the drive control signal and the inverter 4 Operation stops.

【0017】その後、自立運転に移行すると、演算回路
5bは、従来、図7の自立運転制御を実行する。
Thereafter, when the operation shifts to the self-sustaining operation, the arithmetic circuit 5b conventionally executes the self-sustaining operation control shown in FIG.

【0018】そして、インバータ4の交流出力の3相を
3軸U,V,Wの各相とすると、図7のステップA1
より、3相の検出電圧Vu,Vv,Vwの和(ベクトル
和)が0になることを条件として、検出器18の例えば
U相,W相の検出電圧Vu,Vwを、3軸U,V,Wの3
相電圧を2軸α,βの2相電圧に変換する、つぎの数1
の式の3相/2相変換により、軸α,βの2相電圧
a,Vb(ベクトル値)に変換する。
[0018] Then, the sum of 3-phase 3-axis U of the AC output of the inverter 4, V, when the phases of W, at step A 1 in FIG. 7, the detected three-phase voltage V u, V v, V w Under the condition that (vector sum) becomes 0, the detection voltages V u , V w of the U-phase and the W-phase of the detector 18 are changed to three axes U, V, W, respectively.
The following equation 1 converts the phase voltage into a two-phase voltage of two axes α and β.
Is converted into two-phase voltages V a and V b (vector values) of the axes α and β by the three-phase / two-phase conversion of the following equation.

【0019】[0019]

【数1】 (Equation 1)

【0020】さらに、ステップA2 により、電圧Va
bで表わされたインバータ4の交流出力(インバータ
出力電圧)の実効値Vab・rmsを、つぎの数2の式の3相
一括実効値演算から求める。
Furthermore, in step A 2, the voltage V a,
An effective value V ab · rms of the AC output (inverter output voltage) of the inverter 4 represented by V b is obtained from a three-phase collective effective value calculation of the following equation (2).

【0021】[0021]

【数2】 (Equation 2)

【0022】つぎに、ステップA3 により、実効値V
ab・rmsがインバータ4の出力電圧指令値VACになるよう
に、実効値Vab・rmsに基づくP(比例)I(積分)制御
演算を行う。
[0022] Next, in step A 3, the effective value V
As ab · rms is the output voltage command value V AC inverter 4 performs P (proportional) I (integral) control operation based on the effective value V ab · rms.

【0023】具体的には、まず、つぎの数3の式の演算
から、インバータ4の交流出力の3相一括の電圧誤差Δ
ACを求める。
Specifically, first, from the calculation of the following equation (3), the three-phase voltage error Δ
Find VAC.

【0024】[0024]

【数3】 [Equation 3]

【0025】そして、つぎの数4の2式の演算から、イ
ンバータ4の交流出力の3相一括PI制御の比例制御電
圧VP,積分制御電圧VIを求める。なお、式中のPG
Gは設定された比例定数,積分定数である。
Then, the proportional control voltage V P and the integral control voltage V I for the three-phase batch PI control of the AC output of the inverter 4 are obtained from the calculation of the following equation (2). Note that P G ,
IG is a set proportional constant and integral constant.

【0026】[0026]

【数4】 (Equation 4)

【0027】さらに、つぎの数5の式の演算により電圧
P,VIを加算合成し、インバータ4の3相一括の制御
誤差(電圧制御ゲイン)VPIを求める。
Further, the voltages V P and V I are added and synthesized by the calculation of the following equation (5) to obtain a control error (voltage control gain) V PI for the three phases of the inverter 4.

【0028】[0028]

【数5】 (Equation 5)

【0029】そして、ステップA4 により出力電圧指令
値VACに制御誤差VPIを加算し、つぎの数6の2式に示
す2相電圧Va,Vbの同一の制御指令値(振幅制御値)
a・ ref,Vb・refを求めて決定する。
[0029] Then, by adding the control error V PI to the output voltage command value V AC in step A 4, 2-phase voltage shown in two equations in the number of the next 6 V a, the same control command value V b (amplitude control value)
Va · ref and Vb · ref are determined.

【0030】[0030]

【数6】 (Equation 6)

【0031】つぎに、系統基本波の位相情報θに基づく
つぎの数7の2式の演算から、制御指令値Va・ref,V
b・refに位相情報θを加えた制御指令値Va・REF,V
b・REFを求める。
Next, the control command values Va · ref , V
Control command value Va · REF , V obtained by adding phase information θ to b · ref
Find b REF .

【0032】[0032]

【数7】 (Equation 7)

【0033】さらに、ステップA5 により、指令値V
a・REF,Vb・REFに、つぎの数8の式に示す2相/3相変
換を施し、定電圧制御の3相制御指令値(制御信号)V
u・REF,Vv・REF,Vw・REFを得、この3相制御指令値V
u・REF〜Vw・REFの駆動制御信号を出力回路5cに供給す
る。
Furthermore, in step A 5, the command value V
a · REF and Vb · REF are subjected to two-phase / three-phase conversion shown in the following equation (8) to obtain a three-phase control command value (control signal) V for constant voltage control.
u · REF , Vv · REF and Vw · REF are obtained, and the three-phase control command value V
supplies a drive control signal u · REF ~V w · REF to the output circuit 5c.

【0034】[0034]

【数8】 (Equation 8)

【0035】そして、出力回路5cにより制御指令値V
u・REF〜Vw・REFに応じたパルス幅の3相の駆動パルスを
形成し、これらの駆動パルスにより、インバータ4の各
相の半導体スイッチ6をスイッチングし、インバータ4
の3相交流出力の電圧を指令値VACの電圧に定電圧制御
する。
The control command value V is output from the output circuit 5c.
A three-phase drive pulse having a pulse width corresponding to u · REF to Vw · REF is formed, and the semiconductor switch 6 of each phase of the inverter 4 is switched by these drive pulses.
A constant voltage control to the command value V AC voltage to the voltage of the three-phase AC output.

【0036】[0036]

【発明が解決しようとする課題】前記従来のこの種の分
散型電源装置においては、自立運転時、インバータ4の
交流出力の電圧を、前記数2の式の3相一括実効値演算
等に基づく3相一括制御により、3相全体として、出力
電圧指令値VACの一定電圧(一定振幅)になるように制
御する。
In the conventional distributed power supply of this type, the voltage of the AC output of the inverter 4 during the self-sustaining operation is calculated based on the three-phase collective effective value calculation of the equation (2). By the three-phase collective control, control is performed so that the output voltage command value VAC has a constant voltage (constant amplitude) for the entire three phases.

【0037】そのため、自立運転時のインバータ4の3
相出力が供給される自立給電母線15に、3相負荷だけ
でなく単相負荷が直接接続されると、3相全体では一定
電圧に制御されても、単相負荷が接続された相の電圧は
低下し、単相負荷が接続されていない相の電圧は上昇
し、各相の電圧不平衡が生じ、単相負荷の容量や台数に
よっては相間の著しい電圧不平衡を招来する。
For this reason, the third inverter 4 in the self-sustaining operation
When a single-phase load as well as a three-phase load is directly connected to the self-contained power supply bus 15 to which a phase output is supplied, the voltage of the phase to which the single-phase load is connected even if the entire three phases are controlled to a constant voltage. The voltage of the phase to which the single-phase load is not connected rises, and the voltage imbalance of each phase occurs, and depending on the capacity and the number of single-phase loads, a significant voltage imbalance between phases occurs.

【0038】そして、この電圧不平衡を防止するため、
単相負荷を各相に均等に配分して接続し、各相が単相負
荷を均等に分担することが考えられるが、そのような負
荷配分を実現することは、実用上は困難である。
Then, in order to prevent this voltage imbalance,
It is conceivable that a single-phase load is equally distributed and connected to each phase, and each phase equally shares the single-phase load. However, it is practically difficult to realize such a load distribution.

【0039】そこで、従来は図5に示すように、自立給
電母線15にスコット結線変圧器20を設け、この変圧
器20の2次側に単相負荷21を接続するようにし、単
相負荷が接続されても、インバータ4側(電源側)から
みて3相平衡負荷になるようにしている。なお、図中の
22は母線15の3相負荷を示す。
Therefore, conventionally, as shown in FIG. 5, a Scott connection transformer 20 is provided on the self-contained power supply bus 15 and a single-phase load 21 is connected to the secondary side of the transformer 20 so that the single-phase load is reduced. Even if it is connected, the load becomes a three-phase balanced load when viewed from the inverter 4 side (power supply side). In addition, 22 in the figure indicates a three-phase load of the bus 15.

【0040】したがって、従来はこの種の分散型電源装
置の自立運転制御を行う場合、単相負荷の接続によるイ
ンバータ4の交流出力の電圧の3相不平衡を防止するた
め、複雑かつ高価なスコット結線変圧器20を要する問
題点がある。
Therefore, conventionally, when performing independent operation control of this type of distributed power supply device, a complicated and expensive Scott is used in order to prevent three-phase imbalance of the voltage of the AC output of the inverter 4 by connecting a single-phase load. There is a problem that requires the connection transformer 20.

【0041】本発明は、この種の分散型電源装置におい
て、スコット結線変圧器20等を用いることなく、単相
負荷への給電によるインバータの交流出力の3相電圧不
平衡が生じないようにすることを課題とする。
According to the present invention, in a distributed power supply of this type, the three-phase voltage imbalance of the AC output of the inverter due to the power supply to the single-phase load does not occur without using the Scott connection transformer 20 or the like. That is the task.

【0042】[0042]

【課題を解決するための手段】前記の課題を解決するた
めに、本発明の自立運転制御方法はおいては、太陽電池
等の直流電源をインバータにより3相交流出力に変換す
る分散型電源装置が系統から切離されて自立運転で動作
し、インバータ3の3相交流出力に定電圧制御して負荷
に給電するときに、交流出力の検出電圧を3相/2相変
換により2相電圧に変換し、2相電圧の相毎の実効値を
演算し、交流出力の電圧指令値と2相電圧の実効値それ
ぞれとの差から2相電圧それぞれの電圧誤差を求め、2
相電圧の電圧誤差それぞれに基づく定電圧制御の2相の
制御誤差を求め、電圧指令値に2相の制御誤差それぞれ
を加算して2相電圧それぞれの制御指令値を決定し、2
相電圧の制御指令値の2相/3相変換によりインバータ
の定電圧制御の3相制御指令値を形成する。
In order to solve the above-mentioned problems, a self-sustaining operation control method according to the present invention comprises a distributed power supply device for converting a DC power supply such as a solar cell into a three-phase AC output by an inverter. It is disconnected from the system and operates in a self-sustaining operation, and when a constant voltage control is applied to the three-phase AC output of the inverter 3 to supply power to the load, the detected voltage of the AC output is converted to a two-phase voltage by three-phase / two-phase conversion Then, an effective value of each phase of the two-phase voltage is calculated, and a voltage error of each of the two-phase voltages is obtained from a difference between a voltage command value of the AC output and each of the effective values of the two-phase voltages.
A two-phase control error of the constant voltage control based on each voltage error of the phase voltage is obtained, and each of the two-phase control errors is added to the voltage command value to determine a control command value of each of the two-phase voltages.
A three-phase control command value for constant voltage control of the inverter is formed by two-phase / three-phase conversion of the control command value of the phase voltage.

【0043】したがって、自立運転時、インバータの3
相交流出力の3相/2相変換により得られた2相電圧に
基づき、インバータの交流出力の実効値が、前記数2の
式の3相一括の演算でなく、3相/2相変換後の2相電
圧の相毎に演算で求められる。
Therefore, during autonomous operation, the inverter 3
On the basis of the two-phase voltage obtained by the three-phase / two-phase conversion of the three-phase AC output, the effective value of the AC output of the inverter is determined by the three-phase / two-phase conversion instead of the three-phase batch operation of the equation (2). Is calculated for each phase of the two-phase voltage.

【0044】さらに、インバータの交流出力の電圧指令
値と前記2相電圧の相毎の実効値それぞれとの差から相
毎の電圧誤差が求められ、これらの電圧誤差に基づき、
前記2相電圧の相毎に個別に、インバータの定電圧制御
の制御誤差が求められて制御指令値が決定される。
Further, a voltage error for each phase is determined from a difference between the voltage command value of the AC output of the inverter and the effective value for each phase of the two-phase voltage, and based on these voltage errors,
A control error of the constant voltage control of the inverter is determined individually for each phase of the two-phase voltage, and a control command value is determined.

【0045】そして、これらの制御指令値の2相/3相
変換により、インバータの交流出力の制御指令値が相毎
に個別に求められ、これらの制御指令値に基づいてイン
バータの自立運転が制御される。
The control command values of the AC output of the inverter are individually obtained for each phase by two-phase / three-phase conversion of these control command values, and the independent operation of the inverter is controlled based on these control command values. Is done.

【0046】そして、定電圧制御の2相電圧の制御誤差
に基づいて、インバータの各相の電圧が、それぞれの変
動に追従して個別に抑制制御され、インバータの交流出
力の各相の電圧が、それぞれ制御指令値の電圧に定電圧
制御される。
Then, on the basis of the control error of the two-phase voltage of the constant voltage control, the voltage of each phase of the inverter is individually suppressed and controlled to follow each fluctuation, and the voltage of each phase of the AC output of the inverter is reduced. , And is controlled to a constant command voltage.

【0047】そのため、自立運転時のインバータの3相
の交流出力は、3相全体が定電圧制御されるとともに、
相毎にも定電圧制御され、単相負荷への給電に基づく相
間の電圧不平衡が、スコット結線変圧器を用いることな
く防止される。
Therefore, the three-phase AC output of the inverter during the self-sustained operation is controlled at a constant voltage for all three phases.
Constant voltage control is also performed for each phase, and voltage imbalance between phases based on power supply to a single-phase load is prevented without using a Scott connection transformer.

【0048】[0048]

【発明の実施の形態】本発明の実施の1形態につき、図
1〜図4を参照して説明する。この形態においては、図
2の太陽光発電装置の自立運転制御に適用する。図2に
おいて、図5と同一符号は同一もしくは相当するものを
示し、図2の太陽光発電装置が図5の従来装置と異なる
点は、まず、自立給電母線15に、従来のスコット結線
変圧器20を設けることなく、3相負荷22及び単相負
荷21が直接接続される点である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described with reference to FIGS. This embodiment is applied to the independent operation control of the photovoltaic power generator of FIG. In FIG. 2, the same reference numerals as those in FIG. 5 denote the same or corresponding elements, and the difference between the photovoltaic power generator of FIG. 2 and the conventional apparatus of FIG. The point is that the three-phase load 22 and the single-phase load 21 are directly connected without providing the 20.

【0049】さらに、自立運転時、駆動制御部5の図6
に示したデジタル演算回路5bにおいて、図1のステッ
プB1〜B5の自立運転制御を実行する点である。
Further, at the time of self-sustaining operation, the drive control unit 5 shown in FIG.
In the digital computing circuit 5b shown in a point to perform autonomous operation control of Step B 1 .about.B 5 in FIG.

【0050】そして、災害等で系統が停電して自立運転
に移行すると、ステップB1 により、図7のステップA
1と同様にして前記数1の式の演算から、3相の検出電
圧Vu,Vwを2相電圧Va,Vbに変換する。
[0050] When the system in disaster shifts to autonomous operation by a power failure, in step B 1, Step A of FIG. 7
1 from the calculation of a manner of the number 1 wherein the same manner as, and converts the detected voltage V u of the three phases, the V w 2-phase voltages V a, the V b.

【0051】つぎに、ステップB2により、2軸α,β
の電圧Va,Vbの3相一括の実効値Vab・rmsを求めるの
ではなく、電圧Va,Vbそれぞれの実効値Va・rms,V
b・rmsを、個別の二乗平均のデジタル演算で求める。
Next, in step B 2, 2 axis α, β
Voltage V a, instead of obtaining the effective value V ab · rms three phase batch of V b, the voltage V a, V b each effective value V a · rms, V
b · rms is obtained by digital arithmetic of individual root mean squares.

【0052】つぎに、ステップB3 により、実効値V
a・rms,Vb・rmsがそれぞれインバータ11の出力電圧
指令値VACになるように、実効値Va・rms,Vb・rmsの個
別のPI制御演算を行う。
Next, in step B 3, the effective value V
a · rms, as V b · rms is the output voltage command value V AC inverter 11, respectively, perform effective value V a · rms, individual PI control calculation of V b · rms.

【0053】このとき、まず、つぎの数9の2式の演算
から、指令値VACと実効値Va・rms,Vb・rmsそれぞれと
の電圧誤差ΔVa,ΔVbを求める。
At this time, first, voltage errors ΔV a and ΔV b between the command value VAC and the effective values Va · rms and Vb · rms are calculated from the following two equations (9).

【0054】[0054]

【数9】 (Equation 9)

【0055】また、つぎの数10の2式の演算から、イ
ンバータ4の交流出力の2相電圧V a,Vbそれぞれにつ
いてのPI制御の比例制御電圧Vap,Vbpを求める。な
お、式中のPGは設定された比例定数である。
Further, from the calculation of the following two equations of Expression 10,
Two-phase voltage V of AC output of inverter 4 a, VbOne for each
PI control proportional control voltage Vap, VbpAsk for. What
Contact, P in the formulaGIs a set proportionality constant.

【0056】[0056]

【数10】 (Equation 10)

【0057】さらに、つぎの数11の2式の演算から、
インバータ4の交流出力の2相電圧Va,Vbそれぞれに
ついてのPI制御の積分制御電圧VaI,VbIを求める。
なお、式中のIGは設定された積分定数である。
Further, from the calculation of the following two equations of Expression 11,
2-phase voltage V a of the AC output of the inverter 4, V b integral control of the PI control for each voltage V aI, seek V bI.
Note that it is integral constant I G is the set of in the formula.

【0058】[0058]

【数11】 [Equation 11]

【0059】そして、数10の2式の制御電圧Vap,V
bpと数11の2式の制御電圧VaI,VbIとを相毎に加算
し、2相電圧Va,VbのPI制御に基づく、数12の2
式の相毎の制御誤差(電圧制御ゲイン)VapI,VbpI
求める。
Then, the two control voltages V ap , V a
bp and the number 11 of the two equations of the control voltage V aI, adds the V bI for each phase, two-phase voltages V a, based on the PI control of V b, 2 Number 12
The control errors (voltage control gains) V apI and V bpI for each phase in the equation are obtained .

【0060】[0060]

【数12】 (Equation 12)

【0061】つぎに、ステップB4 により、出力電圧指
令値VACに制御誤差VapI,VbpIそれぞれを加算し、つ
ぎの数13の2式に示す2相電圧Va,Vbの個別の制御
指令値(振幅制御値)Va・ref’,Vb・ref’を求めて決
定する。
Next, in step B 4, the output voltage command value V AC to control error V API, adds each V BPI, 2-phase voltage V a shown in two equations in the number of the next 13, the V b individual The control command values (amplitude control values) Va · ref ′ and Vb · ref ′ are obtained and determined.

【0062】[0062]

【数13】 (Equation 13)

【0063】そして、位相情報θに基づく数7の2式と
同様のつぎの数14の2式の演算から、制御指令値V
a・ref’,Vb・ref’それぞれに位相情報θを加えた制御
指令値Va・REF’,Vb・REF’を求める。
Then, the control command value V is obtained from the calculation of the following two equations (14) similar to the two equations (7) based on the phase information θ.
The control command values Va · REF ′ and Vb · REF ′ are obtained by adding the phase information θ to each of a · ref ′ and Vb · ref ′.

【0064】[0064]

【数14】 [Equation 14]

【0065】さらに、制御指令値Va・REF’,Vb・REF
に、数8の式と同様のつぎの数15の式の2相/3相の
変換を施し、従来の指令値Vu・REF〜Vw・REFに相当する
定電圧制御の3相制御指令値Vu・REF’,Vv・REF’,V
w・REF を得、この3相制御指令値Vu・REF’〜
w・REF’を出力回路5cに供給する。
Further, the control command values Va · REF ′ and Vb · REF
Then, two-phase / three-phase conversion of the following equation (15) similar to the equation (8) is performed, and the three-phase control command of the constant voltage control corresponding to the conventional command values Vu · REF to Vw · REF is performed. Value V u · REF ', V v · REF ', V
w ・ REF ' And the three-phase control command value V u · REF
Vw.REF 'is supplied to the output circuit 5c.

【0066】[0066]

【数15】 [Equation 15]

【0067】そして、出力回路5cにより指令値V
u・REF’〜Vw・REF’に応じたパルス幅の3相の駆動パル
スを形成してインバータ4の各相の半導体スイッチ6を
スイッチングする。
The command value V is output from the output circuit 5c.
A three-phase drive pulse having a pulse width corresponding to u · REF ′ to Vw · REF ′ is formed, and the semiconductor switch 6 of each phase of the inverter 4 is switched.

【0068】このとき、インバータ4の交流出力の電圧
は3相全体が指令値VACの電圧に定電圧制御されるだ
けでなく、数6の式と数13の式との比較からも明らか
なように、従来の3相一括制御では2相電圧Va,Vb
制御指令値Va・ref,Vb・refが同一であるのに対して、
本形態では2相電圧Va,Vbの制御指令値Va・ref’,
b・ref’が3相の相毎の電圧誤差に起因した2相電圧
a,Vbの制御誤差Va pI,VbpI によって異なること
から、各相の電圧も平衡するように定電圧制御される。
[0068] At this time, the voltage of the AC output of the inverter 4 is not only the whole 3-phase is the constant voltage control with the voltage of the command value V AC, is clear from the comparison between the numerical formula 6 and the number 13 formula as such, while the conventional two-phase voltages V a is a three-phase collective control, V b control command value V a · ref of the V b · ref are the same,
2-phase voltage V a in the present embodiment, the control command value V a · ref of V b ',
V b · ref 'is 2-phase voltage V a due to the voltage error of each of the 3-phase phase control error V a pI of V b, since different depending V BPI, constant voltage as each phase voltage is also balanced Controlled.

【0069】そのため、自立給電母線15に単相負荷2
1を直接接続しても、負荷不平衡に基づくインバータ4
の交流出力の3相不平衡が自動的に防止され、従来のス
コット結線変圧器20を省いて自立運転時の安定した負
荷給電が行える。
Therefore, the single-phase load 2
1 can be connected directly to the inverter 4 based on the load imbalance.
The three-phase imbalance of the AC output is automatically prevented, and the conventional Scott-connected transformer 20 can be omitted to provide stable load power supply during self-sustaining operation.

【0070】なお、インバータ4の交流出力が3相20
0Vの場合に、自立給電母線15に200Vの3相負荷
と100Vの単相負荷とを接続するときは、図3に示す
ように、母線15の例えばV,Wの2相を単相給電に利
用し、この2相に単巻の200V/100V変換用の単
相変圧器23の1次側を接続し、その2次側出力を単相
負荷21’に給電すればよい。
Note that the AC output of the inverter 4 is
When a 200 V three-phase load and a 100 V single-phase load are connected to the self-supporting power supply bus 15 at 0 V, as shown in FIG. The primary side of the single-phase 200 V / 100 V conversion single-phase transformer 23 may be connected to these two phases, and the secondary side output may be supplied to the single-phase load 21 ′.

【0071】また、インバータ4の交流出力が3相20
0Vで、自立給電母線15に接続する負荷が全て100
Vの単相負荷のときは、図4に示すように、自立給電母
線15の例えばV,Wの2相を各単相負荷21’を直接
接続すればよい。
Further, the AC output of the inverter 4 is
0V, all the loads connected to the independent power supply bus 15 are 100
In the case of a single-phase load of V, as shown in FIG. 4, for example, two phases of V and W of the independent power supply bus 15 may be directly connected to each single-phase load 21 ′.

【0072】そして、本発明は、直流電源が蓄電池や燃
料電池等の他の電源の場合にも同様に適用することがで
きる。
The present invention can be similarly applied to a case where the DC power supply is another power supply such as a storage battery or a fuel cell.

【0073】[0073]

【発明の効果】本発明は、以下に記載する効果を奏す
る。災害等で系統が停電する自立運転時、インバータ4
の3相交流出力の3相/2相変換により得た2相電圧に
基づき、インバータの交流出力の実効値を、3相一括の
演算でなく、3相/2相変換後の2相電圧の相毎に演算
で求めることができる。
The present invention has the following effects. In the case of self-sustained operation when the system goes out of power due to a disaster, the inverter 4
Of the inverter AC output based on the two-phase voltage obtained by the three-phase / two-phase conversion of the three-phase AC output, It can be obtained by calculation for each phase.

【0074】さらに、インバータ4の交流出力の電圧指
令値と、前記2相電圧の相毎の実効値それぞれとの差の
2相の電圧誤差に基づき、前記2相電圧の相毎に個別
に、インバータ4の定電圧制御の制御誤差を求めること
ができ、両制御誤差は、インバータ4の交流出力の各相
電圧の電圧指令値からのずれに応じて種々に変化する。
Further, based on the two-phase voltage error of the difference between the voltage command value of the AC output of the inverter 4 and the effective value of each of the two-phase voltages, each of the two-phase voltages is individually The control error of the constant voltage control of the inverter 4 can be obtained, and both control errors change variously according to the deviation of the AC output of the inverter 4 from the voltage command value of each phase voltage.

【0075】そして、両制御誤差に基づき、前記2相電
圧の相毎の制御指令値が決定され、この制御指令値の2
相/3相変換により、インバータ4の交流出力の制御指
令値が相毎に個別に求められ、これらの制御指令値に基
づいてインバータ4の自立運転が制御される。
Then, based on the two control errors, a control command value for each phase of the two-phase voltage is determined.
By the phase / 3-phase conversion, control command values of the AC output of the inverter 4 are individually obtained for each phase, and the independent operation of the inverter 4 is controlled based on these control command values.

【0076】そして、前記2相電圧の相毎の制御誤差に
基づき、インバータ4の交流出力の各相の電圧がそれぞ
れの変動に追従して個別に定電圧制御され、その結果、
インバータ4の交流出力が制御指令値の電圧に定電圧制
御されるため、インバータ4の交流出力が、3相全体と
して定電圧制御されるだけでなく、相毎にも定電圧制御
される。
Then, on the basis of the control error of each phase of the two-phase voltage, the voltage of each phase of the AC output of the inverter 4 is individually subjected to the constant voltage control following the respective fluctuations.
Since the AC output of the inverter 4 is constant-voltage controlled to the voltage of the control command value, the AC output of the inverter 4 is not only constant-voltage controlled as a whole of three phases but also constant-voltage controlled for each phase.

【0077】したがって、自立運転時、スコット結線変
圧器等を用いることなく、簡単かつ安価に、インバータ
4の3相交流出力の単相負荷への給電に基づく電圧不平
衡を防止することができる。
Therefore, during the self-sustained operation, voltage imbalance based on power supply to the single-phase load of the three-phase AC output of the inverter 4 can be prevented simply and inexpensively without using a Scott connection transformer or the like.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の1形態の自立運転制御のフロー
チャートである。
FIG. 1 is a flowchart of an independent operation control according to one embodiment of the present invention.

【図2】図1の自立運転制御を行う太陽光発電装置のブ
ロック結線図である。
FIG. 2 is a block connection diagram of the photovoltaic power generator performing the self-sustaining operation control of FIG.

【図3】図2の自立給電母線に200Vの3相負荷と1
00Vの単相負荷とを接続するときの結線図である。
FIG. 3 shows a three-phase load of 200 V and one
It is a connection diagram at the time of connecting with a single phase load of 00V.

【図4】図2の自立給電母線に100Vの単相負荷のみ
を接続するときの結線図である。
FIG. 4 is a connection diagram when only a single-phase load of 100 V is connected to the self-contained power supply bus of FIG. 2;

【図5】従来例の太陽光発電装置のブロック結線図であ
る。
FIG. 5 is a block connection diagram of a conventional solar power generation device.

【図6】図5の一部の詳細な構成を示した単線結線図で
ある。
FIG. 6 is a single-line diagram showing a detailed configuration of a part of FIG. 5;

【図7】図6の自立運転制御のフローチャートである。FIG. 7 is a flowchart of the self-sustained operation control of FIG. 6;

【符号の説明】[Explanation of symbols]

1 太陽電池 4 インバータ 1 solar cell 4 Inverter

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5G066 GA01 GB02 5H007 AA07 AA17 BB07 CA01 CB04 CB05 CC03 CC23 DA03 DA06 DB02 DB07 DB12 DC04 DC05 5H420 BB12 CC03 DD04 EA11 EA45 EB25 EB39 FF03 FF11 FF22 FF23 FF25    ────────────────────────────────────────────────── ─── Continuation of front page    F term (reference) 5G066 GA01 GB02                 5H007 AA07 AA17 BB07 CA01 CB04                       CB05 CC03 CC23 DA03 DA06                       DB02 DB07 DB12 DC04 DC05                 5H420 BB12 CC03 DD04 EA11 EA45                       EB25 EB39 FF03 FF11 FF22                       FF23 FF25

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 太陽電池等の直流電源をインバータによ
り3相交流出力に変換する分散型電源装置が系統から切
離されて自立運転で動作し、前記交流出力を定電圧制御
して負荷に給電するときに、 前記交流出力の検出電圧を3相/2相変換により2相電
圧に変換し、 前記2相電圧の相毎の実効値を演算し、 前記交流出力の電圧指令値と前記2相電圧の実効値それ
ぞれとの差から前記2相電圧それぞれの電圧誤差を求
め、 前記2相電圧の電圧誤差それぞれに基づく前記定電圧制
御の2相の制御誤差を求め、 前記電圧指令値に前記2相の制御誤差それぞれを加算し
て前記2相電圧それぞれの制御指令値を決定し、 前記2相電圧の制御指令値の2相/3相変換により前記
インバータの前記定電圧制御の3相制御指令値を形成す
ることを特徴とする分散型電源装置の自立運転制御方
法。
1. A distributed power supply device for converting a DC power supply such as a solar cell into a three-phase AC output by an inverter is separated from a system, operates in an independent operation, and supplies a constant-voltage control of the AC output to a load. In this case, the detected voltage of the AC output is converted into a two-phase voltage by a three-phase / two-phase conversion, an effective value of each phase of the two-phase voltage is calculated, and the voltage command value of the AC output and the two-phase voltage are calculated. A voltage error of each of the two-phase voltages is obtained from a difference between each of the effective values of the voltages, and a control error of the two phases of the constant voltage control is obtained based on each of the voltage errors of the two-phase voltages. The control command value of each of the two-phase voltages is determined by adding the respective control errors of the phases, and the three-phase control command of the constant voltage control of the inverter is performed by performing two-phase / 3-phase conversion of the control command value of the two-phase voltage. Forming a value An independent operation control method for a distributed power supply.
JP2001308548A 2001-10-04 2001-10-04 Self-sustaining control method for distributed power supply device Pending JP2003116222A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001308548A JP2003116222A (en) 2001-10-04 2001-10-04 Self-sustaining control method for distributed power supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001308548A JP2003116222A (en) 2001-10-04 2001-10-04 Self-sustaining control method for distributed power supply device

Publications (1)

Publication Number Publication Date
JP2003116222A true JP2003116222A (en) 2003-04-18

Family

ID=19127842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001308548A Pending JP2003116222A (en) 2001-10-04 2001-10-04 Self-sustaining control method for distributed power supply device

Country Status (1)

Country Link
JP (1) JP2003116222A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2228895A1 (en) * 2009-03-09 2010-09-15 SMA Solar Technology AG Inverter with utility grid interface
CN102841612A (en) * 2012-09-11 2012-12-26 福建船政交通职业学院 Self-powered sunlight tracing sensor device
WO2013080877A1 (en) * 2011-11-29 2013-06-06 三洋電機株式会社 Grid connection device
JP2014239624A (en) * 2013-06-10 2014-12-18 三菱電機株式会社 Power conditioner system
CN109599891A (en) * 2018-11-15 2019-04-09 中国科学院电工研究所 The control method of photovoltaic power generation and power grid three-phase equilibrium

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2228895A1 (en) * 2009-03-09 2010-09-15 SMA Solar Technology AG Inverter with utility grid interface
CN101834450A (en) * 2009-03-09 2010-09-15 Sma太阳能技术股份公司 Electricity generation system and the inverter that is used for feeding power is arrived three phase network
JP2010213565A (en) * 2009-03-09 2010-09-24 Sma Solar Technology Ag Power generating system for feeding power to three-phase grid, and inverter
US8779630B2 (en) 2009-03-09 2014-07-15 Sma Solar Technology Ag Power generation system and inverter for feeding power into a three-phase grid
KR101751775B1 (en) * 2009-03-09 2017-06-28 에스엠에이 솔라 테크놀로지 아게 Power generation system and inverter for feeding power into a three-phase grid
WO2013080877A1 (en) * 2011-11-29 2013-06-06 三洋電機株式会社 Grid connection device
CN102841612A (en) * 2012-09-11 2012-12-26 福建船政交通职业学院 Self-powered sunlight tracing sensor device
JP2014239624A (en) * 2013-06-10 2014-12-18 三菱電機株式会社 Power conditioner system
CN109599891A (en) * 2018-11-15 2019-04-09 中国科学院电工研究所 The control method of photovoltaic power generation and power grid three-phase equilibrium
CN109599891B (en) * 2018-11-15 2022-04-19 中国科学院电工研究所 Control method for three-phase balance of photovoltaic power generation and power grid

Similar Documents

Publication Publication Date Title
EP0492396B1 (en) Parallel inverter system
JP2526992B2 (en) AC output converter parallel operation system
Al-Nasseri et al. A voltage based protection for micro-grids containing power electronic converters
KR101804469B1 (en) UPS having 3 Phase 4 wire inverter with 3-leg
US9997921B2 (en) Solar power conversion system and method
KR101806595B1 (en) Apparatus for controlling inverter
US4703193A (en) Apparatus for controlling the parallel operation of an A-C output converter for a commercial power source including a circuit for simulating output current for test purposes
US5317500A (en) Active no-break power transfer control for a VSCF power generating system
JPH05308780A (en) Distributed power system
JP2733724B2 (en) Current control device for multi-winding AC motor
JP2003116222A (en) Self-sustaining control method for distributed power supply device
JP2006054944A (en) Voltage unbalance compensating apparatus and method of distribution system
EP3514942B1 (en) Power supply system
JP2010110120A (en) Ac power supply system
JP6623845B2 (en) Power conversion system and power control method
KR102343813B1 (en) 3 Phase 4 wire grid-connected power conditioning system
JPH0515069A (en) Parallel operation control device of three-phase ac output converter
Biel et al. Control strategy for parallel-connected three-phase inverters
WO2020245916A1 (en) Power conversion device and power conversion control device
JPH1127957A (en) Power converter
JP2002272124A (en) Self-excitated type inverter controller
JP2006311725A (en) Controller for power converter
JPH07107744A (en) Power converter
KR20150133383A (en) Wind power generator and method for controlling a compensation of unbalance voltage in linking point of system
JP7120474B1 (en) power converter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051115

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060418