JP2003111274A - Transmission threshold calculation method for power system, and computer readable recording medium recorded with transmission threshold calculation program - Google Patents

Transmission threshold calculation method for power system, and computer readable recording medium recorded with transmission threshold calculation program

Info

Publication number
JP2003111274A
JP2003111274A JP2001304850A JP2001304850A JP2003111274A JP 2003111274 A JP2003111274 A JP 2003111274A JP 2001304850 A JP2001304850 A JP 2001304850A JP 2001304850 A JP2001304850 A JP 2001304850A JP 2003111274 A JP2003111274 A JP 2003111274A
Authority
JP
Japan
Prior art keywords
stability
calculation
phase angle
power system
generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001304850A
Other languages
Japanese (ja)
Other versions
JP3865608B2 (en
Inventor
Yasuyuki Kowada
靖之 小和田
Hiroji Sakaguchi
広二 坂口
Yukio Araki
幸夫 荒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Mitsubishi Electric Corp
Original Assignee
Kansai Electric Power Co Inc
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Mitsubishi Electric Corp filed Critical Kansai Electric Power Co Inc
Priority to JP2001304850A priority Critical patent/JP3865608B2/en
Publication of JP2003111274A publication Critical patent/JP2003111274A/en
Application granted granted Critical
Publication of JP3865608B2 publication Critical patent/JP3865608B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve the problem in a prior art that a transmission threshold can be obtained if detailed stability calculations are repeatedly executed for obtaining the transmission threshold of a power system, but it cannot quickly be obtained as it takes long hours to complete the calculation of the detailed stability. SOLUTION: The detailed stability calculation and a stability discrimination are concurrently executed, and the stability discrimination includes five processes of calculations of an excessive load discrimination, a power stability discrimination, frequency limitation, a transient stability discrimination, and a movement stability discrimination. The detailed stability calculation and the stability discrimination are interrupted when stability or instability is determined and, when the discrimination result shows the stability discrimination to be stable, the amount of the transmission is increased, to concurrently re-execute the detailed stability calculation and the stability discrimination. Also, when the result shows the stability discrimination to be unstable, a transmission amount immediately before being unstable is presumed as the transmission threshold.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、発電機や負荷な
どから構成される電力系統の送電限界値を算出するに際
して、計算量の軽減や精度の向上を図る送電限界算出方
法及び送電限界算出プログラムが記録されたコンピュー
タ読み取り可能な記録媒体に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a transmission limit calculation method and a transmission limit calculation program for reducing a calculation amount and improving accuracy when calculating a transmission limit value of a power system including a generator and a load. The present invention relates to a computer-readable recording medium in which is recorded.

【0002】[0002]

【従来の技術】図8は従来の送電限界算出方法を示すフ
ローチャートである。図において、STlは詳細安定度
計算に必要なデータを作成するステップ、ST2はST
lで作成されたデータを用いて詳細安定度計算を実行す
るステップ、ST3は詳細安定度計算の計算結果を解析
するステップ、ST4は電力系統が安定であるか否かを
判定する判定ステップ、ST5は電力系統が安定である
場合、送電量を増やすステップ、ST6は電力系統が不
安定である場合、電力系統が不安定になる直前の送電量
を送電限界値と認定するステップである。次に動作につ
いて説明する。送電限界値を算出する場合、まず、詳細
安定度計算に必要なデータを作成し(ST1)、そのデ
ータを用いて詳細安定度計算を実行する(ST2)。そ
して、その詳細安定度計算の計算結果を解析して(ST
3)、電力系統が安定であるか否かを判定する(ST
4)。電力系統が安定である場合、特定の発電機や負荷
の値を増やすなどして送電量を増やし(ST5)、上記
の詳細安定度計算を再実行させる。一方、電力系統が不
安定になると、電力系統が不安定になる直前の送電量を
送電限界値と認定する(ST6)。
2. Description of the Related Art FIG. 8 is a flowchart showing a conventional power transmission limit calculation method. In the figure, STl is a step for creating data necessary for detailed stability calculation, and ST2 is ST.
The step of executing the detailed stability calculation using the data created in l, ST3 is the step of analyzing the calculation result of the detailed stability calculation, ST4 is the step of judging whether or not the power system is stable, and ST5. Is a step of increasing the power transmission amount when the power system is stable, and ST6 is a step of recognizing the power transmission amount immediately before the power system becomes unstable as the power transmission limit value when the power system is unstable. Next, the operation will be described. When calculating the power transmission limit value, first, data required for the detailed stability calculation is created (ST1), and the detailed stability calculation is executed using the data (ST2). Then, the calculation result of the detailed stability calculation is analyzed (ST
3) Determine whether the power system is stable (ST
4). When the power system is stable, the amount of power transmission is increased by increasing the value of a specific generator or load (ST5), and the above detailed stability calculation is re-executed. On the other hand, when the power system becomes unstable, the amount of power transmitted immediately before the power system becomes unstable is recognized as the power transmission limit value (ST6).

【0003】[0003]

【発明が解決しようとする課題】従来の送電限界算出方
法は前記のような手法をとっているので、詳細安定度計
算を繰り返し実行すれば、送電限界値を求めることがで
きるが、送電限界を算出するまで繰り返し安定度計算を
行うために、その計算に長時間を要するとともに、計算
コストが高いという問題点があった。この発明は、前記
のような課題を解決するためになされたもので、計算時
間を短縮できるとともに、正確な送電限界算出を行うこ
とができる手法の確立および送電限界算出プログラムが
記録されたコンピュータ読み取り可能な記録媒体を得る
ことを目的としている。
Since the conventional power transmission limit calculation method uses the above-mentioned method, the power transmission limit value can be obtained by repeatedly executing the detailed stability calculation. Since the stability calculation is repeatedly performed until it is calculated, the calculation takes a long time and the calculation cost is high. The present invention has been made in order to solve the above problems, and establishes a method capable of shortening the calculation time and accurately calculating the power transmission limit and reading by a computer in which the power transmission limit calculation program is recorded. The aim is to obtain a feasible recording medium.

【0004】[0004]

【課題を解決するための手段】この発明に係る送電限界
算出方法は、過負荷判別を行う第1の計算と、電圧安定
度の判別を行う第2の計算と、周波数限度を算出する第
3の計算と、過渡安定度の判別を行う第4の計算と、動
態安定度の判別を行う第5の計算とを実施する内容を備
えた電力系統の安定度判別が詳細安定度計算と並行して
行われ、第1〜第5の計算で電力系統が安定もしくは不
安定と判別された時点で、前記詳細安定度計算および安
定度判別の実行を中止し、安定の場合送電量を増加させ
て再度前記詳細安定度計算と第1〜第5の計算を実行し
て安定度判別を行い、不安定と判別された場合、不安定
となる直前の送電量を送電限界値とするものである。
A transmission limit calculation method according to the present invention comprises a first calculation for determining overload, a second calculation for determining voltage stability, and a third calculation for frequency limit. , The fourth calculation for determining the transient stability, and the fifth calculation for determining the dynamic stability are performed in parallel with the detailed stability calculation. When it is determined that the power system is stable or unstable in the first to fifth calculations, the detailed stability calculation and the execution of the stability determination are stopped, and if stable, the power transmission amount is increased. When the stability is determined by executing the detailed stability calculation and the first to fifth calculations again, and the stability is determined, the amount of power transmission immediately before becoming unstable is set as the power transmission limit value.

【0005】また、以下の(1)〜(4)のステップを
備えた事故発生後の電力系統の動態安定度の判別方法で
ある。 (1)事故点の潮流値を系統で運転されている複数の各
発電機の定格容量の比で配分するステップ。 (2)系統の各発電機の慣性定数と位相角より、系統の
慣性中心δセンタを求めるステップ。 (3)δセンタより大きい位相角を有する発電機群を加
速側グループ、小さい位相角の発電機群を減速側グルー
プとし、前記加速側グループ、減速側グループの2機系
発電機に縮約して、それぞれの位相角δとδとを求
めるステップ。 (4)前記δとδの差δを等価1機の位相角とし、
この位相角δと予め設定したしきい値δshを比較してδ
>δshならば不安定、δ<δshならば安定と判別するス
テップ。
Further, there is provided a method for determining the dynamic stability of the power system after an accident, which comprises the following steps (1) to (4). (1) A step of allocating the power flow value at the accident point by the ratio of the rated capacities of the plurality of generators operating in the system. (2) A step of obtaining the center of inertia δ center of the system from the inertia constant and the phase angle of each generator of the system. (3) A generator group having a phase angle larger than the δ center is set as an acceleration side group, a generator group having a small phase angle is set as a deceleration side group, and the two groups of generators of the acceleration side group and the deceleration side group are contracted. And obtaining the respective phase angles δ 1 and δ 2 . (4) The difference δ between δ 1 and δ 2 is the phase angle of one equivalent machine,
This phase angle δ is compared with a preset threshold value δsh, and δ
A step of determining unstable if> δsh and stable if δ <δsh.

【0006】また、以下の(1)〜(5)のステップを
備えた事故発生後の電力系統の動態安定度の判別方法で
ある。 (1)各発電機の位相角δeを監視するステップ。 (2)前記各発電機の位相角δeの中で最も加速してい
る発電機の位相角δemaxと最も加速していない発電機の
位相角δeminを求めるステップ。 (3)前記δemaxとδeminの差が最大となるタイミング
において、事故発生直後から判別時点までの等価1機の
位相角δを算出するステップ。 (4)前記位相角δの最高点、最下点を少なくとも各3
点ずつ計6点求め、最高点と最下点との差を算出して位
相角の発散傾向を確認するステップ。 (5)発散傾向であれば不安定、収束傾向であれば安定
と判別するステップ。
A method for determining the dynamic stability of the electric power system after an accident has the following steps (1) to (5). (1) A step of monitoring the phase angle δe of each generator. (2) A step of obtaining the phase angle δemax of the most accelerated generator and the phase angle δemin of the least accelerated generator among the phase angles δe of the generators. (3) A step of calculating the phase angle δ of one equivalent aircraft from immediately after the occurrence of the accident to the time of determination at the timing when the difference between δemax and δemin is maximum. (4) At least 3 points for the highest point and the lowest point of the phase angle δ.
A step of obtaining a total of 6 points for each point, calculating the difference between the highest point and the lowest point, and confirming the divergence tendency of the phase angle. (5) A step of discriminating that the divergence tendency is unstable and the convergence tendency is stable.

【0007】また、事故発生後の電力系統が分離された
場合の周波数限度からの安定度判別を以下のステップ
(1)、(2)を行う方法である。 (1)各系統内の総発電量P、総負荷量Pを計算
し、次の式(1)(2)からガバナフリー領域内の周波
数偏差ΔF、ガバナフリー領域外の周波数偏差ΔF
を算出するステップ。
In addition, there is a method of performing the following steps (1) and (2) for determining the stability from the frequency limit when the power system is separated after the occurrence of the accident. (1) The total power generation amount P G and the total load amount P L in each grid are calculated, and the frequency deviation ΔF 1 within the governor-free region and the frequency deviation ΔF outside the governor-free region are calculated from the following equations (1) and (2). Two
Calculating step.

【数5】 [Equation 5]

【数6】 (2)算出した各系統の周波数偏差ΔFが事前に設定し
た許容範囲内であれば安定、許容範囲を逸脱していれば
不安定と判別するステップ。
[Equation 6] (2) A step of determining that the calculated frequency deviation ΔF of each system is stable if it is within a preset allowable range, and unstable if it is outside the allowable range.

【0008】また、送電限界量が認定されると、詳細安
定度計算を実行してその正当性を確認、行うものであ
る。
Further, when the power transmission limit amount is recognized, a detailed stability calculation is executed to confirm and confirm its validity.

【0009】また、この発明に係る送電限界算出プログ
ラムが記録されたコンピュータ読み取り可能な記録媒体
は、詳細安定度計算手順と安定度判別を並列して行う安
定度判別処理手順とを備え、前記安定度判別処理手順に
は過負荷判別を行う第1の計算と、電圧安定度の判別を
行う第2の計算と、周波数限度を算出する第3の計算
と、過渡安定度の判別を行う第4の計算と、動態安定度
の判別を行う第5の計算とを行う内容を有し、前記第1
〜第5の計算結果で前記電力系統が安定もしくは不安定
と判別された時点で、前記詳細安定度計算および安定度
判別の実行を中止し、前記電力系統が安定と判別された
場合には送電量を増加させて再度前記詳細安定度計算と
前記安定度判別の実行を行い、不安定と判別された場合
には不安定となる直前の送電量を送電限界値とする送電
限界値認定処理手順とを備えたものである。
A computer-readable recording medium in which the transmission limit calculation program according to the present invention is recorded includes a detailed stability calculation procedure and a stability determination processing procedure for performing stability determination in parallel. The degree determination processing procedure includes a first calculation for determining an overload, a second calculation for determining a voltage stability, a third calculation for calculating a frequency limit, and a fourth calculation for determining a transient stability. And the fifth calculation for determining the dynamic stability, the first
~ When the power system is determined to be stable or unstable in the fifth calculation result, the execution of the detailed stability calculation and the stability determination is stopped, and when the power system is determined to be stable, power transmission is performed. When the detailed stability calculation and the stability determination are performed again by increasing the amount, and if it is determined to be unstable, the transmission limit value qualification processing procedure in which the transmission amount immediately before becoming unstable becomes the transmission limit value It is equipped with and.

【0010】また、この発明に係る事故発生後の電力系
統の動態安定度の判別プログラムが記録されたコンピュ
ータ読み取り可能な記録媒体は、次のステップを備えた
ものである。 (1)系統で運転されている複数の各発電機の定格容量
の総和を算出し、事故点の潮流値を各発電機の定格容量
の比で配分するステップ。 (2)系統の各発電機の慣性定数と位相角より、系統の
慣性中心δセンタを求めるステップ。 (3)前記δセンタと各発電機の位相角との比較を行
い、前記δセンタより大きい位相角を有する発電機群を
加速側グループ、小さい位相角を有する発電機群を減速
側グループとし、前記加速側グループ、減速側グループ
の2機系発電機に縮約して、それぞれの位相角δとδ
とを求めるステップ。 (4)前記δとδの差δを等価1機の位相角とし、
この位相角δと予め設定したしきい値δshを比較してδ
>δshならば不安定、δ<δshならば安定と判別するス
テップ。
A computer-readable recording medium in which the program for determining the dynamic stability of the power system after the accident according to the present invention is recorded has the following steps. (1) A step of calculating the sum of the rated capacities of each of the generators operating in the grid and distributing the power flow value at the accident point by the ratio of the rated capacities of the generators. (2) A step of obtaining the center of inertia δ center of the system from the inertia constant and the phase angle of each generator of the system. (3) Comparing the δ center with the phase angle of each generator, the generator group having a phase angle larger than the δ center is the acceleration side group, and the generator group having a small phase angle is the deceleration side group, The phase angles δ 1 and δ of the two groups of generators of the acceleration side group and the deceleration side group are reduced.
2 and the step to ask. (4) The difference δ between δ 1 and δ 2 is the phase angle of one equivalent machine,
This phase angle δ is compared with a preset threshold value δsh, and δ
A step of determining unstable if> δsh and stable if δ <δsh.

【0011】また、この発明に係る事故発生後の電力系
統の動態安定度の判別プログラムが記録されたコンピュ
ータ読み取り可能な記録媒体は、次のステップを備えた
ものである。 (1)各発電機の位相角δeを監視するステップ。 (2)前記各発電機の位相角δeの中で最も加速してい
る発電機の位相角δemaxと最も加速していない発電機の
位相角δeminを求めるステップ。 (3)前記δemaxとδeminの差が最大となるタイミング
において、事故発生直後から判別時点までの等価1機の
位相角δを算出するステップ。 (4)前記位相角δの最高点、最下点を少なくとも各3
点ずつ計6点求め、前記最高点と最下点との差を算出し
て位相角の発散傾向を確認するステップ。 (5)前記最高点と最下点の差が発散傾向であれば不安
定、収束傾向であれば安定と判別するステップ。
A computer-readable recording medium in which a program for determining the dynamic stability of an electric power system after an accident according to the present invention is recorded has the following steps. (1) A step of monitoring the phase angle δe of each generator. (2) A step of obtaining the phase angle δemax of the most accelerated generator and the phase angle δemin of the least accelerated generator among the phase angles δe of the generators. (3) A step of calculating the phase angle δ of one equivalent aircraft from immediately after the occurrence of the accident to the time of determination at the timing when the difference between δemax and δemin is maximum. (4) At least 3 points for the highest point and the lowest point of the phase angle δ.
A step of obtaining 6 points in total and calculating the difference between the highest point and the lowest point to confirm the divergence tendency of the phase angle. (5) A step of determining that the difference between the highest point and the lowest point is unstable if the difference is divergent and stable if the difference is convergent.

【0012】また、この発明に係る事故発生後の電力系
統が分離された場合の周波数限度からの安定度判別プロ
グラムが記録されたコンピュータ読み取り可能な記録媒
体は、次のステップを備えたものである。 (1)各系統内の総発電量P、総負荷量Pを算出
し、次の式(1)(2)からガバナフリー領域内の周波
数偏差ΔF、ガバナフリー領域外の周波数偏差ΔF
を算出するステップ。
Further, a computer-readable recording medium according to the present invention, in which a stability determination program from a frequency limit when the power system after the accident has been separated, is recorded, has the following steps. . (1) The total power generation amount P G and the total load amount P L in each grid are calculated, and the frequency deviation ΔF 1 within the governor-free region and the frequency deviation ΔF outside the governor-free region are calculated from the following equations (1) and (2). Two
Calculating step.

【数7】 [Equation 7]

【数8】 (2)算出した各系統の周波数偏差ΔFが事前に設定し
た許容範囲内であれば安定、許容範囲を逸脱していれば
不安定と判別するステップ。
[Equation 8] (2) A step of determining that the calculated frequency deviation ΔF of each system is stable if it is within a preset allowable range, and unstable if it is outside the allowable range.

【0013】[0013]

【発明の実施の形態】実施の形態1.以下、この発明の
実施の形態1による電力系統の送電限界算出方法を図に
よって説明する。図1は本発明の理解を助ける目的で示
した本発明の送電限界算出方法に基づいた送電限界算出
ツールの構成図である。図2は送電限界算出方法のフロ
ーチャートである。図2において、ST1では予め設定
しておいた条件に従い、詳細安定計算実行に必要なデー
タを作成する。ST2で短絡電流を算定し、ST3では
前記詳細安定計算結果を常時監視して、過負荷判別の第
1の計算、電圧安定度判別の第2の計算、周波数限度算
出の第3の計算、過渡安定度判別の第4の計算、動態安
定度判別の第5の計算と諸計算を実行し、ST4でその
計算結果から電力系統の安定度の判別を行う。ST4で
の判別で安定もしくは不安定と判断した時点で、前記詳
細安定度計算および安定度判別の計算の実行を中止す
る。ST5では前記ST4で判別されたST3の第1〜
第5の諸計算結果が安定と判断された場合に安定した発
電機出力と負荷の値つまり送電量を順次増加させて再度
ST3の第1〜第5の諸計算を行って、ST4での安
定、不安定の判別を行う。不安定と判断された場合には
不安定と判断された直前の送電量を送電限界値とする。
以上のように、この発明の実施の形態1によれば電力系
統の詳細安定度計算実行と同時に、過負荷判別の第1の
計算、電圧安定度判別の第2の計算、周波数限度算出の
第3の計算、過渡安定度判別の第4の計算、動態安定度
判別の第5の計算による安定度判別を実行し、その判別
結果が安定もしくは不安定と判断された時点で詳細安定
度計算を強制終了させるとともに安定度判別計算も実行
中止するので、詳細安定度計算の計算完了以前に安定度
判別結果を得て送電限界値を得ることができ、電力系統
の送電限界算出に要する計算時間を適切に短縮させると
ともに、送電限界値を速やかに求めることができ、また
各安定度を考慮した送電限界値を算出可能である。な
お、図1は送電限界算出方法を実行するプログラムの構
築例を示す説明図でもあり、このプログラム(安定度計
算処理手順、安定度判別処理手順、および送電限界値認
定処理手順から構成される送電限界算出プログラム)は
計算機が読み取ることが可能なハードディスクやCDR
OMなどのコンピュータ読み取り可能な記録媒体に記録
されるものとする。また、この実施の形態1による送電
限度算出方法は、電力系統が安定に動作しているケース
はもとより、系統に落雷などによる事故が発生した場合
にも、この送電限度算出方法を採用することによって、
より効果を奏するものである。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiment 1. Hereinafter, a method of calculating a transmission limit of an electric power system according to Embodiment 1 of the present invention will be described with reference to the drawings. FIG. 1 is a configuration diagram of a power transmission limit calculation tool based on the power transmission limit calculation method of the present invention for the purpose of helping understanding of the present invention. FIG. 2 is a flowchart of the power transmission limit calculation method. In FIG. 2, in ST1, data necessary for executing the detailed stable calculation is created according to the preset condition. The short-circuit current is calculated in ST2, the detailed stability calculation result is constantly monitored in ST3, and the first calculation for overload determination, the second calculation for voltage stability determination, the third calculation for frequency limit calculation, and the transient calculation are made. The fourth calculation for stability determination, the fifth calculation for dynamic stability determination and various calculations are executed, and the stability of the power system is determined from the calculation result in ST4. When it is determined to be stable or unstable in the determination in ST4, the execution of the detailed stability calculation and the calculation of the stability determination is stopped. In ST5, the first to third ST3 discriminated in ST4.
When it is determined that the fifth calculation results are stable, the stable generator output and load values, that is, the amount of power transmission are sequentially increased, the first to fifth calculations of ST3 are performed again, and the stability of ST4 is achieved. , To determine instability. If it is determined to be unstable, the amount of power transmission immediately before being determined to be unstable is set as the power transmission limit value.
As described above, according to the first embodiment of the present invention, at the same time as the detailed stability calculation of the power system is performed, the first calculation for overload determination, the second calculation for voltage stability determination, and the first calculation for frequency limit calculation are performed. 3), 4th calculation of transient stability determination, and 5th calculation of dynamic stability determination are performed to perform stability determination, and detailed stability calculation is performed when the determination result is determined to be stable or unstable. Since the stability judgment calculation is stopped forcibly and the stability judgment calculation is also stopped, the stability judgment result can be obtained and the transmission limit value can be obtained before the calculation of the detailed stability calculation. The power transmission limit value can be promptly obtained while shortening appropriately, and the power transmission limit value in consideration of each stability can be calculated. Note that FIG. 1 is also an explanatory diagram showing a construction example of a program for executing the power transmission limit calculation method, and this program (a power transmission including a stability calculation processing procedure, a stability determination processing procedure, and a power transmission limit value qualification processing procedure). Limit calculation program) is a computer-readable hard disk or CDR
It shall be recorded on a computer-readable recording medium such as OM. Further, the power transmission limit calculation method according to the first embodiment is not limited to the case where the power system is operating stably, and the power transmission limit calculation method is used when an accident such as a lightning strike occurs in the power system. ,
It is more effective.

【0014】実施の形態2.実施の形態2では、実施の
形態1の安定度判別に採用されている第5の計算である
動態安定度を取り上げ、この動態安定度の側面から事故
発生後の電力系統の安定度を判別するに係るものであ
る。図3は動態安定度の側面から送電限界を算出する手
法のフローチャートである。図において、STlでは事
故前の潮流計算を実施し、事故前の潮流状態を算出す
る。ST2では事故による事故点の開放によって分離さ
れる系統の探索を実施する。ST3、ST4では系統が
分離される場合、分離されない場合に応じてそれぞれの
事故後の系統を作成する。ST5ではST3、ST4で
作成した事故後の系統を用いて潮流計算を実施し事故後
の潮流状態を算出する。ST6では事故後の潮流状態か
ら等価1機の位相角δを算出し、ST7で前記位相角δ
と予め設定したしきい値のδshと比較して電力系統の安
定判別を実施する。次に図3で示したST3、ST4で
系統が分離される場合の事故後の系統作成部分について
説明する。事故による事故点の開放によって電力系統が
分離された場合、系統では電力のアンバランスが発生す
る。この場合はガバナフリー運転の発電機等でそのアン
バランスを吸収すると考えられるため、次に示す(3)
式から分離後の系統に残っている発電機の定格容量の総
和(GMVA)を算出し、事故点の潮流値ΔPを(4)
式のように各発電機に定格容量の比で配分してP′と
する。
Embodiment 2. In the second embodiment, the dynamic stability which is the fifth calculation adopted in the stability determination of the first embodiment is taken up, and the stability of the power system after the accident occurs is discriminated from the aspect of the dynamic stability. It is related to. FIG. 3 is a flowchart of a method of calculating the power transmission limit from the aspect of dynamic stability. In the figure, in STl, the power flow before the accident is calculated, and the power flow state before the accident is calculated. In ST2, a search for a system separated by opening the accident point due to the accident is carried out. In ST3 and ST4, when the system is separated, the system after each accident is created depending on the case where the system is not separated. In ST5, power flow calculation is performed using the post-accident system created in ST3 and ST4 to calculate the power flow state after the accident. In ST6, the phase angle δ of one equivalent aircraft is calculated from the power flow state after the accident, and in ST7, the phase angle δ is calculated.
Then, the stability determination of the power system is performed by comparing with a preset threshold value Δsh. Next, a system creation portion after an accident when the systems are separated in ST3 and ST4 shown in FIG. 3 will be described. When the power system is separated by opening the accident point due to an accident, the power unbalance occurs in the system. In this case, it is considered that the imbalance will be absorbed by a governor-free generator, etc., so (3)
From the formula, calculate the total of the rated capacity ( GMVA ) of the remaining generators in the system after separation, and calculate the power flow value ΔP at the accident point from (4)
As shown in the equation, P i ′ is distributed to each generator at the ratio of the rated capacity.

【0015】[0015]

【数9】 [Equation 9]

【数10】 [Equation 10]

【0016】なお、事故による事故点の開放によって系
統が分離されない場合には、事故後の系統では電力のア
ンバランスは発生しないため、開放される事故点の線路
を削除する。次に図3のST6、ST7の事故後の潮流
状態から等価1機の位相角δを算出し電力系統の安定判
別部分についてを説明する。ST5の事故後の潮流計算
結果より次の(5)式を用いて系統の慣性中心を求め
る。
If the system is not separated by opening the accident point due to the accident, no power imbalance occurs in the system after the accident, so the line at the accident point to be opened is deleted. Next, a description will be given of a portion for determining the stability of the power system by calculating the phase angle δ of one equivalent machine from the power flow state after the accident in ST6 and ST7 of FIG. The center of inertia of the system is calculated using the following equation (5) from the power flow calculation result after the accident in ST5.

【0017】[0017]

【数11】 [Equation 11]

【0018】次に各発電機の位相角δiと慣性中心δセ
ンタとの大小比較を行い、δセンタよりδが大きい発電
機群を加速側グループ、小さい発電機群を減速側グルー
プとしてそれぞれ次の(6)〜(7)式より等価発電機
に縮約する。
Next, the phase angle δi of each generator and the center of inertia δ center are compared, and the generator group having a larger δ than the δ center is set as the acceleration side group, and the small generator group is set as the deceleration side group. From equations (6) to (7), reduce to an equivalent generator.

【0019】[0019]

【数12】 [Equation 12]

【数13】 [Equation 13]

【0020】上記(6)〜(7)式より、2機系を安定
度的に等価な1機系に縮約する。そして、図3に示すS
T7において上記(7)式で得られた加速側グループの
各発電機の位相角δと減速側グループの位相角δ
の差のδ、つまり等価1機の位相角δがあらかじめ設定
しておいたしきい値δshを越えれば不安定、δsh以下で
あれば安定と判断する。以上のように、この発明の実施
の形態2によれば、電力系統事故発生後、動態安定度の
側面から見た系統の安定判別を行うことができ、この安
定判別の結果、安定と判断された場合には、多大なコス
トと計算時間を費やす詳細安定計算に着手するが不必要
となり、容易にかつ低コストで安定判別を行うことがで
きる。
From the above equations (6) to (7), the two-machine system is reduced to a one-machine system which is equivalent in stability. Then, S shown in FIG.
At T7, the difference δ between the phase angle δ 1 of each generator of the acceleration side group and the phase angle δ 2 of the deceleration side group obtained by the equation (7), that is, the equivalent phase angle δ of one machine is set in advance. It is judged to be unstable if the threshold value δsh is exceeded, and stable if δsh or less. As described above, according to the second embodiment of the present invention, it is possible to perform system stability determination from the aspect of dynamic stability after a power system accident occurs, and as a result of this stability determination, it is determined that the system is stable. In such a case, the detailed stable calculation, which consumes a large amount of cost and calculation time, is started, but it is unnecessary, and the stability determination can be performed easily and at low cost.

【0021】実施の形態3.この実施の形態3では、前
記の実施の形態2の図3に示したST7で動態安定度の
側面から不安定と判別されたケースについて、より詳細
な動態安定度の安定判別を行う手法について説明する。
図4はそのフローチャートである。図において、ST
l、ST2では系統内の全発電機の内部位相角δを監視
し、最も加速している発電機のδと最も加速していない
δとの差が最大となるタイミングを算出する。ST3、
ST4、ST5ではST2で算出したタイミングで等価
1機に縮約し、等価1機の内部位相角δから安定判別を
実施する。次に図4のST3、ST4、ST5の等価1
機の位相角δから動態安定度の安定度判別を実施する手
法について詳説する。STl、ST2で算出した系統内
の全発電機の位相角δの中で、最も加速している発電機
のδと最も加速していないδとの差が最大となるタイミ
ングにおいて、実施の形態2で述べたのと同様の手法で
等価1機系へ縮約し、事故発生直後から判別する現時点
までの等価1機系の位相角δを算出する。算出した事故
発生直後から現時点までの等価1機系の位相角δの最高
点、最下点を算出し、最高点、最下点が最低3点ずつ合
計6点求まった時点で、最高点と最低点の差DP1〜D
P3を算出し、等価1機系の位相角δの発散傾向を確認
する。図5に示すように最高点と最低点の差が徐々に広
がっていけば不安定、狭まっていけば安定と判定する。
以上のように、この発明の実施の形態3によれば、電力
系統事故発生後の系統の安定度判別を、より詳細な動態
安定度の側面から見た計算手法によって確認することが
でき、また安定と判断された場合には、詳細安定計算に
依存することなく、コストと計算時間の縮減をはかるこ
とができる。
Embodiment 3. In the third embodiment, a method of performing more detailed stability determination of the dynamic stability will be described for the case in which the stability is determined to be unstable in ST7 shown in FIG. 3 of the second embodiment. To do.
FIG. 4 is a flowchart thereof. In the figure, ST
In 1 and ST2, the internal phase angle δ of all generators in the system is monitored, and the timing at which the difference between δ of the most accelerated generator and δ of the least accelerated is calculated is calculated. ST3,
In ST4 and ST5, it is reduced to one equivalent machine at the timing calculated in ST2, and stability determination is performed from the internal phase angle δ of the equivalent one machine. Next, equivalent 1 of ST3, ST4 and ST5 in FIG.
The method for determining the stability of the dynamic stability from the phase angle δ of the machine will be described in detail. Embodiment 2 at the timing when the difference between δ of the most accelerated generator and δ of the least accelerated is largest among the phase angles δ of all the generators in the system calculated in ST1 and ST2. By the same method as described in 1., the equivalent one-machine system is contracted, and the phase angle δ of the equivalent one-machine system from the time immediately after the occurrence of the accident until the time of determination is calculated. The highest point and the lowest point of the phase angle δ of the equivalent one-machine system from the time immediately after the occurrence of the calculated accident to the present time are calculated. Lowest point difference D P1 ~ D
P3 is calculated and the divergence tendency of the phase angle δ of the equivalent one-machine system is confirmed. As shown in FIG. 5, if the difference between the highest point and the lowest point gradually widens, it is determined to be unstable, and if it narrows, it is determined to be stable.
As described above, according to the third embodiment of the present invention, the stability determination of the system after the occurrence of the power system accident can be confirmed by a more detailed calculation method from the viewpoint of dynamic stability. If it is determined to be stable, cost and calculation time can be reduced without depending on the detailed stable calculation.

【0022】実施の形態4.この実施の形態4において
は、電力系統に発生した事故により系統分離が発生した
場合の周波数の側面から見た送電限界を算出する手法つ
いて図6、図7により説明する。図6は系統分離が発生
した場合の周波数の側面から見た送電限界を算出する手
法のフローチャートである。STlでは事故による事故
点の開放によって分離される系統の探索を実施する。S
T2、ST3では系統分離が発生した場合に系統毎の周
波数を算出して、安定度判別を実施する。次に図6のS
T2、ST3の系統分離が発生した場合の系統毎の周波
数を算出し、安定度判別を実施する手法について詳細な
説明をする。各系統内の総発電量P、総負荷量P
計算し、下記(1)(2)式からガバナフリー領域内の
周波数偏差ΔF、ガバナフリー領域外の周波数偏差Δ
を算出する。
Fourth Embodiment In the fourth embodiment, a method of calculating the power transmission limit viewed from the side of the frequency when grid separation occurs due to an accident that occurs in the power grid will be described with reference to FIGS. 6 and 7. FIG. 6 is a flowchart of a method of calculating the power transmission limit viewed from the side of the frequency when the grid separation occurs. In STl, a search for a system separated by opening the accident point due to an accident is carried out. S
In T2 and ST3, when the system separation occurs, the frequency for each system is calculated and the stability is determined. Next, S in FIG.
A method of calculating the frequency for each system and performing the stability determination when the system separation of T2 and ST3 occurs will be described in detail. The total power generation amount P G and the total load amount P L in each system are calculated, and the frequency deviation ΔF 1 within the governor-free region and the frequency deviation Δ outside the governor-free region are calculated from the following equations (1) and (2).
Calculate F 2 .

【0023】[0023]

【数14】 [Equation 14]

【数15】 [Equation 15]

【0024】各系統の周波数ΔFは、ガバナフリー発電
機の出力増加はガバナフリー容量までで、出力低下は制
限無しと仮定すれば、図7のような特性となり、周波数
偏差はガバナフリー領域内の周波数偏差ΔF、ガバナ
フリー領域外の周波数偏差ΔFの値が小さいほうとな
る。算出した各系統のΔFが事前に設定した許容範囲
(ΔFmin≦ΔF≦ΔFmax)を逸しているかどうかで安
定判別を行い、ΔFが許容範囲であれば安定、許容範囲
を逸脱している場合には不安定と判断する。以上のよう
に、この発明の実施の形態4によれば、事故発生後の電
力系統の安定判別を、詳細安定計算を実行するまでもな
く、周波数の側面から見た系統の安定判別を実施でき
る。
Assuming that the output increase of the governor-free generator is up to the governor-free capacity and the output decrease is not limited, the frequency ΔF of each system has the characteristics shown in FIG. 7, and the frequency deviation is within the governor-free region. The frequency deviation ΔF 1 and the frequency deviation ΔF 2 outside the governor-free region have smaller values. Whether or not the calculated ΔF of the system deviates from a preset allowable range (ΔFmin ≦ ΔF ≦ ΔFmax) is used to make a stability determination. If ΔF is within the allowable range, the stability is determined. Judge as unstable. As described above, according to the fourth embodiment of the present invention, the stability determination of the power system after the occurrence of the accident can be performed from the side of the frequency without performing the detailed stability calculation. .

【0025】[0025]

【発明の効果】以上のようにこの発明によれば、詳細安
定度計算と安定度判別とを並列にして行う送電限界算出
方法であって、安定度の判別には過負荷判別、電圧安定
度判別、周波数限度、過渡安定度、動態安定度の判別と
5つの計算を行う内容を有し、前記計算で安定度の判別
が為された時点で詳細安定度、安定度判別の実行を中止
し、安定と判別された場合には、送電量を増加させて再
度詳細安定度計算と安定度判別を行い、不安定と判別さ
れた場合、その直前の送電量を送電限界値とする構成と
したので、送電限界値を速やかに求めることができて、
計算時間、コストの節約が可能となるという秀れた効果
を奏する。
As described above, according to the present invention, there is provided a power transmission limit calculation method in which detailed stability calculation and stability determination are performed in parallel, and the determination of stability includes overload determination and voltage stability. It has the contents to perform discrimination, frequency limit, transient stability, and dynamic stability and five calculations. When the stability is determined by the above calculation, the execution of detailed stability and stability determination is stopped. If it is determined to be stable, the amount of power transmission is increased, detailed stability calculation and stability determination are performed again, and if it is determined to be unstable, the amount of power transmission immediately before that is set as the transmission limit value. Therefore, it is possible to quickly obtain the transmission limit value,
It has an excellent effect of saving calculation time and cost.

【0026】また、事故発生後の電力系統の動態安定度
の判別を(1)事故点の潮流値を各発電機の定格容量比
で配分し、(2)系統の慣性中心δセンタを求め、
(3)δセンタと各発電機の位相角との比較し、発電機
を加速側、減速側の2グループに縮約し、それぞれの位
相角δとδとを求め、(4)δとδの差δを等
価1機の位相角とし、この位相角δと予め設定したしき
い値δshを比較してδ>δshならば不安定、δ<δshな
らば安定と判別するステップを備えているので、詳細安
定度計算に依存することなく容易に安定度の判別を行
え、コスト低減を図れる。
Further, the determination of the dynamic stability of the electric power system after the accident occurs is (1) the power flow value at the accident point is distributed by the rated capacity ratio of each generator, and (2) the center of inertia δ center of the system is obtained,
(3) Compare the δ center with the phase angle of each generator, reduce the generators into two groups, the acceleration side and the deceleration side, and obtain the respective phase angles δ 1 and δ 2, and (4) δ A step of determining that the difference δ between 1 and δ 2 is the phase angle of one equivalent machine and comparing this phase angle δ with a preset threshold value δsh to be unstable if δ> δsh and stable if δ <δsh Since it is provided, the stability can be easily determined without depending on the detailed stability calculation, and the cost can be reduced.

【0027】また、同様に事故発生後の電力系統の動態
安定度の判別を(1)位相角δeを監視し、(2)最も
加速している発電機の位相角δemaxと最も加速していな
い発電機の位相角δeminを求め、(3)事故発生直後か
ら判別時点までの等価1機の位相角δ=δemax−δemin
を求める。(4)前記位相角δの最高点、最下点を計6
点求めその差から位相角の発散傾向を確認し、(5)発
散傾向であれば不安定、収束傾向であれば安定と判別す
るステップを備えているので、前記同様の効果を奏す
る。
Similarly, the determination of the dynamic stability of the electric power system after the accident occurs is (1) monitoring the phase angle δe, and (2) the phase angle δemax of the most accelerated generator and the least accelerated. Calculate the phase angle δemin of the generator, and (3) Phase angle δ = δemax-δemin of one equivalent machine from immediately after the accident occurs until the time of discrimination
Ask for. (4) The highest point and the lowest point of the phase angle δ are 6 in total.
Since the divergence tendency of the phase angle is confirmed from the point-obtained difference and (5) it is provided with the step of determining that the divergence tendency is unstable and the converging tendency is stable, the same effect as described above is obtained.

【0028】また同様に、事故発生後、電力系統が分離
された場合の周波数限度からの安定度判別を(1)ガバ
ナフリー領域内の周波数偏差ΔFとガバナフリー領域
外の周波数偏差ΔFを算出し、(2)算出した各系統
の周波数偏差ΔFが予め設定した許容範囲内であれば安
定、範囲を逸脱していれば不安定と判定するステップを
備えているので、前記同様の効果を奏する。
Similarly, after the accident, the stability determination from the frequency limit when the power system is separated is performed by (1) the frequency deviation ΔF 1 within the governor free region and the frequency deviation ΔF 2 outside the governor free region. The step of calculating (2) determining that the calculated frequency deviation ΔF of each system is stable if the frequency deviation ΔF is within a preset allowable range and unstable if the calculated frequency deviation ΔF deviates from the range is provided. Play.

【0029】また、この発明によれば、詳細安定度計算
手順と安定度判別手順とを並列して行う送電限界算出プ
ログラムが記録された記憶媒体であって、安定度の判別
には過負荷判別、電圧安定度判別、周波数限度、過渡安
定度、動態安定度の判別と5つの計算を行う内容を有
し、前記計算で安定度の判別が為された時点で詳細安定
度、安定度判別の実行を中止し、安定と判別された場合
には、送電量を増加させて再度詳細安定度計算と安定度
判別を行い、不安定と判別された場合、その直前の送電
量を送電限界値とする送電限界値認定処理手順を備えて
いるので、送電限界値を速やかに求めることができて、
計算時間、コストの節約が可能となるという秀れた効果
を奏する。
Further, according to the present invention, the storage medium is recorded with a transmission limit calculation program for performing the detailed stability calculation procedure and the stability determination procedure in parallel, and the overload determination is used to determine the stability. , Voltage stability determination, frequency limit, transient stability, dynamic stability determination and five calculations are performed, and detailed stability and stability determination are performed at the time when the stability determination is made in the above calculation. If the execution is stopped and it is determined to be stable, the power transmission amount is increased and the detailed stability calculation and stability determination are performed again.If it is determined to be unstable, the power transmission amount immediately before that is set as the transmission limit value. Since it is equipped with a transmission limit value qualification processing procedure that enables the transmission limit value to be quickly obtained,
It has an excellent effect of saving calculation time and cost.

【0030】また、事故発生後の電力系統の動態安定度
の判別を(1)潮流値を各発電機の定格容量比で配分
し、(2)系統の慣性中心δセンタを求め、(3)δセ
ンタと各発電機の位相角との比較し、発電機を加速側、
減速側の2グループに縮約し、それぞれの位相角δ
δとを求め、(4)δとδの差δを等価1機の位
相角とし、この位相角δと予め設定したしきい値δshを
比較してδ>δshならば不安定、δ<δshならば安定と
判別するステップを備えた事故発生後の電力系統の動態
安定度判別プログラムが記録されたコンピュータ読み取
り可能な記録媒体であるので、これを使用することによ
り詳細安定度計算に依存することなく容易に安定度の判
別を行え、コスト低減をはかれる。
Further, the determination of the dynamic stability of the power system after the accident occurs (1) The power flow value is distributed by the rated capacity ratio of each generator, (2) the center of inertia δ center of the system is obtained, and (3) Compare the δ center and the phase angle of each generator,
It is reduced to two groups on the deceleration side, the respective phase angles δ 1 and δ 2 are obtained, and (4) the difference δ between δ 1 and δ 2 is taken as the phase angle of one equivalent machine, and this phase angle δ and preset The threshold value δsh is compared, and if δ> δsh, it is unstable, and if δ <δsh, it is stable. Since it is a recording medium, by using it, the stability can be easily discriminated without depending on the detailed stability calculation, and the cost can be reduced.

【0031】また、同様に(1)位相角δeを監視し、
(2)最も加速している発電機の位相角δemaxと最も加
速していない発電機の位相角δeminを求め、(3)事故
発生直後から判別時点までの等価1機の位相角δ=δem
ax−δeminを求める。(4)前記位相角δの最高点、最
下点を計6点求めその差から位相角の発散傾向を確認
し、(5)発散傾向であれば不安定、収束傾向であれば
安定と判別、するステップを備えた事故発生後の電力系
統の動態安定度判別プログラムが記録されたコンピュー
タ読み取り可能な記録媒体であるので、これを使用する
ことにより前記同様の効果を奏する。
Similarly, (1) the phase angle δe is monitored,
(2) Obtain the phase angle δemax of the most accelerated generator and the phase angle δemin of the least accelerated generator, and (3) Equivalent phase angle δ = δem from immediately after the occurrence of the accident until the time of discrimination.
Calculate ax−δemin. (4) A total of 6 points of the highest point and the lowest point of the phase angle δ are obtained, and the divergence tendency of the phase angle is confirmed from the difference. Since it is a computer-readable recording medium in which the dynamic stability determination program of the electric power system after the occurrence of the accident, which includes the step of, is recorded, the same effect as described above can be obtained by using the recording medium.

【0032】また同様に、(1)ガバナフリー領域内の
周波数偏差ΔFとガバナフリー領域外の周波数偏差Δ
を算出し、(2)算出した各系統の周波数偏差ΔF
が予め設定した許容範囲内であれば安定、範囲を逸脱し
ていれば不安定と判定、するステップを備えた事故発生
後の電力系統が分離された場合の周波数限度からの安定
度判別プログラムが記録されたコンピュータ読み取り可
能な記録媒体であるので、前記同様の効果を奏する。
Similarly, (1) the frequency deviation ΔF 1 within the governor-free area and the frequency deviation ΔF outside the governor-free area.
F 2 is calculated, and (2) the calculated frequency deviation ΔF of each system
Is stable if it is within the allowable range set in advance, and unstable if it is out of the range.A stability determination program from the frequency limit when the power system after the accident is separated is provided Since it is a recorded computer-readable recording medium, the same effects as described above can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】 この発明の実施の形態1〜4の理解を助ける
目的で示した送電限界算出ツールの構成図である。
FIG. 1 is a configuration diagram of a power transmission limit calculation tool shown for the purpose of helping understanding of Embodiments 1 to 4 of the present invention.

【図2】 この発明の実施の形態1の送電限界算出方法
のフローチャート図である。
FIG. 2 is a flowchart of a power transmission limit calculation method according to the first embodiment of the present invention.

【図3】 この発明の実施の形態2の動態安定度の側面
からの安定判別を行うフローチャート図である。
FIG. 3 is a flowchart diagram for performing stability determination from the aspect of dynamic stability according to the second embodiment of the present invention.

【図4】 この発明の実施の形態3の動態安定度の側面
からの安定判別を行うフローチャートである。
FIG. 4 is a flowchart for performing stability determination from the aspect of dynamic stability according to the third embodiment of the present invention.

【図5】 この発明の実施の形態3の等価1機発電機の
位相角の波形を示す図である。
FIG. 5 is a diagram showing a waveform of a phase angle of an equivalent single generator according to a third embodiment of the present invention.

【図6】 この発明の実施の形態4の周波数限度の側面
からの安定判別を行うフローチャートである。
FIG. 6 is a flowchart for performing stability determination from the aspect of frequency limit according to the fourth embodiment of the present invention.

【図7】 この発明の実施の形態4の周波数特性の波形
を示す図である。
FIG. 7 is a diagram showing waveforms of frequency characteristics according to the fourth embodiment of the present invention.

【図8】 従来の送電限界算出手法を示すフローチャー
トである。
FIG. 8 is a flowchart showing a conventional power transmission limit calculation method.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 坂口 広二 兵庫県神戸市兵庫区和田崎町1丁目1番2 号 メルコパワーシステムズ株式会社内 (72)発明者 荒木 幸夫 大阪府大阪市北区中之島3丁目3番22号 関西電力株式会社内 Fターム(参考) 5G066 AA01 AA03 AA09 AD01 AD06 AE07 AE09    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Koji Sakaguchi             1-2, Wadasaki-cho, Hyogo-ku, Kobe-shi, Hyogo             No. within Melco Power Systems Co., Ltd. (72) Inventor Yukio Araki             3-3-22 Nakanoshima, Kita-ku, Osaka City, Osaka Prefecture             Kansai Electric Power Co., Inc. F-term (reference) 5G066 AA01 AA03 AA09 AD01 AD06                       AE07 AE09

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 電力系統の詳細安定度計算と安定度判別
とを並列して行う電力系統の送電限界算出方法であっ
て、前記安定度の判別には過負荷判別を行う第1の計算
と、電圧安定度の判別を行う第2の計算と、周波数限度
を算出する第3の計算と、過渡安定度の判別を行う第4
の計算と、動態安定度の判別を行う第5の計算とを実施
する内容を有し、前記詳細安定度計算結果を常時監視し
ながら前記第1〜第5の計算で安定度判別を行い、その
判別結果で前記電力系統が安定もしくは不安定と判別さ
れた時点で、前記詳細安定度計算および安定度判別の実
行を中止し、前記電力系統が安定と判別された場合には
送電量を増加させて再度前記詳細安定度計算と前記第1
〜第5の計算を実行して安定度判別を行い、不安定と判
別された場合には、不安定となる直前の送電量を送電限
界値とすることを特徴とする電力系統の送電限界算出方
法。
1. A method for calculating a power transmission limit of a power system, in which a detailed stability calculation of the power system and a stability determination are performed in parallel, wherein the stability is determined by a first calculation for performing an overload determination. , A second calculation for determining the voltage stability, a third calculation for calculating the frequency limit, and a fourth calculation for determining the transient stability.
And the fifth calculation for determining the dynamic stability, the stability determination is performed by the first to fifth calculations while constantly monitoring the detailed stability calculation result. When it is determined that the power system is stable or unstable as a result of the determination, the detailed stability calculation and the execution of the stability determination are stopped, and when the power system is determined to be stable, the power transmission amount is increased. Then, the detailed stability calculation and the first
~ Execution of the fifth calculation to determine the stability, and when it is determined to be unstable, the transmission amount calculation immediately before the instability is set as the transmission limit value. Method.
【請求項2】 以下の(1)〜(4)のステップを備え
たことを特徴とする事故発生後の電力系統の動態安定度
の判別方法。 (1)事故点の潮流値を系統で運転されている複数の各
発電機の定格容量の比で配分するステップ。 (2)系統の各発電機の慣性定数と位相角より、系統の
慣性中心δセンタを求めるステップ。 (3)前記δセンタと各発電機の位相角との比較を行
い、前記δセンタより大きい位相角を有する発電機群を
加速側グループ、小さい位相角を有する発電機群を減速
側グループとし、前記加速側グループ、減速側グループ
の2機系発電機に縮約して、それぞれの位相角δとδ
とを求めるステップ。 (4)前記δとδの差δを等価1機の位相角とし、
この位相角δと予め設定したしきい値δshを比較してδ
>δshならば不安定、δ<δshならば安定と判別するス
テップ。
2. A method for determining the dynamic stability of an electric power system after an accident occurs, which comprises the following steps (1) to (4). (1) A step of allocating the power flow value at the accident point by the ratio of the rated capacities of the plurality of generators operating in the system. (2) A step of obtaining the center of inertia δ center of the system from the inertia constant and the phase angle of each generator of the system. (3) Comparing the δ center with the phase angle of each generator, the generator group having a phase angle larger than the δ center is the acceleration side group, and the generator group having a small phase angle is the deceleration side group, The phase angles δ 1 and δ of the two groups of generators of the acceleration side group and the deceleration side group are reduced.
2 and the step to ask. (4) The difference δ between δ 1 and δ 2 is the phase angle of one equivalent machine,
This phase angle δ is compared with a preset threshold value δsh, and δ
A step of determining unstable if> δsh and stable if δ <δsh.
【請求項3】 以下の(1)〜(5)のステップを備え
たことを特徴とする事故発生後の電力系統の動態安定度
の判別方法。 (1)各発電機の位相角δeを監視するステップ。 (2)前記各発電機の位相角δeの中で最も加速してい
る発電機の位相角δemaxと最も加速していない発電機の
位相角δeminを求めるステップ。 (3)前記δemaxとδeminの差が最大となるタイミング
において、事故発生直後から判別時点までの等価1機の
位相角δ=δemax−δeminを算出するステップ。 (4)前記位相角δの最高点、最下点を少なくとも各3
点ずつ計6点求め、前記最高点と最下点との差を算出し
て位相角の発散傾向を確認するステップ。 (5)前記最高点と最下点の差が発散傾向であれば不安
定、収束傾向であれば安定と判別するステップ。
3. A method for determining the dynamic stability of an electric power system after an accident, which comprises the following steps (1) to (5). (1) A step of monitoring the phase angle δe of each generator. (2) A step of obtaining the phase angle δemax of the most accelerated generator and the phase angle δemin of the least accelerated generator among the phase angles δe of the generators. (3) A step of calculating the phase angle δ = δemax−δemin of one equivalent aircraft from immediately after the occurrence of the accident to the time of determination at the timing when the difference between δemax and δemin is maximum. (4) At least 3 points for the highest point and the lowest point of the phase angle δ.
A step of obtaining 6 points in total and calculating the difference between the highest point and the lowest point to confirm the divergence tendency of the phase angle. (5) A step of determining that the difference between the highest point and the lowest point is unstable if the difference is divergent and stable if the difference is convergent.
【請求項4】 電力系統の事故発生後であって、電力系
統が分離された場合の周波数限度からの安定度判別を以
下の(1)、(2)のステップで行うことを特徴とする
電力系統の安定度の判別方法。 (1)各系統内の総発電量P、総負荷量Pを算出
し、次の式(1)(2)からガバナフリー領域内の周波
数偏差ΔF、ガバナフリー領域外の周波数偏差ΔF
を算出するステップ。 【数1】 【数2】 (2)算出した各系統の周波数偏差ΔFが事前に設定し
た許容範囲内であれば安定、許容範囲を逸脱していれば
不安定と判別するステップ。
4. The electric power, characterized in that, after the occurrence of a power system accident, the stability determination from the frequency limit when the power system is separated is performed in the following steps (1) and (2). How to determine system stability. (1) The total power generation amount P G and the total load amount P L in each grid are calculated, and the frequency deviation ΔF 1 within the governor-free region and the frequency deviation ΔF outside the governor-free region are calculated from the following equations (1) and (2). Two
Calculating step. [Equation 1] [Equation 2] (2) A step of determining that the calculated frequency deviation ΔF of each system is stable if it is within a preset allowable range, and unstable if it is outside the allowable range.
【請求項5】 送電限界量が認定されると、詳細安定度
計算を実行しその正当性を確認することを特徴とする請
求項1に記載の電力系統の送電限界算出方法。
5. The method for calculating a transmission limit of an electric power system according to claim 1, wherein, when the transmission limit amount is recognized, a detailed stability calculation is executed to check its validity.
【請求項6】 電力系統の安定度計算する詳細安定度計
算手順と、前記詳細安定度計算手順と並列に実行され、
その詳細安定度の計算を常時監視して安定度判別を実行
する安定度判別処理手順とを備え、前記安定度判別処理
手順には過負荷判別を行う第1の計算と、電圧安定度の
判別を行う第2の計算と、周波数限度を算出する第3の
計算と、過渡安定度の判別を行う第4の計算と、動態安
定度の判別を行う第5の計算とを行う内容を有し、前記
第1〜第5の計算結果、前記電力系統が安定もしくは不
安定と判別された時点で、前記詳細安定度計算および安
定度判別の実行を中止し、前記電力系統が安定と判別さ
れた場合には送電量を増加させて再度前記詳細安定度計
算と前記安定度判別の実行を行い、不安定と判別された
場合には不安定となる直前の送電量を送電限界値とする
送電限界値認定処理手順とを備えたことを特徴とする電
力系統の送電限界算出プログラムが記録されたコンピュ
ータ読み取り可能な記録媒体。
6. A detailed stability calculation procedure for calculating stability of a power system, and a detailed stability calculation procedure executed in parallel with the detailed stability calculation procedure.
A stability determination processing procedure for constantly monitoring the detailed stability calculation to perform stability determination, the stability determination processing procedure includes a first calculation for performing an overload determination and a voltage stability determination. Has the contents of performing the second calculation for performing the above, the third calculation for calculating the frequency limit, the fourth calculation for determining the transient stability, and the fifth calculation for determining the dynamic stability. When the power system is determined to be stable or unstable from the first to fifth calculation results, execution of the detailed stability calculation and stability determination is stopped, and the power system is determined to be stable. In this case, the amount of power transmission is increased, the detailed stability calculation and the stability determination are executed again, and if it is determined that the power transmission amount is unstable, the power transmission amount immediately before becoming unstable is set as the power transmission limit value. A power transmission limit of a power system characterized by having a value qualification processing procedure Out program recorded computer-readable recording medium.
【請求項7】 以下の(1)〜(4)のステップを備え
たことを特徴とする事故発生後の電力系統の動態安定度
の判別プログラムが記録されたコンピュータ読み取り可
能な記録媒体。 (1)事故点の潮流値を系統で運転されている複数の各
発電機の定格容量の比で配分するステップ。 (2)系統の各発電機の慣性定数と位相角より、系統の
慣性中心δセンタを求めるステップ。 (3)前記δセンタと各発電機の位相角との比較を行
い、前記δセンタより大きい位相角を有する発電機群を
加速側グループ、小さい位相角を有する発電機群を減速
側グループとし、前記加速側グループ、減速側グループ
の2機系発電機に縮約して、それぞれの位相角δとδ
とを求めるステップ。 (4)前記δとδの差δを等価1機の位相角とし、
この位相角δと予め設定したしきい値δshを比較してδ
>δshならば不安定、δ<δshならば安定と判別するス
テップ。
7. A computer-readable recording medium having a program for determining the dynamic stability of a power system after an accident, which is characterized by comprising the following steps (1) to (4). (1) A step of allocating the power flow value at the accident point by the ratio of the rated capacities of the plurality of generators operating in the system. (2) A step of obtaining the center of inertia δ center of the system from the inertia constant and the phase angle of each generator of the system. (3) Comparing the δ center with the phase angle of each generator, the generator group having a phase angle larger than the δ center is the acceleration side group, and the generator group having a small phase angle is the deceleration side group, The phase angles δ 1 and δ of the two groups of generators of the acceleration side group and the deceleration side group are reduced.
2 and the step to ask. (4) The difference δ between δ 1 and δ 2 is the phase angle of one equivalent machine,
This phase angle δ is compared with a preset threshold value δsh, and δ
A step of determining unstable if> δsh and stable if δ <δsh.
【請求項8】 以下の(1)〜(5)のステップを備え
たことを特徴とする事故発生後の電力系統の動態安定度
の判別プログラムが記録されたコンピュータ読み取り可
能なコンピュータ読み取り可能な記録媒体。 (1)各発電機の位相角δeを監視するステップ。 (2)前記各発電機の位相角δeの中で最も加速してい
る発電機の位相角δemaxと最も加速していない発電機の
位相角δeminを求めるステップ。 (3)前記δemaxとδeminの差が最大となるタイミング
において、事故発生直後から判別時点までの等価1機の
位相角δを算出するステップ。 (4)前記位相角δの最高点、最下点を少なくとも各3
点ずつ計6点求め、前記最高点と最下点との差を算出し
て位相角の発散傾向を確認するステップ。 (5)前記最高点と最下点の差が発散傾向であれば不安
定、収束傾向であれば安定と判別するステップ。
8. A computer-readable computer-readable record in which a program for determining the dynamic stability of a power system after an accident has been recorded, comprising the following steps (1) to (5): Medium. (1) A step of monitoring the phase angle δe of each generator. (2) A step of obtaining the phase angle δemax of the most accelerated generator and the phase angle δemin of the least accelerated generator among the phase angles δe of the generators. (3) A step of calculating the phase angle δ of one equivalent aircraft from immediately after the occurrence of the accident to the time of determination at the timing when the difference between δemax and δemin is maximum. (4) At least 3 points for the highest point and the lowest point of the phase angle δ.
A step of obtaining 6 points in total and calculating the difference between the highest point and the lowest point to confirm the divergence tendency of the phase angle. (5) A step of determining that the difference between the highest point and the lowest point is unstable if the difference is divergent and stable if the difference is convergent.
【請求項9】 以下の(1)、(2)のステップを備え
たことを特徴とする事故発生後の電力系統が分離された
場合の周波数限度からの安定度判別プログラムが記録さ
れたコンピュータ読み取り可能な記録媒体。 (1)各系統内の総発電量P、総負荷量Pを算出
し、次の式(1)(2)からガバナフリー領域内の周波
数偏差ΔF、ガバナフリー領域外の周波数偏差ΔF
を算出するステップ。 【数3】 【数4】 (2)算出した各系統の周波数偏差ΔFが事前に設定し
た許容範囲内であれば安定、許容範囲を逸脱していれば
不安定と判別するステップ。
9. A computer reading in which a stability determination program from a frequency limit when the power system after the accident is separated is recorded, comprising the following steps (1) and (2): Possible recording medium. (1) The total power generation amount P G and the total load amount P L in each grid are calculated, and the frequency deviation ΔF 1 within the governor-free region and the frequency deviation ΔF outside the governor-free region are calculated from the following equations (1) and (2). Two
Calculating step. [Equation 3] [Equation 4] (2) A step of determining that the calculated frequency deviation ΔF of each system is stable if it is within a preset allowable range, and unstable if it is outside the allowable range.
JP2001304850A 2001-10-01 2001-10-01 Power transmission limit calculation method for power system and computer-readable recording medium recorded with transmission limit calculation program Expired - Fee Related JP3865608B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001304850A JP3865608B2 (en) 2001-10-01 2001-10-01 Power transmission limit calculation method for power system and computer-readable recording medium recorded with transmission limit calculation program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001304850A JP3865608B2 (en) 2001-10-01 2001-10-01 Power transmission limit calculation method for power system and computer-readable recording medium recorded with transmission limit calculation program

Publications (2)

Publication Number Publication Date
JP2003111274A true JP2003111274A (en) 2003-04-11
JP3865608B2 JP3865608B2 (en) 2007-01-10

Family

ID=19124721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001304850A Expired - Fee Related JP3865608B2 (en) 2001-10-01 2001-10-01 Power transmission limit calculation method for power system and computer-readable recording medium recorded with transmission limit calculation program

Country Status (1)

Country Link
JP (1) JP3865608B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003348754A (en) * 2002-05-30 2003-12-05 Hitachi Ltd Method of calculating electric power system operation target value for electric power transaction
JP2011015564A (en) * 2009-07-03 2011-01-20 Hitachi Ltd Stability calculation method by system search and generator phase angle determination
CN102035203A (en) * 2010-10-20 2011-04-27 中国电力科学研究院 Fast calculation method of tie-line transient state stable limiting transmission power
JP2011234434A (en) * 2010-04-23 2011-11-17 Tokyo Electric Power Co Inc:The Reliability evaluation system of electric power system
CN102707230A (en) * 2012-05-09 2012-10-03 东北电力科学研究院有限公司 Method for testing response characteristic of 690V wind turbine generator to transient change of power grid
KR20160074003A (en) * 2013-10-22 2016-06-27 메타 테크, 인크. Methods and apparatus for detecting and correcting instabilites within a power distribution system

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003348754A (en) * 2002-05-30 2003-12-05 Hitachi Ltd Method of calculating electric power system operation target value for electric power transaction
JP2011015564A (en) * 2009-07-03 2011-01-20 Hitachi Ltd Stability calculation method by system search and generator phase angle determination
JP2011234434A (en) * 2010-04-23 2011-11-17 Tokyo Electric Power Co Inc:The Reliability evaluation system of electric power system
CN102035203A (en) * 2010-10-20 2011-04-27 中国电力科学研究院 Fast calculation method of tie-line transient state stable limiting transmission power
CN102707230A (en) * 2012-05-09 2012-10-03 东北电力科学研究院有限公司 Method for testing response characteristic of 690V wind turbine generator to transient change of power grid
WO2013166861A1 (en) * 2012-05-09 2013-11-14 国家电网公司 Testing method of electric network transient response characteristic of 690v voltage class wind power generator set
KR20160074003A (en) * 2013-10-22 2016-06-27 메타 테크, 인크. Methods and apparatus for detecting and correcting instabilites within a power distribution system
KR102325452B1 (en) * 2013-10-22 2021-11-15 빗 탈 엘엘씨 Methods and apparatus for detecting and correcting instabilites within a power distribution system

Also Published As

Publication number Publication date
JP3865608B2 (en) 2007-01-10

Similar Documents

Publication Publication Date Title
Perninge et al. Importance sampling of injected powers for electric power system security analysis
JP2005523677A (en) Methods and systems for dynamically selecting power systems online
CN107947172B (en) Power system inertia level assessment method based on wide area information
JP2013526237A (en) System and method for determining application dependent paths in a data center
CN111638948B (en) Multi-channel high-availability big data real-time decision making system and decision making method
CN104716646B (en) A kind of node Coupling Degrees method based on Injection Current
CN106129508A (en) A kind of charging method and device
JP2003111274A (en) Transmission threshold calculation method for power system, and computer readable recording medium recorded with transmission threshold calculation program
CN111025085B (en) Single-phase fault phase selection method and device based on line voltage increase and storage medium
CN114881410B (en) Model-data hybrid drive power system transient stability online evaluation method
Xu et al. Chronos: A unifying optimization framework for speculative execution of deadline-critical mapreduce jobs
JP2005216078A (en) Generation system for transaction profile for computer system performance measurement analysis, generation method therefor and program
CN102184296B (en) Modelling method of impact load of electrified railway based on actually-measured data
Wang et al. Malicious synchrophasor detection based on highly imbalanced historical operational data
CN108494589B (en) Management method and system of distributed Nginx server
JP4001994B2 (en) Assessing accident stability of power systems
CN114465215B (en) Pilot protection method and pilot protection system for offshore wind power direct current outgoing line
CN110514953A (en) Based on generator rotor angle, the simulation recognition method and system of the electric network fault of voltage aliasing
JP3442658B2 (en) Power system out-of-step prediction method
Scherrer et al. An axiomatic perspective on the performance effects of end-host path selection
CN111865700B (en) Information node screening method and related device for electric power information physical system
Kiel et al. A tree based classifier for transient stability prediction following island splitting
Dahal et al. Performance of response based one shot controls handling missing phasor measurements
CN112163087B (en) Method, system and device for solving intent conflicts in dialogue system
CN111244960B (en) Method and system for determining splitting time based on transient energy

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040826

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040826

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040826

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050822

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050824

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060411

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060609

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060926

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061003

R150 Certificate of patent or registration of utility model

Ref document number: 3865608

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091013

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101013

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111013

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121013

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131013

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees