JP2003115295A - Method of manufacturing electrode - Google Patents

Method of manufacturing electrode

Info

Publication number
JP2003115295A
JP2003115295A JP2001308401A JP2001308401A JP2003115295A JP 2003115295 A JP2003115295 A JP 2003115295A JP 2001308401 A JP2001308401 A JP 2001308401A JP 2001308401 A JP2001308401 A JP 2001308401A JP 2003115295 A JP2003115295 A JP 2003115295A
Authority
JP
Japan
Prior art keywords
positive electrode
active material
electrode active
viscosity
paste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001308401A
Other languages
Japanese (ja)
Inventor
Naoto Enoshima
尚登 榎島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2001308401A priority Critical patent/JP2003115295A/en
Publication of JP2003115295A publication Critical patent/JP2003115295A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing an electrode capable of quickly dispersing a positive active material into positive mix paste, quickly reaching object viscosity, and quickly manufacturing the electrode. SOLUTION: This method of manufacturing the electrode has a preliminary kneading process preparing preliminary paste by mixing a part of the positive active material, a conductive material, and a solvent; a main kneading process mixing the remaining positive active material with the preliminary paste; and a positive mix preparing process preparing the positive mix paste in which the positive active material and the conductive material are dispersed into the solvent. By adding first a part of the positive active material and kneading, since friction between conductive materials is reduced by the presence of the positive active material having larger particle size than that of the conductive material, the positive active material and the conductive material is quickly dispersed in the solvent, and viscosity is apparently reduced. By adding the positive active material having larger particle size, the shredding of the conductive material is apparently advanced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、リチウム二次電
池、ニッケル水素二次電池等の電極を製造する方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing electrodes of lithium secondary batteries, nickel hydrogen secondary batteries and the like.

【0002】[0002]

【従来の技術】パソコン、ビデオカメラ、携帯電話等の
小型化に伴い、情報関連機器、通信機器の分野では、こ
れらの機器に用いる電源として、二次電池が使用されて
いる。二次電池の中でも高エネルギー密度であるという
理由から、リチウム二次電池、ニッケル水素二次電池が
実用化され広く普及するに至っている。また一方で、自
動車の分野においても、環境問題、資源問題から電気自
動車の開発が急がれており、この電気自動車用の電源と
しても、リチウム二次電池等の二次電池が検討されてい
る。
2. Description of the Related Art With the miniaturization of personal computers, video cameras, mobile phones and the like, in the fields of information related equipment and communication equipment, secondary batteries have been used as a power source for these equipment. Among secondary batteries, lithium secondary batteries and nickel-hydrogen secondary batteries have been put into practical use and widely spread because of their high energy density. On the other hand, also in the field of automobiles, the development of electric vehicles has been rushed due to environmental problems and resource problems, and secondary batteries such as lithium secondary batteries are also being considered as a power source for this electric vehicle. .

【0003】最近注目されている二次電池であるリチウ
ム二次電池やニッケル水素二次電池の電極は活物質を種
々の添加剤とともに溶剤に混合し正極合材ペーストを集
電体表面に塗布乃至集電体内に浸透させることで製造さ
れている。
For the electrodes of lithium secondary batteries and nickel-hydrogen secondary batteries, which are the secondary batteries that have recently received attention, the active material is mixed with a solvent in a solvent and the positive electrode mixture paste is applied to the surface of the current collector. It is manufactured by making it penetrate into the current collector.

【0004】従来技術として特開平7−114919号
公報では最初に活物質などを溶媒の一部と混合し粘度の
高いパテ状とする第1工程と、残りの溶媒を加えてスラ
リー状とする第2工程とをもつペースト式ニッケル極の
製造方法を開示している。この方法により、電極合材ペ
ースト中への活物質などの分散の均質性を高度に達成す
ることができる。
As a conventional technique, in Japanese Patent Laid-Open No. 7-119919, a first step is to first mix an active material with a part of a solvent to form a putty having a high viscosity, and a remaining step is added to form a slurry. A method of manufacturing a paste type nickel electrode having two steps is disclosed. By this method, it is possible to achieve a high degree of homogeneity of dispersion of the active material and the like in the electrode mixture paste.

【0005】また、特開平10−149819号公報で
は、集電体内に低粘度の電極合材ペーストを充填する工
程と、高粘度の電極合材ペーストを充填する工程とを備
えるペースト式ニッケル極の製造方法を開示している。
この方法により、製造された電極の活物質密度を上昇で
きる。
Further, in Japanese Unexamined Patent Publication No. 10-149819, there is disclosed a paste-type nickel electrode including a step of filling a low-viscosity electrode mixture paste in a current collector and a step of filling a high-viscosity electrode mixture paste. A manufacturing method is disclosed.
By this method, the active material density of the manufactured electrode can be increased.

【0006】[0006]

【発明が解決しようとする課題】ところで、これらの二
次電池を実用化するにあたってコスト低減は必須の課題
である。集電体上に塗布などを行う電極合材ペーストの
製造についても迅速に遂行することで低コスト化に寄与
できる。電極合材ペーストは集電体に付着させるもので
あるので、その粘度には適正な範囲がある。
By the way, cost reduction is an essential issue in putting these secondary batteries into practical use. It is possible to contribute to cost reduction by rapidly performing the production of the electrode mixture paste, which is applied on the current collector. Since the electrode mixture paste is to be attached to the current collector, its viscosity has a proper range.

【0007】従来の電極に用いる電極合材ペーストのな
かでも活物質の他に導電材を必須構成要素として含む正
極合材ペーストについては、構成要素を混合、混練する
際になかなか均一に分散できず、初期粘度が非常に高く
なって均一分散及び適正粘度への到達が迅速にできない
という問題があり、電極の製造時間遅延の一因となって
いた。
Among the conventional electrode mixture pastes used for the electrodes, the positive electrode mixture paste containing the conductive material as an essential component in addition to the active material cannot be uniformly dispersed when the components are mixed and kneaded. However, there is a problem that the initial viscosity becomes so high that uniform dispersion and reaching of an appropriate viscosity cannot be achieved quickly, which has been a cause of delaying the manufacturing time of the electrode.

【0008】そこで、本発明では、正極合材ペーストの
粘度の低下を迅速に行うことが可能であり、目的の粘度
に速やかに到達することができ、迅速に電極を製造する
ことができる電極の製造方法を提供することを解決すべ
き課題とする。
Therefore, in the present invention, it is possible to rapidly reduce the viscosity of the positive electrode mixture paste, reach the target viscosity promptly, and manufacture the electrode promptly. It is a problem to be solved to provide a manufacturing method.

【0009】[0009]

【課題を解決するための手段】上記課題を解決する目的
で本発明者は鋭意研究を行った結果、正極合材調製初期
の粘度上昇の原因として導電材の粒子径が非常に小さ
く、分散性、解砕性が悪いことに着目し、分散性、解砕
性を向上すべく検討を行った。その結果、先に正極活物
質以外の構成要素を混合、混練し、その後に正極活物質
を加えることで迅速に溶媒中に導電材及び正極活物質を
分散させることが可能となり、目的とする粘度に迅速に
到達できることを見出した。さらに、正極活物質を2以
上に分割して加えることでさらなる粘度下降の迅速化を
達成できることを発見した。
Means for Solving the Problems The inventors of the present invention have conducted diligent research for the purpose of solving the above problems. Focusing on the poor disintegration property, investigations were conducted to improve dispersibility and disintegration property. As a result, it becomes possible to rapidly disperse the conductive material and the positive electrode active material in the solvent by first mixing and kneading the constituent elements other than the positive electrode active material, and then adding the positive electrode active material, and the desired viscosity Found that you can get to quickly. Furthermore, it was discovered that the viscosity can be further lowered rapidly by adding the positive electrode active material in two or more portions.

【0010】本発明は以上の知見に基づいてなされたも
のであり、正極活物質の一部と導電材と溶媒とを混合し
て予備ペーストとする予備混練工程と、該正極活物質の
残部を該予備ペースト内に加え混合する本混練工程とを
もつ、該正極活物質と該導電材とを該溶媒中に分散した
正極合材ペーストを調製する正極合材調製工程を有する
ことを特徴とする電極の製造方法である。
The present invention has been made on the basis of the above findings. A preliminary kneading step of mixing a part of the positive electrode active material, a conductive material and a solvent to form a preliminary paste, and a balance of the positive electrode active material And a main kneading step of adding and mixing into the preliminary paste, and a positive electrode mixture preparing step of preparing a positive electrode mixture paste in which the positive electrode active material and the conductive material are dispersed in the solvent. It is a manufacturing method of an electrode.

【0011】つまり、正極活物質の一部を先に加えて混
練することで、導電材よりも粒子径の大きい正極活物質
の存在で導電材等の間の摩擦が減少するために迅速に溶
媒中に分散でき粘度が低下したものと考えられる。ま
た、粒子径のより大きな正極活物質を加えたことで解砕
の進行にも寄与したものと考えられる。その後に正極活
物質の残部を添加するときにはすでに導電材は良く分散
・解砕できているので早期に溶媒中への正極活物質の分
散が達成できる。
That is, by adding a part of the positive electrode active material first and kneading, the friction between the conductive materials and the like is reduced in the presence of the positive electrode active material having a particle size larger than that of the conductive material, so that the solvent is rapidly added. It is considered that the dispersion was possible and the viscosity was lowered. It is also considered that the addition of the positive electrode active material having a larger particle size contributed to the progress of crushing. After that, when the rest of the positive electrode active material is added, the conductive material is already well dispersed and crushed, so that the positive electrode active material can be dispersed in the solvent early.

【0012】[0012]

【発明の実施の形態】本発明の電極の製造方法は、集電
体の表面乃至は内部に正極合材ペーストを付着乃至は浸
透させ、その後に正極合材ペースト中の溶媒を除去する
方法であり、その正極合材ペーストを製造する正極合材
調製工程に特徴を有する。本発明の電極の製造方法によ
り製造できる電極は、リチウム二次電池、ニッケル水素
二次電池、ニッケルカドミウム二次電池、鉛蓄電池等の
正極である。本実施形態ではそのなかでも代表的な電極
としてリチウム二次電池の正極について本発明を適用し
た場合を説明する。他の電池の電極を製造する場合でも
基本的に同様である。
BEST MODE FOR CARRYING OUT THE INVENTION The method for producing an electrode according to the present invention is a method of adhering or permeating a positive electrode mixture paste on the surface or inside of a current collector, and thereafter removing a solvent in the positive electrode mixture paste. There is a feature in the positive electrode mixture preparation step of manufacturing the positive electrode mixture paste. The electrode that can be manufactured by the method for manufacturing an electrode of the present invention is a positive electrode such as a lithium secondary battery, a nickel-hydrogen secondary battery, a nickel-cadmium secondary battery, or a lead storage battery. In this embodiment, a case where the present invention is applied to a positive electrode of a lithium secondary battery as a typical electrode among them will be described. This is basically the same when manufacturing electrodes of other batteries.

【0013】本実施形態のリチウム二次電池の正極を製
造する電極の製造方法は、リチウムイオンを吸蔵・脱離
できる正極活物質と導電材とその他必要な構成要素(例
えば結着剤等)を混合し、適当な溶媒を加えて、正極合
材ペーストとしたものを(正極合材調製工程)、アルミ
ニウム等の金属箔製の集電体表面に塗布、乾燥し、その
後プレスによって正極活物質密度を高めることによって
形成する。
The method of manufacturing an electrode for manufacturing the positive electrode of the lithium secondary battery according to the present embodiment comprises a positive electrode active material capable of absorbing and desorbing lithium ions, a conductive material, and other necessary components (eg, a binder). Mix and add a suitable solvent to make a positive electrode mixture paste (positive electrode mixture preparation step), coat it on the surface of a current collector made of metal foil such as aluminum, dry it, and then press it to make the positive electrode active material density. Formed by increasing.

【0014】正極活物質にはリチウム遷移金属複合酸化
物等の公知の正極活物質を用いることができる。リチウ
ム遷移金属複合酸化物は、その電気抵抗が低く、リチウ
ムイオンの拡散性能に優れ、高い充放電効率と良好な充
放電サイクル特性とが得られるため、本正極活物質に好
ましい材料である。たとえばリチウムコバルト酸化物、
リチウムニッケル酸化物、リチウムマンガン酸化物や、
各々にLi、Al、そしてCr等の遷移金属を添加また
は置換した材料等である。なお、これらのリチウム−金
属複合酸化物を正極活物質として用いる場合には単独で
用いるばかりでなくこれらを複数種類混合して用いるこ
ともできる。
As the positive electrode active material, a known positive electrode active material such as a lithium transition metal composite oxide can be used. The lithium-transition metal composite oxide is a preferable material for the positive electrode active material because it has low electric resistance, excellent lithium ion diffusion performance, high charge-discharge efficiency, and good charge-discharge cycle characteristics. For example, lithium cobalt oxide,
Lithium nickel oxide, lithium manganese oxide,
A material in which a transition metal such as Li, Al, and Cr is added or replaced is used. When these lithium-metal composite oxides are used as the positive electrode active material, they can be used not only individually but also as a mixture of two or more kinds.

【0015】導電材は、正極の電気伝導性を確保するた
めのものであり、カーボンブラック、アセチレンブラッ
ク、黒鉛等の炭素物質粉状体の1種または2種以上を混
合したものを用いることができる。導電材の粒子径は正
極活物質と比較して非常に小さく、正極活物質の隙間に
効率よく充填されることで電極合材中の正極活物質密度
を低下させることなく、正極活物質間及び正極活物質−
集電体間の導電性を担保している。
The conductive material is for ensuring the electric conductivity of the positive electrode, and it is preferable to use one kind or a mixture of two or more kinds of carbon substance powders such as carbon black, acetylene black and graphite. it can. The particle size of the conductive material is very small compared to the positive electrode active material, and the gap between the positive electrode active materials can be efficiently filled to reduce the density of the positive electrode active material in the electrode mixture, Positive electrode active material −
The conductivity between the current collectors is secured.

【0016】結着剤は、正極活物質粒子および導電材粒
子を繋ぎ止める役割を果たすものでポリテトラフルオロ
エチレン、ポリフッ化ビニリデン、フッ素ゴム等の含フ
ッ素樹脂、ポリプロピレン、ポリエチレン等の熱可塑性
樹脂を用いることができる。
The binder plays a role of binding the particles of the positive electrode active material and the particles of the conductive material, and is made of a fluororesin such as polytetrafluoroethylene, polyvinylidene fluoride and fluororubber, or a thermoplastic resin such as polypropylene and polyethylene. Can be used.

【0017】これら正極活物質、導電材、結着剤を分散
させる溶剤としては、N−メチル−2−ピロリドン等の
有機溶剤もしくは水を用いることができる。
An organic solvent such as N-methyl-2-pyrrolidone or water can be used as a solvent for dispersing the positive electrode active material, the conductive material and the binder.

【0018】正極合材調製工程は予備混練工程と本混練
工程とを含み、溶媒中に正極活物質などが高度に分散
し、粘度が制御された正極合材ペーストを調製する工程
である。
The positive electrode mixture preparing step includes a preliminary kneading step and a main kneading step, and is a step of preparing a positive electrode mixture paste in which a positive electrode active material and the like are highly dispersed in a solvent and whose viscosity is controlled.

【0019】予備混練工程は、正極活物質の一部と導電
材と溶媒とを混合して予備ペーストとする工程である。
正極活物質の一部、導電材及び溶媒を加える順序につい
ては特に限定しない。予備混練工程で加える正極活物質
の一部に量としては全体の質量に対して50質量%以下
が好ましく、1〜15質量%の範囲内がより好ましい。
正極活物質は僅かでも添加されていると粘度を急激に低
下させる効果を発揮するが、予備混練工程であまりに多
量に加えると、正極活物質自身に起因する粘度の上昇が
発現するからである。なお、予備混練工程では、正極活
物質の一部を一度に全部加える必要はなく、正極活物質
の一部をさらに数回に分割して加えても良い。
The preliminary kneading step is a step of mixing a part of the positive electrode active material, the conductive material and the solvent to prepare a preliminary paste.
The order of adding a part of the positive electrode active material, the conductive material and the solvent is not particularly limited. The amount of a part of the positive electrode active material added in the preliminary kneading step is preferably 50% by mass or less, and more preferably 1 to 15% by mass based on the total mass.
This is because the positive electrode active material exerts an effect of sharply decreasing the viscosity even if it is added in a small amount, but if it is added in an excessively large amount in the pre-kneading step, the positive electrode active material itself causes an increase in viscosity. In the preliminary kneading step, it is not necessary to add a part of the positive electrode active material all at once, and a part of the positive electrode active material may be added in several times.

【0020】本混練工程は、予備混練工程で調製した予
備ペーストと正極活物質の残部とを混合する工程であ
る。本混練工程は、正極合材ペーストが目的の粘度とな
るまで行う。なお、結着材を正極合材ペーストに添加す
る場合には正極合材調製工程中に添加すれば良く、予備
混練工程、本混練工程のいずれで加えても良い。
The main kneading step is a step of mixing the preliminary paste prepared in the preliminary kneading step with the rest of the positive electrode active material. This kneading step is performed until the positive electrode mixture paste has a desired viscosity. When the binder is added to the positive electrode mixture paste, it may be added during the positive electrode mixture preparation step, and may be added in either the preliminary kneading step or the main kneading step.

【0021】調製した正極合材ペーストは、その後、集
電体表面に塗布・乾燥される。集電体上に正極合材ペー
ストを塗布する方法としては特に限定されず、通常の方
法が適用できる。たとえば、バーコータ、ダイコータ等
により正極合材ペーストを集電体表面に薄く塗布した後
に、乾燥機内に集電体を通過させることで行うことがで
きる。
Thereafter, the prepared positive electrode mixture paste is applied and dried on the surface of the current collector. The method of applying the positive electrode mixture paste on the current collector is not particularly limited, and a usual method can be applied. For example, it can be carried out by applying the positive electrode mixture paste thinly on the surface of the current collector with a bar coater, a die coater or the like, and then passing the current collector through the dryer.

【0022】表面に正極合材ペーストを塗布した集電体
は必要に応じプレス等により正極活物質密度を上昇させ
た後に、常法により製造された負極、セパレータ等と組
み合わされてリチウム二次電池とすることができる。
The current collector whose surface is coated with the positive electrode mixture paste is, if necessary, increased in density of the positive electrode active material by pressing or the like, and then combined with a negative electrode, a separator or the like manufactured by a conventional method to obtain a lithium secondary battery. Can be

【0023】[0023]

【実施例】本発明の電極製造方法についてさらに詳細に
説明する。
EXAMPLES The electrode manufacturing method of the present invention will be described in more detail.

【0024】(実施例1)正極活物質としてのニッケル
酸リチウムを40質量部と導電材としてのカーボンブラ
ックを5質量部と結着材としてのPVDFを5質量部と
を溶媒としてのN−メチル−2−ピロリドン50質量部
とを混合し正極合材ペーストを調製した(正極合材調製
工程)。
Example 1 40 parts by mass of lithium nickel oxide as a positive electrode active material, 5 parts by mass of carbon black as a conductive material, and 5 parts by mass of PVDF as a binder were used as a solvent in N-methyl. 2-Pyrrolidone (50 parts by mass) was mixed to prepare a positive electrode mixture paste (positive electrode mixture preparation step).

【0025】まず、導電材及び結着材の全部と正極活物
質の一部(正極活物質全体の1質量%)とを溶媒中に添
加した。この混合物を循環式のホモジナイザー中で分散
し予備ペーストを調製した(予備混練工程)。この予備
混練工程では、図1に示すように、分散開始から20分
後に予備ペーストの粘度が100mPa・sとなったの
で、正極活物質の残部を予備ペースト中にすべて添加
し、ホモジナイザー中で分散を継続した(本混練工
程)。図1に示すように、予備混練工程開始から60分
後(本混練工程開始からは40分後)に正極合材ペース
トの粘度は集電体上に塗布するのに好適な3000mP
a・s以下となった。なお、図1において、粘度の変化
を破線で示す部分は、実測値は存在しないが予想される
粘度の推移を示したものである。これは比較例2におい
ても同様である。
First, the whole of the conductive material and the binder and a part of the positive electrode active material (1% by mass of the whole positive electrode active material) were added to the solvent. This mixture was dispersed in a circulation homogenizer to prepare a preliminary paste (preliminary kneading step). In this pre-kneading step, as shown in FIG. 1, the viscosity of the pre-paste became 100 mPa · s after 20 minutes from the start of dispersion. Therefore, the rest of the positive electrode active material was added to the pre-paste and dispersed in the homogenizer. Was continued (main kneading step). As shown in FIG. 1, the viscosity of the positive electrode mixture paste after 60 minutes from the start of the preliminary kneading step (40 minutes after the start of the main kneading step) was 3000 mP suitable for coating on the current collector.
It was less than a · s. In addition, in FIG. 1, a portion indicated by a broken line showing a change in viscosity shows an expected change in viscosity although there is no actually measured value. This also applies to Comparative Example 2.

【0026】ここで、粘度の測定はE型粘度計を用い、
0.5rpm、1.9秒-1、30℃の条件で測定した。
この測定条件は以下の粘度測定についても同様である。
Here, the viscosity is measured by using an E-type viscometer,
It was measured under the conditions of 0.5 rpm, 1.9 sec -1 , and 30 ° C.
This measurement condition is the same for the following viscosity measurement.

【0027】(比較例1)実施例1と同様に正極活物質
としてのニッケル酸リチウムを40質量部と導電材とし
てのカーボンブラックを5質量部と結着材としてのPV
DFを5質量部とを溶媒としてのN−メチル−2−ピロ
リドン50質量部とを混合し正極合材ペーストを調製し
た。このとき、すべての構成要素を一度に混合した。そ
の粘度を調べると、図1に示すように、混合、混練開始
から60分後に7000mPa・s、120分後に60
00mPa・sとなった。
(Comparative Example 1) As in Example 1, 40 parts by mass of lithium nickel oxide as a positive electrode active material, 5 parts by mass of carbon black as a conductive material, and PV as a binder.
5 parts by mass of DF and 50 parts by mass of N-methyl-2-pyrrolidone as a solvent were mixed to prepare a positive electrode mixture paste. At this time, all components were mixed at once. When the viscosity was examined, as shown in FIG. 1, 60 minutes after the start of mixing and kneading, 7,000 mPa · s, and 60 minutes after 120 minutes.
It became 00 mPa · s.

【0028】(比較例2)実施例1と同様に正極活物質
としてのニッケル酸リチウムを40質量部と導電材とし
てのカーボンブラックを5質量部と結着材としてのPV
DFを5質量部とを溶媒としてのN−メチル−2−ピロ
リドン50質量部とを混合し正極合材ペーストを調製し
た。このときに、まず正極活物質以外の構成要素を一度
に混合した。図1に示すように、最初の粘度は比較例1
よりも高かったものの、混練開始から60分後にその粘
度を調べると8000mPa・sとなっていた。この値
はすべての構成要素を同時に混合した比較例1の値とほ
ぼ同じであった。その後、正極活物質をすべて加えて混
合を継続した結果、図1に示すように、すぐに比較例1
の同時期での粘度よりも低くなって、120分後に30
00mPa・sとなった。
Comparative Example 2 As in Example 1, 40 parts by mass of lithium nickel oxide as a positive electrode active material, 5 parts by mass of carbon black as a conductive material, and PV as a binder were used.
5 parts by mass of DF and 50 parts by mass of N-methyl-2-pyrrolidone as a solvent were mixed to prepare a positive electrode mixture paste. At this time, first, the constituent elements other than the positive electrode active material were mixed at once. As shown in FIG. 1, the initial viscosity is Comparative Example 1
Although higher than the above, the viscosity was 8000 mPa · s when examined 60 minutes after the kneading was started. This value was almost the same as the value of Comparative Example 1 in which all the constituents were mixed at the same time. After that, as a result of adding all the positive electrode active materials and continuing the mixing, as shown in FIG.
It became lower than the viscosity at the same time, and after 30 minutes,
It became 00 mPa · s.

【0029】(考察)以上説明したように、最初から全
部の構成要素を混合した比較例1では粘度の低下は緩慢
であるのに対し、正極活物質を分割して添加した実施例
1では正極合材ペーストの粘度が著しく迅速に低下でき
ることが分かった。正極活物質以外の構成要素を混合し
た後に正極活物質を添加した比較例2では、比較例1よ
りは迅速に粘度が低下できたものの、実施例1と比較し
て充分なものとはいえなかった。
(Discussion) As described above, in Comparative Example 1 in which all the constituents are mixed from the beginning, the decrease in viscosity is slow, whereas in Example 1 in which the positive electrode active material is divided and added, the positive electrode is added. It has been found that the viscosity of the mixture paste can be reduced significantly rapidly. In Comparative Example 2 in which the positive electrode active material was added after mixing the constituents other than the positive electrode active material, the viscosity could be reduced more quickly than in Comparative Example 1, but it was not sufficient compared with Example 1. It was

【0030】(実施例2)実施例1と同様に正極活物質
としてのニッケル酸リチウムを40質量部と導電材とし
てのカーボンブラックを5質量部と結着材としてのPV
DFを5質量部とを溶媒としてのN−メチル−2−ピロ
リドン50質量部とを混合し正極合材ペーストを調製し
た。このときに、正極活物質を加える割合(正極活物質
全体に対する質量%)を変化させたときの粘度の変化に
ついて調べた。粘度の測定は混合を開始してから20分
後に行った。
(Example 2) Similar to Example 1, 40 parts by mass of lithium nickel oxide as a positive electrode active material, 5 parts by mass of carbon black as a conductive material, and PV as a binder.
5 parts by mass of DF and 50 parts by mass of N-methyl-2-pyrrolidone as a solvent were mixed to prepare a positive electrode mixture paste. At this time, the change in viscosity when the proportion of the positive electrode active material added (% by mass relative to the whole positive electrode active material) was changed was examined. The viscosity was measured 20 minutes after the mixing was started.

【0031】結果を図2に示す。正極活物質をごく僅か
(5〜10質量%程度)加えたところに粘度の極小値を
もち、その後直線的に粘度が上昇することが分かった。
粘度が低下する好ましい正極活物質の添加量としては、
図2から50質量%以下が確実に好ましいことが明らか
となった。そのなかでも正極活物質の一部として1〜1
5質量%を予備混練工程で添加することがさらに好まし
いことが分かる。さらに、より好ましい正極活物質の添
加量としては、5〜15が挙げられる。
The results are shown in FIG. It was found that when a very small amount (about 5 to 10% by mass) of the positive electrode active material was added, the viscosity had a minimum value, and then the viscosity increased linearly.
The preferable addition amount of the positive electrode active material whose viscosity decreases is
From FIG. 2, it became clear that 50 mass% or less is certainly preferable. Among them, 1 to 1 as a part of the positive electrode active material
It can be seen that it is more preferable to add 5% by mass in the pre-kneading step. Further, the more preferable addition amount of the positive electrode active material is 5 to 15.

【0032】[0032]

【発明の効果】以上説明したように、本発明の電極の製
造方法は、正極合材調製工程の予備混練工程で正極活物
質の一部を本混練工程で正極活物質の残部をそれぞれ添
加することで、正極合材ペーストの粘度の低下を迅速に
行うことが可能となり、目的の粘度に速やかに到達する
ことができ、迅速に電極を製造することができた。
As described above, in the electrode manufacturing method of the present invention, a part of the positive electrode active material is added in the preliminary kneading step of the positive electrode mixture preparing step, and the rest of the positive electrode active material is added in the main kneading step. As a result, the viscosity of the positive electrode mixture paste can be rapidly reduced, the target viscosity can be reached quickly, and the electrode can be produced quickly.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1、比較例1及び2における電極合材ペ
ースト粘度の混合時間依存性について示したグラフであ
る。
FIG. 1 is a graph showing the mixing time dependency of the electrode mixture paste viscosity in Example 1 and Comparative Examples 1 and 2.

【図2】実施例2における電極合材ペースト粘度の正極
活物質の添加量依存性について示したグラフである。
FIG. 2 is a graph showing the dependency of the viscosity of the electrode mixture paste in Example 2 on the amount of the positive electrode active material added.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 正極活物質の一部と導電材と溶媒とを混
合して予備ペーストとする予備混練工程と、該正極活物
質の残部を該予備ペースト内に加え混合する本混練工程
とをもつ、該正極活物質と該導電材とを該溶媒中に分散
した正極合材ペーストを調製する正極合材調製工程を有
することを特徴とする電極の製造方法。
1. A preliminary kneading step of mixing a part of the positive electrode active material, a conductive material and a solvent to form a preliminary paste, and a main kneading step of adding the rest of the positive electrode active material into the preliminary paste and mixing them. A method for manufacturing an electrode, further comprising a positive electrode mixture material preparation step of preparing a positive electrode mixture material paste in which the positive electrode active material and the conductive material are dispersed in the solvent.
【請求項2】 前記予備混練工程で混合する前記正極活
物質の一部は、該正極活物質全体の質量に対して50質
量%以下である請求項1に記載の電極の製造方法。
2. The method for producing an electrode according to claim 1, wherein a part of the positive electrode active material mixed in the preliminary kneading step is 50% by mass or less based on the total mass of the positive electrode active material.
【請求項3】 前記予備混練工程で混合する前記正極活
物質の一部は、該正極活物質全体の質量に対して1〜1
5質量%である請求項2に記載の電極の製造方法。
3. A part of the positive electrode active material mixed in the preliminary kneading step is 1 to 1 with respect to the total mass of the positive electrode active material.
It is 5 mass%, The manufacturing method of the electrode of Claim 2.
JP2001308401A 2001-10-04 2001-10-04 Method of manufacturing electrode Pending JP2003115295A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001308401A JP2003115295A (en) 2001-10-04 2001-10-04 Method of manufacturing electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001308401A JP2003115295A (en) 2001-10-04 2001-10-04 Method of manufacturing electrode

Publications (1)

Publication Number Publication Date
JP2003115295A true JP2003115295A (en) 2003-04-18

Family

ID=19127722

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001308401A Pending JP2003115295A (en) 2001-10-04 2001-10-04 Method of manufacturing electrode

Country Status (1)

Country Link
JP (1) JP2003115295A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014143080A (en) * 2013-01-24 2014-08-07 Toyota Motor Corp Secondary battery manufacturing method
KR20190017516A (en) * 2017-08-11 2019-02-20 주식회사 엘지화학 Method of fabricating an electrode

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014143080A (en) * 2013-01-24 2014-08-07 Toyota Motor Corp Secondary battery manufacturing method
KR20190017516A (en) * 2017-08-11 2019-02-20 주식회사 엘지화학 Method of fabricating an electrode
KR102386327B1 (en) * 2017-08-11 2022-04-14 주식회사 엘지에너지솔루션 Method of fabricating an electrode

Similar Documents

Publication Publication Date Title
US8900747B2 (en) Method for producing battery electrode
EP3576192B1 (en) Manufacturing method for electrode for all-solid-state battery and manufacturing method for all solid-state-battery
WO2018068663A1 (en) Anode slurry for lithium ion battery
JP6070834B2 (en) Electrode paste manufacturing method
CN103928657A (en) High-power lithium ion battery pole piece and preparation process thereof
JP2007173134A (en) Material for electrode of lithium ion battery, slurry for forming electrode of lithium ion battery, and lithium ion battery
KR20150027026A (en) Electrode for lithium ion secondary cell, method for preparing paste for said electrode and method for manufacturing said electrode
CN105720258A (en) Lithium ion battery negative electrode material and preparation method and application thereof, and lithium ion battery
JP4754790B2 (en) Method for manufacturing battery electrode
JP2003173777A (en) Combining method and its combining material of positive electrode active material for nonaqueous lithium secondary battery and conductive subsidiary material, and positive electrode and nonaqueous lithium secondary battery using the same
JP2000123876A (en) Manufacture of lithium ion battery material
EP3709397A1 (en) Positive electrode for nonaqueous electrolyte battery and nonaqueous electrolyte battery
KR101170172B1 (en) Process of preparing coatings for positive electrode materials for lithium secondary batteries and positive electrodes for lithium secondary batteries
JP2017062960A (en) Method for manufacturing positive electrode mixture paste for nonaqueous electrolyte secondary battery, and method for manufacturing positive electrode for nonaqueous electrolyte secondary battery
JPH11213989A (en) Manufacture of positive electrode material for lithium secondary battery
JPH10144302A (en) Manufacture of electrode for non-aqueous electrolytic battery and non-aqueous electrolytic battery employing this electrode
JP2009252398A (en) Inspection method of composition for forming negative electrode active material layer of lithium secondary battery, and manufacturing method of the battery
JP4971646B2 (en) Method for producing positive electrode mixture-containing composition, method for producing negative electrode mixture-containing composition, method for producing positive electrode for battery, method for producing negative electrode for battery, non-aqueous secondary battery and method for producing the same
JP2001126718A (en) Method for manufacturing electrode for nonaqueous electrolytic cell and the nonaqueous electrolytic cell
JP7484790B2 (en) All-solid-state battery
JP2015176744A (en) Method of manufacturing secondary battery
JP2003115295A (en) Method of manufacturing electrode
JP2004247180A (en) Electrode mix, electrode structure using it, and nonaqueous electrochemical element
CN113422049A (en) Lithium iron phosphate positive pole piece and preparation method and application thereof
JP2022168684A (en) Manufacturing method of positive electrode for lithium ion battery