JP2003112217A - Method for removing oxidized film on surface of metallic material - Google Patents

Method for removing oxidized film on surface of metallic material

Info

Publication number
JP2003112217A
JP2003112217A JP2001302122A JP2001302122A JP2003112217A JP 2003112217 A JP2003112217 A JP 2003112217A JP 2001302122 A JP2001302122 A JP 2001302122A JP 2001302122 A JP2001302122 A JP 2001302122A JP 2003112217 A JP2003112217 A JP 2003112217A
Authority
JP
Japan
Prior art keywords
particles
oxide film
polygonal
steel plate
stainless steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001302122A
Other languages
Japanese (ja)
Inventor
Akira Taguchi
晃 田口
Masabumi Ando
正文 安藤
Masaaki Kato
雅昭 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IKK SHOTTO KK
Original Assignee
IKK SHOTTO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IKK SHOTTO KK filed Critical IKK SHOTTO KK
Priority to JP2001302122A priority Critical patent/JP2003112217A/en
Publication of JP2003112217A publication Critical patent/JP2003112217A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a removing method of an oxidized film on the surface of a metallic material by which the oxidized film which is generated on the surface of the metallic material at heat treatment which is performed as the pretreatment of various metallic materials is removed efficiently and surely in the rolling or the wiredrawing stage of the various metallic materials. SOLUTION: This method is a removing method of the oxidized film on the surface of the metallic material in which, by blasting metallic particles of only polygonal particles or the polygonal particles and approximately spherical particles which are mixed at a proper mixing ratio to the surface of the metallic material of a stainless steel sheet, an electrical steel sheet, a steel bar or a wire rod, the oxidized film on the surface of the metallic material is removed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、各種金属材の圧延また
は伸線工程において、各種金属材の前処理として実施さ
れた熱処理時に金属材表面に発生した酸化被膜を効率よ
く確実に除去し得る金属材表面の酸化皮膜の除去方法に
関する。なお、本明細書中において、「圧延」の語は棒
鋼又は線材における「引き抜き」を含むものとする。
INDUSTRIAL APPLICABILITY The present invention is capable of efficiently and reliably removing an oxide film formed on the surface of a metal material during a heat treatment carried out as a pretreatment for various metal materials in a rolling or drawing process of various metal materials. The present invention relates to a method for removing an oxide film on the surface of a metal material. In addition, in this specification, the term "rolling" includes "pulling" in a steel bar or a wire rod.

【0002】[0002]

【従来の技術】一般に、金属の板材、棒材または線材等
の金属材製品は、鋳造されたスラブが加熱炉で加熱熱処
理された後に熱間圧延され、更にこの熱間圧延材料が焼
鈍炉で熱処理された後、更に冷間圧延されて所望の金属
材製品が得られる。ところで、各種金属材の上記加熱炉
又は焼鈍炉での熱処理時にその表面に酸化被膜(いわゆ
るスケール)が発生し、そのまま熱間圧延又は冷間圧延
を行うと、酸化皮膜という異物の存在に起因して、上記
圧延時に金属材の表面に傷を生じてしまい、不良品が発
生する。従って、上記金属材製品の製造工程において、
金属材表面の酸化被膜を効率よく確実に除去しておくこ
とは、最終金属材製品の製造歩留まりを管理する上で最
も重要である。
2. Description of the Related Art Generally, a metal product such as a metal plate, bar or wire is hot-rolled after a cast slab is heat-treated in a heating furnace, and the hot-rolled material is further annealed in an annealing furnace. After being heat-treated, it is further cold-rolled to obtain a desired metal material product. By the way, an oxide film (so-called scale) is generated on the surface of each metal material during heat treatment in the heating furnace or the annealing furnace, and if hot rolling or cold rolling is performed as it is, it is caused by the presence of foreign matter called an oxide film. As a result, the surface of the metal material is scratched during the rolling, resulting in defective products. Therefore, in the manufacturing process of the metal material product,
Efficient and reliable removal of the oxide film on the surface of the metal material is the most important for managing the production yield of the final metal material product.

【0003】従来、この酸化皮膜を除去する方法として
は、酸化皮膜が発生した鋼材を例えば多少の捩りを加
えつつ引っ張ることにより微量の機械的変形を与えて鋼
材各部分の塑性変形程度の差により酸化皮膜を剥離除去
する方法、鋼材表面をブラシなどによりこすって強制
的に酸化皮膜を剥離除去する方法、鋼材表面を酸性液
体により洗って、酸化皮膜を化学的に剥離除去する方
法、更には上記〜を組み合わせる方法等があっ
た。
Conventionally, as a method for removing this oxide film, a slight amount of mechanical deformation is given by pulling the steel product having the oxide film while applying a little twist, for example, by varying the degree of plastic deformation of each part of the steel product. A method of peeling and removing the oxide film, a method of forcibly peeling and removing the oxide film by rubbing the steel surface with a brush, a method of washing the steel surface with an acidic liquid and chemically peeling and removing the oxide film, and further above. There was a method of combining ~.

【0004】[0004]

【本発明が解決しようとする課題】上記従来の〜の
方法では、鋼材表面の酸化皮膜の除去は、実際には、除
去の効率及び程度の双方において不十分で確実に除去さ
れず、後の熱間又は冷間圧延工程で鋼材に傷が発生する
不良率が高かった。又不良発生率が高いと、これを検査
するための検査人員の労力も大変になるという問題点が
あった。これらを解決するには、上記酸化皮膜除去工程
においてラインスピードを低下させて十分な剥離除去作
業を行って不良発生率を低減する必要があるが、そうす
ると工程全体のラインスピードがこの部分で低下してし
まうという問題点があった。
In the above-mentioned conventional methods (1) to (5), the removal of the oxide film on the surface of the steel material is actually insufficient in terms of both efficiency and degree of removal and cannot be reliably removed. The defect rate at which the steel material was scratched during the hot or cold rolling process was high. Further, if the defect occurrence rate is high, there is a problem that the labor of the inspecting person for inspecting this becomes great. In order to solve these problems, it is necessary to reduce the line speed in the above oxide film removal process and perform sufficient peeling removal work to reduce the defect occurrence rate, but then the line speed of the entire process will decrease in this part. There was a problem that it would end up.

【0005】また、鋼材製品中の成分組成比率が変更に
なるたびに、酸化皮膜の性状及び形状も大きく変化し、
表面酸化皮膜の除去率も大きく変動するため、これらの
変動に対して対応するための特別な管理が必要であると
いう問題点があった。
Further, whenever the composition ratio of the steel product changes, the properties and shape of the oxide film also change greatly,
Since the removal rate of the surface oxide film also fluctuates greatly, there is a problem that special management is required to cope with these fluctuations.

【0006】なお、多角形状粒子は、完全な同一形状で
なく砂や石のように不定形なものである。また球形状粒
子とは、完全な球に限定するものではなく卵型や幾分楕
円球あるいは長円球などであっても実施可能である。
[0006] The polygonal particles do not have the completely same shape but have irregular shapes such as sand and stone. The spherical particles are not limited to perfect spheres, but may be egg-shaped, somewhat elliptical spheres or ellipsoidal spheres.

【0007】[0007]

【課題を解決するための手段】本発明は、金属材表面の
酸化皮膜の除去方法において、前記金属材はステンレス
鋼板、電磁鋼板、棒鋼又は線材の何れかであり、該金属
材の表面に対して、多角形状粒子のみ、または多角形状
粒子と略球形状粒子とを適正混合比率で混合した金属粒
子を、噴き付けることによって前記金属材表面の酸化被
膜を除去することを特徴とする。
The present invention provides a method for removing an oxide film on a surface of a metal material, wherein the metal material is any of a stainless steel plate, an electromagnetic steel plate, a steel bar or a wire rod, and Then, the oxide film on the surface of the metal material is removed by spraying only polygonal particles or metal particles in which polygonal particles and substantially spherical particles are mixed at an appropriate mixing ratio.

【0008】これにより、多角形状粒子のみ、または多
角形状粒子と略球形状粒子との混合金属粒子を噴き付け
ることによりステンレス鋼板等の金属材の表面粗さがほ
ぼ同等状態のままラインスピードを増大させて工程の処
理効率を向上し得る。
Thus, by spraying only the polygonal particles or the mixed metal particles of the polygonal particles and the substantially spherical particles, the line speed is increased while the surface roughness of the metal material such as the stainless steel plate is almost the same. The processing efficiency of the process can be improved.

【0009】好ましくは、前記粒子の噴き付け工程は、
前記ステンレス鋼板の冷間圧延工程前又は熱間圧延工程
前に行われる。これにより、圧延工程(棒及び線材の引
き抜き工程含む)において酸化皮膜の存在により金属材
の表面に傷を付けてしまう等のことがない。
[0009] Preferably, the step of spraying the particles is
It is performed before the cold rolling process or the hot rolling process of the stainless steel plate. This prevents the surface of the metal material from being scratched by the presence of the oxide film in the rolling process (including the rod and wire drawing process).

【0010】好ましくは、前記適正混合比率は、多角形
状粒子及び球形状粒子は、多角形状粒子が混合金属粒子
全体の約30重量%以上である。これにより、多角形状
粒子の存在により酸化皮膜の除去効率を向上してライン
スピードを増大し得る。
Preferably, the appropriate mixing ratio of the polygonal particles and the spherical particles is such that the polygonal particles are about 30% by weight or more of the whole mixed metal particles. As a result, the presence of the polygonal particles can improve the removal efficiency of the oxide film and increase the line speed.

【0011】[0011]

【実施の形態】以下、図1を参照して、本願発明の実施
例を説明する。図1中、鋳造後の鋼材の一つとしてのス
テンレス鋼板スラブ1Aは、まず加熱炉2に送られて加
熱処理され、この加熱処理済ステンレス鋼板1Bはグラ
インダーにより研削されると共に噴射機3Aにより金属
粒子4を噴き付けられ、上記加熱炉2での加熱処理によ
りその表面に生じた酸化皮膜(スケールとも言う)5を
除去される。次いで、このステンレス鋼板1Bは熱間圧
延ロール6により熱間圧延されて熱間圧延ステンレス鋼
板1Cとなって焼鈍炉7に送られて焼鈍熱処理される。
続いて、このステンレス鋼板1Cは、上記酸化皮膜除去
処理と同様に、噴射機3Bにより金属粒子4を噴き付け
られ、上記焼鈍炉7での焼鈍熱処理によりその表面に生
じた酸化皮膜5を除去され、更に冷間圧延ロール8によ
り冷間圧延される。この冷間圧延ステンレス鋼板1Dは
焼鈍炉9により再び熱処理焼鈍された後に、酸洗い装置
10により酸洗いされて上記焼鈍炉9での焼鈍熱処理に
よりその表面に再び生じた酸化皮膜5を除去され、最終
のステンレス鋼板1Eが完成する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT An embodiment of the present invention will be described below with reference to FIG. In FIG. 1, a stainless steel plate slab 1A, which is one of the steel materials after casting, is first sent to a heating furnace 2 and subjected to heat treatment. The particles 4 are sprayed, and the oxide film (also referred to as scale) 5 formed on the surface of the particles by the heat treatment in the heating furnace 2 is removed. Next, this stainless steel plate 1B is hot-rolled by hot rolling rolls 6 to become hot-rolled stainless steel plate 1C, which is sent to an annealing furnace 7 and subjected to annealing heat treatment.
Subsequently, the stainless steel plate 1C is sprayed with the metal particles 4 by the injector 3B as in the oxide film removing treatment, and the oxide film 5 formed on the surface thereof is removed by the annealing heat treatment in the annealing furnace 7. Further, cold rolling is performed by the cold rolling roll 8. The cold-rolled stainless steel plate 1D is heat-treated and annealed again in the annealing furnace 9, and then pickled by the pickling device 10 to remove the oxide film 5 regenerated on the surface thereof by the annealing heat treatment in the annealing furnace 9. The final stainless steel plate 1E is completed.

【0012】なお、図1中、ステンレス鋼板1Aが加熱
炉2を出た直後の最初の酸化皮膜除去処理は場合によっ
ては行わなくてもよく、又最初の焼鈍炉7を出たステン
レス鋼板1Cは噴射機3Bによる酸化皮膜除去処理のみ
を行っているが更に機械的変形処理、ブラシでこする処
理等を併用して行ってもよく、又同様に最終の焼鈍炉9
を出たステンレス鋼板1Dは酸洗いのみを行っているが
勿論更に酸化皮膜除去処理、機械的変形処理、ブラシで
こする処理等を併用して行ってもよい。又噴射機3Bを
出たステンレス鋼板1Cは冷間圧延ロール8へ送られる
ことなくそのまま熱間圧延済鋼板1Cの製品として出荷
してもよい。
In FIG. 1, the first oxide film removal treatment immediately after the stainless steel plate 1A leaves the heating furnace 2 may not be performed in some cases, and the stainless steel plate 1C leaving the first annealing furnace 7 is Although only the oxide film removal treatment by the injector 3B is performed, mechanical deformation treatment, brush rubbing treatment, or the like may be performed in combination, and similarly, the final annealing furnace 9 is used.
The stainless steel plate 1D that has been exposed is only pickled, but of course it may be further subjected to an oxide film removal treatment, a mechanical deformation treatment, a brush rubbing treatment, and the like. Further, the stainless steel plate 1C exiting the injector 3B may be directly shipped as a product of the hot rolled steel plate 1C without being sent to the cold rolling roll 8.

【0013】上記酸化皮膜除去処理において、噴射機3
A、3Bにより金属粒子4を噴射して、加熱処理済ステ
ンレス鋼板1B及び焼鈍後ステンレス鋼板1Cに噴き付
けて、これら鋼板1B、1Cの表面の酸化皮膜5を除去
しているが、この方法によれば、従来の機械的変形を与
える方法、ブラシなどによりこする方法、又は酸性液体
により洗う方法に比して、酸化皮膜5の除去率を向上し
得る。
In the above oxide film removal treatment, the injector 3
The metal particles 4 are sprayed by A and 3B and sprayed on the heat-treated stainless steel plate 1B and the annealed stainless steel plate 1C to remove the oxide film 5 on the surfaces of these steel plates 1B and 1C. According to this, the removal rate of the oxide film 5 can be improved as compared with the conventional method of applying mechanical deformation, rubbing with a brush or the like, or washing with an acidic liquid.

【0014】ここで本発明では ステンレス鋼板1(1
A…1E)は、これに限らず、電磁鋼板、棒鋼又は線材
でもよい。又金属粒子4の形状としては、多角形状粒子
のみ、又は多角形状粒子と略球形状粒子とを適正比率に
混合したものを使用して噴き付ける。又、前記適正混合
比率は、多角形状粒子及び球形状粒子は、多角形状粒子
が混合金属粒子全体の約30重量%以上である。又、前
記多角形状粒子及び球形状粒子は、外径寸法が大略0.
2mm〜0.7mmである。又、前記多角形状粒子及び
球形状粒子の硬度は400〜500Hvである。
In the present invention, the stainless steel plate 1 (1
A ... 1E) is not limited to this, and may be an electromagnetic steel plate, a steel bar, or a wire rod. As the shape of the metal particles 4, only the polygonal particles or a mixture of the polygonal particles and the substantially spherical particles in an appropriate ratio is used and sprayed. The proper mixing ratio is such that, in the polygonal particles and the spherical particles, the polygonal particles are about 30% by weight or more of the whole mixed metal particles. The polygonal particles and the spherical particles have outer diameters of approximately 0.
It is 2 mm to 0.7 mm. The hardness of the polygonal particles and the spherical particles is 400 to 500 Hv.

【0015】[0015]

【実施例1】実施例1(表1及び図2)は、まず表1に
示す如く、ステンレス鋼板1(1B、1C)の表面に対
して、多角形状粒子及び球形状粒子(粒径0.4mm、
望ましくは0.2〜0.7mm程度、粒子硬度450H
v、望ましくは400〜500Hv程度)の混合体の金
属粒子を、その混合比率を夫々0〜100%の範囲で変
え(5種類の実験例a−e)、しかも粒子噴き付け密度
(kg/m2)を適宜変えつつ粒子を噴き付けた場合に
ついて、酸化皮膜除去率(%)を調査した。この結果を
表1及び図2に示す。なお、球形状及び多角形状粒子の
組成は、鉄がベースであってかつ少なくともC が0.1
〜1.2%、Siが0.1〜1.2%、Mnが0.1〜
1.2%を含み、この組成については以下の実施例でも
同様である。
Example 1 In Example 1 (Table 1 and FIG. 2), first, as shown in Table 1, polygonal particles and spherical particles (particle size: 0. 4 mm,
Desirably 0.2 to 0.7 mm, particle hardness 450H
v, preferably about 400 to 500 Hv), the mixing ratio of the metal particles is changed within the range of 0 to 100% (five kinds of experimental examples ae), and the particle spraying density (kg / m). 2 ) The oxide film removal rate (%) was investigated for the case where particles were sprayed while appropriately changing. The results are shown in Table 1 and FIG. The composition of the spherical and polygonal particles is based on iron and has at least C 0.1.
~ 1.2%, Si 0.1-1.2%, Mn 0.1-
1.2%, and this composition is the same in the following examples.

【0016】[0016]

【表1】 [Table 1]

【0017】表1及び図2によれば、金属粒子の中に、
粒子噴き付け密度が大きいほど又多角形状粒子の混合割
合が大きいほど、表面酸化皮膜除去率は向上することが
わかる。即ち、球形状粒子よりも多角形状粒子の方が酸
化皮膜の除去性能が高い。また、酸化皮膜除去性能は、
全量を多角形状粒子のみにした場合(実験e)は、球形
状粒子のみの場合に比して約2倍向上することがわか
る。
According to Table 1 and FIG. 2, among the metal particles,
It can be seen that the surface oxide film removal rate improves as the particle spraying density increases and the polygonal particle mixing ratio increases. That is, the polygonal particles have a higher oxide film removal performance than the spherical particles. Also, the oxide film removal performance is
It can be seen that when the total amount is only polygonal particles (experiment e), the improvement is about twice as much as when only spherical particles are used.

【0018】[0018]

【実施例2】実施例2(表2〜表4)は、ステンレス鋼
板1の表面に対して、多角形状粒子及び球形状粒子の混
合体を、その混合比率を変えたものを噴き付け、鋼板1
表面粗さ及びラインスピードの変化を試験した。
Example 2 In Example 2 (Tables 2 to 4), a mixture of polygonal particles and spherical particles having different mixing ratios was sprayed onto the surface of the stainless steel plate 1 to form a steel plate. 1
Changes in surface roughness and line speed were tested.

【0019】[0019]

【表2】 [Table 2]

【0020】[0020]

【表3】 [Table 3]

【0021】[0021]

【表4】 [Table 4]

【0022】特に表2は、ステンレス鋼板に対して噴き
付けられた多角形状粒子及び球形状粒子の粒径の変化に
対応した両粒子の分布割合(%;以下、%は重量に基づ
いた%を示す)を示す。表2中、「ふるい寸法」とは、
粒子を振り分けるための標準ふるいの目開き寸法であり
例えば目開き寸法355−425μmの間で多角形状粒
子は全体としてその35.6%がふるいを通過したこと
を意味し、その意味で「ふるい寸法」とは大略粒径を意
味する。これによれば、粒径は0.1〜0.6mmの範
囲で分布するが0.3〜0.5mm程度が中心になって
いることがわかる。
In particular, Table 2 shows the distribution ratio (%) of both particles corresponding to the change in the particle size of polygonal particles and spherical particles sprayed on a stainless steel plate (hereinafter,% is% based on weight). Show). In Table 2, "sieving size" means
It is a mesh size of a standard sieve for distributing particles. For example, in the mesh size of 355 to 425 μm, it means that 35.6% of polygonal particles as a whole have passed through the sieve. "Means approximately the particle size. According to this, it can be seen that the particle size is distributed in the range of 0.1 to 0.6 mm, but is centered at about 0.3 to 0.5 mm.

【0023】又表3は、多角形状粒子及び球形状粒子の
混合割合の5種類の変化(実験a−e)に対応したステ
ンレス鋼板の得られた表面粗さ(μm)を示す。同表
中、Raは算術表面粗さ(Ra=1/L・∫|f(x)
|dx;ただし、Lは測定表面の長さであり、かつ積分
は0からLまで))であり、又Ryは表面の粗さ最高点
と粗さ最低点との間の最大高さ、Rzは最大値から5箇
所、最小値から5箇所の計10箇所の平均粗さである。
Table 3 shows the obtained surface roughness (μm) of the stainless steel plate corresponding to five kinds of changes in the mixing ratio of polygonal particles and spherical particles (experiments ae). In the table, Ra is the arithmetic surface roughness (Ra = 1 / L · ∫ | f (x)
| Dx; where L is the length of the measured surface and the integral is from 0 to L)), and Ry is the maximum height between the maximum roughness point and the minimum roughness point of the surface, Rz Is the average roughness of 10 points in total, 5 points from the maximum value and 5 points from the minimum value.

【0024】表3によれば、多角形状粒子の割合が増大
するほど、ステンレス鋼板の表面粗さは多角形状粒子の
割合がゼロの場合に比してもほぼ同等であることがわか
った。従って、本発明では、ステンレス鋼板の表面粗さ
を所定値以下に維持し得る条件下で、球形状粒子に多角
形状粒子を混合した混合金属粒子或いは多角形状金属粒
子のみの粒子をステンレス鋼板の表面に噴き付けて、酸
化皮膜の除去率を向上させる、換言すればラインスピー
ドを増大させることが可能であることがわかった。
From Table 3, it was found that as the proportion of polygonal particles increases, the surface roughness of the stainless steel plate is almost the same as when the proportion of polygonal particles is zero. Therefore, in the present invention, under the condition that the surface roughness of the stainless steel plate can be maintained below a predetermined value, mixed metal particles obtained by mixing polygonal particles with spherical particles or particles having only polygonal metal particles are used as the surface of the stainless steel plate. It has been found that it is possible to improve the removal rate of the oxide film, in other words, to increase the line speed, by spraying on.

【0025】又表4は、多角形状粒子及び球形状粒子の
混合割合の5種類の変化(実験a−e)に対応したステ
ンレス鋼板1の表面処理ラインスピード(m/mi
n)、表面粗さ(μm)及び酸化被膜除去率(%)、更
には比較のため、従来の方法(機械的変形を与える)
又は及び(機械的変形に加えてブラシでこする)に
よる同様の結果を示す。表4中、Ra(μm)は表3中
に示したものと同様であり又Rmax(μm)は表3中
のRy(μm)と同様である。これらの記号は以下の表
5及び表6についても同様である。
Further, Table 4 shows the surface treatment line speed (m / mi) of the stainless steel plate 1 corresponding to five kinds of changes in the mixing ratio of polygonal particles and spherical particles (experiments ae).
n), surface roughness (μm) and oxide film removal rate (%), and for comparison, a conventional method (providing mechanical deformation)
Similar results with or and (rubbing in addition to mechanical deformation). In Table 4, Ra (μm) is the same as that shown in Table 3, and Rmax (μm) is the same as Ry (μm) in Table 3. These symbols also apply to Tables 5 and 6 below.

【0026】表4によれば、ラインスピード(m/mi
n)は、多角形状粒子の混合割合が増大するに従って向
上することがわかるが、この間、表面粗さについては表
3の場合と同様に、Raは3.7〜4.3(μm)、R
maxは45〜46(μm)の範囲に納まりほぼ同等で
ある。即ち、多角形状粒子の混合割合が30%のときラ
インスピードは多角形状粒子の混合割合がゼロのときに
比して1.2倍以上となり、同様にして、多角形状粒子
の混合割合が50%、70%、100%のときラインス
ピードは夫々1.4倍以上、1.6倍以上、略2倍とい
うように向上する。そして、この間表面酸化被膜除去率
はラインスピードを増大させたにもかかわらず、100
%を維持できる。従って、最大のラインスピードを得る
ために多角形状粒子のみの噴き付けを採用すればよく、
又ステンレス鋼板の表面粗さを少しでも抑えたいので有
れば、ラインスピードの多少の低下を招くものの混合粒
子中の多角形状粒子の混合割合を小さくすればよい。多
角形状粒子の混合割合は30%以上が実用的と判断され
る。
According to Table 4, the line speed (m / mi
It can be seen that n) is improved as the mixing ratio of the polygonal particles is increased, and during this time, the surface roughness Ra is 3.7 to 4.3 (μm) and R is the same as in the case of Table 3.
The max is in the range of 45 to 46 (μm) and is almost the same. That is, when the mixing ratio of the polygonal particles is 30%, the line speed is 1.2 times or more compared to when the mixing ratio of the polygonal particles is zero, and similarly, the mixing ratio of the polygonal particles is 50%. , 70% and 100%, the line speed is improved to 1.4 times or more, 1.6 times or more, and about 2 times, respectively. During this period, the surface oxide film removal rate increased to 100 even though the line speed was increased.
% Can be maintained. Therefore, in order to obtain the maximum line speed, it suffices to adopt the spraying of only polygonal particles,
Further, if it is desired to suppress the surface roughness of the stainless steel plate as much as possible, the mixing ratio of polygonal particles in the mixed particles may be reduced although the line speed is slightly decreased. It is judged that a mixing ratio of the polygonal particles of 30% or more is practical.

【0027】又表4中の従来の方法、即ち粒子の噴き付
けを採用しない方法(機械的変形を与える方法)、又
は及び(機械的変形に加えてブラシでこする方法)
の併用方法によれば、何れもラインスピードを無理にあ
げようとすると、表面粗さはほぼ同等であるが表面酸化
被膜除去率が低下する、即ち酸化被膜がステンレス鋼板
表面に残留してしまうことがわかる。
Further, the conventional method shown in Table 4, that is, the method in which the spraying of particles is not adopted (the method of giving mechanical deformation), or (the method of rubbing with a brush in addition to mechanical deformation)
According to the combined use method, if the line speed is forcibly increased, the surface roughness is almost the same, but the surface oxide film removal rate decreases, that is, the oxide film remains on the stainless steel plate surface. I understand.

【0028】[0028]

【実施例3】実施例3(表5)は、電磁鋼板の表面に対
して、多角形状粒子及び球形状粒子の混合割合を変化さ
せた3種類の実験a、b、cの夫々において、酸化皮膜
除去率100%を達成するに十分なラインスピード(m
/min)(つまり、ラインスピードがこれより小さけ
れば酸化皮膜除去率100%を達成できる)とそのとき
の表面粗さRa(μm)、Rmax(μm)とを調査し
たものである。更には比較のため、従来の方法及び
の併用(機械的変形に加えてブラシでこする)による同
様の結果を示す。
Example 3 In Example 3 (Table 5), oxidation was performed in each of three types of experiments a, b, and c in which the mixing ratio of polygonal particles and spherical particles was changed with respect to the surface of the electromagnetic steel sheet. Sufficient line speed (m to achieve 100% film removal rate)
/ Min) (that is, if the line speed is smaller than this, an oxide film removal rate of 100% can be achieved) and the surface roughness Ra (μm) and Rmax (μm) at that time are investigated. Further, for comparison, similar results are shown by the conventional method and the combination thereof (mechanical deformation and rubbing with a brush).

【0029】[0029]

【表5】 [Table 5]

【0030】表5によれば、多角形状粒子の混合割合が
増大するに従って酸化皮膜除去率100%を達成し得る
最大のラインスピードが向上すること、及び多角形状粒
子の割合が増大しかつラインスピードが増大しても、表
面粗さはほぼ同等であることがわかる。即ち、多角形状
粒子の混合割合が50%になると、ラインスピードは4
0(m/min)まで増大させ得る。一方、上記従来
及びの併用方法(機械的変形に加えてブラシでこす
る)では、ラインスピードを実験例a、b、cと同等レ
ベルで徐々に増大させると酸化被膜除去率が低下してし
まうことがわかる。
According to Table 5, the maximum line speed that can achieve the oxide film removal rate of 100% is improved as the mixing ratio of polygonal particles is increased, and that the ratio of polygonal particles is increased and the line speed is increased. It can be seen that the surface roughness is almost the same even when is increased. That is, when the mixing ratio of polygonal particles becomes 50%, the line speed becomes 4
It can be increased to 0 (m / min). On the other hand, in the above-mentioned conventional method and the combined method (rubbing with a brush in addition to mechanical deformation), if the line speed is gradually increased at the same level as in Experimental Examples a, b, and c, the oxide film removal rate will decrease. I understand.

【0031】[0031]

【実施例4】実施例4(表6)は、金属線材の表面に対
して、多角形状粒子及び球形状粒子の混合割合を変化さ
せた3種類の実験a、d、eの夫々において、線材の表
面処理のラインスピードを80、100、及び120
(m/min)の3種類に変化させた場合(ただし、実
験例aのみは今回は80(m/min)のみ)の、表面
粗さ(μm)及び酸化被膜除去率(%)、更には比較の
ため、従来の方法(機械的変形を与える)又は及び
の併用(機械的変形に加えてブラシでこする)による
同様の結果を示す。
Example 4 In Example 4 (Table 6), the wire rod was used in each of three experiments a, d, and e in which the mixing ratio of polygonal particles and spherical particles was changed with respect to the surface of the metal wire rod. Line speed of surface treatment of 80, 100, and 120
The surface roughness (μm) and the oxide film removal rate (%) in the case of changing to three types (m / min) (however, in the case of only the experimental example a, only 80 (m / min) this time), For comparison, similar results are shown with the conventional method (providing mechanical deformation) or and in combination (mechanical deformation plus rubbing with a brush).

【0032】[0032]

【表6】 [Table 6]

【0033】表6によれば、多角形状粒子及び球形状粒
子の混合割合が一定の条件下ではラインスピードが増大
しても表面粗さ及び酸化被膜除去率はほぼ同等であるか
ら大きなラインスピードを採用し得ることがわかる。又
多角形状粒子の混合割合が増大した場合でも表面粗さは
ほぼ同等であるから多角形状粒子の混合割合を100%
として酸化被膜除去率を100%とし得ることがわか
る。一方、従来方法では、ラインスピードが実験例a、
d、eと略同等としたとき、酸化被膜除去率は本発明の
実施例に比して全般的に低く、またラインスピードが遅
いほど酸化被膜除去率は向上するが、従来方法及び
の併用(機械的変形に加えてブラシでこする)の方が、
従来方法(機械的変形を加えるのみ)よりも酸化被膜
除去率は良好であることがわかる。
According to Table 6, under the condition that the mixing ratio of polygonal particles and spherical particles is constant, even if the line speed is increased, the surface roughness and the oxide film removal rate are almost the same, so a large line speed is set. It turns out that it can be adopted. Even if the mixing ratio of polygonal particles is increased, the surface roughness is almost the same, so the mixing ratio of polygonal particles is 100%.
It can be seen that the oxide film removal rate can be 100%. On the other hand, in the conventional method, the line speed is the experimental example a,
When substantially equal to d and e, the oxide film removal rate is generally lower than that of the examples of the present invention, and the oxide film removal rate is improved as the line speed is slower. Rubbing with a brush in addition to mechanical deformation)
It can be seen that the oxide film removal rate is better than that of the conventional method (only by applying mechanical deformation).

【0034】[0034]

【発明の効果】本発明によれば、多角形状粒子のみ、ま
たは多角形状粒子と略球形状粒子とを適正混合比率で混
合した金属粒子を使用して、ステンレス鋼板、電磁鋼
板、棒鋼又は線材の酸化皮膜除去処理を行うことによ
り、ステンレス鋼板等の金属材の表面粗さがほぼ同等状
態のままラインスピードを増大させて工程の処理効率を
向上し得る。
According to the present invention, by using only polygonal particles or metal particles obtained by mixing polygonal particles and substantially spherical particles in an appropriate mixing ratio, a stainless steel plate, an electromagnetic steel plate, a steel bar or a wire rod is prepared. By performing the oxide film removal treatment, the line speed can be increased and the treatment efficiency of the process can be improved while the surface roughness of the metal material such as the stainless steel plate remains substantially the same.

【0035】又酸化皮膜除去処理は熱間又は冷間圧延工
程前に行われるので、圧延工程(棒及び線材の引き抜き
工程含む)において酸化皮膜の存在により金属材の表面
に傷を付けてしまう等のことがない。
Since the oxide film removal treatment is performed before the hot or cold rolling process, the presence of the oxide film in the rolling process (including the rod and wire drawing process) may damage the surface of the metal material. There is no such thing.

【0036】又多角形状粒子が混合金属粒子全体の約3
0重量%以上であるため、多角形状粒子の存在により、
酸化皮膜の除去効率を向上してラインスピードを増大し
得る。
The polygonal particles are about 3% of the total of the mixed metal particles.
Since it is 0% by weight or more, the presence of polygonal particles causes
It is possible to improve the removal efficiency of the oxide film and increase the line speed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の鋼材表面の酸化皮膜の除去方法の1つ
の実施の形態を説明する工程概略図である。
FIG. 1 is a process schematic diagram illustrating one embodiment of a method for removing an oxide film on a steel surface according to the present invention.

【図2】図1の工程で金属粒子をステンレス鋼板に噴き
付けたときの、噴き付け密度と表面酸化膜除去率との関
係を示す図である。
FIG. 2 is a diagram showing a relationship between a spray density and a surface oxide film removal rate when metal particles are sprayed on a stainless steel plate in the process of FIG.

【符号の説明】[Explanation of symbols]

1A、1B、1C、1D、1E…ステンレス鋼板 2…加熱炉 3A、3B…噴射機 4…金属粒子 5…酸化被膜 6…冷間圧延ロール 7、9…焼鈍炉 8…熱間圧延ロール 10…酸洗い装置 1A, 1B, 1C, 1D, 1E ... Stainless steel plate 2 ... Heating furnace 3A, 3B ... Injector 4 ... Metal particles 5 ... oxide film 6 ... Cold rolling roll 7, 9 ... Annealing furnace 8 ... Hot rolling roll 10 ... Pickling equipment

───────────────────────────────────────────────────── フロントページの続き (72)発明者 加藤 雅昭 愛知県東海市南柴田町ヌノ割412番地の4 アイケイケイ・ショット株式会社内   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Masaaki Kato             4 of 412 Nunowari, Minami-Shibata Town, Tokai City, Aichi Prefecture               IKK Shot Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】金属材表面の酸化皮膜の除去方法におい
て、前記金属材はステンレス鋼板、電磁鋼板、棒鋼又は
線材の何れかであり、該金属材の表面に対して、多角形
状粒子のみ、または多角形状粒子と略球形状粒子とを適
正混合比率で混合した金属粒子を、噴き付けることによ
って前記金属材表面の酸化被膜を除去する、ことを特徴
とする金属材表面の酸化皮膜の除去方法。
1. A method for removing an oxide film on a surface of a metal material, wherein the metal material is any one of a stainless steel plate, an electromagnetic steel plate, a steel bar or a wire rod, and only polygonal particles are formed on the surface of the metal material, or A method for removing an oxide film on a surface of a metal material, comprising: spraying metal particles obtained by mixing polygonal particles and substantially spherical particles at an appropriate mixing ratio to remove the oxide film on the surface of the metal material.
【請求項2】請求項1記載の方法において、前記粒子の
噴き付け工程は、前記ステンレス鋼板の冷間圧延工程前
又は熱間圧延工程前に行われる、前記方法。
2. The method according to claim 1, wherein the step of spraying the particles is performed before the cold rolling step or the hot rolling step of the stainless steel plate.
【請求項3】請求項1又は2に記載の方法において、前
記多角形状粒子と略球形状粒子とを混合する場合の適正
混合比率は、多角形状粒子が混合金属粒子全体の約30
重量%以上である前記方法。
3. The method according to claim 1 or 2, wherein when the polygonal particles and the substantially spherical particles are mixed, the proper mixing ratio is about 30 when the polygonal particles are mixed with the entire mixed metal particles.
The above method, which is at least wt%.
JP2001302122A 2001-09-28 2001-09-28 Method for removing oxidized film on surface of metallic material Pending JP2003112217A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001302122A JP2003112217A (en) 2001-09-28 2001-09-28 Method for removing oxidized film on surface of metallic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001302122A JP2003112217A (en) 2001-09-28 2001-09-28 Method for removing oxidized film on surface of metallic material

Publications (1)

Publication Number Publication Date
JP2003112217A true JP2003112217A (en) 2003-04-15

Family

ID=19122425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001302122A Pending JP2003112217A (en) 2001-09-28 2001-09-28 Method for removing oxidized film on surface of metallic material

Country Status (1)

Country Link
JP (1) JP2003112217A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007119421A1 (en) 2006-03-31 2007-10-25 Konica Minolta Opto, Inc. Film for display, polarizing plate and method for producing the same, and liquid crystal display
JP2007331014A (en) * 2006-06-16 2007-12-27 Jfe Steel Kk Hot rolled steel strip of special steel and production method
JP2009154278A (en) * 2007-12-28 2009-07-16 Nippon Steel & Sumikin Stainless Steel Corp Shot blast equipment
KR101096859B1 (en) 2008-09-10 2011-12-22 미쓰비시덴키 가부시키가이샤 Surface treatment apparatus of a wire material
JP2013075344A (en) * 2011-09-30 2013-04-25 Sekisui Plastics Co Ltd Abrasive for blasting work and method for manufacturing the same
CN106584706A (en) * 2016-12-15 2017-04-26 九江市计行塑胶有限公司 Excess material collecting system for production of metal wiredrawing color film
JPWO2021117732A1 (en) * 2019-12-12 2021-06-17

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007119421A1 (en) 2006-03-31 2007-10-25 Konica Minolta Opto, Inc. Film for display, polarizing plate and method for producing the same, and liquid crystal display
JP2007331014A (en) * 2006-06-16 2007-12-27 Jfe Steel Kk Hot rolled steel strip of special steel and production method
JP2009154278A (en) * 2007-12-28 2009-07-16 Nippon Steel & Sumikin Stainless Steel Corp Shot blast equipment
KR101096859B1 (en) 2008-09-10 2011-12-22 미쓰비시덴키 가부시키가이샤 Surface treatment apparatus of a wire material
JP2013075344A (en) * 2011-09-30 2013-04-25 Sekisui Plastics Co Ltd Abrasive for blasting work and method for manufacturing the same
CN106584706A (en) * 2016-12-15 2017-04-26 九江市计行塑胶有限公司 Excess material collecting system for production of metal wiredrawing color film
JPWO2021117732A1 (en) * 2019-12-12 2021-06-17
WO2021117732A1 (en) * 2019-12-12 2021-06-17 日本製鉄株式会社 Device for removing foreign matter from roller surface, method for removing foreign matter from roller surface, and method for manufacturing steel strip
JP7502662B2 (en) 2019-12-12 2024-06-19 日本製鉄株式会社 Apparatus for removing foreign matter from roll surface, method for removing foreign matter from roll surface, and method for manufacturing steel strip

Similar Documents

Publication Publication Date Title
JP5269989B2 (en) Hot strip strip removal method and scale removal equipment
JP6249929B2 (en) Continuous surface treatment method for steel wire
JP2009249714A (en) Method for producing hot-rolled steel sheet excellent in surface-processing property
JP2003112217A (en) Method for removing oxidized film on surface of metallic material
JPH07204739A (en) Method and device for drawing metallic wire
JP2003306745A (en) Hot rolled steel sheet having excellent surface property and production method therefor
JP2007056358A (en) Method for pickling hot rolled stainless steel strip, and hot rolled stainless steel strip
JP5704130B2 (en) Manufacturing method of titanium plate
JP6837779B2 (en) Surface-treated steel wire and its manufacturing method
JP3374961B2 (en) Method and apparatus for removing surface oxide film from copper alloy
JPS6045002B2 (en) Hot rolling method for steel materials
JP2003226990A (en) Ferritic stainless steel sheet and production method therefor
JP7133427B2 (en) Manufacturing method of stainless steel pipe
JP2002001419A (en) High-speed wire drawing method for plated steel wire
JP2002294477A (en) Pickling method for hot rolled steel strip superior in surface quality after pickling
JP3842014B2 (en) Bearing steel wire that can omit wire drawing
JP4649987B2 (en) Method for producing pickled steel sheet with excellent surface properties
JPH08199270A (en) Iron-nickel alloy sheet excellent in magnetic property and its production
JP2001323324A (en) Method for producing hot rolled steel sheet excellent in surface property
JPH10158785A (en) Wire rod for steel wire
JP3539160B2 (en) Method for producing stainless steel with excellent descalability, surface properties and productivity
JPH05123739A (en) Manufacture of high carbon steel wire having excellent mechanical de-scaling property
JP6454584B2 (en) Continuous surface treatment method for steel wire
JPH09143768A (en) Surface cleaning method for metallic material and apparatus therefor
JPH0445596B2 (en)