JP2003114069A - Gas heat pump type air conditioner - Google Patents

Gas heat pump type air conditioner

Info

Publication number
JP2003114069A
JP2003114069A JP2001309136A JP2001309136A JP2003114069A JP 2003114069 A JP2003114069 A JP 2003114069A JP 2001309136 A JP2001309136 A JP 2001309136A JP 2001309136 A JP2001309136 A JP 2001309136A JP 2003114069 A JP2003114069 A JP 2003114069A
Authority
JP
Japan
Prior art keywords
refrigerant
heat exchanger
gas
cooling water
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001309136A
Other languages
Japanese (ja)
Other versions
JP3626927B2 (en
Inventor
Mitsushi Yoshimura
充司 吉村
Hideaki Kasahara
秀晃 笠原
Takuya Okada
拓也 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2001309136A priority Critical patent/JP3626927B2/en
Publication of JP2003114069A publication Critical patent/JP2003114069A/en
Application granted granted Critical
Publication of JP3626927B2 publication Critical patent/JP3626927B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine

Abstract

PROBLEM TO BE SOLVED: To improve the air conditioning performance of an air conditioner by reducing the pressure loss as much as possible in a refrigerant pipe constituting a refrigerant circuit. SOLUTION: In the gas heat pump type air conditioner, a refrigerant is circulated by a compressor 11 with a gas engine GE as the drive source to form a refrigerant cycle, and waste heat discharged from the gas engine GE is recovered in engine cooling water, by which the refrigerant is heated to increase the heating performance. The gas heat pump type air conditioner has the refrigerant pipe 2a for guiding the refrigerant, heated in a water heat exchanger 13 for the heat exchange between the engine cooling water and the refrigerant, to the compressor 11 without via a four-way valve 18.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、ガスエンジンを駆
動源として冷媒循環用の圧縮機を駆動するガスヒートポ
ンプ式空気調和装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas heat pump type air conditioner for driving a compressor for circulating a refrigerant using a gas engine as a drive source.

【0002】[0002]

【従来の技術】ヒートポンプを利用して冷暖房等の空調
運転を行う空気調和装置は、室内熱交換器、圧縮機、室
外熱交換器、絞り機構等の要素を含む冷媒回路を備えて
いる。室内の冷暖房は、冷媒がこの回路を巡る途中で、
室内熱交換器および室外熱交換器において室内の空気
(以下「室内気」と呼ぶ)および外気とそれぞれ熱の交
換を行うことによって実現される。また、この冷媒回路
には、室外熱交換器による冷媒の熱の受取り(暖房運転
時)のみに頼るのではなく、エンジン排熱を冷媒の加熱
に利用する熱交換器が設置される。
2. Description of the Related Art An air conditioner that uses a heat pump to perform air conditioning such as heating and cooling is provided with a refrigerant circuit including elements such as an indoor heat exchanger, a compressor, an outdoor heat exchanger, and a throttle mechanism. The cooling and heating of the room is done while the refrigerant goes around this circuit.
It is realized by exchanging heat with indoor air (hereinafter referred to as "indoor air") and outside air in the indoor heat exchanger and the outdoor heat exchanger, respectively. Further, in this refrigerant circuit, a heat exchanger that uses engine exhaust heat to heat the refrigerant is installed instead of relying only on the receipt of heat of the refrigerant by the outdoor heat exchanger (during heating operation).

【0003】ところで、近年、上述した冷媒回路中に設
けられる圧縮機の動力源として、通常使用されている電
動機に代わり、ガスエンジンを利用するものが開発され
ている。このガスエンジンを利用した空気調和装置は、
一般にガスヒートポンプ式空気調和装置(以下「GH
P」と略す)と呼ばれている。このGHPによれば、比
較的安価である都市ガス等を燃料として利用できるた
め、電動機を利用した圧縮機を備えている空気調和装置
(以下「EHP」と略す)のように、ランニングコスト
がかさむということがなく、消費者にとってコストダウ
ンが可能となる。
By the way, in recent years, as a power source for a compressor provided in the above-mentioned refrigerant circuit, a gas engine has been developed in place of a normally used electric motor. The air conditioner using this gas engine is
Generally, a gas heat pump type air conditioner (hereinafter referred to as "GH
Abbreviated as "P"). According to this GHP, since city gas or the like, which is relatively inexpensive, can be used as fuel, running costs are high like an air conditioner (hereinafter abbreviated as “EHP”) equipped with a compressor that uses an electric motor. Therefore, the cost can be reduced for consumers.

【0004】また、GHPにおいては、たとえば暖房運
転時に、ガスエンジンから排出される高温の排気ガスや
エンジン冷却水の熱(いわゆる廃熱)を冷媒の加熱源と
して利用すれば、優れた暖房効果を得ることが可能にな
るとともに、EHPに比してエネルギの利用効率を高め
ることができる。ちなみに、この場合において、GHP
のエネルギ利用効率は、EHPと比較して1.2〜1.
5倍ほど高くなる。
Further, in the GHP, for example, during heating operation, if the heat (so-called waste heat) of the high temperature exhaust gas discharged from the gas engine or the engine cooling water is used as the heat source of the refrigerant, an excellent heating effect is obtained. In addition to being able to obtain it, it is possible to improve the energy utilization efficiency as compared with EHP. By the way, in this case, GHP
The energy utilization efficiency of 1.2 to 1.
5 times higher.

【0005】従来のGHPの構造の一例を図4に示す。
本発明に係るGHPと重複する構成要素については後述
の実施の形態に譲るとして、従来のGHPにおいては、
水熱交換器13が、電子膨張弁1b、操作弁21、レシ
ーバ15を介して室内熱交換器1aと室外熱交換器12
とを接続する冷媒配管2から分岐する冷媒配管101に
設けられており、この冷媒配管2aは、室外熱交換器1
2と四方弁18とを接続する冷媒配管2に合流するよう
に接続されている。つまり、室外熱交換器12と水熱交
換器13とが並列に接続されている。
An example of the structure of a conventional GHP is shown in FIG.
Regarding the components overlapping with the GHP according to the present invention, it will be handed over to the embodiments described later. In the conventional GHP,
The water heat exchanger 13 includes the indoor heat exchanger 1 a and the outdoor heat exchanger 12 via the electronic expansion valve 1 b, the operation valve 21, and the receiver 15.
Is provided in a refrigerant pipe 101 that branches from a refrigerant pipe 2 that connects with the refrigerant pipe 2 a.
2 and the four-way valve 18 are connected so as to join the refrigerant pipe 2. That is, the outdoor heat exchanger 12 and the water heat exchanger 13 are connected in parallel.

【0006】また、従来のGHPでは、冷房運転時に室
外熱交換器12から水熱交換器13へ冷媒が流れ込まな
いように、水熱交換器13の下流側の冷媒配管101に
逆止弁102を設けている。
In the conventional GHP, a check valve 102 is provided in the refrigerant pipe 101 on the downstream side of the water heat exchanger 13 so that the refrigerant does not flow from the outdoor heat exchanger 12 into the water heat exchanger 13 during the cooling operation. It is provided.

【0007】[0007]

【発明が解決しようとする課題】上述した従来のGHP
は、水熱交換器13を備えるためにEHPと比較して冷
媒回路が複雑で、冷媒配管中の圧力損失も大きい。圧力
損失が大きいと冷媒の循環が妨げられて冷媒回路の働き
が鈍り、特に水熱交換器13を使用する暖房運転の能力
や暖房効率が伸び悩むといった問題がある。また、従来
のGHPでは、逆止弁102により冷房運転時における
水熱交換器13への冷媒の導入を阻止する構造となって
いるから、冷房運転時と基本的に同じ冷凍サイクルを辿
るデフロスト運転時において、水熱交換器13で回収し
たエンジン冷却水の廃熱を利用することができない。
DISCLOSURE OF THE INVENTION The above-mentioned conventional GHP
Since the water heat exchanger 13 is provided, the refrigerant circuit is more complicated than the EHP, and the pressure loss in the refrigerant pipe is large. When the pressure loss is large, there is a problem that the circulation of the refrigerant is hindered and the function of the refrigerant circuit becomes sluggish, and particularly the heating operation capacity and the heating efficiency using the water heat exchanger 13 do not increase. Further, in the conventional GHP, since the check valve 102 has a structure for preventing the introduction of the refrigerant into the water heat exchanger 13 during the cooling operation, the defrost operation basically follows the same refrigeration cycle as during the cooling operation. At times, the waste heat of the engine cooling water recovered by the water heat exchanger 13 cannot be used.

【0008】本発明は、上記の事情に鑑みてなされたも
ので、冷媒回路を構成する冷媒配管中の圧力損失を少し
でも小さくして、空調能力の向上を図ることを目的とす
るものである。
The present invention has been made in view of the above circumstances, and it is an object of the present invention to improve the air-conditioning capacity by reducing the pressure loss in the refrigerant pipe forming the refrigerant circuit as much as possible. .

【0009】[0009]

【課題を解決するための手段】本発明は、上記課題を解
決するため、以下の手段を採用した。請求項1記載のガ
スヒートポンプ式空気調和装置は、ガスエンジンを駆動
源とする圧縮機で冷媒を循環させて冷凍サイクルを形成
し、前記ガスエンジンより排出された廃熱をエンジン冷
却水に回収すると共に、該エンジン冷却水によって冷媒
を加熱して暖房能力を増すように構成されたガスヒート
ポンプ式空気調和装置において、前記エンジン冷却水と
前記冷媒との熱交換を行う水熱交換器において加熱され
た冷媒を、四方弁を介さずに前記圧縮機に導入する冷媒
流路を設けたことを特徴とする。
The present invention adopts the following means in order to solve the above problems. The gas heat pump type air conditioner according to claim 1 forms a refrigeration cycle by circulating a refrigerant in a compressor driven by a gas engine, and recovers waste heat discharged from the gas engine to engine cooling water. Along with, in a gas heat pump type air conditioner configured to heat the refrigerant by the engine cooling water to increase the heating capacity, it is heated in a water heat exchanger that exchanges heat between the engine cooling water and the refrigerant. A refrigerant flow path for introducing the refrigerant into the compressor without passing through a four-way valve is provided.

【0010】請求項2記載のガスヒートポンプ式空気調
和装置は、ガスエンジンを駆動源とする圧縮機で冷媒を
循環させて冷凍サイクルを形成し、前記ガスエンジンよ
り排出された廃熱をエンジン冷却水に回収すると共に、
該エンジン冷却水によって冷媒を加熱して暖房能力を増
すように構成されたガスヒートポンプ式空気調和装置に
おいて、室内熱交換器への冷媒の導入を断ち、室外熱交
換器において外気に放熱することで該室外熱交換器の霜
除去を行った冷媒を、前記エンジン冷却水と前記冷媒と
の熱交換を行う水熱交換器にすべて導入し、該水熱交換
器に導入された冷媒を前記エンジン冷却水によって加熱
することを特徴とする。
A gas heat pump type air conditioner according to a second aspect of the present invention forms a refrigeration cycle by circulating a refrigerant in a compressor having a gas engine as a drive source, and waste heat discharged from the gas engine is cooled by engine cooling water. As well as collect
In the gas heat pump type air conditioner configured to heat the refrigerant by the engine cooling water to increase the heating capacity, the introduction of the refrigerant to the indoor heat exchanger is cut off, and heat is radiated to the outside air in the outdoor heat exchanger. The refrigerant that has been defrosted in the outdoor heat exchanger is all introduced into a water heat exchanger that performs heat exchange between the engine cooling water and the refrigerant, and the refrigerant introduced into the water heat exchanger is cooled by the engine. It is characterized by heating with water.

【0011】請求項3記載のガスヒートポンプ式空気調
和装置は、ガスエンジンを駆動源とする圧縮機で冷媒を
循環させて冷凍サイクルを形成し、前記ガスエンジンよ
り排出された廃熱をエンジン冷却水に回収すると共に、
該エンジン冷却水によって冷媒を加熱して暖房能力を増
すように構成されたガスヒートポンプ式空気調和装置に
おいて、室内熱交換器への冷媒の導入量を制限し、室外
熱交換器において外気に放熱することで該室外熱交換器
の霜除去を行った冷媒の一部を、前記エンジン冷却水と
前記冷媒との熱交換を行う水熱交換器に導入し、該水熱
交換器に導入された冷媒を前記エンジン冷却水によって
加熱することを特徴とする。
A gas heat pump type air conditioner according to a third aspect of the present invention forms a refrigeration cycle by circulating a refrigerant in a compressor having a gas engine as a driving source, and waste heat discharged from the gas engine is cooled by engine cooling water. As well as collect
In a gas heat pump type air conditioner configured to heat a refrigerant by the engine cooling water to increase a heating capacity, the introduction amount of the refrigerant to the indoor heat exchanger is limited, and the outdoor heat exchanger radiates heat to the outside air. Part of the refrigerant that has been defrosted in the outdoor heat exchanger is introduced into a water heat exchanger that performs heat exchange between the engine cooling water and the refrigerant, and the refrigerant introduced into the water heat exchanger Is heated by the engine cooling water.

【0012】請求項4記載のガスヒートポンプ式空気調
和装置は、ガスエンジンを駆動源とする圧縮機で冷媒を
循環させて冷凍サイクルを形成し、前記ガスエンジンよ
り排出された廃熱をエンジン冷却水に回収すると共に、
該エンジン冷却水によって冷媒を加熱して暖房能力を増
すように構成されたガスヒートポンプ式空気調和装置に
おいて、室外熱交換器において外気に放熱することで該
室外熱交換器の霜除去を行った冷媒の一部を、前記エン
ジン冷却水と前記冷媒との熱交換を行う水熱交換器に導
入し、該水熱交換器に導入された冷媒を前記エンジン冷
却水によって加熱することを特徴とする。
In the gas heat pump type air conditioner according to a fourth aspect of the present invention, a refrigeration cycle is formed by circulating a refrigerant in a compressor having a gas engine as a drive source, and waste heat discharged from the gas engine is used as engine cooling water. As well as collect
In a gas heat pump type air conditioner configured to heat a refrigerant by the engine cooling water to increase heating capacity, a refrigerant in which defrosting of the outdoor heat exchanger is performed by radiating heat to the outside air in the outdoor heat exchanger. Is introduced into a water heat exchanger that exchanges heat between the engine cooling water and the refrigerant, and the refrigerant introduced into the water heat exchanger is heated by the engine cooling water.

【0013】請求項5記載のガスヒートポンプ式空気調
和装置は、請求項1ないし4のいずれか記載のガスヒー
トポンプ式空気調和装置において、冷房運転時に前記水
熱交換器への冷媒の流入を阻止する弁機構が設けられて
いることを特徴とする。
A gas heat pump type air conditioner according to a fifth aspect is the gas heat pump type air conditioner according to any one of the first to fourth aspects, wherein the refrigerant is prevented from flowing into the water heat exchanger during a cooling operation. A valve mechanism is provided.

【0014】本発明においては、水熱交換器において加
熱された冷媒を、四方弁を介さずに圧縮機に導入するこ
とにより、従来に比べて圧力損失が小さくなる。これに
より、暖房運転時においては暖房能力ならびに暖房効率
の向上が図れる。デフロスト運転時においては霜除去に
伴う室内空調の停止時間が短縮される。
In the present invention, by introducing the refrigerant heated in the water heat exchanger into the compressor without passing through the four-way valve, the pressure loss becomes smaller than in the conventional case. As a result, the heating capacity and the heating efficiency can be improved during the heating operation. During defrost operation, the stop time of indoor air conditioning due to defrost removal is shortened.

【0015】本発明においては、室外熱交換器において
外気に放熱することで該室外熱交換器の霜除去を行った
冷媒のすべて、またはその一部を水熱交換器に導入し、
該水熱交換器に導入された冷媒をエンジン冷却水によっ
て加熱することにより、エンジン冷却水の廃熱を利用し
て霜除去動作を行う。
In the present invention, all or part of the defrosted refrigerant in the outdoor heat exchanger is introduced into the water heat exchanger by radiating heat to the outside air in the outdoor heat exchanger.
The refrigerant introduced into the water heat exchanger is heated by the engine cooling water, and the waste heat of the engine cooling water is used to perform the frost removing operation.

【0016】[0016]

【発明の実施の形態】以下、本発明に係るガスヒートポ
ンプ式空気調和装置(以下「GHP」)の一実施形態を
図面に基づいて説明する。 [第1の実施形態]図1は、本発明に係る第1の実施形
態として、GHPの全体構成例(暖房運転時)を示す系
統図であり、大きくは室内ユニット1と、ガスエンジン
駆動の圧縮機等を備えた室外ユニット10とを具備して
構成されている。なお、1台または複数台設置される室
内ユニット1と室外ユニット10との間は、冷媒配管2
によって冷媒の循環が可能に接続されている。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of a gas heat pump type air conditioner (hereinafter referred to as "GHP") according to the present invention will be described below with reference to the drawings. [First Embodiment] FIG. 1 is a system diagram showing an overall configuration example (at the time of heating operation) of a GHP as a first embodiment according to the present invention. The outdoor unit 10 including a compressor and the like is provided. In addition, a refrigerant pipe 2 is provided between the indoor unit 1 and the outdoor unit 10 in which one or more units are installed.
The refrigerant is circulated so that it can be circulated.

【0017】室内ユニット1は、冷房運転時に低温低圧
の液冷媒を蒸発気化させて室内の空気(室内気)から熱
を奪うエバポレータとして機能し、暖房運転時に高温高
圧のガス冷媒を凝縮液化させて室内の空気を暖めるコン
デンサとして機能する室内熱交換器1aを備えている。
なお、図示の例では、各室内熱交換器1a毎に電子膨張
弁(弁機構)1bが設けられている。
The indoor unit 1 functions as an evaporator that evaporates the low-temperature low-pressure liquid refrigerant to evaporate heat from the indoor air (indoor air) during cooling operation, and condenses and liquefies the high-temperature high-pressure gas refrigerant during heating operation. The indoor heat exchanger 1a that functions as a condenser that warms the indoor air is provided.
In the illustrated example, an electronic expansion valve (valve mechanism) 1b is provided for each indoor heat exchanger 1a.

【0018】室外ユニット10は、その内部において、
二つの大きな構成部分に分割される。第1の構成部分
は、圧縮機や室外熱交換器などの機器を中心として室内
ユニット1と共に冷媒回路を形成する部分であり、以後
「冷媒回路部」と呼ぶことにする。また、第2の構成部
分は、圧縮機駆動用のガスエンジンを中心として、これ
に付随する機器を備えた部分であり、以後「ガスエンジ
ン部」と呼ぶことにする。
The outdoor unit 10 has
It is divided into two large components. The first component part is a part that forms a refrigerant circuit with the indoor unit 1 centering on devices such as a compressor and an outdoor heat exchanger, and will be referred to as a "refrigerant circuit part" hereinafter. In addition, the second component part is a part provided mainly with the gas engine for driving the compressor and the devices associated therewith, and is hereinafter referred to as a "gas engine part".

【0019】冷媒回路部内には、圧縮機11、室外熱交
換器12、水熱交換器13、アキュムレータ14、レシ
ーバ15、オイルセパレータ16、絞り機構17、四方
弁18、電磁弁19、逆止弁20、操作弁21等が具備
されており、それぞれが冷媒配管2で接続されている。
In the refrigerant circuit section, a compressor 11, an outdoor heat exchanger 12, a water heat exchanger 13, an accumulator 14, a receiver 15, an oil separator 16, a throttle mechanism 17, a four-way valve 18, a solenoid valve 19, and a check valve. 20, a control valve 21 and the like are provided, and each is connected by a refrigerant pipe 2.

【0020】圧縮機11は、後述するガスエンジンGE
を駆動源として運転され、室内熱交換器1aまたは室外
熱交換器12のいずれかより吸入される低温低圧のガス
冷媒を圧縮し、高温高圧のガス冷媒として吐出する。こ
れにより冷房運転時には、外気温が高い場合でも、冷媒
は室外熱交換器12を通して外気に放熱することが可能
となる。また、暖房運転時には、室内熱交換器1aを通
して室内気に熱を与えることが可能となる。
The compressor 11 is a gas engine GE which will be described later.
The low temperature low pressure gas refrigerant sucked from either the indoor heat exchanger 1a or the outdoor heat exchanger 12 is compressed and discharged as a high temperature high pressure gas refrigerant. As a result, during the cooling operation, the refrigerant can radiate heat to the outside air through the outdoor heat exchanger 12 even when the outside air temperature is high. Further, during the heating operation, it becomes possible to apply heat to the indoor air through the indoor heat exchanger 1a.

【0021】室外熱交換器12は、冷房運転時に高温高
圧のガス冷媒を凝縮液化させて外気に放熱するコンデン
サとして機能し、逆に暖房運転時には低温低圧の液冷媒
を蒸発気化させて外気から熱を奪うエバポレータとして
機能する。つまり、冷暖房それぞれの運転時において、
室外熱交換器12は、先の室内熱交換器1aとは逆の働
きを行うことになる。
The outdoor heat exchanger 12 functions as a condenser that condenses and liquefies the high-temperature and high-pressure gas refrigerant to radiate the outside air during the cooling operation, and conversely evaporates and evaporates the low-temperature and low-pressure liquid refrigerant from the outside air during the heating operation. It functions as an evaporator that takes away. In other words, during each operation of cooling and heating,
The outdoor heat exchanger 12 works in the opposite manner to the indoor heat exchanger 1a.

【0022】水熱交換器13は、後述するガスエンジン
GEのエンジン冷却水から冷媒に熱を回収させるために
設けられている。すなわち、暖房運転時において、冷媒
は室外熱交換器12における熱交換のみに頼るのではな
く、ガスエンジンGEのエンジン冷却水からも廃熱を回
収することになるため、暖房運転の効果をより高めるこ
とが可能となる。
The water heat exchanger 13 is provided for allowing the refrigerant to recover heat from the engine cooling water of the gas engine GE described later. That is, during the heating operation, the refrigerant not only depends on the heat exchange in the outdoor heat exchanger 12 but also recovers the waste heat from the engine cooling water of the gas engine GE, so that the effect of the heating operation is further enhanced. It becomes possible.

【0023】水熱交換器13は、電子膨張弁1b、操作
弁21、レシーバ15を介して室内熱交換器1aと室外
熱交換器12とを接続する冷媒配管2から分岐する冷媒
配管(冷媒流路)2aに設けられている。水熱交換器1
3を経た冷媒配管2aは、四方弁18を介さず、アキュ
ムレータ14を介して圧縮機11に接続されている。
The water heat exchanger 13 is a refrigerant pipe (refrigerant flow) branched from a refrigerant pipe 2 connecting the indoor heat exchanger 1a and the outdoor heat exchanger 12 via an electronic expansion valve 1b, an operation valve 21 and a receiver 15. Road) 2a. Water heat exchanger 1
The refrigerant pipe 2 a passing through 3 is connected to the compressor 11 via the accumulator 14 without passing through the four-way valve 18.

【0024】冷媒配管2aとの分岐部分と室外熱交換器
12との間に配設された冷媒配管2には、室外熱交換器
12への冷媒の導入を断続する電磁弁23が設けられて
いる。また、冷媒配管2との分岐部分と水熱交換器13
との間に配設された冷媒配管2aには、水熱交換器13
への冷媒の導入を断続する電磁弁24が設けられてい
る。
A solenoid valve 23 for connecting and disconnecting the introduction of the refrigerant to the outdoor heat exchanger 12 is provided in the refrigerant pipe 2 arranged between the branch portion of the refrigerant pipe 2a and the outdoor heat exchanger 12. There is. Further, the branch portion with the refrigerant pipe 2 and the water heat exchanger 13
In the refrigerant pipe 2a arranged between the water heat exchanger 13 and
An electromagnetic valve 24 is provided for connecting and disconnecting the introduction of the refrigerant to and from.

【0025】アキュムレータ14は、圧縮機11に流入
するガス冷媒に含まれる液相成分を貯留するために設け
られている。レシーバ15は、コンデンサとして機能す
る熱交換器で液化した冷媒を気液分離し、冷凍サイクル
中の余剰冷媒を液として蓄えるために設けられている。
オイルセパレータ16は、冷媒中に含まれる油分を分離
して圧縮機11に戻すために設けられたものである。
The accumulator 14 is provided to store the liquid phase component contained in the gas refrigerant flowing into the compressor 11. The receiver 15 is provided for gas-liquid separation of the refrigerant liquefied by the heat exchanger functioning as a condenser, and storing excess refrigerant in the refrigeration cycle as liquid.
The oil separator 16 is provided to separate the oil contained in the refrigerant and return it to the compressor 11.

【0026】絞り機構17は、凝縮された高温高圧の液
冷媒を減圧、膨張させて低温低圧の液冷媒とするための
ものである。図示の例では、絞り機構17として、温度
式膨張弁17aとキャピラリーチューブ17bとを組み
合わせたものが使用されている。
The throttle mechanism 17 is for decompressing and expanding the condensed high-temperature and high-pressure liquid refrigerant into a low-temperature and low-pressure liquid refrigerant. In the illustrated example, a combination of a thermal expansion valve 17a and a capillary tube 17b is used as the throttle mechanism 17.

【0027】四方弁18は、冷媒配管2に設けられて冷
媒の流路や流れ方向を選択切り換えするものである。こ
の四方弁18には4つのポートD,C,S,Eが設けら
れており、ポートDは圧縮機11の吐出側と、ポートC
は室外熱交換器12と、ポートSは圧縮機11の吸入側
と、そしてポートEは室内熱交換器1aと、それぞれ冷
媒配管2で接続されている。
The four-way valve 18 is provided in the refrigerant pipe 2 and selectively switches the flow path and flow direction of the refrigerant. The four-way valve 18 is provided with four ports D, C, S and E. The port D is connected to the discharge side of the compressor 11 and the port C.
Are connected to the outdoor heat exchanger 12, the port S is connected to the suction side of the compressor 11, and the port E is connected to the indoor heat exchanger 1a by refrigerant pipes 2, respectively.

【0028】一方、ガスエンジン部には、ガスエンジン
GEを中心として、冷却水系30および燃料吸入系60
の他、図示省略の排気ガス系やエンジンオイル系が具備
されている。ガスエンジンGEは、冷媒回路部内に設置
されている圧縮機11とシャフトまたはベルト等により
接続されており、ガスエンジンGEから圧縮機11に駆
動力が伝達されるようになっている。
On the other hand, in the gas engine section, mainly the gas engine GE, the cooling water system 30 and the fuel intake system 60.
Besides, an exhaust gas system and an engine oil system (not shown) are provided. The gas engine GE is connected to the compressor 11 installed in the refrigerant circuit section by a shaft or a belt, and the driving force is transmitted from the gas engine GE to the compressor 11.

【0029】冷却水系30は、水ポンプ31、リザーバ
タンク32、ラジエータ33などを備え、これらを配管
により接続して構成される回路(破線で表示)を巡るエ
ンジン冷却水によって、ガスエンジンGEを冷却するた
めの系である。水ポンプ31は、ガスエンジンGEの冷
却水を回路に循環させるために設けられている。リザー
バタンク32は、この回路を流れる冷却水において、そ
の余剰分を一時貯蔵しておく、あるいは冷却水が回路に
不足した場合にそれを供給するためのものである。ラジ
エータ33は、室外熱交換器12と一体的に構成された
ものであって、エンジン冷却水がガスエンジンGEから
奪った熱を外気に放出するために設けられている。
The cooling water system 30 is provided with a water pump 31, a reservoir tank 32, a radiator 33, etc., and cools the gas engine GE with engine cooling water that goes around a circuit (indicated by a broken line) constituted by connecting these components by piping. It is a system for doing. The water pump 31 is provided to circulate the cooling water of the gas engine GE in the circuit. The reservoir tank 32 is for temporarily storing an excess of the cooling water flowing through this circuit, or for supplying the cooling water when the cooling water is insufficient in the circuit. The radiator 33 is configured integrally with the outdoor heat exchanger 12, and is provided to release the heat taken by the engine cooling water from the gas engine GE to the outside air.

【0030】冷却水系30には、上記した構成の他に排
気ガス熱交換器(排ガス熱交)34が設けられている。
これは、ガスエンジンGEより排出される排気ガスの熱
を、エンジン冷却水に回収するためのものである。ま
た、冷却水系30には先に説明した水熱交換器13が備
えられ、冷媒回路部および冷却水系30の両系に跨るよ
うに配置されている。これらのことから、暖房運転時に
は、エンジン冷却水はガスエンジンGEから熱を奪うだ
けでなく排気ガスからも熱を回収し、かつその回収され
た熱が、エンジン冷却水より水熱交換器13を通して冷
媒に与えられる仕組みになっている。なお、冷却水系3
0におけるエンジン冷却水の流量制御は、2箇所に設け
られた流量制御弁35A,35Bにより行われる。
The cooling water system 30 is provided with an exhaust gas heat exchanger (exhaust gas heat exchanger) 34 in addition to the above-mentioned structure.
This is for recovering the heat of the exhaust gas discharged from the gas engine GE to the engine cooling water. Further, the cooling water system 30 is provided with the water heat exchanger 13 described above, and is arranged so as to extend over both the refrigerant circuit unit and the cooling water system 30. Therefore, during heating operation, the engine cooling water not only takes heat from the gas engine GE but also recovers heat from the exhaust gas, and the recovered heat passes through the water heat exchanger 13 from the engine cooling water. It is a mechanism that is given to the refrigerant. The cooling water system 3
The flow rate control of the engine cooling water at 0 is performed by the flow rate control valves 35A and 35B provided at two locations.

【0031】燃料吸入系60は、ガスレギュレータ6
1、ガス電磁弁62、ガス接続口63などを備え、ガス
エンジンGEに液化天然ガス(LNG)等の都市ガスを
ガス燃料として供給するための系である。ガスレギュレ
ータ61は、ガス電磁弁62およびガス接続口63を介
して外部から供給されるガス燃料の送出圧力を調整する
ために設けられている。このガスレギュレータ61で圧
力調整されたガス燃料は、図示省略の吸気口から吸入さ
れた空気と混合された後、ガスエンジンGEの燃焼室に
供給される仕組みになっている。
The fuel intake system 60 includes a gas regulator 6
1, a gas solenoid valve 62, a gas connection port 63, etc., and is a system for supplying city gas such as liquefied natural gas (LNG) to the gas engine GE as gas fuel. The gas regulator 61 is provided for adjusting the delivery pressure of the gas fuel supplied from the outside via the gas solenoid valve 62 and the gas connection port 63. The gas fuel whose pressure is adjusted by the gas regulator 61 is mixed with the air sucked from an intake port (not shown) and then supplied to the combustion chamber of the gas engine GE.

【0032】以下では、上記の構成となるGHPについ
て、室内を冷暖房するそれぞれの運転時について、冷媒
やエンジン冷却水等の流れとともにその作用を説明す
る。最初に、図1に基づいて暖房運転時について説明す
る。なお、各弁類の開閉状態は黒塗りで図示した弁類が
閉であり、冷媒およびエンジン冷却水の流れ方向が矢印
で示されている。暖房運転が選択されると、冷媒回路部
の四方弁18が切り換えられ、ポートD/E間およびC
/S間が連通し、圧縮機11の吐出側と室内熱交換器1
aとが接続される。また、電磁弁23,24はいずれも
開かれ、各電子膨張弁1bもすべて全開となる。
In the following, the operation of the GHP having the above-described structure will be described together with the flow of the refrigerant, engine cooling water and the like during each operation of cooling and heating the room. First, the heating operation will be described with reference to FIG. The open / closed state of each valve is black, the valves are closed, and the flow directions of the refrigerant and the engine cooling water are indicated by arrows. When the heating operation is selected, the four-way valve 18 of the refrigerant circuit section is switched, and the ports D / E and C are connected.
/ S communication, the discharge side of the compressor 11 and the indoor heat exchanger 1
a is connected. Further, the solenoid valves 23 and 24 are both opened, and all the electronic expansion valves 1b are also fully opened.

【0033】まず、圧縮機11より吐出された高温高圧
のガス冷媒は、四方弁18および操作弁21を通って室
内熱交換器1aに送られる。室内熱交換器1aに送られ
たガス冷媒は室内気と熱交換して凝縮液化される。この
過程において、ガス冷媒は放熱して室内気を暖めたの
ち、高温高圧の液冷媒となる。この液冷媒は、電子膨張
弁1b、操作弁21およびレシーバ15を通過して流
れ、レシーバ15において気液分離がなされる。レシー
バ15を出た液冷媒は冷媒配管2に導かれて分岐し、一
部が電磁弁23、絞り機構17を通って室外熱交換器1
2へ送られ、残りは電磁弁24、絞り機構17を通って
水熱交換器13へ送られる。
First, the high-temperature and high-pressure gas refrigerant discharged from the compressor 11 is sent to the indoor heat exchanger 1a through the four-way valve 18 and the operation valve 21. The gas refrigerant sent to the indoor heat exchanger 1a exchanges heat with the indoor air to be condensed and liquefied. In this process, the gas refrigerant radiates heat to warm the indoor air, and then becomes a high temperature and high pressure liquid refrigerant. The liquid refrigerant flows through the electronic expansion valve 1b, the operation valve 21 and the receiver 15, and the receiver 15 separates gas and liquid. The liquid refrigerant that has exited the receiver 15 is guided to the refrigerant pipe 2 and branched, and a part of the liquid refrigerant passes through the solenoid valve 23 and the throttle mechanism 17 and the outdoor heat exchanger 1
2 is sent to the water heat exchanger 13 through the electromagnetic valve 24 and the throttle mechanism 17.

【0034】室外熱交換器12へ送られる液冷媒は、絞
り機構17を通過する過程で減圧されて低温低圧の液冷
媒となる。室外熱交換器12では、低温低圧の液冷媒が
外気から熱を奪い、蒸発気化して低温低圧のガス冷媒と
なる。このとき、ラジエータ33に高温のエンジン冷却
水を流すことにより、エンジン廃熱を利用して液冷媒を
効率よく蒸発気化させることが可能である。
The liquid refrigerant sent to the outdoor heat exchanger 12 is decompressed in the process of passing through the throttle mechanism 17 to become a low temperature and low pressure liquid refrigerant. In the outdoor heat exchanger 12, the low-temperature low-pressure liquid refrigerant takes heat from the outside air and evaporates to become a low-temperature low-pressure gas refrigerant. At this time, by flowing high-temperature engine cooling water to the radiator 33, it is possible to efficiently evaporate and vaporize the liquid refrigerant by utilizing the engine waste heat.

【0035】水熱交換器13へ送られる液冷媒は、絞り
機構17を通過する過程で減圧されて低温低圧の液冷媒
となる。水熱交換器13では、低温低圧の液冷媒がエン
ジン冷却水に加熱されて蒸発気化し、低温低圧のガス冷
媒となる。なお、外気温度が極端に低い運転条件では、
電磁弁24を閉じて水熱交換器13のみを作動させるこ
ともある。
The liquid refrigerant sent to the water heat exchanger 13 is decompressed in the process of passing through the throttle mechanism 17 to become a low temperature and low pressure liquid refrigerant. In the water heat exchanger 13, the low-temperature low-pressure liquid refrigerant is heated by the engine cooling water and vaporized to become a low-temperature low-pressure gas refrigerant. In addition, under operating conditions where the outside air temperature is extremely low,
The electromagnetic valve 24 may be closed to operate only the water heat exchanger 13.

【0036】室外熱交換器12を経た低温低圧のガス冷
媒は、四方弁18のポートCからポートSを経てアキュ
ムレータ14へ導かれ、液相成分が分離されたのち圧縮
機11に吸入される。また、水熱交換器13を経た低温
低圧のガス冷媒は、四方弁18を介さずに冷媒配管2a
を通じて直接アキュムレータ14へ導かれる。
The low-temperature low-pressure gas refrigerant having passed through the outdoor heat exchanger 12 is introduced from the port C of the four-way valve 18 to the accumulator 14 via the port S, and the liquid phase component is separated and then sucked into the compressor 11. Further, the low-temperature low-pressure gas refrigerant that has passed through the water heat exchanger 13 does not pass through the four-way valve 18 and the refrigerant pipe 2 a.
Is directly led to the accumulator 14.

【0037】圧縮機11に吸入されたガス冷媒は、圧縮
機11の作動により圧縮され、高温高圧のガス冷媒とな
って再び室内熱交換器1aに送られる。以降は上記の過
程を繰り返して冷凍サイクルが実現される。
The gas refrigerant sucked into the compressor 11 is compressed by the operation of the compressor 11, becomes a high temperature and high pressure gas refrigerant, and is sent to the indoor heat exchanger 1a again. Thereafter, the above process is repeated to realize the refrigeration cycle.

【0038】続いて、図2に基づいて冷房運転時におけ
る冷媒およびエンジン冷却水の流れを簡単に説明する。
冷房運転が選択されると、四方弁18はポートD/C間
およびE/S間が連通し、圧縮機11の吐出側と室外熱
交換器12とが接続される。また、電磁弁23,24は
いずれも閉じられ、各電子膨張弁1bはそれぞれに対応
する室内熱交換器1aに求められる能力に応じた適切な
開度に調節される。
Next, the flow of the refrigerant and the engine cooling water during the cooling operation will be briefly described with reference to FIG.
When the cooling operation is selected, the four-way valve 18 communicates between ports D / C and between E / S, and the discharge side of the compressor 11 and the outdoor heat exchanger 12 are connected. Further, the electromagnetic valves 23 and 24 are both closed, and each electronic expansion valve 1b is adjusted to an appropriate opening degree according to the capacity required for the indoor heat exchanger 1a corresponding thereto.

【0039】まず、圧縮機11より吐出された高温高圧
のガス冷媒は、四方弁18を通って室外熱交換器12に
送られる。室外熱交換器12に送られたガス冷媒は外気
に放熱して凝縮液化し、高温高圧の液冷媒となる。この
液冷媒は電磁弁23,24が閉じているために逆止弁2
0を通過してレシーバ15に導かれる。レシーバ15で
気液分離された液冷媒は、操作弁21を通って電子膨張
弁1bに導かれ、この電子膨張弁1bを通過する過程で
減圧されて低温低圧の液冷媒となり、室内熱交換器1a
に送られる。
First, the high-temperature and high-pressure gas refrigerant discharged from the compressor 11 is sent to the outdoor heat exchanger 12 through the four-way valve 18. The gas refrigerant sent to the outdoor heat exchanger 12 radiates heat to the outside air to be condensed and liquefied, and becomes a high temperature and high pressure liquid refrigerant. This liquid refrigerant has a check valve 2 because the solenoid valves 23 and 24 are closed.
It passes through 0 and is guided to the receiver 15. The liquid refrigerant separated into gas and liquid by the receiver 15 is guided to the electronic expansion valve 1b through the operation valve 21, and is decompressed in the process of passing through the electronic expansion valve 1b to become a low-temperature low-pressure liquid refrigerant, and the indoor heat exchanger. 1a
Sent to.

【0040】室内熱交換器1aに送られた低温低圧の液
冷媒は、室内気から熱を奪って蒸発気化する。この過程
で室内気を冷却して低温低圧のガス冷媒となり、操作弁
21および冷媒配管2を通って四方弁18へ導かれる。
四方弁18に導かれた低温低圧のガス冷媒は、ポートE
からポートSを経てアキュムレータ14に流入し、ここ
で液相成分が分離されたのち、圧縮機11に吸入され
る。圧縮機11に吸入されたガス冷媒は、圧縮機11の
作動により圧縮され、高温高圧のガス冷媒となって再び
室外熱交換器12に送られる。以降は上記の過程を繰り
返して冷凍サイクルが実現される。
The low-temperature low-pressure liquid refrigerant sent to the indoor heat exchanger 1a takes heat from the indoor air to be vaporized. In this process, the room air is cooled to become a low-temperature low-pressure gas refrigerant, which is guided to the four-way valve 18 through the operation valve 21 and the refrigerant pipe 2.
The low-temperature low-pressure gas refrigerant led to the four-way valve 18 is
Through the port S into the accumulator 14, where the liquid phase component is separated and then sucked into the compressor 11. The gas refrigerant sucked into the compressor 11 is compressed by the operation of the compressor 11, becomes a high-temperature high-pressure gas refrigerant, and is sent to the outdoor heat exchanger 12 again. Thereafter, the above process is repeated to realize the refrigeration cycle.

【0041】続いて、図3に基づいてデフロスト運転時
における冷媒およびエンジン冷却水の流れを簡単に説明
する。デフロスト運転が選択されると、四方弁18は冷
房運転と同じに切り換えられる。また、電磁弁23は閉
じられるが電磁弁24は開かれ、各電子膨張弁1bはす
べて全閉となる。
Next, the flow of the refrigerant and the engine cooling water during the defrost operation will be briefly described with reference to FIG. When the defrost operation is selected, the four-way valve 18 is switched to the same as the cooling operation. Further, the electromagnetic valve 23 is closed but the electromagnetic valve 24 is opened, and all the electronic expansion valves 1b are fully closed.

【0042】まず、圧縮機11より吐出された高温高圧
のガス冷媒は、四方弁18を通って室外熱交換器12に
送られる。室外熱交換器12に送られたガス冷媒は、外
気に放熱することによって室内熱交換器12に付着した
霜を溶かし、自らは凝縮液化して高温高圧の液冷媒とな
る。この液冷媒は、電磁弁23および各電子膨張弁1b
が閉じているためにすべてが電磁弁24、絞り機構17
を通って水熱交換器13へ送られる。
First, the high-temperature and high-pressure gas refrigerant discharged from the compressor 11 is sent to the outdoor heat exchanger 12 through the four-way valve 18. The gas refrigerant sent to the outdoor heat exchanger 12 melts the frost adhering to the indoor heat exchanger 12 by radiating heat to the outside air, and condenses itself into a liquid refrigerant of high temperature and high pressure. This liquid refrigerant is applied to the solenoid valve 23 and each electronic expansion valve 1b.
The solenoid valve 24 and throttle mechanism 17 are all closed because
And is sent to the water heat exchanger 13.

【0043】水熱交換器13へ送られる液冷媒は、絞り
機構17を通過する過程で減圧されて低温低圧の液冷媒
となる。水熱交換器13では、低温低圧の液冷媒がエン
ジン冷却水に加熱されて蒸発気化し、低温低圧のガス冷
媒となる。
The liquid refrigerant sent to the water heat exchanger 13 is decompressed in the process of passing through the throttle mechanism 17 to become a low temperature and low pressure liquid refrigerant. In the water heat exchanger 13, the low-temperature low-pressure liquid refrigerant is heated by the engine cooling water and vaporized to become a low-temperature low-pressure gas refrigerant.

【0044】水熱交換器13を経た低温低圧のガス冷媒
は、四方弁18を介さずに冷媒配管2aを通じて直接ア
キュムレータ14へ導かれ、液相成分が分離されたのち
圧縮機11に吸入される。
The low-temperature low-pressure gas refrigerant that has passed through the water heat exchanger 13 is directly guided to the accumulator 14 through the refrigerant pipe 2a without passing through the four-way valve 18, and the liquid phase component is separated and then sucked into the compressor 11. .

【0045】圧縮機11に吸入されたガス冷媒は、圧縮
機11の作動により圧縮され、高温高圧のガス冷媒とな
って再び室内熱交換器1aに送られる。以降は上記の過
程を繰り返して冷凍サイクルが実現される。
The gas refrigerant sucked into the compressor 11 is compressed by the operation of the compressor 11, becomes a high temperature and high pressure gas refrigerant, and is sent to the indoor heat exchanger 1a again. Thereafter, the above process is repeated to realize the refrigeration cycle.

【0046】上記のガスヒートポンプ式空気調和装置に
おいては、暖房運転やデフロスト運転のモードにおい
て、水熱交換器13で蒸発気化した冷媒を、冷媒配管2
aを通じて四方弁18を介さずに圧縮機11に導入する
ので、従来に比べて圧力損失を小さくすることができ
る。これにより、暖房運転時においては、暖房能力なら
びに暖房効率の向上を図ることができる。デフロスト運
転時においては、霜除去に伴う室内空調の停止時間の短
縮を図ることができる。
In the gas heat pump type air conditioner described above, in the heating operation mode and the defrost operation mode, the refrigerant evaporated and vaporized in the water heat exchanger 13 is transferred to the refrigerant pipe 2
Since it is introduced into the compressor 11 through the a without passing through the four-way valve 18, the pressure loss can be made smaller than in the conventional case. As a result, it is possible to improve the heating capacity and the heating efficiency during the heating operation. During the defrost operation, it is possible to shorten the stop time of the indoor air conditioning due to the defrost removal.

【0047】また、上記のガスヒートポンプ式空気調和
装置によるデフロスト運転は、従来と異なり、室内熱交
換器1aに冷えた冷媒を流さない仕組みとなっているの
で、デフロスト運転時に室内熱交換器1aが冷えない。
そのため、デフロスト運転を終えて暖房運転を再開する
際、冷えた室内熱交換器1aを暖めるために無駄な仕事
をすることがない。これにより、デフロスト運転再開後
の暖房の立ち上がりが早く、室内空調のフィーリングが
よい。
Further, unlike the conventional case, the defrost operation by the gas heat pump type air conditioner has a mechanism in which the cooled refrigerant does not flow into the indoor heat exchanger 1a, so that the indoor heat exchanger 1a is operated during the defrost operation. I don't get cold.
Therefore, when the defrost operation is finished and the heating operation is restarted, there is no useless work for warming the cold indoor heat exchanger 1a. As a result, the heating starts up quickly after the defrost operation is restarted, and the indoor air conditioning feels good.

【0048】ところで、本実施形態においては、デフロ
スト運転に入る際に室内ユニット1のすべての電子膨張
弁1bを閉じる制御を行っているが、他の実施態様とし
て、 a)電子膨張弁1bについての制御は特に行わず、デフ
ロスト運転に入る前に選択されていた暖房運転時の開度
をそのまま継続してデフロスト運転を行う、b)電子膨
張弁1bの開度を所定の開度、例えば従来のデフロスト
運転と同様の膨張弁制御によりデフロスト運転を行うこ
とも可能である。
By the way, in the present embodiment, control is performed to close all the electronic expansion valves 1b of the indoor unit 1 when the defrost operation is started, but as another embodiment, a) the electronic expansion valve 1b is The control is not particularly performed, and the defrost operation is continued by continuing the opening during heating operation that was selected before the defrost operation is started. B) The opening of the electronic expansion valve 1b is set to a predetermined opening, for example, the conventional It is also possible to perform the defrost operation by the expansion valve control similar to the defrost operation.

【0049】上記a)の実施態様の場合、デフロスト運
転の制御が簡略化されるメリットがあるが、電子膨張弁
1bの開度によっては室内に冷えた空気を送り込む可能
性がある。上記b)の実施態様の場合、従来のデフロス
ト運転と同じ要領でデフロスト運転の制御を行うことが
でき、この場合も制御の簡略化が図れるが、やはり電子
膨張弁1bが開かれていることで多少の冷風が室内に吹
き込む可能性がある。しかしながら、上記a)、b)の
いずれの実施態様においても、冷媒の加熱をエンジン冷
却水を利用して行っているので、霜除去に伴う室内空調
の停止時間を従来よりも短縮することができ、室内への
冷風の供給も非常に少ないことを特記しておく。
In the case of the above embodiment a), there is a merit that the control of the defrost operation is simplified, but there is a possibility that cool air may be sent into the room depending on the opening of the electronic expansion valve 1b. In the case of the above embodiment b), the defrost operation can be controlled in the same manner as the conventional defrost operation. In this case, the control can be simplified, but the electronic expansion valve 1b is still open. Some cold air may blow into the room. However, in any of the above embodiments a) and b), since the cooling of the refrigerant is performed by using the engine cooling water, the stop time of the indoor air conditioning due to the frost removal can be shortened as compared with the conventional case. , It is worth noting that the supply of cold air to the room is also very small.

【0050】[0050]

【発明の効果】本発明のガスヒートポンプ式空気調和装
置によれば、以下の効果を奏する。 (1)水熱交換器において加熱された冷媒を、四方弁を
介さずに圧縮機に導入することにより、従来に比べて圧
力損失が小さくなるので、暖房運転時においては暖房能
力ならびに暖房効率を向上させることができる。また、
デフロスト運転時においては霜除去に伴う室内空調の停
止時間が短縮されるので、室内空調のフィーリングが向
上する。
The gas heat pump type air conditioner of the present invention has the following effects. (1) By introducing the refrigerant heated in the water heat exchanger into the compressor without passing through the four-way valve, the pressure loss becomes smaller than in the conventional case, so that the heating capacity and the heating efficiency are improved during the heating operation. Can be improved. Also,
During the defrost operation, the stop time of the indoor air conditioning due to the removal of frost is shortened, so that the feeling of the indoor air conditioning is improved.

【0051】(2)室外熱交換器において外気に放熱す
ることで該室外熱交換器の霜除去を行った冷媒のすべ
て、またはその一部を水熱交換器に導入し、該水熱交換
器に導入された冷媒をエンジン冷却水によって加熱する
ことにより、エンジン冷却水の廃熱を利用して霜除去動
作を行う。その際、室内熱交換器に冷えた冷媒を流さな
いので、室内熱交換器が冷えず、デフロスト運転を終え
て暖房運転を再開する際、冷えた室内熱交換器を暖める
ために無駄な仕事をすることがない。これにより、デフ
ロスト運転再開後の暖房の立ち上がりが早まるので、室
内空調のフィーリングが向上する。
(2) All or a part of the refrigerant from which frost has been removed from the outdoor heat exchanger by radiating heat to the outdoor heat exchanger is introduced into the water heat exchanger, and the water heat exchanger is introduced. By heating the refrigerant introduced into the engine cooling water by the engine cooling water, the waste heat of the engine cooling water is used to perform the frost removal operation. At that time, since the cold refrigerant does not flow into the indoor heat exchanger, the indoor heat exchanger does not cool, and when the defrost operation is finished and the heating operation is restarted, useless work is required to warm the cold indoor heat exchanger. There is nothing to do. As a result, the heating starts up quickly after the defrost operation is restarted, so that the feeling of indoor air conditioning is improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明に係るガスヒートポンプ式空気調和装
置の第1の実施形態を示す構成図で、暖房運転の状態を
示している。
FIG. 1 is a configuration diagram showing a first embodiment of a gas heat pump type air conditioner according to the present invention, showing a heating operation state.

【図2】 本発明に係るガスヒートポンプ式空気調和装
置の第1の実施形態を示す構成図で、冷房運転の状態を
示している。
FIG. 2 is a configuration diagram showing a first embodiment of a gas heat pump type air conditioner according to the present invention, showing a state of a cooling operation.

【図3】 本発明に係るガスヒートポンプ式空気調和装
置の第1の実施形態を示す構成図で、デフロスト運転の
状態を示している。
FIG. 3 is a configuration diagram showing a first embodiment of a gas heat pump type air conditioner according to the present invention, showing a defrost operation state.

【図4】 従来のガスヒートポンプ式空気調和装置を示
す構成図で、暖房運転の状態を示している。
FIG. 4 is a configuration diagram showing a conventional gas heat pump type air conditioner, showing a heating operation state.

【符号の説明】[Explanation of symbols]

1 室内ユニット 1a 室内熱交換器 1b 電子膨張弁(弁機構) 2a 冷媒配管(冷媒流路) 10 室外ユニット 11 圧縮機 12 室外熱交換器 13 水熱交換器 18 四方弁 24 電磁弁 1 Indoor unit 1a Indoor heat exchanger 1b Electronic expansion valve (valve mechanism) 2a Refrigerant piping (refrigerant flow path) 10 outdoor unit 11 compressor 12 outdoor heat exchanger 13 Water heat exchanger 18 four-way valve 24 Solenoid valve

───────────────────────────────────────────────────── フロントページの続き (72)発明者 岡田 拓也 愛知県西春日井郡西枇杷島町旭町3丁目1 番地 三菱重工業株式会社冷熱事業本部内   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Takuya Okada             3-1, Asahi-cho, Nishibiwajima-cho, Nishikasugai-gun, Aichi             Address Mitsubishi Heavy Industries Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 ガスエンジンを駆動源とする圧縮機で冷
媒を循環させて冷凍サイクルを形成し、前記ガスエンジ
ンより排出された廃熱をエンジン冷却水に回収すると共
に、該エンジン冷却水によって冷媒を加熱して暖房能力
を増すように構成されたガスヒートポンプ式空気調和装
置において、 前記エンジン冷却水と前記冷媒との熱交換を行う水熱交
換器において加熱された冷媒を、四方弁を介さずに前記
圧縮機に導入する冷媒流路を設けたことを特徴とするガ
スヒートポンプ式空気調和装置。
1. A refrigeration cycle is formed by circulating a refrigerant in a compressor having a gas engine as a drive source, and waste heat discharged from the gas engine is recovered in engine cooling water and the refrigerant is cooled by the engine cooling water. In the gas heat pump type air conditioner configured to heat the heating capacity to heat the refrigerant, the refrigerant heated in the water heat exchanger for exchanging heat between the engine cooling water and the refrigerant, without passing through a four-way valve. A gas heat pump type air conditioner, characterized in that a refrigerant flow path to be introduced into the compressor is provided in the compressor.
【請求項2】 ガスエンジンを駆動源とする圧縮機で冷
媒を循環させて冷凍サイクルを形成し、前記ガスエンジ
ンより排出された廃熱をエンジン冷却水に回収すると共
に、該エンジン冷却水によって冷媒を加熱して暖房能力
を増すように構成されたガスヒートポンプ式空気調和装
置において、 室内熱交換器への冷媒の導入を断ち、室外熱交換器にお
いて外気に放熱することで該室外熱交換器の霜除去を行
った冷媒を、前記エンジン冷却水と前記冷媒との熱交換
を行う水熱交換器にすべて導入し、該水熱交換器に導入
された冷媒を前記エンジン冷却水によって加熱すること
を特徴とするガスヒートポンプ式空気調和装置。
2. A refrigeration cycle is formed by circulating a refrigerant in a compressor having a gas engine as a drive source, and waste heat discharged from the gas engine is recovered in engine cooling water and the refrigerant is cooled by the engine cooling water. In a gas heat pump type air conditioner configured to increase the heating capacity by heating the indoor heat exchanger, the introduction of the refrigerant to the indoor heat exchanger is cut off, and the outdoor heat exchanger radiates heat to the outside air to dissipate the outdoor heat exchanger. The defrosted refrigerant is introduced into a water heat exchanger that exchanges heat between the engine cooling water and the refrigerant, and the refrigerant introduced into the water heat exchanger is heated by the engine cooling water. A characteristic gas heat pump type air conditioner.
【請求項3】 ガスエンジンを駆動源とする圧縮機で冷
媒を循環させて冷凍サイクルを形成し、前記ガスエンジ
ンより排出された廃熱をエンジン冷却水に回収すると共
に、該エンジン冷却水によって冷媒を加熱して暖房能力
を増すように構成されたガスヒートポンプ式空気調和装
置において、 室内熱交換器への冷媒の導入量を制限し、室外熱交換器
において外気に放熱することで該室外熱交換器の霜除去
を行った冷媒の一部を、前記エンジン冷却水と前記冷媒
との熱交換を行う水熱交換器に導入し、該水熱交換器に
導入された冷媒を前記エンジン冷却水によって加熱する
ことを特徴とするガスヒートポンプ式空気調和装置。
3. A refrigeration cycle is formed by circulating a refrigerant in a compressor having a gas engine as a drive source, and waste heat discharged from the gas engine is recovered in engine cooling water and the refrigerant is cooled by the engine cooling water. In the gas heat pump type air conditioner configured to heat the indoor heat exchanger to increase the heating capacity, the outdoor heat exchange is performed by limiting the amount of refrigerant introduced into the indoor heat exchanger and radiating the outside air to the outdoor heat exchanger. Part of the refrigerant that has been subjected to defrosting of the vessel is introduced into a water heat exchanger that performs heat exchange between the engine cooling water and the refrigerant, and the refrigerant introduced into the water heat exchanger is changed by the engine cooling water. A gas heat pump type air conditioner characterized by heating.
【請求項4】 ガスエンジンを駆動源とする圧縮機で冷
媒を循環させて冷凍サイクルを形成し、前記ガスエンジ
ンより排出された廃熱をエンジン冷却水に回収すると共
に、該エンジン冷却水によって冷媒を加熱して暖房能力
を増すように構成されたガスヒートポンプ式空気調和装
置において、 室外熱交換器において外気に放熱することで該室外熱交
換器の霜除去を行った冷媒の一部を、前記エンジン冷却
水と前記冷媒との熱交換を行う水熱交換器に導入し、該
水熱交換器に導入された冷媒を前記エンジン冷却水によ
って加熱することを特徴とするガスヒートポンプ式空気
調和装置。
4. A refrigeration cycle is formed by circulating a refrigerant in a compressor having a gas engine as a drive source, and waste heat discharged from the gas engine is recovered in engine cooling water and the refrigerant is cooled by the engine cooling water. In a gas heat pump type air conditioner configured to increase the heating capacity by heating a part of the refrigerant that has been defrosted in the outdoor heat exchanger by radiating heat to the outside air, A gas heat pump type air conditioner, which is introduced into a water heat exchanger that exchanges heat between engine cooling water and the refrigerant, and the refrigerant introduced into the water heat exchanger is heated by the engine cooling water.
【請求項5】 請求項1ないし4のいずれか記載のガス
ヒートポンプ式空気調和装置において、 冷房運転時に前記水熱交換器への冷媒の流入を阻止する
弁機構が設けられていることを特徴とするガスヒートポ
ンプ式空気調和装置。
5. The gas heat pump type air conditioner according to any one of claims 1 to 4, further comprising a valve mechanism for preventing a refrigerant from flowing into the water heat exchanger during a cooling operation. Gas heat pump type air conditioner.
JP2001309136A 2001-10-04 2001-10-04 Gas heat pump type air conditioner Expired - Fee Related JP3626927B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001309136A JP3626927B2 (en) 2001-10-04 2001-10-04 Gas heat pump type air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001309136A JP3626927B2 (en) 2001-10-04 2001-10-04 Gas heat pump type air conditioner

Publications (2)

Publication Number Publication Date
JP2003114069A true JP2003114069A (en) 2003-04-18
JP3626927B2 JP3626927B2 (en) 2005-03-09

Family

ID=19128334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001309136A Expired - Fee Related JP3626927B2 (en) 2001-10-04 2001-10-04 Gas heat pump type air conditioner

Country Status (1)

Country Link
JP (1) JP3626927B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1628093A2 (en) 2004-08-17 2006-02-22 Lg Electronics Inc. Air conditioning system combined with an electricity generating system
JP2006250438A (en) * 2005-03-10 2006-09-21 Yanmar Co Ltd Engine driven heat pump

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1628093A2 (en) 2004-08-17 2006-02-22 Lg Electronics Inc. Air conditioning system combined with an electricity generating system
EP1628093A3 (en) * 2004-08-17 2011-06-22 LG Electronics, Inc. Air conditioning system combined with an electricity generating system
JP2006250438A (en) * 2005-03-10 2006-09-21 Yanmar Co Ltd Engine driven heat pump
JP4549205B2 (en) * 2005-03-10 2010-09-22 ヤンマー株式会社 Engine driven heat pump

Also Published As

Publication number Publication date
JP3626927B2 (en) 2005-03-09

Similar Documents

Publication Publication Date Title
JP5030344B2 (en) Gas heat pump type air conditioner, engine cooling water heating device, and operation method of gas heat pump type air conditioner
US9879891B2 (en) Unitary heat pump air conditioner having a compressed vapor diversion loop
US20080302113A1 (en) Refrigeration system having heat pump and multiple modes of operation
US10611212B2 (en) Air conditioner for vehicle
JP2000301935A (en) Heat pump type air conditioner for vehicle
KR102495460B1 (en) Cooling and heating system for electrical vehicle
JP2004259615A (en) Cooling device for fuel cell
JP2007225141A (en) Gas heat pump type air conditioner and its starting method
CN101365917A (en) Defrost system
CN109982877B (en) Vehicle heat pump system
JP4898025B2 (en) Multi-type gas heat pump type air conditioner
JP2007248022A (en) Air conditioning system
CN206765743U (en) Heat pump, heat pump and electric automobile for vehicle
JP3626927B2 (en) Gas heat pump type air conditioner
EP3043118B1 (en) Air conditioner
JP4773637B2 (en) Multi-type gas heat pump type air conditioner
JP2006234321A (en) Outdoor unit and air conditioner
JP2000146319A (en) Heat pump type air conditioner
KR20210063506A (en) Automotive air conditioning system
JP4658395B2 (en) Multi-type gas heat pump type air conditioner
JP2001280764A (en) Air conditioning system
JP4658394B2 (en) Multi-type gas heat pump type air conditioner
JP2001280744A (en) Air conditioner
JP2003232555A (en) Operation control method for gas heat pump type air conditioner
CN117103949A (en) Automobile heat management system and control method thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040811

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040817

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041014

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041206

R151 Written notification of patent or utility model registration

Ref document number: 3626927

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071210

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121210

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees