JP2003106828A - Method for measuring flatness in thin component - Google Patents

Method for measuring flatness in thin component

Info

Publication number
JP2003106828A
JP2003106828A JP2001302047A JP2001302047A JP2003106828A JP 2003106828 A JP2003106828 A JP 2003106828A JP 2001302047 A JP2001302047 A JP 2001302047A JP 2001302047 A JP2001302047 A JP 2001302047A JP 2003106828 A JP2003106828 A JP 2003106828A
Authority
JP
Japan
Prior art keywords
flatness
stage
thin
measuring
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001302047A
Other languages
Japanese (ja)
Inventor
Manabu Ito
学 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP2001302047A priority Critical patent/JP2003106828A/en
Publication of JP2003106828A publication Critical patent/JP2003106828A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To manage the flatness in thin components by a numerical value, measure the flatness without any contact, and reduce man-hours required for measurement when measuring the flatness in the thin components. SOLUTION: A measuring apparatus 3 in an optical method having a light source section 3b and a light reception section 3b is installed so that dimensions in a height direction can be measured. A stage 2 where the thin components 1 are placed is passed between the light source section 3a and the light reception section 3b, thus measuring flatness by the projected shape of the thin components 1 including the stage 2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、カメラのシャッタ
ー用部品などの平面度の精度を要求される薄肉部品の平
面度を測定する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring flatness of a thin-walled component such as a shutter component of a camera which requires precision of flatness.

【0002】[0002]

【従来の技術】平面度の精度が要求される薄肉部品とし
ては、カメラのシャッター周りに使用されるシャッター
羽根がある。図1はシャッター羽根1の一例を示し、シ
ャッター羽根1は、数枚組みで使用され、カメラのシャ
ッターを切る際に開閉動作する。このシャッター羽根1
はポリエステル等の薄肉シートをプレス加工することに
より所定の形状に製作される。代表的な部品は、材厚8
0μm、平面度公差50μmの仕様となっている。この
部品は、平面度の精度が悪いとシャッター周りの動作に
不具合が生じたり、光漏れの原因となり、また、レンズ
を通して見える二次外観部品であるのは、傷や汚れなど
があっても不良品となるためである。
2. Description of the Related Art As a thin-walled component required to have a high degree of flatness, there is a shutter blade used around a shutter of a camera. FIG. 1 shows an example of the shutter blades 1. The shutter blades 1 are used as a set of several blades and are opened and closed when the shutter of the camera is released. This shutter blade 1
Is manufactured into a predetermined shape by pressing a thin sheet of polyester or the like. Typical parts are material thickness 8
The specifications are 0 μm and flatness tolerance of 50 μm. If the precision of the flatness is poor, this part may cause malfunctions around the shutter and may cause light leakage.The secondary external parts that can be seen through the lens are not affected by scratches or dirt. This is because it becomes a good product.

【0003】シャッター羽根の平面度の測定は、従来よ
り材厚に平面度の公差を加えた寸法に等しい隙間を持た
せた検具を用いて人手によりシャッター羽根を供給し、
検具の隙間を通過するか否かによって平面度の良品、不
良品を判別している。
For the measurement of the flatness of the shutter blade, the shutter blade is manually supplied by using an inspection tool having a gap equal to the dimension obtained by adding the flatness tolerance to the material thickness.
Good or defective flatness is discriminated by whether or not it passes through the gap of the inspection tool.

【0004】一方、立体形状を測定する三次元測定機を
用いて、測定することもなされている。
On the other hand, a three-dimensional measuring machine for measuring a three-dimensional shape is also used for the measurement.

【0005】また、実開平6−76811号公報には、
平面度測定を行う平面度測定機が開示されている。図5
はこの平面度測定機を示し、被測定物109を載置する
定盤101を備えている。定盤上には、高さ検出用セン
サ107を備えたフロートテーブル102を移動可能に
配置し、高さ検出用センサ107の上面に映像機103
を備えている。
Further, in Japanese Utility Model Laid-Open No. 6-76811,
A flatness measuring machine for measuring flatness is disclosed. Figure 5
Indicates this flatness measuring machine, and is equipped with a surface plate 101 on which an object to be measured 109 is placed. A float table 102 having a height detecting sensor 107 is movably arranged on the surface plate, and a video camera 103 is provided on the upper surface of the height detecting sensor 107.
Is equipped with.

【0006】この装置では、フロートテーブル102を
定盤101上で移動させて、高さ検出用センサ107で
検出した被測定物109の高さ信号と、映像機103に
よる測定点の映像を画像処理装置により処理した平面上
の位置信号とにより平面度を測定するものである。ここ
で、高さ検出用センサ107としては、接触型あるいは
非接触型センサのどちらでも良く、高さ検出用センサ1
07で検出した被測定物109の高さ信号と、映像機1
03による測定点の映像を画像処理装置により処理した
平面上の位置信号とにより得られたデータにより回帰平
面を求め、その最大値と最小値の差により平面度を求め
ている。
In this apparatus, the float table 102 is moved on the surface plate 101, and the height signal of the object to be measured 109 detected by the height detecting sensor 107 and the image of the measuring point by the image machine 103 are subjected to image processing. The flatness is measured by the position signal on the plane processed by the device. Here, as the height detecting sensor 107, either a contact type sensor or a non-contact type sensor may be used.
The height signal of the DUT 109 detected in 07 and the video camera 1
The regression plane is obtained from the data obtained from the position signal on the plane obtained by processing the image of the measurement point 03 by the image processing apparatus, and the flatness is obtained from the difference between the maximum value and the minimum value.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、隙間を
有した検具を用いる測定方法では、検具の隙間を通過す
るか否かで平面度の良否を判別しているだけなので、実
際の平面度を数値で管理することができない。また、隙
間を通過するときの摩擦や静電気によって隙間の中でワ
ークの表面に傷を付けるおそれがある。同時に、摩擦や
静電気によって隙間の中で引っ掛かってしまい、平面度
の公差内に入っているワークでも不良品と判断される問
題がある。さらに、人手によりワークを供給しているの
で、隙間に押し込むようにすると、不良品でも良品と誤
判断する可能性もある。
However, in the measuring method using the inspection tool having a gap, the quality of the flatness is determined only by whether or not the inspection tool passes through the gap. Cannot be managed numerically. Further, the surface of the work may be scratched in the gap due to friction or static electricity when passing through the gap. At the same time, there is a problem that even a work that is caught within the clearance due to friction or static electricity and is within the tolerance of flatness is judged as a defective product. Further, since the work is manually supplied, if the work is pushed into the gap, there is a possibility that a defective product may be erroneously determined to be a good product.

【0008】また、三次元測定機を用いる方法では、三
次元を測定することから、平面しか測定しない場合で
も、付加機能が多く、装置自体が大がかりであり、測定
に多大の工数を要している。
Further, in the method using the three-dimensional measuring machine, since the three-dimensional measurement is performed, even if only the plane is measured, many additional functions are required, the apparatus itself is large-scale, and a large number of man-hours are required for the measurement. There is.

【0009】実開平6−76811号公報の平面度測定
機を用いる方法では、ワークの表面全体を二次元的にス
キャンさせる必要があるため、三次元測定機と同様に測
定に工数を要している。特に、接触型センサを用いる場
合は、シャッター羽根は材質が柔らかいため、表面に傷
を付けるおそれがある。
In the method of using the flatness measuring machine disclosed in Japanese Utility Model Laid-Open No. 6-76811, it is necessary to scan the entire surface of the workpiece two-dimensionally, and therefore the number of man-hours required for measurement is the same as in the case of the three-dimensional measuring machine. There is. In particular, when the contact type sensor is used, the shutter blade may be scratched on the surface because the material is soft.

【0010】本発明は、このような従来の問題点を考慮
してなされたものであり、平面度を数値で管理すること
ができ、しかも非接触で測定でき、測定に要する工数を
削減することが可能な薄肉部品の平面度測定方法を提供
することを目的とする。
The present invention has been made in consideration of the above-mentioned conventional problems, and it is possible to manage the flatness by a numerical value and to perform non-contact measurement, thereby reducing the number of man-hours required for measurement. It is an object of the present invention to provide a method of measuring flatness of a thin-walled component that can be manufactured.

【0011】[0011]

【課題を解決するための手段】上記目的を達成するた
め、請求項1の発明の薄肉部品の平面度測定方法は、投
光部と受光部とを有した光学的手法の測定器を高さ方向
の寸法を測定できるように設置し、薄肉部品を載置した
ステージを前記投光部と受光部との間に通過させ、ステ
ージを含めた薄肉部品の投影形状によって平面度を測定
することを特徴とする。
In order to achieve the above object, the flatness measuring method of the thin-walled component according to the invention of claim 1 uses a measuring device of an optical method having a light projecting portion and a light receiving portion. It is installed so that the dimension in the direction can be measured, the stage on which the thin-walled component is placed is passed between the light projecting unit and the light-receiving unit, and the flatness is measured by the projected shape of the thin-walled component including the stage. Characterize.

【0012】このように、ステージをも含めた薄肉部品
の投影形状によって測定することにより、薄肉部品の表
面全体を二次元的にスキャンする必要がなくなり、側面
から見た状態の一次元的なスキャンだけで簡単に測定す
ることができる。
As described above, by measuring the projected shape of the thin-walled component including the stage, it is not necessary to scan the entire surface of the thin-walled component in a two-dimensional manner, and the one-dimensional scanning in a state viewed from the side is performed. It can be easily measured just by.

【0013】請求項2の発明は、請求項1記載の薄肉部
品の平面度測定方法であって、前記薄肉部品をステージ
に載置した状態及び薄肉部品を反転状でステージに載置
した状態の双方を投光部及び受光部の間に通過させて測
定することを特徴とする。
The invention of claim 2 is the flatness measuring method for a thin-walled component according to claim 1, wherein the thin-walled component is mounted on a stage and the thin-walled component is mounted on the stage in an inverted shape. It is characterized in that both are passed between the light projecting section and the light receiving section for measurement.

【0014】このように表裏反転の状態を測定すること
により、その大きな測定値を平面度とする。このことに
より、薄肉部品が異なった方向に変形しても、正確に平
面度を測定することができる。
By measuring the state of the front and back inversion as described above, the large measured value is taken as the flatness. As a result, the flatness can be accurately measured even when the thin-walled component is deformed in different directions.

【0015】[0015]

【発明の実施の形態】本発明の一実施の形態について図
2〜図4を用いて説明する。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of the present invention will be described with reference to FIGS.

【0016】測定は市販されている光学的手法を用いた
測定器3を用いて行う。測定器3は投光部3aと受光部
3bとが間隔を有して対向するように配置されており、
投光部3aと受光部3bとの間に矢印Aで示す往復方向
にステージ2を移動させて測定を行う。
The measurement is carried out using a measuring device 3 which uses a commercially available optical method. The measuring device 3 is arranged such that the light projecting portion 3a and the light receiving portion 3b are opposed to each other with a space therebetween,
Measurement is performed by moving the stage 2 in the reciprocating direction indicated by arrow A between the light projecting unit 3a and the light receiving unit 3b.

【0017】ステージ2には、薄肉部品であるシャッタ
ー羽根1が載置されるが、投光部3a及び受光部3bの
光軸がステージ2の左右方向に通るようにステージ2を
設置する。シャッター羽根1を載置するステージ2は、
図示しない単軸ロボットなどの駆動装置により前後方向
(矢印A方向)に搬送されるようになっている。
The shutter blade 1, which is a thin component, is placed on the stage 2. The stage 2 is installed so that the optical axes of the light projecting section 3a and the light receiving section 3b pass in the left-right direction of the stage 2. The stage 2 on which the shutter blade 1 is mounted is
It is configured to be transported in the front-rear direction (direction of arrow A) by a drive device such as a single-axis robot (not shown).

【0018】ステージ2の上面の平面度は5μm以下に
加工されており、ステージ2の上面の搬送方向の送り精
度と光軸方向の傾きの精度は5μm以下に調整される。
この場合、測定の対象となる部品によっては、各精度は
1μm以下であることが好ましい。
The flatness of the upper surface of the stage 2 is machined to 5 μm or less, and the feeding accuracy of the upper surface of the stage 2 in the carrying direction and the inclination accuracy in the optical axis direction are adjusted to 5 μm or less.
In this case, it is preferable that each accuracy is 1 μm or less depending on the part to be measured.

【0019】この装置では、シャッター羽根1を載置し
たステージ2が、図示しない駆動装置により搬送され、
測定器3の投光部3aと受光部3bの間を通過するとき
にステージ2とともにシャッター羽根1の厚み方向の寸
法を測定する。市販されている標準的な測定器3では、
シャッター羽根1の厚さ方向の寸法(材厚80μm+平
面度バラツキ)を単体では検出できないため、測定器3
に標準装備されている測定機能を利用し、図3に示すよ
うに、ステージ2の上面エッジGを基準とし、そこから
の変位量といったようなかたちでシャッター羽根1の厚
さ方向の寸法Sを測定する。
In this apparatus, the stage 2 on which the shutter blades 1 are mounted is conveyed by a driving device (not shown),
When passing between the light projecting section 3a and the light receiving section 3b of the measuring device 3, the dimension of the shutter blade 1 in the thickness direction is measured together with the stage 2. In the standard measuring device 3 on the market,
Since the dimension of the shutter blade 1 in the thickness direction (material thickness 80 μm + flatness variation) cannot be detected by itself, the measuring device 3
As shown in FIG. 3, by using the measurement function that is standardly equipped with, the upper surface edge G of the stage 2 is used as a reference, and the dimension S of the shutter blade 1 in the thickness direction is measured in a form such as a displacement amount. taking measurement.

【0020】このため、測定された値は材厚に平面度の
バラツキを加えた値となる。これによりシャッター羽根
1の表面全体を二次元的にスキャンする必要はなく、側
面から見た状態の一次元的なスキャンだけで簡単に測定
することができる。平面度の良否を判別するだけであれ
ば、測定値の最大値を見るだけで判別できる。また、測
定値をプロットすることにより、シャッター羽根1を側
面から見た表面の形状を視覚的にとらえることができ
る。
Therefore, the measured value is a value obtained by adding variation in flatness to the material thickness. As a result, it is not necessary to two-dimensionally scan the entire surface of the shutter blade 1, and the measurement can be easily performed by only one-dimensional scanning in a state viewed from the side. If it is only necessary to determine whether the flatness is good or bad, it is possible to make a determination simply by looking at the maximum measured value. Further, by plotting the measured values, the surface shape of the shutter blade 1 viewed from the side can be visually recognized.

【0021】次に、実際の測定の手順を説明する。ステ
ージ2におけるシャッター羽根1を載置しない部分、す
なわち中央から離れた部分に測定器3の光軸が通るよう
な位置を初期位置とし、ステージ2の上面エッジGを基
準とするため測定器3の測定値をゼロリセットする。こ
の位置でシャッター羽根1をステージ2の中央付近に載
置する。
Next, an actual measurement procedure will be described. Since the position where the optical axis of the measuring instrument 3 passes through the portion of the stage 2 where the shutter blades 1 are not mounted, that is, the portion away from the center is set as the initial position and the upper surface edge G of the stage 2 is used as a reference, Reset the measured value to zero. At this position, the shutter blade 1 is placed near the center of the stage 2.

【0022】その後、ステージ2を矢印Aにおける一方
向に搬送して、測定器3の投光部3aと受光部3bの間
を通過させる。このときにステージ2とともにシャッタ
ー羽根1の厚さ方向の寸法を測定する。シャッター羽根
1の全体が測定器3の光軸を通過した時点でステージ2
の搬送を停止し、シャッター羽根1を取り出す。以後、
ステージ2を初期位置に戻し、次に測定するシャッター
羽根1をステージ2に載置し、ステージ2を搬送させて
測定を繰り返す。
After that, the stage 2 is conveyed in one direction indicated by an arrow A, and is passed between the light projecting section 3a and the light receiving section 3b of the measuring instrument 3. At this time, the dimension of the shutter blade 1 in the thickness direction is measured together with the stage 2. When the entire shutter blade 1 passes the optical axis of the measuring device 3, the stage 2
And the shutter blade 1 is taken out. After that,
The stage 2 is returned to the initial position, the shutter blade 1 to be measured next is placed on the stage 2, the stage 2 is transported, and the measurement is repeated.

【0023】ここで、図3及び図4に示すように、シャ
ッター羽根1の変形している方向によって重力などの影
響によりステージ2に載置した状態で平面度が異なるこ
とがある。そのため、シャッター羽根1の平面度の測定
は、その両面について行い、測定値が大きい値をそのシ
ャッター羽根1の平面度とすることにより、正確な平面
度を得ることができる。
Here, as shown in FIGS. 3 and 4, the flatness of the shutter blade 1 may vary depending on the deformation direction of the shutter blade 1 when it is mounted on the stage 2 due to the influence of gravity or the like. Therefore, the flatness of the shutter blade 1 is measured on both sides thereof, and the flatness of the shutter blade 1 can be obtained by setting a large measured value as the flatness of the shutter blade 1.

【0024】なお、この実施の形態では、シャッター羽
根についての測定を説明したが、その他の薄肉部品であ
っても同様に測定することが可能である。
In this embodiment, the measurement of the shutter blade has been described, but the same measurement can be performed on other thin parts.

【0025】[0025]

【発明の効果】請求項1の発明によれば、ステージをも
含めた薄肉部品の投影形状によって測定するため、側面
から見た状態の一次元的なスキャンだけで簡単に測定す
ることができ、しかも平面度を数値で管理することがで
き、非接触で簡単に測定でき、測定に要する工数を削減
することが可能となる。
According to the invention of claim 1, since the measurement is performed by the projected shape of the thin-walled component including the stage, it is possible to easily perform the measurement only by a one-dimensional scan in a state seen from the side surface. Moreover, the flatness can be controlled by a numerical value, and the measurement can be performed easily without contact, and the number of man-hours required for the measurement can be reduced.

【0026】請求項2の発明によれば、請求項1の発明
と同様な効果を有するのに加えて、薄肉部品が異なった
方向に変形していても、正確に平面度を測定することが
できる。
According to the invention of claim 2, in addition to having the same effect as that of the invention of claim 1, the flatness can be accurately measured even if the thin-walled parts are deformed in different directions. it can.

【図面の簡単な説明】[Brief description of drawings]

【図1】シャッター羽根の一例を示す正面図である。FIG. 1 is a front view showing an example of shutter blades.

【図2】本発明の実施の形態の測定状態を示す斜視図で
ある。
FIG. 2 is a perspective view showing a measurement state according to the embodiment of the present invention.

【図3】ステージ部分の側面図である。FIG. 3 is a side view of a stage portion.

【図4】ステージ部分の側面図である。FIG. 4 is a side view of a stage portion.

【図5】従来技術の平面度測定機を示す斜視図である。FIG. 5 is a perspective view showing a conventional flatness measuring machine.

【符号の説明】[Explanation of symbols]

1 シャッター羽根 2 ステージ 3 測定器 3a 投光部 3b 受光部 1 shutter blade 2 stages 3 measuring instruments 3a Projector 3b Light receiving part

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 投光部と受光部とを有した光学的手法の
測定器を高さ方向の寸法を測定できるように設置し、薄
肉部品を載置したステージを前記投光部と受光部との間
に通過させ、ステージを含めた薄肉部品の投影形状によ
って平面度を測定することを特徴とする薄肉部品の平面
度測定方法。
1. A measuring device of an optical method having a light projecting portion and a light receiving portion is installed so as to measure a dimension in a height direction, and a stage on which a thin-walled component is mounted is mounted on the light projecting portion and the light receiving portion. A flatness measuring method for a thin-walled component, wherein the flatness is measured according to a projected shape of the thin-walled component including a stage.
【請求項2】 前記薄肉部品をステージに載置した状態
及び薄肉部品を反転状でステージに載置した状態の双方
を投光部及び受光部の間に通過させて測定することを特
徴とする請求項1記載の薄肉部品の平面度測定方法。
2. The measurement is performed by passing both the state in which the thin-walled component is placed on the stage and the state in which the thin-walled component is inverted and placed on the stage between the light projecting unit and the light receiving unit. The method for measuring flatness of a thin-walled component according to claim 1.
JP2001302047A 2001-09-28 2001-09-28 Method for measuring flatness in thin component Withdrawn JP2003106828A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001302047A JP2003106828A (en) 2001-09-28 2001-09-28 Method for measuring flatness in thin component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001302047A JP2003106828A (en) 2001-09-28 2001-09-28 Method for measuring flatness in thin component

Publications (1)

Publication Number Publication Date
JP2003106828A true JP2003106828A (en) 2003-04-09

Family

ID=19122363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001302047A Withdrawn JP2003106828A (en) 2001-09-28 2001-09-28 Method for measuring flatness in thin component

Country Status (1)

Country Link
JP (1) JP2003106828A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100449262C (en) * 2005-12-17 2009-01-07 比亚迪精密制造有限公司 Flatness measuring device
CN112762845A (en) * 2020-12-25 2021-05-07 唐山英莱科技有限公司 Automatic detection method for magnesia carbon brick based on laser sensor
CN116989706A (en) * 2023-09-27 2023-11-03 靖江市明拓科技有限公司 Flatness detection device for automobile stamping part

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100449262C (en) * 2005-12-17 2009-01-07 比亚迪精密制造有限公司 Flatness measuring device
CN112762845A (en) * 2020-12-25 2021-05-07 唐山英莱科技有限公司 Automatic detection method for magnesia carbon brick based on laser sensor
CN116989706A (en) * 2023-09-27 2023-11-03 靖江市明拓科技有限公司 Flatness detection device for automobile stamping part
CN116989706B (en) * 2023-09-27 2023-12-15 靖江市明拓科技有限公司 Flatness detection device for automobile stamping part

Similar Documents

Publication Publication Date Title
Lahajnar et al. Machine vision system for inspecting electric plates
US6122063A (en) Measuring device and method for contactless determining of the 3-dimensional form of a peripheral groove in a spectacle frame
EP1062478B1 (en) Apparatus and method for optically measuring an object surface contour
TW201518889A (en) Image measurement system and method
JP4791118B2 (en) Image measuring machine offset calculation method
US20020001403A1 (en) Focusing control mechanism, and inspection apparatus using same
JP2009168581A (en) Inspecting apparatus of inspection object
US6590221B2 (en) On-line measuring system for measuring substrate thickness and the method thereof
JP7186521B2 (en) Teacher image generator for visual inspection equipment
JP2003106828A (en) Method for measuring flatness in thin component
JP4968720B2 (en) Electronic device substrate shape inspection apparatus, electronic device substrate shape inspection method, and mask blank glass substrate manufacturing method
JPH06229741A (en) Method and apparatus for inspecting transparent planar item
Telišková et al. Non-destructive diagnostics of hard-to-reach places by spatial digitization
JP3175615B2 (en) Inspection method for indexable inserts
JP2557650B2 (en) Sample shape measuring device
KR20090007172A (en) Thickness measuring instrument for a plate glass
JPS6312241B2 (en)
US20220381660A1 (en) Systems and methods for error correction for video extensometers
JPH01406A (en) Sample shape measuring device
Asher et al. Noncontacting Optical Measurement And Inspection Systems
JP2000205824A (en) Method and instrument for measuring ridge length of work
JPH10202476A (en) Inspection method and inspection device for throw away tip
JP3002315B2 (en) Carrier inspection device
WO2022250947A1 (en) Systems and methods for error correction for video extensometers
JPH0615967B2 (en) Relative position measurement correction method and device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20081202