JP2003115419A - Solid electrolytic capacitor and its manufacturing method - Google Patents

Solid electrolytic capacitor and its manufacturing method

Info

Publication number
JP2003115419A
JP2003115419A JP2002233753A JP2002233753A JP2003115419A JP 2003115419 A JP2003115419 A JP 2003115419A JP 2002233753 A JP2002233753 A JP 2002233753A JP 2002233753 A JP2002233753 A JP 2002233753A JP 2003115419 A JP2003115419 A JP 2003115419A
Authority
JP
Japan
Prior art keywords
capacitor element
separator paper
capacitor
impregnated
solid electrolytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002233753A
Other languages
Japanese (ja)
Inventor
Satoshi Yuzawa
聡 湯澤
Kazuyoshi Endo
和芳 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marcon Electronics Co Ltd
Original Assignee
Marcon Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Marcon Electronics Co Ltd filed Critical Marcon Electronics Co Ltd
Priority to JP2002233753A priority Critical patent/JP2003115419A/en
Publication of JP2003115419A publication Critical patent/JP2003115419A/en
Pending legal-status Critical Current

Links

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Paper (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a solid electrolytic capacitor which can secure the conducting path of a solid electrolyte by making the fibers of separator paper provided in a capacitor element thinner in thickness and is improved in initial characteristic, by surely impregnating the element with the solid electrolyte and the characteristics of which are little deteriorated even when the capacitor is subjected to high-temperature load tests and thermal shock tests. SOLUTION: The capacitor element is constituted by rolling two pieces of anode foil and cathode foil respectively fitted with lead-out terminals by sandwiching the separator paper between the two pieces of foil. Then the solid electrolytic capacitor is manufactured by heat-baking the separator paper after the element is impregnated with a dehydrating agent or oxidizing agent. After the separator paper is baked, the capacitor element is impregnated with the solid electrolyte and sealed in a case.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、テトラシアノキノジメ
タン(以下TCNQという)錯体などの固体電解質を用
いた固体電解コンデンサとその製造方法、特にセパレー
タ紙に脱水剤又は酸化剤を含浸し、従来よりも低温で焼
成してセパレータ紙の繊維を細くすることを特徴とする
もので、これによって固体電解質の導通路を確保できる
固体電解コンデンサ及びその製造方法を提供することを
目的としたものである。
BACKGROUND OF THE INVENTION The present invention relates to a solid electrolytic capacitor using a solid electrolyte such as a tetracyanoquinodimethane (hereinafter referred to as TCNQ) complex and a method for producing the same, particularly impregnating separator paper with a dehydrating agent or an oxidizing agent, It is characterized by thinning the fibers of the separator paper by firing at a lower temperature than before, with the purpose of providing a solid electrolytic capacitor and a manufacturing method thereof that can secure a conduction path for a solid electrolyte. is there.

【0002】[0002]

【従来の技術】近年電子情報機器の高度化にともない、
電子部品の小形化、高性能化が求められ、電解コンデン
サでも駆動用電解液を含浸した電解コンデンサよりも小
形化の可能なTCNQ錯体などの固体電解質を用いた固
体電解コンデンサが実用化されている。これらの電解コ
ンデンサは、アルミニウムなどの一対の電極箔間にセパ
レータ紙を挟んで巻回してコンデンサ素子を構成し、予
め加熱しておいたこのコンデンサ素子をケース中で溶融
液化させてあるTCNQ錯体に浸漬して含浸し、直ちに
冷却した後、ケース開口部をエポキシ樹脂等で封口して
いた。これに電圧を印加してエージングを行い、製造過
程で生じた電極箔の誘電体酸化被膜の欠陥を修復して製
品としていた。
2. Description of the Related Art With the sophistication of electronic information devices in recent years,
As electronic components are required to be smaller and have higher performance, solid electrolytic capacitors using solid electrolytes such as TCNQ complex that can be made smaller than electrolytic capacitors impregnated with a driving electrolyte have been put into practical use. . In these electrolytic capacitors, a separator element is sandwiched between a pair of electrode foils such as aluminum and wound to form a capacitor element, and this preheated capacitor element is melted and liquefied in a case to form a TCNQ complex. After dipping and impregnation and immediately cooling, the case opening was sealed with an epoxy resin or the like. A voltage was applied to this and aging was performed to repair defects in the dielectric oxide film of the electrode foil, which occurred during the manufacturing process, to obtain a product.

【0003】しかしながら、この様なTCNQ錯体など
の固体電解質を用いた固体電解コンデンサでは、前記の
ように一対の電極箔間にセパレータ紙を介在させている
ため、前記固体電解質の導通路が極端に減少し、このた
めESR特性が劣化する問題があった。この劣化は、高
温負荷や熱衝撃などの試験を行うと顕著に現れる。
However, in such a solid electrolytic capacitor using a solid electrolyte such as a TCNQ complex, since the separator paper is interposed between the pair of electrode foils as described above, the conduction path of the solid electrolyte is extremely large. However, there is a problem that the ESR characteristic is deteriorated. This deterioration becomes remarkable when tests such as high temperature load and thermal shock are conducted.

【0004】この問題を解決するために、TCNQ錯体
などの固体電解質を含浸する前に、コンデンサ素子を高
温中に放置してセパレータ紙を焼成し、セパレータ紙の
繊維を細くしてTCNQ錯体などの前記固体電解質の含
浸が容易に行われるようにすることが行われている。例
えばコンデンサ素子を330℃で焼成し、予め加熱して
おいたこのコンデンサ素子をTCNQ錯体が溶融液化し
ているケース中に収納して含浸し、直ちに冷却した後、
ケース封口部を樹脂にて充填して密閉していた。
In order to solve this problem, before impregnating a solid electrolyte such as a TCNQ complex, the capacitor element is left at a high temperature to bake the separator paper, and the fibers of the separator paper are thinned to remove the TCNQ complex or the like. It has been attempted to facilitate the impregnation of the solid electrolyte. For example, a capacitor element is fired at 330 ° C., and the capacitor element that has been heated in advance is stored in a case where the TCNQ complex is melted and liquefied, and immediately cooled,
The case sealing part was filled with resin and sealed.

【0005】しかしながら、このような構成からなる固
体電解コンデンサでは、焼成時に陽極箔が高温に曝され
ることによって表面に形成されている誘電体酸化皮膜に
欠陥が生じ、コンデンサの漏れ電流が著しく大きくなる
という問題を有していた。
However, in the solid electrolytic capacitor having such a structure, the dielectric oxide film formed on the surface is defective due to the anode foil being exposed to high temperature during firing, resulting in a significantly large leakage current of the capacitor. Had the problem of becoming.

【0006】[0006]

【発明が解決しようとする課題】以上述べたように、T
CNQ錯体などの固体電解質を含浸した固体電解コンデ
ンサでは、コンデンサ素子焼成時の高温によって陽極箔
の誘電体酸化皮膜に欠陥を生じ、漏れ電流の増大を招い
ていた。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention As described above, T
In a solid electrolytic capacitor impregnated with a solid electrolyte such as a CNQ complex, the dielectric oxide film of the anode foil is defective due to the high temperature during firing of the capacitor element, which causes an increase in leakage current.

【0007】本発明は、上記の欠点を除去するために成
されたもので、焼成前のセパレータ紙に脱水剤又は酸化
剤を含浸した後290℃以下の低温で焼成し、このコン
デンサ素子に固体電解質を含浸させることによって初
期、高温負荷や熱衝撃後のESR特性を向上させ、ま
た、コンデンサ素子の焼成温度を低温にすることによっ
て漏れ電流の増加を抑えることができる固体電解コンデ
ンサを提供しようとするものである。
The present invention has been made in order to eliminate the above-mentioned drawbacks. The separator paper before firing is impregnated with a dehydrating agent or an oxidizing agent and then fired at a low temperature of 290 ° C. or lower, and the capacitor element is solidified. It is an object of the present invention to provide a solid electrolytic capacitor capable of improving the ESR characteristics at the initial stage after high temperature load or thermal shock by impregnating with an electrolyte, and suppressing the increase of leakage current by reducing the firing temperature of the capacitor element. To do.

【0008】[0008]

【課題を解決するための手段】本発明の請求項1に記載
の固体電解コンデンサは、コンデンサ素子を構成する陽
極箔、陰極箔と、脱水剤又は酸化剤を含浸して焼成した
セパレータ紙と、前記コンデンサ素子に含浸した固体電
解質と、該コンデンサ素子を収容したケースと、該ケー
スの開口部を封口した樹脂とからなることを特徴として
いる。
A solid electrolytic capacitor according to claim 1 of the present invention comprises an anode foil, a cathode foil constituting a capacitor element, a separator paper impregnated with a dehydrating agent or an oxidizing agent and baked. It is characterized by comprising a solid electrolyte impregnated in the capacitor element, a case accommodating the capacitor element, and a resin sealing an opening of the case.

【0009】請求項2に記載の固体電解コンデンサの製
造方法は、引き出し端子を取着した陽極箔と陰極箔との
間にセパレータ紙を挟み込んで巻回してコンデンサ素子
とし、該コンデンサ素子に脱水剤又は酸化剤を含浸した
後加熱してセパレータ紙を焼成し、該コンデンサ素子に
固体電解質を含浸してケースに封口してなるものであ
る。
According to a second aspect of the present invention, there is provided a solid electrolytic capacitor manufacturing method, wherein separator paper is sandwiched between an anode foil and a cathode foil to which lead terminals are attached and wound to form a capacitor element, and a dehydrating agent is added to the capacitor element. Alternatively, it is obtained by impregnating with an oxidant and then heating to sinter the separator paper, impregnate the capacitor element with a solid electrolyte and seal the case.

【0010】請求項3及び請求項4に記載の発明は、前
記請求項1及び2に記載の脱水剤がしゅう酸、メタリン
酸、ポリリン酸、無水酢酸であり、酸化剤が硝酸アンモ
ニウム、過酸化酢酸、パラニトロフェノールであること
を特徴としている。
According to the third and fourth aspects of the present invention, the dehydrating agents according to the first and second aspects are oxalic acid, metaphosphoric acid, polyphosphoric acid and acetic anhydride, and the oxidizing agents are ammonium nitrate and acetic acid peroxide. , And is characterized by being para-nitrophenol.

【0011】[0011]

【作用】発明者らは、コンデンサ素子の焼成について検
討し、焼成前にセパレータ紙に脱水剤又は酸化剤を含浸
した後に焼成を行えば、脱水剤又は酸化剤を含浸しない
で焼成した場合よりも低温で焼成の効果を得られること
を突き止めたのである。このように低温で焼成できた結
果、ESR特性を向上させることができ、また漏れ電流
特性が劣化させないことを見出したのである。詳細に述
べれば、セパレータ紙に脱水剤又は酸化剤を含浸した後
に焼成を行えば、焼成温度が290℃以下の場合でも、
これらの含浸を行わずに300℃以上の高温で焼成した
場合と同様にセパレータ紙の繊維が細くなるということ
を見出した。これによってセパレータ紙中にTCNQ錯
体などの固体電解質の導通路が確保されるので、ESR
特性が良好で、漏れ電流が小さい固体電解コンデンサを
得ることができたのである。
The inventors examined firing of the capacitor element, and performed firing after impregnating the separator paper with the dehydrating agent or oxidizing agent before firing, as compared with firing without impregnating the dehydrating agent or oxidizing agent. We have found out that the effect of firing can be obtained at low temperature. As a result of such low temperature firing, it was found that the ESR characteristic can be improved and the leakage current characteristic is not deteriorated. In detail, if the separator paper is baked after impregnating it with a dehydrating agent or an oxidizing agent, even if the baking temperature is 290 ° C. or lower,
It has been found that the fibers of the separator paper become thin as in the case of firing at a high temperature of 300 ° C. or higher without impregnation. As a result, a conducting path for the solid electrolyte such as TCNQ complex is secured in the separator paper.
It was possible to obtain a solid electrolytic capacitor having good characteristics and a small leakage current.

【0012】[0012]

【実施例】以下、実施例により本発明の固体電解コンデ
ンサを説明する。
EXAMPLES The solid electrolytic capacitor of the present invention will be described below with reference to examples.

【0013】実施例A エッチングにより表面積を拡大したのち誘電体酸化皮膜
を生成したアルミニウム箔からなる陽極箔、及び同様に
表面積を拡大したアルミニウム箔からなる陰極箔にそれ
ぞれ引き出し端子を取着し、この陽極箔と陰極箔の間に
マニラ麻を主体とした繊維からなるセパレータ紙を挟み
込んで巻回してコンデンサ素子を形成した。このコンデ
ンサ素子を脱水剤として作用するしゅう酸を3重量%添
加した水溶液に浸漬してコンデンサ素子内部のセパレー
タ紙に含浸させた後溶媒を蒸発させ、290℃中に1時
間放置してセパレータ紙を焼成した。次いで3重量%ア
ジピン酸アンモニウム水溶液中にコンデンサ素子を浸漬
して電圧を印加し、前記コンデンサ素子形成時の巻回に
より損傷した誘電体酸化皮膜を修復した。固体電解質と
してTCNQ錯体を用い、アルミニウムからなるケース
に入れ加熱して溶融液化させ、この中に260℃中で3
0秒間加熱しておいたコンデンサ素子を浸漬し、TCN
Q錯体を含浸した。含浸後即座に冷却し、ケース開口部
をエポキシ樹脂で封口してコンデンサを作製した。
Example A Lead-out terminals were attached to an anode foil made of an aluminum foil having a dielectric oxide film formed thereon after the surface area was enlarged by etching, and a cathode foil made of an aluminum foil similarly having an enlarged surface area. A separator paper made of a fiber mainly composed of Manila hemp was sandwiched between the anode foil and the cathode foil and wound to form a capacitor element. This capacitor element is dipped in an aqueous solution containing 3% by weight of oxalic acid which acts as a dehydrating agent to impregnate the separator paper inside the capacitor element, and then the solvent is evaporated to leave it at 290 ° C. for 1 hour to remove the separator paper. Baked. Next, the capacitor element was immersed in a 3 wt% aqueous solution of ammonium adipate and a voltage was applied to repair the dielectric oxide film damaged by the winding when forming the capacitor element. A TCNQ complex was used as a solid electrolyte, and it was heated in a case made of aluminum to be melted and liquefied.
Immerse the capacitor element that has been heated for 0 seconds, and
Impregnated with Q complex. Immediately after the impregnation, it was cooled and the case opening was sealed with an epoxy resin to produce a capacitor.

【0014】このコンデンサに105℃雰囲気中で定格
電圧を印加して120分のエージング処理を行った。
A rated voltage was applied to this capacitor in an atmosphere of 105 ° C. to perform aging treatment for 120 minutes.

【0015】以上の工程の中で、コンデンサ素子に3重
量%しゅう酸水溶液に浸漬してコンデンサ素子内部のセ
パレータ紙に含浸させた後溶媒を蒸発させるまでを同一
とし、セパレータ紙を焼成した時間と温度を変えた5種
類のコンデンサを各100個作製し試料とした。なお、
コンデンサの定格は、16V−33μFである。
In the above steps, the steps of immersing the capacitor element in a 3 wt% aqueous oxalic acid solution to impregnate the separator paper inside the capacitor element and evaporating the solvent are the same, and the time for firing the separator paper is the same. Five hundred types of capacitors each having a different temperature were manufactured and used as samples. In addition,
The capacitor rating is 16V-33μF.

【0016】このようにして作製した前記試料の初期特
性を表1に、105℃中に定格電圧を印加して1000
時間放置した高温負荷試験の結果を表2に、−55℃3
0分〜+105℃30分を1サイクルとし、これを10
0サイクル繰り返した後の特性変化を見た熱衝撃試験の
結果を表3に示した。なお、参考例1及び従来例1は、
コンデンサ素子を3重量%しゅう酸水溶液に浸漬せずに
焼成を行ったもので、温度280℃及び300℃でそれ
ぞれ1時間の焼成を行った以外は実施例と同じ材料、製
造方法、構成からなるものである。
The initial characteristics of the thus-prepared sample are shown in Table 1 below.
Table 2 shows the results of the high temperature load test that was left for 3 hours at -55 ° C.
One cycle consists of 0 minutes to + 105 ° C for 30 minutes, and
Table 3 shows the results of the thermal shock test in which the property changes after repeating 0 cycles were observed. In addition, in the reference example 1 and the conventional example 1,
The capacitor element was fired without being immersed in a 3 wt% oxalic acid aqueous solution, and was made of the same material, manufacturing method, and constitution as those of the examples except that the firing was performed for 1 hour at temperatures of 280 ° C. and 300 ° C., respectively. It is a thing.

【0017】なお、表中のESRは、100kHzにお
ける値を示したものである。
The ESR in the table shows the value at 100 kHz.

【0018】[0018]

【表1】 [Table 1]

【0019】[0019]

【表2】 [Table 2]

【0020】[0020]

【表3】 [Table 3]

【0021】表1から明らかなように、ESRは実施例
と従来例1では小さいが、参考例1では大きく、また漏
れ電流は従来例1が極端に大きい。参考例1ではESR
が高温負荷試験、熱衝撃試験によってさらに大きくな
り、それぞれ1.3倍、1.9倍の値を示した。これに
対し、実施例では高温負荷試験後で1.1倍、熱衝撃試
験後で1.2倍以内の値を示した。
As is clear from Table 1, the ESR is small in the embodiment and the conventional example 1, but is large in the reference example 1 and the leakage current is extremely large in the conventional example 1. ESR in Reference Example 1
Was further increased by the high temperature load test and the thermal shock test, and the values were 1.3 times and 1.9 times, respectively. On the other hand, in the examples, the values were 1.1 times after the high temperature load test and 1.2 times or less after the thermal shock test.

【0022】以上の現象から、従来例1のような高温焼
成では、ESRは良好であるが漏れ電流が極端に悪く、
参考例1のような低温焼成では漏れ電流は良好であるが
ESRに問題があるといえる。
From the above phenomenon, in the high temperature firing as in Conventional Example 1, the ESR is good, but the leakage current is extremely bad,
It can be said that low temperature firing as in Reference Example 1 has a good leakage current but has a problem in ESR.

【0023】これに対し実施例では、焼成温度が参考例
1と同じ又は以下であっても漏れ電流、ESRともに小
さく、高温負荷試験、熱衝撃試験を行った後でも値の変
化が小さいという結果を得た。これは作用として前述し
たように、セパレータ紙の繊維一本一本が細くなった結
果、セパレータ紙中のTCNQ錯体の導通路が確保され
たからである。
On the other hand, in the examples, even if the firing temperature is the same as or lower than that of the reference example 1, both the leakage current and the ESR are small and the change in the values is small even after the high temperature load test and the thermal shock test. Got This is because, as described above, as a result of the thinning of each fiber of the separator paper, the conduction path of the TCNQ complex in the separator paper is secured.

【0024】上記実施例では、脱水剤としてしゅう酸を
使用した場合について述べたが、メタリン酸、ポリリン
酸、無水酢酸、その他の脱水剤を使用しても同様の結果
を得ることができる。これらのメタリン酸(実施例
6)、ポリリン酸(実施例7)、無水酢酸(実施例8)
の3重量%水溶液を脱水剤溶液として用いた場合の実施
例について以下述べる。なお、コンデンサの定格、試料
数、材料、製造方法、構成は実施例1〜5の場合と同一
であり、表4に初期特性、表5に高温負荷試験1000
h後の特性、表6に熱衝撃試験後の特性を示す。
In the above embodiment, the case where oxalic acid was used as the dehydrating agent was described, but the same result can be obtained by using metaphosphoric acid, polyphosphoric acid, acetic anhydride and other dehydrating agents. These metaphosphoric acid (Example 6), polyphosphoric acid (Example 7), acetic anhydride (Example 8)
An example in which a 3 wt% aqueous solution of is used as a dehydrating agent solution will be described below. The capacitor rating, the number of samples, the material, the manufacturing method, and the configuration are the same as those in Examples 1 to 5, Table 4 shows the initial characteristics, and Table 5 shows the high temperature load test 1000.
The characteristics after h, and Table 6 shows the characteristics after the thermal shock test.

【0025】[0025]

【表4】 [Table 4]

【0026】[0026]

【表5】 [Table 5]

【0027】[0027]

【表6】 [Table 6]

【0028】表4〜表6から明らかなように、実施例
6、7、8でも前記表1〜表3に示した実施例とほぼ同
様の良好な結果を得た。
As is clear from Tables 4 to 6, in Examples 6, 7 and 8 as well, good results almost similar to those of the examples shown in Tables 1 to 3 were obtained.

【0029】実施例B 前記実施例Aでは、セパレータ紙の繊維を細くするため
に脱水剤を含浸し、コンデンサ素子を焼成する場合につ
いて述べた。本実施例Bでは、前記の脱水剤に替えて酸
化剤を使用し、コンデンサ素子を焼成して繊維を細くす
る実施例について述べる。すなわち、実施例Aと同様に
して作製したコンデンサ素子を酸化剤として作用する硝
酸を3重量%添加した水溶液に浸漬してコンデンサ素子
内部のセパレータ紙に含浸させた後溶媒を蒸発させ、2
90℃中に1時間放置してセパレータ紙を焼成した。以
下実施例Aと同様にして定格16V−33μFのコンデ
ンサを、セパレータ紙の焼成温度と焼成時間を変えて5
種類各100個ずつ作製した。
Example B In Example A, the case where the separator element was impregnated with a dehydrating agent to thin the fibers and the capacitor element was fired was described. In Example B, an example will be described in which an oxidizing agent is used instead of the dehydrating agent, and the capacitor element is fired to thin the fiber. That is, a capacitor element manufactured in the same manner as in Example A was dipped in an aqueous solution containing 3% by weight of nitric acid acting as an oxidant to impregnate the separator paper inside the capacitor element, and then the solvent was evaporated.
The separator paper was baked by leaving it at 90 ° C. for 1 hour. Thereafter, in the same manner as in Example A, a capacitor having a rating of 16 V-33 μF was used by changing the firing temperature and firing time of the separator paper.
100 kinds each were produced.

【0030】これらの試料の初期特性を表7に、高温負
荷試験の結果を表8に、熱衝撃試験の結果を表9に示し
た。なお、参考例1及び従来例1は、前記実施例Aに示
したものを再掲した。
Table 7 shows the initial characteristics of these samples, Table 8 shows the results of the high temperature load test, and Table 9 shows the results of the thermal shock test. It should be noted that the reference example 1 and the conventional example 1 are the same as those in the above-mentioned example A.

【0031】なお、表中のESRは、100kHzにお
ける値を示したものである。
The ESR in the table shows the value at 100 kHz.

【0032】[0032]

【表7】 [Table 7]

【0033】[0033]

【表8】 [Table 8]

【0034】[0034]

【表9】 [Table 9]

【0035】表7〜表9の結果は、実施例Aとほぼ同様
である。
The results in Tables 7 to 9 are almost the same as in Example A.

【0036】上記実施例では、酸化剤として硝酸を使用
した場合について述べたが、硝酸カリウム、硝酸アンモ
ニウム等の硝酸関連化合物、過酸化物、ニトロベンゼン
又はパラニトロフェノール等のニトロ化合物、その他の
酸化物を使用しても同様の結果を得ることができる。
In the above embodiments, nitric acid was used as the oxidizing agent. However, nitric acid-related compounds such as potassium nitrate and ammonium nitrate, peroxides, nitro compounds such as nitrobenzene and para-nitrophenol, and other oxides were used. Even if it does, the same result can be obtained.

【0037】次に、酸化剤として硝酸アンモニウム(実
施例14)、過酸化酢酸(実施例15)、パラニトロフ
ェノール(実施例16)の3重量%水溶液を酸化剤溶液
として用いた場合の実施例について以下述べる。なお、
コンデンサの定格、試料数、材料、製造方法、構成は実
施例9〜13の場合と同一であり、表10に初期特性、
表11に高温負荷試験1000h後の特性、表12に熱
衝撃試験後の特性を示す。
Next, an example in which a 3 wt% aqueous solution of ammonium nitrate (Example 14), acetic acid peroxide (Example 15) and para-nitrophenol (Example 16) was used as the oxidizing agent as the oxidizing agent This will be described below. In addition,
The capacitor rating, the number of samples, the material, the manufacturing method, and the configuration are the same as those in Examples 9 to 13, and Table 10 shows the initial characteristics,
Table 11 shows the characteristics after the high temperature load test for 1000 hours, and Table 12 shows the characteristics after the thermal shock test.

【0038】[0038]

【表10】 [Table 10]

【0039】[0039]

【表11】 [Table 11]

【0040】[0040]

【表12】 [Table 12]

【0041】表10〜表12から明らかなように、実施
例14、15、16でも前記表7〜表9に示した実施例
とほぼ同様の良好な結果を得た。
As is clear from Tables 10 to 12, Examples 14, 15, and 16 also obtained substantially the same good results as the Examples shown in Tables 7 to 9 above.

【0042】[0042]

【発明の効果】以上述べたように、本発明によれば、セ
パレータ紙に脱水剤又は酸化剤を含浸した後焼成するこ
とによって、セパレータ紙の繊維一本一本を細くできる
ので、セパレータ紙中の空隙が大きくなり、コンデンサ
素子にTCNQ錯体などの固体電解質を含浸したときの
導通路が十分に確保される。したがって、固体電解質が
コンデンサ素子内部に確実に含浸されるので、コンデン
サの初期特性は勿論、高温負荷試験、熱衝撃試験を行っ
てもESR値の増加が抑えられ、他の諸特性も変化の小
さい特性良好な固体電解コンデンサを提供することがで
きる。
As described above, according to the present invention, each fiber of the separator paper can be made thin by impregnating the separator paper with a dehydrating agent or an oxidizing agent and then firing it. The voids are increased, and a sufficient conduction path is ensured when the capacitor element is impregnated with a solid electrolyte such as a TCNQ complex. Therefore, since the solid electrolyte is surely impregnated into the capacitor element, the increase in ESR value is suppressed even when the initial characteristics of the capacitor are subjected to the high temperature load test and the thermal shock test, and other characteristics are also little changed. A solid electrolytic capacitor having good characteristics can be provided.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】コンデンサ素子を構成する陽極箔、陰極箔
と、脱水剤又は酸化剤を含浸して焼成したセパレータ紙
と、前記コンデンサ素子に含浸した固体電解質と、該コ
ンデンサ素子を収容したケースと、該ケースの開口部を
封口した樹脂とからなる固体電解コンデンサ。
1. An anode foil and a cathode foil constituting a capacitor element, a separator paper impregnated with a dehydrating agent or an oxidizing agent and baked, a solid electrolyte impregnated in the capacitor element, and a case accommodating the capacitor element. , A solid electrolytic capacitor made of a resin in which the opening of the case is sealed.
【請求項2】引き出し端子を取着した陽極箔と陰極箔と
の間にセパレータ紙を挟み込んで巻回してコンデンサ素
子とし、該コンデンサ素子に脱水剤又は酸化剤を含浸し
た後加熱してセパレータ紙を焼成し、該コンデンサ素子
に固体電解質を含浸してケースに封口してなる固体電解
コンデンサの製造方法。
2. A separator paper is sandwiched between an anode foil and a cathode foil to which lead-out terminals are attached and wound to form a capacitor element, and the capacitor element is impregnated with a dehydrating agent or an oxidizing agent and then heated to separate the separator paper. And a solid electrolyte is impregnated into the capacitor element to seal the case in a case.
【請求項3】 前記脱水剤がしゅう酸、メタリン酸、ポ
リリン酸、無水酢酸であり、酸化剤が硝酸アンモニウ
ム、過酸化酢酸、パラニトロフェノールであることを特
徴とする請求項1記載の固体電解コンデンサ。
3. The solid electrolytic capacitor according to claim 1, wherein the dehydrating agent is oxalic acid, metaphosphoric acid, polyphosphoric acid, and acetic anhydride, and the oxidizing agent is ammonium nitrate, peracetic acid, and paranitrophenol. .
【請求項4】前記脱水剤がしゅう酸、メタリン酸、ポリ
リン酸、無水酢酸であり、酸化剤が硝酸アンモニウム、
過酸化酢酸、パラニトロフェノールであることを特徴と
する請求項2記載の固体電解コンデンサの製造方法。
4. The dehydrating agent is oxalic acid, metaphosphoric acid, polyphosphoric acid, acetic anhydride, and the oxidizing agent is ammonium nitrate.
The method for producing a solid electrolytic capacitor according to claim 2, wherein the acetic acid peroxide is para-nitrophenol.
JP2002233753A 2002-08-09 2002-08-09 Solid electrolytic capacitor and its manufacturing method Pending JP2003115419A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002233753A JP2003115419A (en) 2002-08-09 2002-08-09 Solid electrolytic capacitor and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002233753A JP2003115419A (en) 2002-08-09 2002-08-09 Solid electrolytic capacitor and its manufacturing method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP14549495A Division JP3363664B2 (en) 1995-05-19 1995-05-19 Solid electrolytic capacitor and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2003115419A true JP2003115419A (en) 2003-04-18

Family

ID=19196337

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002233753A Pending JP2003115419A (en) 2002-08-09 2002-08-09 Solid electrolytic capacitor and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2003115419A (en)

Similar Documents

Publication Publication Date Title
JPH04229611A (en) Solid electrolytic capacitor
US5471365A (en) Solid electrolytic capacitor and its manufacturing method
JPH11186110A (en) Electrolytic capacitor and manufacture thereof
JP3363664B2 (en) Solid electrolytic capacitor and method of manufacturing the same
JP3416637B2 (en) Solid electrolytic capacitor and method of manufacturing the same
JP2003115419A (en) Solid electrolytic capacitor and its manufacturing method
JP3339511B2 (en) Method for manufacturing solid electrolytic capacitor
JP2001284174A (en) Solid electrolytic capacitor and its manufacturing method
WO2021139005A1 (en) Solid-liquid hybrid electrolytic capacitor with low leakage current
JP2000138133A (en) Solid electrolytic capacitor and its manufacture
JP3459151B2 (en) Method for manufacturing solid electrolytic capacitor
JP3656666B2 (en) Manufacturing method of solid electrolytic capacitor
JP4269351B2 (en) Manufacturing method of solid electrolytic capacitor
JP2003142344A (en) Method for manufacturing solid electrolytic capacitor
JP2003142345A (en) Method for manufacturing solid electrolytic capacitor
JPH04324612A (en) Manufacture of organic semiconductor solid electrolytic capacitor
JPH09148190A (en) Solid-state electrolytic capacitor
JP3123772B2 (en) Organic semiconductor solid electrolytic capacitors
JPH06204092A (en) Manufacture of solid electrolytic capacitor
JP3253126B2 (en) Solid electrolytic capacitors
JP3162738B2 (en) Solid electrolytic capacitors
JPH06236831A (en) Manufacture of solid electrolytic capacitor
JPH10321475A (en) Manufacture of solid electrolytic capacitor
JP2999842B2 (en) Organic semiconductor solid electrolytic capacitors
JPH0354811A (en) Solid electrolytic capacitor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050308

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050705