JP2003109699A - Conductive terminal, its jointing method, and information communication medium - Google Patents

Conductive terminal, its jointing method, and information communication medium

Info

Publication number
JP2003109699A
JP2003109699A JP2001303190A JP2001303190A JP2003109699A JP 2003109699 A JP2003109699 A JP 2003109699A JP 2001303190 A JP2001303190 A JP 2001303190A JP 2001303190 A JP2001303190 A JP 2001303190A JP 2003109699 A JP2003109699 A JP 2003109699A
Authority
JP
Japan
Prior art keywords
conductive
terminal
joining
conductive terminals
terminals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001303190A
Other languages
Japanese (ja)
Inventor
Katsuyoshi Koike
勝佳 小池
Akihiro Takahashi
昭博 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Corp filed Critical NEC Tokin Corp
Priority to JP2001303190A priority Critical patent/JP2003109699A/en
Publication of JP2003109699A publication Critical patent/JP2003109699A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a jointing method for conductive terminals that can positively, stably and easily joint the conductive terminals to each other, resulting in acquiring much higher reliability than a conventional method and remarkably reducing the cost by the improvement of yield. SOLUTION: In the jointing method for conductive terminals of plane shape facing each other, an inclusion with properties that can apply reaction to the conductive terminals is arranged between the conductive terminals to obtain electrical connection.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、相対向する導電端
子の接合技術に関するものであり、特にICカードやI
Cタグ等を代表とするカード及びシート形状の情報通信
媒体におけるICモジュールのアンテナ端子と送受信用
アンテナコイルの終端端子との接合に関わる構造並びに
方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a technique for joining conductive terminals facing each other, and particularly to an IC card and an I card.
The present invention relates to a structure and method relating to joining of an antenna terminal of an IC module and a terminal terminal of a transmitting / receiving antenna coil in a card and sheet-shaped information communication medium represented by a C tag or the like.

【0002】[0002]

【従来の技術】従来、この種の技術の一つとしては、例
えば、接触及び非接触ICカードにおいては、異方性導
電フィルムを用いた技術、即ち、直径が5μm以上から
50μm以下の範囲の導電性微粒子が熱硬化型フィルム
の中に分散され、加圧加熱によって微粒子の上端と下端
が対面する導電端子に接触することにより両端子間の電
気的接続を得るという方法があった。
2. Description of the Related Art Conventionally, as one of the techniques of this type, for example, in a contact and non-contact IC card, a technique using an anisotropic conductive film, that is, a diameter of 5 μm to 50 μm is used. There is a method in which conductive fine particles are dispersed in a thermosetting film and the upper and lower ends of the fine particles are brought into contact with facing conductive terminals by heating under pressure to obtain electrical connection between both terminals.

【0003】しかしながら、上記方法では、微粒子の粒
径のばらつきが大きく、フィルム内に分散されている微
粒子の内、ごく一部が接触しているのみであり、微粒子
自体が小さく弾力性も極めて小さい。従って、物理的応
力の印加或いは温度変化に伴う熱膨張、収縮の繰り返し
等による接触トラブルが頻発するといった信頼性上の問
題が無視できなかった。
However, in the above method, the particle size of the fine particles varies greatly, and only a small part of the fine particles dispersed in the film are in contact, and the fine particles themselves are small and the elasticity is extremely small. . Therefore, reliability problems such as frequent contact troubles due to repeated thermal expansion and contraction due to physical stress application or temperature change cannot be ignored.

【0004】又、従来技術の二つとしては、同じくIC
カードにおいて、導電ペーストを用いた技術、即ち未硬
化の導電ペーストを対面する導電端子の一方或いは両方
の面に塗布し、加圧状態で室温放置又は加温して硬化さ
せることにより両端子間の電気的接続を得るという方法
があった。
Also, two of the prior arts are the same ICs.
In the card, a technique using a conductive paste, that is, applying an uncured conductive paste to one or both surfaces of the facing conductive terminals, and leaving it at room temperature under pressure or heating to cure it There was a way to get an electrical connection.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、この方
法では、導電ペーストの塗布量の精度が厳しく要求され
る反面、時間、温度、湿度等の環境条件に起因するペー
スト粘度の変動が大きいため、塗布量の精度保証が極め
て困難であり、結果的に塗布量不足による接触不良や逆
に塗布量過多に起因する余剰ペーストによる他端子間の
短絡異常或いは表層への漏れ出しによる外観不良等の問
題を抱えていた。
However, in this method, although the precision of the amount of the conductive paste applied is strictly required, the paste viscosity varies greatly due to environmental conditions such as time, temperature and humidity. It is extremely difficult to guarantee the accuracy of the amount, and as a result, problems such as contact failure due to insufficient coating amount, conversely short circuit between other terminals due to excess paste due to excessive coating amount, or appearance defect due to leakage to the surface layer I was holding.

【0006】従って、本発明が解決しようとする課題
は、導電端子同士の接合を確実且つ安定に、かつ容易に
成すことができ、結果として高い信頼性が得られ、歩留
まり向上による著しい低廉化を可能とするような導電端
子及びその接合方法及び情報通信媒体を提供することで
ある。
Therefore, the problem to be solved by the present invention is to ensure that the conductive terminals can be bonded reliably, stably, and easily, resulting in high reliability, and a significant reduction in cost due to improved yield. An object of the present invention is to provide a conductive terminal, a method for joining the conductive terminal, and an information communication medium that enable the same.

【0007】又、本発明の更なる解決課題は、上記導電
端子同士の改善された接合方法を用いて、高信頼性で低
廉な情報通信媒体を提供することである。
A further problem to be solved by the present invention is to provide a highly reliable and inexpensive information communication medium by using the improved joining method for the conductive terminals.

【0008】[0008]

【課題を解決するための手段】本発明は、相対向する導
電端子の接合に際し、導電端子間に弾性を有する介在物
を挟み込んで、常にこの介在物が導電端子を押すように
力が作用し続けるようにして信頼性良好な電気的接触を
行うものである。
According to the present invention, when joining conductive terminals facing each other, an elastic inclusion is sandwiched between the conductive terminals, and a force is applied so that the inclusion always pushes the conductive terminal. The electrical contact with good reliability is made by continuing.

【0009】即ち、本発明は、抗力を作用させ得る性質
を持った介在物を間に配置させて電気的接続を得た導電
端子である。また、本発明は、互いに対面する平面状の
導電端子の接合方法において、前記導電端子に抗力を作
用させ得る性質を持った介在物を、前記導電端子間に配
置することによって電気的接続を得る導電端子の接合方
法である。
That is, the present invention is a conductive terminal in which an interposition having a property capable of exerting a drag force is arranged therebetween to obtain an electrical connection. Further, in the present invention, in the method of joining flat conductive terminals facing each other, an electrical connection is obtained by disposing an interposition having a property capable of exerting a resistance force on the conductive terminals between the conductive terminals. This is a method of joining conductive terminals.

【0010】また、本発明は、前記介在物として導電性
粒子、弾性を有するバネ、ビーズ及び形状記憶合金のい
ずれかを用いる導電端子の接合方法である。
Further, the present invention is a method for joining conductive terminals, wherein any one of conductive particles, elastic springs, beads and shape memory alloy is used as the inclusion.

【0011】また、本発明は、前記介在物である導電性
粒子が直径50μm以上から500μm以下の範囲、弾
性係数2000kg/mm以上、弾性限界20%以
上、弾性率10%以上から90%以下の範囲の弾性体と
する導電端子の接合方法である。
In the present invention, the conductive particles as inclusions have a diameter in the range of 50 μm to 500 μm, an elastic modulus of 2000 kg / mm 2 or more, an elastic limit of 20% or more, and an elastic modulus of 10% to 90% or less. This is a method of joining conductive terminals, which are elastic bodies in the range.

【0012】また、本発明は、前記介在物である導電性
粒子が高分子粒子の表面に導電膜を形成することにより
構成される導電端子の接合方法である。
The present invention is also a method for joining conductive terminals, wherein the conductive particles as the inclusions form a conductive film on the surface of polymer particles.

【0013】 また、本発明は、前記介在物である導
電性粒子が、高分子粒子表面に未硬化の導電ペーストを
塗布したものであり、機械的接合後に硬化させるように
した導電端子の接合方法である。
Further, according to the present invention, the conductive particles, which are the inclusions, are obtained by applying uncured conductive paste to the surface of polymer particles, and a method of bonding a conductive terminal in which the conductive particles are cured after mechanical bonding. Is.

【0014】また、本発明は、前記のいずれかに記載の
導電端子の接合方法によって形成された対面する導電端
子を用いる情報通信媒体であって、前記対面する導電端
子の1つの導電端子をICチップから引き出されたアン
テナ接合端子とし、他方の導電端子を送受信用アンテナ
コイルの終端端子とする情報通信媒体である。
Further, the present invention is an information communication medium using facing conductive terminals formed by the method for bonding conductive terminals according to any one of the above, wherein one conductive terminal of the facing conductive terminals is an IC. It is an information communication medium which has an antenna joining terminal pulled out from a chip and uses the other conductive terminal as a terminal terminal of a transmitting / receiving antenna coil.

【0015】[0015]

【発明の実施の形態】本発明の実施の形態による導電端
子及びその接合方法及び情報通信媒体について、以下に
説明する。特に、本発明の内容を情報通信媒体であるI
Cカードに適用した場合を中心に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION A conductive terminal, a method for joining the conductive terminal, and an information communication medium according to an embodiment of the present invention will be described below. In particular, the content of the present invention is
The description will be focused on the case of application to the C card.

【0016】(実施の形態1)本発明の実施の形態1に
よる導電端子及びその接合方法について、以下に説明す
る。図1は、本発明の実施の形態1による導電端子の接
合方法の説明図である。 図1(a)は、相対向する導
電端子11及び12の間に、両導電端子に対し矢印で示
すような抗力Fを作用させるような介在物Mの説明図で
ある。ここで、常にこの介在物Mが両導電端子と良好な
接触性を維持できるような構成とした本発明のポイント
を、断面概略図に示したものである。
(Embodiment 1) A conductive terminal and a joining method thereof according to Embodiment 1 of the present invention will be described below. FIG. 1 is an explanatory diagram of a method of joining conductive terminals according to a first embodiment of the present invention. FIG. 1A is an explanatory diagram of an inclusion M that applies a resistance force F as indicated by an arrow to both conductive terminals between the conductive terminals 11 and 12 facing each other. Here, the point of the present invention in which the inclusion M is always capable of maintaining good contact with both conductive terminals is shown in a schematic sectional view.

【0017】ここで、介在物Mである導電性粒子は、直
径が50μm以上から500μm以下の範囲であり、弾
性係数2000kg/mm以上、弾性限界20%以
上、弾性率10%以上から90%以下の範囲の弾性体で
ある。
Here, the conductive particles as the inclusions M have a diameter in the range of 50 μm or more to 500 μm or less, an elastic modulus of 2000 kg / mm 2 or more, an elastic limit of 20% or more, and an elastic modulus of 10% or more to 90%. The elastic body has the following range.

【0018】図1(b)〜図1(d)は、図1(a)に
おける介在物Mの具体例を説明するものであり、図1
(b)は弾性球体(中が空洞であってもかまわない)の
一例である。導電端子11,12に挟み込まれた弾性球
体は、圧縮固定されると、扁平な楕円体となり、図中矢
印のような復元しようとする抗力が生じ本発明の意図に
合致したものとなる。
FIGS. 1 (b) to 1 (d) are for explaining a concrete example of the inclusion M in FIG. 1 (a).
(B) is an example of an elastic sphere (the inside may be hollow). When the elastic sphere sandwiched between the conductive terminals 11 and 12 is compressed and fixed, it becomes a flat ellipsoid, and a dragging force as shown by an arrow in the drawing tends to be restored, which is consistent with the intention of the present invention.

【0019】図1(c)は、同様に、バネ材を用いて、
本発明の意図する抗力を得ようとするものである。ここ
では、バネ材自体が一般に組成の理由から金属とはい
え、電気的接触性が極めて優れているわけではないの
で、表面に金等の良導性の金属薄層をメッキ等により形
成すると尚好ましい。
Similarly, in FIG. 1C, a spring material is used.
It is intended to obtain the intended drag force of the present invention. Here, the spring material itself is generally a metal for the reason of its composition, but it does not mean that the electrical contact property is extremely excellent. Therefore, it is still preferable to form a thin metal layer having good conductivity such as gold on the surface by plating or the like. preferable.

【0020】図1(d)は、弾性を有する、例えば燐青
銅やタングステン等の金属材料又はポリエチレンやナイ
ロン系の高分子素材で、図示したような一部分が切除さ
れたビーズ形状の介在物Mによる本発明への適用可能性
を示すものである。ここでも表面に電気的良導性の薄層
が形成されると、より効果的である。
FIG. 1 (d) shows a bead-shaped inclusion M, which is a metal material having elasticity, such as phosphor bronze or tungsten, or a polymer material such as polyethylene or nylon, with a part cut off as shown in FIG. It shows the applicability to the present invention. Here again, it is more effective if a thin electrically conductive layer is formed on the surface.

【0021】図1(e)には、上記とは異なる抗力発生
手段を示す。例えば、形状が100℃以下の温度範囲で
は、ある曲率のU字形状が安定状態となり、100℃以
上の温度条件下ではそれよりも曲率が小さいU字形状が
安定状態となるように記憶させられた形状記憶合金シー
トを介在物として用いることによって、電極端子を備え
たシート同士の100℃以上の温度での熱圧着工程時に
は、曲率の小さい状態で張り合わせ固着が成され、工程
終了後の100℃以下では、曲率の大きい形状に戻ろう
とすることによって、本発明の意図に合致した抗力を得
ることが可能である。
FIG. 1 (e) shows a drag generating means different from the above. For example, a U-shape having a certain curvature is stable in a temperature range of 100 ° C. or lower, and a U-shape having a smaller curvature is stable in a temperature range of 100 ° C. or higher. By using the shape memory alloy sheet as an interposer, the sheets having the electrode terminals are bonded and fixed with a small curvature during the thermocompression bonding process at a temperature of 100 ° C. or more, and the temperature of 100 ° C. after the process is completed. In the following, it is possible to obtain a drag force that matches the intention of the present invention by trying to return to a shape with a large curvature.

【0022】上記のように、相対向した導電端子を抗力
によって押し続けるようにして良好な電気的接触を維持
しようとすることが本発明のポイントなのである。
As described above, the point of the present invention is to maintain good electrical contact by continuously pushing the opposing conductive terminals by the drag force.

【0023】次に、より具体的な本発明の実施の形態と
して、ICカードの製造において、図1(b)に示した
弾性球体を端子間介在物として本発明を適用した実施の
形態例につき詳述する。
Next, as a more specific embodiment of the present invention, in the manufacture of an IC card, an embodiment in which the present invention is applied by using the elastic sphere shown in FIG. Detailed description.

【0024】(実施の形態2)図2は、実施の形態2に
よる導電端子の接合方法をICカードに適用した場合の
説明図である。図2(a)は、ポリエチレンテレフタレ
ート(以下、PET−Gと略称する)等のカード基材か
ら成るインレットシートの表面に金属膜の直接描画や導
電性インキによる印刷パターンニング等の一般的手段で
送受信用アンテナコイル2を形成した後、同じくPET
−G材質から成る上層及び下層補強シートで上記インレ
ットシートを挟み込み、結果的にPET−Gベースカー
ド1の内部にアンテナコイル2を埋め込んだ構造を実現
した状態を示す断面概略図である。
(Embodiment 2) FIG. 2 is an explanatory diagram in the case where the method of joining conductive terminals according to Embodiment 2 is applied to an IC card. FIG. 2A shows a general means such as direct drawing of a metal film on the surface of an inlet sheet made of a card base material such as polyethylene terephthalate (hereinafter abbreviated as PET-G) or print patterning with a conductive ink. After forming the transmitting and receiving antenna coil 2, the same PET is used.
FIG. 3 is a schematic cross-sectional view showing a state in which the inlet sheet is sandwiched by upper and lower reinforcing sheets made of a −G material, and as a result, a structure in which the antenna coil 2 is embedded inside the PET-G base card 1 is realized.

【0025】図2(b)は、図2(a)の状態の後、上
層表面側から、例えば、フライス盤等を用いて、埋め込
まれているアンテナコイル2の終端部の接合端子が露呈
する深さ、及び、後工程でICモジュールのICチップ
を封止カバーしているエポキシ樹脂等から成る封止樹脂
部が嵌め込まれる深さでザグリ掘削加工を施した後、上
記露呈されたアンテナコイル2の接合端子部の表面近傍
に導電ペースト4を塗布し、それが完全硬化する前に導
電粒子5を配置した状態である。
FIG. 2B shows, after the state shown in FIG. 2A, the depth at which the joining terminal at the terminal end portion of the embedded antenna coil 2 is exposed from the upper surface side using, for example, a milling machine. Then, after the counterbore excavation processing is performed to a depth that the sealing resin portion made of epoxy resin or the like that covers the IC chip of the IC module in the subsequent step is fitted, the exposed antenna coil 2 is exposed. This is a state in which the conductive paste 4 is applied near the surface of the joining terminal portion and the conductive particles 5 are arranged before the conductive paste 4 is completely cured.

【0026】ここで、導電粒子としては、例えばゼラチ
ン、アラビアゴム、ポリ尿素、ナイロン、ポリウレタ
ン、ポリエチレン等の弾性体粒子の表面に銅、真鍮、ニ
ッケル、クロム等の金属を無電解、或いは電解メッキ等
の手段により導電層を形成したものを使用する。又、導
電粒子の所定位置配置に際しては、アンテナコイル2の
接合端子部が周囲よりも若干窪むように形成されている
ことと、未硬化の導電ペーストの存在故に位置変動なし
に工程を進めることができるのである。
Here, as the conductive particles, for example, metal such as copper, brass, nickel and chromium is electrolessly or electrolytically plated on the surface of elastic particles such as gelatin, gum arabic, polyurea, nylon, polyurethane and polyethylene. A conductive layer is formed by such means as described above. Further, when the conductive particles are arranged at a predetermined position, the process can be performed without changing the position because the joint terminal portion of the antenna coil 2 is formed to be slightly recessed from the surroundings and the presence of the uncured conductive paste. Of.

【0027】図2(c)は、ICモジュール6を位置整
合し上記ザグリ部に、まさに嵌め込もうとしている状態
を示し、アンテナコイル2の接合端子部の直上には、導
電粒子5を介してICモジュール6側のアンテナ端子7
が対面配置させられている。又、導電粒子5を取り巻く
周辺領域には、熱硬化型フィルム8が貼り付けられてお
り、ICモジュール6とベースカード1との強固な接合
を担わされている。
FIG. 2C shows a state in which the IC module 6 is aligned and is just about to be fitted into the countersunk portion, and the conductive particles 5 are provided directly above the joint terminal portion of the antenna coil 2. Antenna terminal 7 on the IC module 6 side
Are arranged facing each other. Further, a thermosetting film 8 is attached to the peripheral area surrounding the conductive particles 5, and is responsible for the firm joining of the IC module 6 and the base card 1.

【0028】図2(d)は、図2(c)の状態で上方か
ら加熱圧着を実施し、ICモジュール6とベースカード
1とを一体化し、ICカードの基本構造が完成した状態
である。このとき、導電粒子5’は、上下からの圧接応
力により扁平な断面形状を保ったまま固定され、それが
持つ弾性によってICモジュール6及びICモジュール
側アンテナ端子7に対し常に抗力を作用し続ける。
FIG. 2D shows a state in which the IC module 6 and the base card 1 are integrated by performing thermocompression bonding from above in the state of FIG. 2C to complete the basic structure of the IC card. At this time, the conductive particles 5 ′ are fixed while maintaining a flat cross-sectional shape due to the pressure contact stress from above and below, and the elasticity of the conductive particles 5 ′ always exerts a drag force on the IC module 6 and the IC module side antenna terminal 7.

【0029】このように、本発明を適用したICカード
においては、対面する接合端子間に弾性能力を持った導
電性粒子を介在させているため、常に接合端子間の電気
的接触が良好に維持でき、信頼性の極めて高いICカー
ドとなり得るのである。
As described above, in the IC card to which the present invention is applied, since the conductive particles having elastic ability are interposed between the facing bonding terminals, good electrical contact between the bonding terminals is always maintained. Therefore, the IC card can be made highly reliable.

【0030】[0030]

【発明の効果】上記のように、本発明によれば、種々の
使用条件及び環境条件下で、従来、問題となっていたよ
うな導電端子間の接触トラブルを大幅に改善でき、高信
頼性、且つ歩留まり向上に起因する低廉な導電端子及び
その接合方法及び情報通信媒体を提供することが可能と
なる。
As described above, according to the present invention, the contact trouble between the conductive terminals, which has been a problem in the past, can be greatly improved under various use conditions and environmental conditions, and the reliability is high. In addition, it is possible to provide an inexpensive conductive terminal, a method of joining the conductive terminal, and an information communication medium, which are inexpensive due to the improvement in yield.

【0031】尚、上記実施の形態項においては、ICカ
ードについての実施例のみについて述べたが、これに限
らず、ICタグや光、磁気、誘電体、及びこれらの複合
型のカード状、シート状、ラベル状等のあらゆる情報通
信媒体に、本発明の電極接合技術が適用可能であること
は当然である。
In the above-mentioned embodiment, only the example of the IC card has been described, but the present invention is not limited to this, and IC tags, optical, magnetic and dielectric materials, and composite card-like forms and sheets of these. It goes without saying that the electrode joining technique of the present invention can be applied to all information communication media such as a label and a label.

【0032】更に、本発明の電極接合技術は、情報通信
媒体に限定するものではなく、相対向する複数の電極端
子同士の信頼性高い接合が要求されるような如何なる場
面においても、これを応用することは可能である。
Further, the electrode joining technique of the present invention is not limited to the information communication medium, and is applied to any situation where reliable joining of a plurality of electrode terminals facing each other is required. It is possible to do so.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施の形態1による導電端子の接合方
法の説明図。図1(a)は、介在物の説明図、図1
(b)は、弾性球体の説明図、図1(c)は、バネ材を
用いた説明図、図1(d)は、一部分が切除されたビー
ズ形状の介在物の説明図、図1(e)は、形状記憶合金
シートを介在物として用いる説明図。
FIG. 1 is an explanatory diagram of a method of joining conductive terminals according to a first embodiment of the present invention. FIG. 1A is an explanatory view of inclusions, and FIG.
1 (b) is an explanatory view of an elastic sphere, FIG. 1 (c) is an explanatory view using a spring material, FIG. 1 (d) is an explanatory view of a bead-shaped inclusion with a part cut off, and FIG. e) is an explanatory view using a shape memory alloy sheet as an inclusion.

【図2】本発明の実施の形態2による導電端子の接合方
法をICカードに適用した場合の説明図。図2(a)
は、カード基材から成るインレットシートの表面に、送
受信用アンテナコイルを形成した状態を示す図、図2
(b)は、図2(a)の状態の後、埋め込まれているア
ンテナコイルの終端部の接合端子が露呈する深さ、及び
後工程でICモジュールのICチップを封止カバーして
いるエポキシ樹脂等から成る封止樹脂部が嵌め込まれる
深さでザグリ掘削加工を施した後、上記露呈されたアン
テナコイル2の接合端子部の表面近傍に導電ペーストを
塗布し、導電粒子を配置した状態を示す図、図2(c)
は、ICモジュールを位置整合し、ベースカードへ嵌め
込む直前の状態を示す図、図2(d)は、図2(c)の
状態で、上方から加熱圧着を実施し、ICモジュールと
ベースカードとを一体化し、ICカードの基本構造が完
成した状態を示す図。
FIG. 2 is an explanatory diagram when a method of joining conductive terminals according to a second embodiment of the present invention is applied to an IC card. Figure 2 (a)
2 is a view showing a state in which a transmitting / receiving antenna coil is formed on the surface of an inlet sheet made of a card base material, FIG.
2B shows the depth after the state shown in FIG. 2A that the bonding terminal at the terminal end of the embedded antenna coil is exposed, and the epoxy that seals and covers the IC chip of the IC module in a later step. After carrying out counterbore excavation processing to a depth at which a sealing resin portion made of resin or the like is fitted, a conductive paste is applied near the exposed surface of the bonding terminal portion of the antenna coil 2 to dispose conductive particles. Fig. 2 (c)
Is a diagram showing a state immediately before the IC module is aligned and fitted into the base card. FIG. 2 (d) is a state shown in FIG. 2 (c). The figure which shows the state which integrated the basic structure of an IC card by integrating and.

【符号の説明】[Explanation of symbols]

1 ベースカード(PET−G;インレットシート、
上下層補強シート) 2 アンテナコイル(又はその終端接合端子部) 3 ベースカードに掘削されたザグリ 4 導電ペースト 5 導電粒子(圧着前) 5' 導電粒子(圧着後) 6 ICモジュール(ICチップ、モジュール配線基
盤、封止樹脂) 7 ICモジュール側アンテナ端子 8 熱硬化型フィルム 11 上方に配置された導電端子 12 下方に配置された導電端子 M 導電端子間に配置される介在物 F 介在物が形状を復元しようとして発生する抗力
1 Base card (PET-G; inlet sheet,
Upper and lower layer reinforcing sheets) 2 Antenna coil (or its terminal joining terminal portion) 3 Countersunk holes excavated in the base card 4 Conductive paste 5 Conductive particles (before pressure bonding) 5'Conductive particles (after pressure bonding) 6 IC module (IC chip, module) Wiring board, sealing resin) 7 IC module side antenna terminal 8 Thermosetting film 11 Conductive terminal 12 arranged above The conductive terminal M arranged below The inclusion F arranged between the conductive terminals has a shape Drag that occurs when trying to restore

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 抗力を作用させ得る性質を持った介在物
を間に配置させて電気的接続を得たことを特徴とする導
電端子。
1. A conductive terminal, characterized in that an interposition having a property capable of exerting a drag force is disposed therebetween to obtain an electrical connection.
【請求項2】 互いに対面する平面状の導電端子の接合
方法において、前記導電端子に抗力を作用させ得る性質
を持った介在物を、前記導電端子間に配置することによ
って電気的接続を得ることを特徴とする導電端子の接合
方法。
2. A method for joining flat conductive terminals facing each other, wherein an electrical connection is obtained by disposing an interposition having a property capable of exerting a drag force on the conductive terminals between the conductive terminals. And a method for joining conductive terminals.
【請求項3】 前記介在物として導電性粒子、弾性を有
するバネ、ビーズ及び形状記憶合金のいずれかを用いる
ことを特徴とする請求項2に記載の導電端子の接合方
法。
3. The method for joining conductive terminals according to claim 2, wherein any one of conductive particles, elastic springs, beads, and shape memory alloy is used as the inclusions.
【請求項4】 前記介在物である導電性粒子が直径50
μm以上から500μm以下の範囲、弾性係数2000
kg/mm以上、弾性限界20%以上、弾性率10%
以上から90%以下の範囲の弾性体であることを特徴と
する請求項2または3に記載の導電端子の接合方法。
4. The conductive particles, which are the inclusions, have a diameter of 50.
Range of μm to 500 μm, elastic modulus 2000
kg / mm 2 or more, elastic limit of 20% or more, elastic modulus of 10%
From the above, it is an elastic body in the range of 90% or less, The method for joining conductive terminals according to claim 2 or 3, wherein.
【請求項5】 前記介在物である導電性粒子が高分子粒
子の表面に導電膜を形成することにより構成されること
を特徴とする請求項2ないし4のいずれかに記載の導電
端子の接合方法。
5. The conductive terminal bonding according to claim 2, wherein the conductive particles as the inclusions are formed by forming a conductive film on the surface of the polymer particles. Method.
【請求項6】 前記介在物である導電性粒子が、高分子
粒子表面に未硬化の導電ペーストを塗布したものであ
り、機械的接合後に硬化させるようにしたことを特徴と
する請求項2または3に記載の導電端子の接合方法。
6. The conductive particles as the inclusions are obtained by applying uncured conductive paste on the surface of polymer particles, and are cured after mechanical bonding. The method for joining conductive terminals according to Item 3.
【請求項7】 請求項1に記載の導電端子を用いる情報
通信媒体であって、前記対面する導電端子の1つの導電
端子をICチップから引き出されたアンテナ接合端子と
し、他方の導電端子を送受信用アンテナコイルの終端端
子とすることを特徴とする情報通信媒体。
7. The information communication medium using the conductive terminal according to claim 1, wherein one conductive terminal of the facing conductive terminals is an antenna joining terminal pulled out from an IC chip, and the other conductive terminal is a transmitter / receiver. An information communication medium, which is used as a terminal terminal of an antenna coil for use.
JP2001303190A 2001-09-28 2001-09-28 Conductive terminal, its jointing method, and information communication medium Pending JP2003109699A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001303190A JP2003109699A (en) 2001-09-28 2001-09-28 Conductive terminal, its jointing method, and information communication medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001303190A JP2003109699A (en) 2001-09-28 2001-09-28 Conductive terminal, its jointing method, and information communication medium

Publications (1)

Publication Number Publication Date
JP2003109699A true JP2003109699A (en) 2003-04-11

Family

ID=19123318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001303190A Pending JP2003109699A (en) 2001-09-28 2001-09-28 Conductive terminal, its jointing method, and information communication medium

Country Status (1)

Country Link
JP (1) JP2003109699A (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6262626A (en) * 1985-09-13 1987-03-19 Seiko Instr & Electronics Ltd Transmission and reception circuit using electromagnetic induction
JPH05347464A (en) * 1992-06-16 1993-12-27 Ricoh Co Ltd Connecting structure of electric circuit board and connecting method therefor
JPH06349536A (en) * 1993-06-14 1994-12-22 Japan Aviation Electron Ind Ltd Spherical contact point for electric connector
JPH08167441A (en) * 1994-12-13 1996-06-25 Ricoh Co Ltd Electrical connection member and connection structure for liquid crystal panel
JPH1173817A (en) * 1997-08-28 1999-03-16 Ricoh Co Ltd Conductive particle, anisotropic conductive adhesive material, and liquid crystal display
JP2000278168A (en) * 1999-03-25 2000-10-06 Murata Mfg Co Ltd High frequency composite component and radio communication unit using the same
JP2001189171A (en) * 1999-10-12 2001-07-10 Sony Chem Corp Anisotropic conductive connection material

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6262626A (en) * 1985-09-13 1987-03-19 Seiko Instr & Electronics Ltd Transmission and reception circuit using electromagnetic induction
JPH05347464A (en) * 1992-06-16 1993-12-27 Ricoh Co Ltd Connecting structure of electric circuit board and connecting method therefor
JPH06349536A (en) * 1993-06-14 1994-12-22 Japan Aviation Electron Ind Ltd Spherical contact point for electric connector
JPH08167441A (en) * 1994-12-13 1996-06-25 Ricoh Co Ltd Electrical connection member and connection structure for liquid crystal panel
JPH1173817A (en) * 1997-08-28 1999-03-16 Ricoh Co Ltd Conductive particle, anisotropic conductive adhesive material, and liquid crystal display
JP2000278168A (en) * 1999-03-25 2000-10-06 Murata Mfg Co Ltd High frequency composite component and radio communication unit using the same
JP2001189171A (en) * 1999-10-12 2001-07-10 Sony Chem Corp Anisotropic conductive connection material

Similar Documents

Publication Publication Date Title
KR100846272B1 (en) Rfid tag and manufacturing method thereof
US7326633B2 (en) Anisotropic conductive film
KR101154170B1 (en) Transponder and book form
KR20030025287A (en) Contactless chipcard with an antenna support and chip support made from a fibrous material
US20120018084A1 (en) Printed Circuit Board Assembly Manufacturing Device And Method
US20090166064A1 (en) Circuit board and process for producing the same
JP2007042087A (en) Rfid tag and production method therefor
US20110084145A1 (en) Method for realizing a dual interface ic card
EP2053647A2 (en) Semiconductor chip mounting method, semiconductor mounting wiring board producing method and semiconductor mounting wiring board
TWI267764B (en) RFID tag and method of manufacturing the same
JP4853760B2 (en) IC card, IC card manufacturing method, and IC card manufacturing apparatus
JP4802398B2 (en) Non-contact IC card
JP2003109699A (en) Conductive terminal, its jointing method, and information communication medium
JPH11103158A (en) Flip-chip mounting to printed wiring board and mounting structure
JP2004140200A (en) Non-contact data carrier and its manufacturing method
JP5029026B2 (en) Manufacturing method of electronic device
JP2008046910A (en) Method for manufacturing semiconductor device
JP2004062634A (en) Connectless communication device and method for connecting the same
JPH11134458A (en) Ic card
JP2007233431A (en) Portable electronic device
JP2009176792A (en) Thermocompression bonding method, apparatus, and wiring board
JP2002259923A (en) Non-contact ic card and producing method thereof
JP2004062635A (en) Non-contact communication medium with external terminal
Luniak et al. Smart label uses polymer thick film technology on low-cost substrates
JP4449477B2 (en) Electronic inlet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100428

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100901