JP2003106684A - Method for controlling refrigerating cycle - Google Patents

Method for controlling refrigerating cycle

Info

Publication number
JP2003106684A
JP2003106684A JP2001300599A JP2001300599A JP2003106684A JP 2003106684 A JP2003106684 A JP 2003106684A JP 2001300599 A JP2001300599 A JP 2001300599A JP 2001300599 A JP2001300599 A JP 2001300599A JP 2003106684 A JP2003106684 A JP 2003106684A
Authority
JP
Japan
Prior art keywords
valve opening
temperature
valve
refrigeration cycle
detected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001300599A
Other languages
Japanese (ja)
Inventor
Makoto Tachimori
誠 朔晦
Takashi Kakuwa
孝 嘉久和
Hisashi Hiratani
壽士 平谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2001300599A priority Critical patent/JP2003106684A/en
Priority to KR1020020058536A priority patent/KR20030027761A/en
Priority to CNB02143543XA priority patent/CN1238673C/en
Publication of JP2003106684A publication Critical patent/JP2003106684A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/15Hunting, i.e. oscillation of controlled refrigeration variables reaching undesirable values
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)
  • Control Of Temperature (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a refrigerating cycle capable of providing high efficiency and high stability. SOLUTION: Valve opening compensation regions are provided above and below a temperature dead zone to compensate a valve opening and cause hunting of the valve opening in order to generate a pulse and an intermediate flow rate of pulse in a pseudo manner.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、電動膨張弁を用い
た冷凍サイクルの制御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for controlling a refrigeration cycle using an electric expansion valve.

【0002】[0002]

【従来の技術】図面を参照しながら特開昭63−116
058号公報に開示されている従来の電動式膨張弁によ
る冷凍サイクルの制御装置の一例について説明する。
2. Description of the Related Art JP-A-63-116 with reference to the drawings
An example of a conventional refrigeration cycle control device using an electric expansion valve disclosed in Japanese Patent No. 058 will be described.

【0003】図7は冷凍サイクル図であり、圧縮機1、
熱交換器2、電動膨張弁3、熱交換器4、が環状に連結
されている。電動膨張弁開度は吐出温度センサー5の検
出温度を入力信号とする制御装置6aによって制御され
る。図中実線矢印は冷媒の流通方向を示す。
FIG. 7 is a refrigeration cycle diagram showing the compressor 1,
The heat exchanger 2, the electric expansion valve 3, and the heat exchanger 4 are connected in an annular shape. The opening degree of the electric expansion valve is controlled by the control device 6a which receives the temperature detected by the discharge temperature sensor 5 as an input signal. In the figure, the solid line arrow indicates the flow direction of the refrigerant.

【0004】図8は上記制御装置6aのブロック図であ
る。温度検出手段7の出力と目標温度設定手段8の出力
を温度比較手段9で比較し、その出力に応じて、弁開度
演算手段10で弁開度を求める。
FIG. 8 is a block diagram of the control device 6a. The output of the temperature detection means 7 and the output of the target temperature setting means 8 are compared by the temperature comparison means 9, and the valve opening degree calculation means 10 determines the valve opening degree according to the output.

【0005】求めた弁開度が現在までの最大弁開度であ
るか、最小弁開度であるかを弁開度比較手段11で検出
し、最大弁開度であると検出された時は、そのときの弁
開度を最大弁開度記憶手段12へと記憶し、最小弁開度
であると検出された時は、そのときの弁開度を最小弁開
度記憶手段13へ記憶する。
The valve opening comparison means 11 detects whether the obtained valve opening is the maximum valve opening or the minimum valve opening up to now, and when it is detected that it is the maximum valve opening. The valve opening degree at that time is stored in the maximum valve opening degree storage means 12, and when the minimum valve opening degree is detected, the valve opening degree at that time is stored in the minimum valve opening degree storage means 13. .

【0006】この最大値、最小値を平均弁開度演算手段
14へ入力し平均弁開度を弁開度出力手段15より出力
し、このとき温度不感帯発生手段16により、弁開度の
変更を停止する温度不感帯を発生する。
The maximum value and the minimum value are input to the average valve opening calculation means 14 and the average valve opening is output from the valve opening output means 15. At this time, the temperature dead zone generating means 16 changes the valve opening. It produces a temperature dead zone that stops.

【0007】図9は制御装置6aのフローチャートであ
る。図10は、吐出温度の目標温度に対する吐出温度の
変化、弁開度の変化を示したものである。以下図9、図
10について説明する。
FIG. 9 is a flowchart of the control device 6a. FIG. 10 shows changes in the discharge temperature and the valve opening with respect to the target temperature of the discharge temperature. 9 and 10 will be described below.

【0008】吐出温度Tdを検出して目標温度Tsと比
較する。その結果、吐出温度が低い場合には弁開度を△
P減少する。そのままの弁開度で△T時間維持し再度吐
出温度Tdと目標温度Tsと比較する。このとき吐出温
度Tdが目標温度Tsより高ければ弁解度を△P増加さ
せ、増加させる前の弁開度を最小弁開度(Pmin)と
して記憶しておく。
The discharge temperature Td is detected and compared with the target temperature Ts. As a result, if the discharge temperature is low, the valve opening
P decrease. The valve opening is maintained as it is for ΔT time, and the discharge temperature Td is again compared with the target temperature Ts. At this time, if the discharge temperature Td is higher than the target temperature Ts, the valve resolution is increased by ΔP, and the valve opening degree before the increase is stored as the minimum valve opening degree (Pmin).

【0009】同様に△T時間ごとに吐出温度Tdと目標
温度Tsの比較を繰り返し、吐出温度Tdが目標温度T
sより高い状態から低い状態に変わったとき、つまり弁
開度の変化が△P増加から△P減少へ変化したとき、△
P減少する前の弁開度を最大弁開度(Pmax)として
記憶する。
Similarly, the discharge temperature Td and the target temperature Ts are repeatedly compared every ΔT time, and the discharge temperature Td becomes equal to the target temperature T.
When changing from a state higher than s to a state lower than s, that is, when the change in valve opening changes from ΔP increase to ΔP decrease,
The valve opening degree before P reduction is stored as the maximum valve opening degree (Pmax).

【0010】最大弁開度(Pmax)、最小弁開度(P
min)が確定すると、その平均値((Pmax+Pm
in)/2)へ弁解度を変更する。
Maximum valve opening (Pmax), minimum valve opening (Pmax)
When min) is confirmed, the average value ((Pmax + Pm
in) / 2) to change the excuse.

【0011】さらに、平均弁開度演算手段14の出力が
発生した場合、目標温度Tsのプラス側とマイナス側に
それぞれTs+△Th 、Ts−△Th の温度ラインを
設け検出した吐出温度TdがTs+△Th以下でかつ
Ts−△Th以上であるときには、電動式膨張弁の開度
の変更は行わず吐出温度Tdを目標温度Tsに近づけ安
定させようとするものである。
Further, when the output of the average valve opening calculating means 14 is generated, the detected discharge temperature Td is Ts + by providing temperature lines of Ts + ΔTh and Ts−ΔTh on the plus side and the minus side of the target temperature Ts, respectively. ΔTh or less and
When Ts-ΔTh or more, the opening of the electrically driven expansion valve is not changed and the discharge temperature Td is brought close to the target temperature Ts to be stabilized.

【0012】[0012]

【発明が解決しようとする課題】しかしながら、低冷媒
流量時には図11に示すように、吐出温度のオーバーシ
ュート、アンダーシュートが大きいため冷凍サイクルが
安定しない。
However, when the flow rate of the refrigerant is low, the refrigeration cycle is not stable because the discharge temperature has large overshoot and undershoot as shown in FIG.

【0013】また、弁開度の最小単位(1パルス)あた
りの冷媒流量変化が大きい電動膨張弁では図12に示す
ように1パルスの変化で大きく吐出温度Tdが変化し、
吐出温度Tdを温度不感帯の領域で安定させることが出
来ず高効率な冷凍サイクルを提供できないという課題が
あった。
Further, in the electric expansion valve in which the refrigerant flow rate change per minimum unit (1 pulse) of the valve opening degree is large, the discharge temperature Td changes greatly with a change of 1 pulse as shown in FIG.
There is a problem that the discharge temperature Td cannot be stabilized in the temperature dead zone region and a highly efficient refrigeration cycle cannot be provided.

【0014】そこで本発明は、吐出温度Tdを目標値に
近づけ高効率で安定性の高い冷凍サイクルを提供するこ
とを目的とする。
Therefore, an object of the present invention is to provide a refrigerating cycle which brings the discharge temperature Td close to a target value and has high efficiency and high stability.

【0015】[0015]

【課題を解決するための手段】上記目的を達成するため
の、本発明の請求項1に記載の冷凍サイクルの制御方法
は、圧縮機、熱交換器、膨張弁などで冷凍サイクルを構
成し、前期冷凍サイクルの所定箇所の温度を温度検出手
段で検出し、その検出温度と目標温度設定手段で決定し
た目標温度を温度比較手段で比較し、弁開度出力手段で
前記検出温度が目標温度以上の場合は前記膨張弁を一定
量開き、前記検出温度が目標温度未満の場合は一定量閉
じる動作を行い、前記膨張弁の動作が開動作から閉動作
に変化した場合、閉動作に変化する直前の弁開度を最大
弁開度とする最大弁開度演算手段と、閉動作から開動作
に変化した場合、開動作に変化する直前の弁開度を最小
弁開度とする最小弁開度演算手段と、前記最大弁開度と
前記最小弁開度から平均弁開度を求める平均弁開度演算
手段と、前記平均弁開度演算手段の出力を弁開度演算手
段に出力して前記膨張弁の弁開度を維持するとともに、
前記平均弁開度演算手段の出力が発生した場合、前記目
標温度と前記温度検出手段での比較を行わない温度不感
帯を、前記目標温度を中心にプラス側とマイナス側にま
たがるように発生させる温度不感帯発生手段を具備した
制御装置において、前記温度不感帯のプラス側とマイナ
ス側に前記膨張弁の弁開度を補正する領域を発生させる
弁解度補正領域発生手段と前記検出温度と前記目標温度
の出力から補正量を求める弁開度補正量演算手段を設け
たものである。
A method for controlling a refrigeration cycle according to claim 1 of the present invention for achieving the above object comprises a refrigeration cycle including a compressor, a heat exchanger, an expansion valve, and the like. The temperature at a predetermined point in the previous period refrigeration cycle is detected by the temperature detecting means, the detected temperature is compared with the target temperature determined by the target temperature setting means by the temperature comparing means, and the detected temperature is equal to or higher than the target temperature by the valve opening output means. In the case of, the expansion valve is opened by a certain amount, and when the detected temperature is lower than the target temperature, a certain amount is closed, and when the operation of the expansion valve is changed from the opening operation to the closing operation, immediately before the closing operation is changed. Maximum valve opening calculation means for making the valve opening of the valve the maximum valve opening, and the minimum valve opening for making the valve opening immediately before changing to the opening operation the minimum valve opening when changing from the closing operation to the opening operation. Computation means, whether the maximum valve opening and the minimum valve opening An average valve opening calculating means for calculating an average valve opening, while maintaining the valve opening of the expansion valve and outputs a valve opening degree calculating means the output of said average valve opening calculating means,
When the output of the average valve opening calculation means is generated, a temperature dead zone in which the target temperature and the temperature detection means are not compared is generated so as to extend across the plus side and the minus side around the target temperature. In a control device including a dead zone generating means, a valve resolution correction area generating means for generating an area for correcting the valve opening of the expansion valve on the plus side and the minus side of the temperature dead zone, and the output of the detected temperature and the target temperature. A valve opening correction amount calculation means for obtaining the correction amount from is provided.

【0016】この構成により、温度不感帯のプラス側と
マイナス側に弁開度補正領域を持ち弁開度を補正するこ
とにより、低冷媒流量の場合にも高効率で安定性の高い
冷凍サイクルを提供することができる。
With this configuration, the valve opening correction area is provided on the plus side and the minus side of the temperature dead zone to correct the valve opening, thereby providing a highly efficient and highly stable refrigeration cycle even at a low refrigerant flow rate. can do.

【0017】請求項2に記載の冷凍サイクルの制御方法
は、圧縮機、熱交換器、膨張弁などで冷凍サイクルを構
成し、前期冷凍サイクルの所定箇所の温度を温度検出手
段で検出し、その検出温度と目標温度設定手段で決定し
た目標温度を温度比較手段で比較し、前記検出温度が目
標温度以上の場合は前記膨張弁を一定量開き、前記検出
温度が目標温度未満の場合は一定量閉じる動作を行う弁
開度出力手段を具備した制御装置において、弁開度をハ
ンチングさせるハンチングテーブル演算手段を設けたも
のである。
In a refrigeration cycle control method according to a second aspect of the present invention, a refrigeration cycle is constituted by a compressor, a heat exchanger, an expansion valve, etc., and the temperature of a predetermined portion of the previous refrigeration cycle is detected by a temperature detecting means. The detected temperature and the target temperature determined by the target temperature setting means are compared with each other by the temperature comparison means, and when the detected temperature is equal to or higher than the target temperature, the expansion valve is opened by a certain amount, and when the detected temperature is less than the target temperature, a certain amount is opened. A control device having a valve opening output means for performing a closing operation is provided with a hunting table calculation means for hunting the valve opening.

【0018】この構成により、弁開度の最小単位(1パ
ルス)あたりの冷媒流量変化が大きい電動膨張弁におい
ても高効率で安定性の高い冷凍サイクルを提供すること
ができる。
With this configuration, it is possible to provide a highly efficient and highly stable refrigeration cycle even in the electric expansion valve in which the refrigerant flow rate change per minimum unit of valve opening (1 pulse) is large.

【0019】請求項3に記載の冷凍サイクルの制御方法
は、請求項2に記載の冷凍サイクルの制御方法におい
て、弁開度の計算結果パルス数を正の整数aと小数点以
下数bに分離し、弁開度を(a+b)と決定し、弁開度
(a)の維持時間△T(a)と弁開度(a+1)の維持
時間△T(a+1)を△T(a):△T(a+1)=
(1−b):bとなるようハンチングテーブルの演算を
行い、弁開度をハンチングさせるものである。
A refrigeration cycle control method according to a third aspect of the present invention is the refrigeration cycle control method according to the second aspect, wherein the calculation result pulse number of the valve opening is divided into a positive integer a and a decimal point number b. , The valve opening (a + b) is determined, and the valve opening (a) maintenance time ΔT (a) and the valve opening (a + 1) maintenance time ΔT (a + 1) are calculated as ΔT (a): ΔT. (A + 1) =
(1-b): The hunting table is calculated so as to be b, and the valve opening is hunted.

【0020】この構成により、より細かく冷媒流量を制
御可能となり、高効率で安定性の高い冷凍サイクルを提
供することができる。
With this configuration, the refrigerant flow rate can be controlled more finely, and a highly efficient refrigeration cycle with high stability can be provided.

【0021】[0021]

【発明の実施の形態】請求項1記載の本発明は、前記従
来技術の制御方法に加え、温度不感帯のプラス側とマイ
ナス側に弁開度補正領域を持ち弁開度を補正することを
特徴とする。これにより、低冷媒流量の場合にも高効率
で安定性の高い冷凍サイクルを提供することができる。
The present invention according to claim 1 is characterized in that, in addition to the control method of the prior art, a valve opening correction region is provided on the plus side and the minus side of the temperature dead zone to correct the valve opening. And This makes it possible to provide a refrigeration cycle with high efficiency and high stability even when the flow rate of the refrigerant is low.

【0022】請求項2および3記載の本発明は、弁開度
をハンチングさせることでパルスとパルスの中間流量を
擬似的に発生させることを特徴とする。これにより、弁
開度の最小単位(1パルス)あたりの冷媒流量変化が大
きい電動膨張弁においても高効率で安定性の高い冷凍サ
イクルを提供することができる。 (実施の形態1)本発明のの実施の形態について図面を
用いて説明する。従来例の図面と重複するものは、同じ
符号を付して説明を省略する。
The present invention according to claims 2 and 3 is characterized in that the valve opening degree is hunted so that an intermediate flow rate between pulses is artificially generated. As a result, it is possible to provide a highly efficient and highly stable refrigeration cycle even in the electric expansion valve in which the refrigerant flow rate change per minimum unit (1 pulse) of the valve opening degree is large. Embodiment Mode 1 An embodiment mode of the present invention will be described with reference to the drawings. The same parts as those in the drawings of the conventional example are designated by the same reference numerals and the description thereof will be omitted.

【0023】図1は、冷凍サイクル図であり、電動膨張
弁開度は吐出温度センサー5の検出温度を入力信号とす
る制御装置6bによって制御される。
FIG. 1 is a refrigeration cycle diagram, in which the opening degree of the electric expansion valve is controlled by a control device 6b which uses the temperature detected by the discharge temperature sensor 5 as an input signal.

【0024】図2は上記制御装置6bのブロック図であ
る。低冷媒流量の時には吐出温度のオーバーシュート、
アンダーシュートが大きいため補正が必要となる。その
ため,温度不感帯のプラス側とマイナス側に弁開度補正
領域発生手段17により、弁開度を補正する温度領域を
発生し、温度検出手段7の出力が補正領域である場合に
は、弁開度補正量演算手段18により温度検出手段7の
出力と目標温度設定手段8の出力から弁開度の補正量を
決定する。この補正量演算手段18の出力と平均弁開度
演算手段14の出力結果から、弁開度ハンチングテーブ
ル演算手段により弁開度を(a+b)と決定し、弁開度
(a)と弁開度(a+1)のそれぞれの維持時間を決定
し、弁開度出力手段15より繰り返し出力する。
FIG. 2 is a block diagram of the control device 6b. Overflow of discharge temperature at low refrigerant flow rate,
Correction is necessary because the undershoot is large. Therefore, the valve opening correction area generating means 17 generates a temperature area for correcting the valve opening on the plus side and the minus side of the temperature dead zone, and when the output of the temperature detecting means 7 is in the correction area, the valve opening is performed. The degree correction amount calculation means 18 determines the correction amount of the valve opening from the output of the temperature detection means 7 and the output of the target temperature setting means 8. From the output of the correction amount calculation means 18 and the output result of the average valve opening calculation means 14, the valve opening hunting table calculation means determines the valve opening as (a + b), and the valve opening (a) and the valve opening The respective maintenance times of (a + 1) are determined and repeatedly output from the valve opening output means 15.

【0025】ここで、aは正の整数、bは0≦b<1と
する。さらに繰り返し温度検出手段7の出力が補正領域
である場合には、さらに補正を加えていく。
Here, a is a positive integer and b is 0 ≦ b <1. Further, when the output of the repeated temperature detecting means 7 is in the correction area, the correction is further added.

【0026】図3〜図5は制御装置6bのフローチャー
トである。図6は、吐出温度の目標温度に対する吐出温
度の変化、弁開度の変化を示したものである。以下図
9、図10について説明する。
3 to 5 are flowcharts of the control device 6b. FIG. 6 shows changes in the discharge temperature and the valve opening with respect to the target temperature of the discharge temperature. 9 and 10 will be described below.

【0027】吐出温度Tdを検出して目標温度Tsと比
較する。その結果、吐出温度が低い場合には弁開度を△
P減少する。そのままの弁開度で△T時間維持し再度吐
出温度Tdと目標温度Tsと比較する。このとき吐出温
度Tdが目標温度Tsより高ければ弁解度を△P増加さ
せ、増加させる前の弁開度を最小弁開度(Pmin)と
して記憶しておく。
The discharge temperature Td is detected and compared with the target temperature Ts. As a result, if the discharge temperature is low, the valve opening
P decrease. The valve opening is maintained as it is for ΔT time, and the discharge temperature Td is again compared with the target temperature Ts. At this time, if the discharge temperature Td is higher than the target temperature Ts, the valve resolution is increased by ΔP, and the valve opening degree before the increase is stored as the minimum valve opening degree (Pmin).

【0028】同様に△T時間ごとに吐出温度Tdと目標
温度Tsの比較を繰り返し、吐出温度Tdが目標温度T
sより高い状態から低い状態に変わったとき、つまり弁
開度の変化が△P増加から△P減少へ変化したとき、△
P減少する前の弁開度を最大弁開度(Pmax)として
記憶する。
Similarly, the discharge temperature Td and the target temperature Ts are repeatedly compared for each ΔT time, and the discharge temperature Td becomes equal to the target temperature T.
When changing from a state higher than s to a state lower than s, that is, when the change in valve opening changes from ΔP increase to ΔP decrease,
The valve opening degree before P reduction is stored as the maximum valve opening degree (Pmax).

【0029】最大弁開度(Pmax)、最小弁開度(P
min)が確定すると、その平均値((Pmax+Pm
in)/2)へ弁解度を変更する。
Maximum valve opening (Pmax), minimum valve opening (Pmax)
When min) is confirmed, the average value ((Pmax + Pm
in) / 2) to change the excuse.

【0030】さらに、平均弁開度演算手段14の出力が
発生した場合、目標温度Tsのプラス側とマイナス側に
それぞれTs+△Th 、Ts−△Th、Ts+△TT
、Ts−△TT の温度ラインを設け検出した吐出温度
TdがTs+△Th以下でかつ Ts−△Th以上であ
るときには、電動式膨張弁の開度の変更は行わない。T
s+△TT以下でかつTs+△Thより高いときには補
正量演算手段18により補正量△P(Td-Ts)を決
定し、Ts−△Th未満でかつ Ts−△TT以上であ
るときには補正量△P(Ts-Td)を決定する。
Further, when the output of the average valve opening calculating means 14 is generated, Ts + ΔTh, Ts−ΔTh, and Ts + ΔTT are respectively on the plus side and the minus side of the target temperature Ts.
, Ts-ΔTT temperature lines are provided and the detected discharge temperature Td is Ts + ΔTh or less and Ts-ΔTh or more, the opening degree of the electric expansion valve is not changed. T
When s + ΔTT or less and higher than Ts + ΔTh, the correction amount calculating means 18 determines the correction amount ΔP (Td−Ts), and when Ts−ΔTh or less and Ts−ΔTT or more, the correction amount ΔP. Determine (Ts-Td).

【0031】この補正量演算手段18の出力と平均弁開
度演算手段14の出力結果から、弁開度ハンチングテー
ブル演算手段により弁開度を(a+b)と決定し、弁開
度(a)の維持時間△T(a)と弁開度(a+1)の維
持時間△T(a+1)を△T(a):△T(a+1)=
(1−b):bとなるよう決定し、弁開度出力手段15
より弁開度(a)と弁開度(a+1)を繰り返し出力す
る。
From the output of the correction amount calculating means 18 and the output result of the average valve opening calculating means 14, the valve opening hunting table calculating means determines the valve opening as (a + b), and the valve opening (a) The maintenance time ΔT (a) and the maintenance time ΔT (a + 1) of the valve opening (a + 1) are expressed as ΔT (a): ΔT (a + 1) =
(1-b): The valve opening output means 15 is determined to be b.
The valve opening (a) and the valve opening (a + 1) are repeatedly output.

【0032】ここで、aは正の整数、0≦b<1とす
る。さらに繰り返し吐出温度TdがTs+△TT以下で
かつ Ts+△Thより高いときには補正量演算手段1
8により補正量△P(Td-Ts)を決定し、Ts−△
Th未満でかつ Ts−△TT以上であるときには補正
量△P(Ts-Td)を決定し、さらに補正を加えてい
く。
Here, a is a positive integer, and 0 ≦ b <1. Further, when the repeated discharge temperature Td is equal to or lower than Ts + ΔTT and higher than Ts + ΔTh, the correction amount calculation means 1
The correction amount ΔP (Td-Ts) is determined by 8, and Ts-Δ
When it is less than Th and more than Ts-ΔTT, the correction amount ΔP (Ts-Td) is determined and further correction is made.

【0033】[0033]

【発明の効果】本発明は、以上説明したように構成され
ているため、下記の効果を奏する。
Since the present invention is constructed as described above, it has the following effects.

【0034】本発明の請求項1記載の制御方法によれ
ば、温度不感帯のプラス側とマイナス側に弁開度補正領
域を持ち弁開度を補正することにより、低冷媒流量の場
合にも高効率で安定性の高い冷凍サイクルを提供するこ
とができる。
According to the control method of the first aspect of the present invention, the valve opening correction region is provided on the plus side and the minus side of the temperature dead zone so as to correct the valve opening degree, so that even when the refrigerant flow rate is low, the high value is obtained. A refrigeration cycle with high efficiency and high stability can be provided.

【0035】本発明の請求項2記載の制御方法によれ
ば、弁開度をハンチングさせることでパルスとパルスの
中間流量を擬似的に発生させることにより、弁開度の最
小単位(1パルス)あたりの冷媒流量変化が大きい電動
膨張弁においても高効率で安定性の高い冷凍サイクルを
提供することができる。
According to the control method of the second aspect of the present invention, the minimum unit of the valve opening (1 pulse) is generated by hunting the valve opening to artificially generate an intermediate flow rate between the pulses. It is possible to provide a highly efficient and highly stable refrigeration cycle even in an electric expansion valve in which the refrigerant flow rate per change is large.

【0036】本発明の請求項3記載の制御方法によれ
ば、請求項2に記載の冷凍サイクルの制御方法におい
て、弁開度の計算結果パルス数を正の整数aと小数点以
下数bに分離し、弁開度を(a+b)と決定し、弁開度
(a)の維持時間△T(a)と弁開度(a+1)の維持
時間△T(a+1)を△T(a):△T(a+1)=
(1−b):bとなるようハンチングテーブルの演算を
行うことにより、より細かく冷媒流量を制御可能とな
り、高効率で安定性の高い冷凍サイクルを提供すること
ができる。
According to the control method of the third aspect of the present invention, in the method of controlling the refrigeration cycle of the second aspect, the calculation result pulse number of the valve opening is separated into a positive integer a and a decimal point number b. Then, the valve opening is determined to be (a + b), and the maintenance time ΔT (a) of the valve opening (a) and the maintenance time ΔT (a + 1) of the valve opening (a + 1) are ΔT (a): Δ T (a + 1) =
By calculating the hunting table so that (1-b): b, the refrigerant flow rate can be controlled more finely, and a highly efficient refrigeration cycle with high stability can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施の形態を示す冷凍サイクル構成図FIG. 1 is a refrigeration cycle configuration diagram showing an embodiment of the present invention.

【図2】本発明の制御装置ブロック図FIG. 2 is a block diagram of a control device of the present invention.

【図3】本発明の制御内容を示すフローチャートFIG. 3 is a flowchart showing the control contents of the present invention.

【図4】同フローチャートFIG. 4 is a flowchart of the same.

【図5】同フローチャート[FIG. 5] Same flowchart

【図6】本発明の吐出温度、弁開度を示すタイムチャー
FIG. 6 is a time chart showing the discharge temperature and valve opening of the present invention.

【図7】従来例の冷凍サイクル構成図FIG. 7 is a conventional refrigeration cycle configuration diagram.

【図8】従来例の制御装置ブロック図FIG. 8 is a block diagram of a conventional control device.

【図9】従来例の制御内容を示すフローチャートFIG. 9 is a flowchart showing the control contents of a conventional example.

【図10】従来例の吐出温度,弁開度を示すタイムチャ
ート
FIG. 10 is a time chart showing a discharge temperature and a valve opening of a conventional example.

【図11】従来例の吐出温度、弁開度を示すタイムチャ
ート
FIG. 11 is a time chart showing a discharge temperature and a valve opening of a conventional example.

【図12】従来例の吐出温度、弁開度を示すタイムチャ
ート
FIG. 12 is a time chart showing a discharge temperature and a valve opening of a conventional example.

【符号の説明】[Explanation of symbols]

1 圧縮機 2、4 熱交換器 3 膨張弁 5 吐出温センサー 6 制御装置 7 温度検出手段 8 温度比較手段 9 目標温度設定手段 10 弁開度演算手段 11 弁開度比較手段 12 最大弁開度記憶手段 13 最小弁開度記憶手段 14 平均弁開度演算手段 15 弁開度出力手段 16 温度不感帯発生手段 17 弁開度補正領域発生手段 18 弁開度補正量演算手段 19 弁開度ハンチングテーブル演算手段 1 compressor 2, 4 heat exchanger 3 expansion valve 5 Discharge temperature sensor 6 control device 7 Temperature detection means 8 Temperature comparison means 9 Target temperature setting means 10 Valve opening calculation means 11 Valve opening comparison means 12 Maximum valve opening storage means 13 Minimum valve opening storage means 14 Average valve opening calculation means 15 Valve opening output means 16 Temperature dead zone generating means 17 Valve Opening Correction Area Generating Means 18 Valve opening correction amount calculation means 19 Valve opening hunting table calculation means

フロントページの続き (72)発明者 平谷 壽士 大阪府門真市大字門真1006番地 松下電器 産業株式会社内Continued front page    (72) Inventor Hiraya             1006 Kadoma, Kadoma-shi, Osaka Matsushita Electric             Sangyo Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機、熱交換器、膨張弁などで冷凍サ
イクルを構成し、前期冷凍サイクルの所定箇所の温度を
温度検出手段で検出し、その検出温度と目標温度設定手
段で決定した目標温度を温度比較手段で比較し、弁開度
出力手段で前記検出温度が目標温度以上の場合は前記膨
張弁を一定量開き、前記検出温度が目標温度未満の場合
は一定量閉じる動作を行い、前記膨張弁の動作が開動作
から閉動作に変化した場合、閉動作に変化する直前の弁
開度を最大弁開度とする最大弁開度演算手段と、閉動作
から開動作に変化した場合、開動作に変化する直前の弁
開度を最小弁開度とする最小弁開度演算手段と、前記最
大弁開度と前記最小弁開度から平均弁開度を求める平均
弁開度演算手段と、前記平均弁開度演算手段の出力を弁
開度演算手段に出力して前記膨張弁の弁開度を維持する
とともに、前記平均弁開度演算手段の出力が発生した場
合、前記目標温度と前記温度検出手段での比較を行わな
い温度不感帯を、前記目標温度を中心にプラス側とマイ
ナス側にまたがるように発生させる温度不感帯発生手段
を具備した制御装置において、前記温度不感帯のプラス
側とマイナス側に前記膨張弁の弁開度を補正する領域を
発生させる弁解度補正領域発生手段と前記検出温度と前
記目標温度の出力から補正量を求める弁開度補正量演算
手段を設けた冷凍サイクルの制御装置。
1. A refrigeration cycle comprising a compressor, a heat exchanger, an expansion valve, etc., the temperature of a predetermined portion of the previous refrigeration cycle is detected by a temperature detecting means, and the detected temperature and a target determined by a target temperature setting means. The temperatures are compared by the temperature comparison means, and the expansion valve is opened by a certain amount when the detected temperature is equal to or higher than the target temperature by the valve opening output means, and when the detected temperature is less than the target temperature, a certain amount is closed. When the operation of the expansion valve changes from the opening operation to the closing operation, the maximum valve opening calculation means for setting the valve opening immediately before the closing operation to the maximum opening, and when the closing operation changes to the opening operation A minimum valve opening calculating means for setting the valve opening immediately before the opening operation to the minimum valve opening, and an average valve opening calculating means for obtaining an average valve opening from the maximum valve opening and the minimum valve opening And the output of the average valve opening calculation means to the valve opening calculation means Then, while maintaining the valve opening of the expansion valve, when the output of the average valve opening calculating means occurs, the temperature dead zone in which the target temperature and the temperature detecting means are not compared, the target temperature In a control device equipped with a temperature dead zone generating means that is generated so as to straddle the plus side and the minus side in the center, a valve resolution that generates a region for correcting the valve opening degree of the expansion valve on the plus side and the minus side of the temperature dead zone A control device for a refrigeration cycle, comprising: a correction area generating means; and a valve opening correction amount calculation means for obtaining a correction amount from outputs of the detected temperature and the target temperature.
【請求項2】 圧縮機、熱交換器、膨張弁などで冷凍サ
イクルを構成し、前期冷凍サイクルの所定箇所の温度を
温度検出手段で検出し、その検出温度と目標温度設定手
段で決定した目標温度を温度比較手段で比較し、前記検
出温度が目標温度以上の場合は前記膨張弁を一定量開
き、前記検出温度が目標温度未満の場合は一定量閉じる
動作を行う弁開度出力手段を具備した制御装置におい
て、弁開度をハンチングさせるハンチングテーブル演算
手段を設けた冷凍サイクルの制御装置。
2. A refrigeration cycle is constituted by a compressor, a heat exchanger, an expansion valve, etc., the temperature of a predetermined portion of the previous refrigeration cycle is detected by a temperature detecting means, and the detected temperature and the target determined by the target temperature setting means. The temperature comparison means compares the temperatures, and when the detected temperature is equal to or higher than the target temperature, the expansion valve is opened by a certain amount, and when the detected temperature is less than the target temperature, a certain amount is closed and valve opening output means is provided. The control device of the refrigerating cycle, which is provided with hunting table calculation means for hunting the valve opening degree.
【請求項3】 請求項2に記載の冷凍サイクルの制御方
法において、弁開度の計算結果パルス数を正の整数aと
小数点以下数bに分離し、弁開度を(a+b)と決定
し、弁開度(a)の維持時間△T(a)と弁開度(a+
1)の維持時間△T(a+1)を△T(a):△T(a
+1)=(1−b):bとなるようハンチングテーブル
の演算を行い、弁開度をハンチングさせる冷凍サイクル
の制御装置。
3. The method for controlling a refrigeration cycle according to claim 2, wherein the number of calculation result pulses of the valve opening is separated into a positive integer a and a decimal point number b, and the valve opening is determined as (a + b). , Valve opening (a) maintenance time ΔT (a) and valve opening (a +
The maintenance time ΔT (a + 1) of 1) is ΔT (a): ΔT (a
+1) = (1-b): A control device for a refrigeration cycle that calculates the hunting table so that b and hunts the valve opening.
JP2001300599A 2001-09-28 2001-09-28 Method for controlling refrigerating cycle Pending JP2003106684A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2001300599A JP2003106684A (en) 2001-09-28 2001-09-28 Method for controlling refrigerating cycle
KR1020020058536A KR20030027761A (en) 2001-09-28 2002-09-26 Apparatus for, and method of, controlling freezing cycle and temperature controller using it
CNB02143543XA CN1238673C (en) 2001-09-28 2002-09-27 Control device and control method for freezing circulation and temperature regulator using said controller and control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001300599A JP2003106684A (en) 2001-09-28 2001-09-28 Method for controlling refrigerating cycle

Publications (1)

Publication Number Publication Date
JP2003106684A true JP2003106684A (en) 2003-04-09

Family

ID=19121144

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001300599A Pending JP2003106684A (en) 2001-09-28 2001-09-28 Method for controlling refrigerating cycle

Country Status (3)

Country Link
JP (1) JP2003106684A (en)
KR (1) KR20030027761A (en)
CN (1) CN1238673C (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015019740A1 (en) * 2013-08-09 2015-02-12 三菱電機株式会社 Refrigerator
CN112413937A (en) * 2020-11-23 2021-02-26 珠海格力电器股份有限公司 Water chilling unit and electronic expansion valve control method, device and system thereof

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100386580C (en) * 2006-04-11 2008-05-07 珠海格力电器股份有限公司 Heat pump air conditioner system and its steam jet control device and method
JP5554277B2 (en) * 2011-03-31 2014-07-23 三菱重工業株式会社 Heat medium flow rate estimation device, heat source machine, and heat medium flow rate estimation method
CN104930773B (en) * 2015-07-06 2017-06-06 珠海格力电器股份有限公司 The control method and device and air-conditioner of electric expansion valve
CN107192179A (en) * 2017-06-05 2017-09-22 广东美的暖通设备有限公司 The control method and computer-readable recording medium of air conditioner and electric expansion valve

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015019740A1 (en) * 2013-08-09 2015-02-12 三菱電機株式会社 Refrigerator
JP2015034673A (en) * 2013-08-09 2015-02-19 三菱電機株式会社 Refrigerator
AU2014303819B2 (en) * 2013-08-09 2016-10-13 Mitsubishi Electric Corporation Refrigerator
CN112413937A (en) * 2020-11-23 2021-02-26 珠海格力电器股份有限公司 Water chilling unit and electronic expansion valve control method, device and system thereof
CN112413937B (en) * 2020-11-23 2022-05-31 珠海格力电器股份有限公司 Water chilling unit and electronic expansion valve control method, device and system thereof

Also Published As

Publication number Publication date
CN1409077A (en) 2003-04-09
KR20030027761A (en) 2003-04-07
CN1238673C (en) 2006-01-25

Similar Documents

Publication Publication Date Title
EP2288859B1 (en) Method of controlling an air cooled heat exchanger
JPS61197967A (en) Cooling cycle
CN113758067B (en) Enthalpy-spraying control method for low-temperature heat pump
US4587883A (en) High resolution control system for a pressure-responsive positioning device
JP2003106684A (en) Method for controlling refrigerating cycle
US20070175229A1 (en) Method for controlling a pulsed expansion valve
JP2001012808A (en) Method of and apparatus for controlling expansion valve of air conditioner
CN107289696B (en) Control method of throttle valve
JP2889791B2 (en) Vapor compression refrigerator
JPH11173631A (en) Air conditioner controller
WO2018145619A1 (en) Refrigerator control method and refrigerator
JPS62111311A (en) Heat/cool control device
JP2006112703A (en) Air conditioner
JP3772340B2 (en) Valve positioner
JP3347441B2 (en) Control device for air conditioner
JP2000010602A (en) Pid control method and its controller
JPH06201198A (en) Refrigerating cycle control device
JP2003114725A (en) Temperature regulator, and heat treatment device
JP2573022B2 (en) Refrigeration equipment
JPH0133713B2 (en)
CN114234494B (en) Electronic expansion valve control method of heat pump system
JPH0745976B2 (en) Refrigeration cycle controller
JP2000163101A (en) Pid control method
JPS6045780B2 (en) Refrigerant flow control device
JPS6045779B2 (en) Refrigerant flow control device