JP2003105403A - Soft magnetic flat-shaped powder - Google Patents

Soft magnetic flat-shaped powder

Info

Publication number
JP2003105403A
JP2003105403A JP2001303529A JP2001303529A JP2003105403A JP 2003105403 A JP2003105403 A JP 2003105403A JP 2001303529 A JP2001303529 A JP 2001303529A JP 2001303529 A JP2001303529 A JP 2001303529A JP 2003105403 A JP2003105403 A JP 2003105403A
Authority
JP
Japan
Prior art keywords
powder
soft magnetic
flat
flat powder
flattening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001303529A
Other languages
Japanese (ja)
Inventor
Haruo Koyama
治雄 小山
Kiyoshi Suzuki
喜代志 鈴木
Shinichiro Yahagi
慎一郎 矢萩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2001303529A priority Critical patent/JP2003105403A/en
Publication of JP2003105403A publication Critical patent/JP2003105403A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3254Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the spacer being semiconducting or insulating, e.g. for spin tunnel junction [STJ]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0246Manufacturing of magnetic circuits by moulding or by pressing powder

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain soft magnetic flat-shaped powder having high flatness and excellent electromagnetic properties. SOLUTION: This flat-shaped powder can be obtained by applying flattening treatment to soft magnetic powder. Moreover, the ratio of bulk density when filling the flat-shaped powder into a vessel of a prescribed capacity and vibrations are applied prescribed number of times (tap density: TD) to specific gravity (D), (TD/D), ranges from 0.1 to 0.25, and oxygen content is made to <=0.15 mass%.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、軟磁性扁平状粉末
に関し、さらに詳しくは、電磁シールド材、電波吸収体
などに好適に使用される軟磁性扁平状粉末に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a soft magnetic flat powder, and more particularly to a soft magnetic flat powder suitable for use as an electromagnetic shield material, a radio wave absorber and the like.

【0002】[0002]

【従来の技術】近年、エレクトロニクスの急速な進歩に
伴い、各種の電子機器から発生する電磁波ノイズの問題
が顕在化してきた。そのため、電磁波を吸収して熱に変
換する機能を有する電波吸収体に対する要望が高まって
いる。一般に、電波吸収体としては、フェライト焼結体
またはカーボンをバインダーに含有させたものなどが知
られているが、とくに電磁波ノイズの高周波成分を除去
するためには、軟磁性金属粉末を扁平化し、その扁平状
粉末をバインダーに含有させたものが効果的であること
が実証されている。
2. Description of the Related Art In recent years, with the rapid progress of electronics, the problem of electromagnetic noise generated from various electronic devices has become apparent. Therefore, there is an increasing demand for a radio wave absorber having a function of absorbing electromagnetic waves and converting them into heat. Generally, as a radio wave absorber, a ferrite sintered body or one containing carbon in a binder is known, but in order to remove high frequency components of electromagnetic noise, a soft magnetic metal powder is flattened, It has been proved that the one containing the flat powder in the binder is effective.

【0003】そして、このような扁平状粉末は、通常、
鋳造したインゴットを機械粉砕した粉砕粉、あるいは、
水アトマイズ法により得られた粉末を出発原料とし、こ
れらの原料粉末に扁平化処理を施すことにより製造され
るのが一般的である。
And, such a flat powder is usually
Crushed powder obtained by mechanically crushing a cast ingot, or
It is general that the powder obtained by the water atomization method is used as a starting material and the raw material powder is subjected to a flattening treatment.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、原料粉
末として粉砕粉を使用した場合、とくに出発物質である
インゴットが脆性材料でない限り、粉砕に時間がかかる
ため製造コストが上昇する。また、粉砕時に摩擦熱など
により高温にさらされるため、粉末の酸化が進行して電
磁気特性が劣化するという問題がある。さらには、この
温度上昇により表面に形成された酸化膜の影響で表面が
凹凸であるため、例えばアトライター処理により扁平化
した場合に、扁平化よりも粉砕が優先的に進行し、扁平
な粉末を得ることが困難であるという問題もある。
However, when crushed powder is used as the raw material powder, crushing takes time, especially if the starting ingot is not a brittle material, which increases the manufacturing cost. Further, since the powder is exposed to a high temperature due to frictional heat during pulverization, there is a problem that the oxidation of the powder progresses and the electromagnetic characteristics deteriorate. Furthermore, since the surface is uneven due to the influence of the oxide film formed on the surface due to this temperature rise, when flattened by, for example, an attritor treatment, crushing proceeds preferentially over flattening, resulting in a flattened powder. There is also the problem that it is difficult to obtain.

【0005】一方、水アトマイズ法により得られた粉末
を原料粉末とした場合には、上記のような粉砕工程が省
略できるためコストは低減できるものの、形状が粉砕粉
よりも不規則であるため、やはり続く扁平化工程で、粉
砕が優先的に進行してしまうという問題がある。さら
に、水による噴霧によって、粉末が酸化するために上記
の粉砕粉と同様電磁気特性が劣化してしまう。
On the other hand, when the powder obtained by the water atomizing method is used as the raw material powder, the crushing step as described above can be omitted, so that the cost can be reduced, but the shape is more irregular than the crushed powder. There is also a problem that the crushing proceeds preferentially in the subsequent flattening step. Further, spraying with water causes the powder to oxidize, so that the electromagnetic characteristics deteriorate as in the case of the pulverized powder.

【0006】本発明は、上述した電磁波吸収体に使用さ
れる軟磁性扁平状粉末の問題点を解消し、電磁気特性と
くに高い透磁率を有する軟磁性扁平状粉末を提供するこ
とを目的とする。
An object of the present invention is to solve the above-mentioned problems of the soft magnetic flat powder used for the electromagnetic wave absorber and to provide a soft magnetic flat powder having electromagnetic characteristics, particularly high magnetic permeability.

【0007】[0007]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明によれば、軟磁性粉末を扁平化処理するこ
とにより得られた扁平状粉末であって、前記扁平状粉末
を所定容量の容器に充填し、所定回数の振動を与えたと
きの嵩密度(タップ密度:TD)と比重(D)との比(TD/
D)が0.1〜0.25で、かつ、酸素含有量が0.15質量%以下
であるものが提供される(請求項1)。
To achieve the above object, according to the present invention, a flat powder obtained by flattening a soft magnetic powder, wherein The ratio of bulk density (tap density: TD) to specific gravity (D) (TD /
It is provided that D) is 0.1 to 0.25 and the oxygen content is 0.15% by mass or less (Claim 1).

【0008】上記の構成において、前記扁平化処理前の
前記軟磁性粉末のタップ密度(TD)と比重(D)との比
(TD/D)が0.6以上であることが好ましい。さらに、前
記扁平化処理前の前記軟磁性粉末の酸素含有量が0.10質
量%以下であり(請求項3)、前記扁平化処理前の前記
軟磁性粉末の平均粒径(D50)が40μm以上であり(請
求項4)、前記扁平化処理前の前記軟磁性粉末がガス噴
霧法により製造されたものである(請求項5)ことが好
ましい。
In the above structure, the ratio (TD / D) of the tap density (TD) to the specific gravity (D) of the soft magnetic powder before the flattening treatment is preferably 0.6 or more. Furthermore, the oxygen content of the soft magnetic powder before the flattening treatment is 0.10% by mass or less (claim 3), and the average particle diameter (D50) of the soft magnetic powder before the flattening treatment is 40 μm or more. It is preferable (claim 4) that the soft magnetic powder before the flattening treatment is manufactured by a gas atomization method (claim 5).

【0009】そして、次式で表される前記軟磁性扁平状
粉末の扁平度F: F=(L+S)/(dmax+dmin) (ただし、式中、Lは前記扁平状粉末の面方向の長軸
長、Sは同じく面方向の短軸長を示し、dmaxは前記扁
平状粉末の最大厚み、dminは同じく最小厚みを示す)
が、20以上であることが好適である(請求項6)。
The flatness F of the soft magnetic flat powder represented by the following formula: F = (L + S) / (d max + d min ) (where L is the plane direction of the flat powder) The major axis length, S also represents the minor axis length in the surface direction, d max represents the maximum thickness of the flat powder, and d min also represents the minimum thickness.)
Is preferably 20 or more (claim 6).

【0010】[0010]

【発明の実施の形態】以下に本発明の軟磁性扁平状粉末
について詳述する。まず、本発明の軟磁性扁平状粉末
は、軟磁性粉末を扁平化処理して得られたものである。
軟磁性材料としては、とくに限定されるものではなく、
例えば、磁性を有し、高周波の電磁波の吸収能が高いF
e、Ni、Coなどの金属、または、これらの金属を含
む合金粉末を用いることができる。
BEST MODE FOR CARRYING OUT THE INVENTION The soft magnetic flat powder of the present invention will be described in detail below. First, the soft magnetic flat powder of the present invention is obtained by flattening the soft magnetic powder.
The soft magnetic material is not particularly limited,
For example, F, which has magnetism and high absorption of high frequency electromagnetic waves,
Metals such as e, Ni and Co, or alloy powders containing these metals can be used.

【0011】とくに、電磁波吸収特性、コストおよび加
工性の点からFe−Cr系合金やFe−Si系合金にA
lなどを複合添加した合金が好適である。これらの軟磁
性粉末を扁平化処理して得られる本発明の軟磁性扁平状
粉末は、そのタップ密度(TD)と比重(D)との比(TD/
D)が0.1〜0.25であることが必要である。
Particularly, from the viewpoint of electromagnetic wave absorption characteristics, cost and workability, Fe--Cr alloys and Fe--Si alloys are
An alloy to which 1 and the like are added in combination is preferable. The soft magnetic flat powder of the present invention obtained by flattening these soft magnetic powders has a ratio of the tap density (TD) to the specific gravity (D) (TD /
It is necessary that D) is 0.1 to 0.25.

【0012】すなわち、流動性のない粉末は自然落下の
ような緩充填状態では、見掛け密度の再現性が悪い。と
ころが、たたき(tapping)により振動を与える
と比較的統一した嵩密度が得られる。これをタップ密度
と称する。本発明においては、粉末を容積18mLのメ
スシリンダーに充填し、タップ(たたき)回数1000
回のときの充填密度をタップ密度と定義した。
That is, the powder having no fluidity has a poor reproducibility of the apparent density in a loosely packed state such as a free fall. However, when vibration is applied by tapping, a relatively uniform bulk density is obtained. This is called tap density. In the present invention, the powder is filled in a graduated cylinder having a volume of 18 mL and the number of taps is 1,000.
The packing density at each round was defined as tap density.

【0013】そして、このTD/Dは本来粉末の充填度合を
示す数値であるが、それに加えて、扁平化処理時に発生
する粉砕の度合、表面性状を知るパラメータともなりう
る。つまり、扁平化処理時に粉砕が進行すれば充填性が
阻害されるため、TD/Dが小さくなる。また、酸化膜など
の存在で表面性状が凹凸であれば、粒子間に摩擦が生
じ、振動を加えても充填が進行しないので、同様にTD/D
は小さくなる。
This TD / D is originally a numerical value indicating the filling degree of the powder, but in addition to that, it can also be a parameter for knowing the degree of crushing generated during the flattening treatment and the surface quality. That is, if pulverization progresses during the flattening process, the filling property is hindered, and the TD / D becomes small. Also, if the surface texture is uneven due to the presence of an oxide film, etc., friction will occur between the particles and the filling will not proceed even if vibration is applied.
Becomes smaller.

【0014】したがって、TD/Dが0.1未満である場合
には、表面酸化膜の生成により扁平化処理時に粉砕が進
行してしまい、逆に、TD/Dが0.25を超えると粉末の
形状は扁平化処理前の球状に近い形状となってしまう。
とくに好ましいTD/Dの値は0.15〜0.20である。
そして、本発明の扁平状粉末においては、上記のTD/Dの
数値限定に加えて、この軟磁性扁平状粉末の酸素含有量
が0.15質量%以下であることが必要である。一般に、粉
末の酸素含有量が多いということは換言すれば磁性に寄
与する合金成分が非磁性体である酸化物として存在する
ことを意味するため、酸素含有量はできるだけ低いこと
が望まれる。好ましくは0.1質量%以下である。この扁
平状粉末の酸素含有量は、扁平化処理工程の処理時間な
どにより制御することができる。
Therefore, when TD / D is less than 0.1, pulverization proceeds during the flattening process due to the formation of a surface oxide film, and conversely, when TD / D exceeds 0.25, the powder is produced. The shape of is similar to a spherical shape before the flattening process.
A particularly preferable value of TD / D is 0.15 to 0.20.
In addition, in the flat powder of the present invention, in addition to the above numerical limitation of TD / D, the oxygen content of the soft magnetic flat powder needs to be 0.15 mass% or less. In general, the fact that the powder has a high oxygen content means in other words that the alloy component contributing to magnetism exists as an oxide which is a non-magnetic material. Therefore, it is desired that the oxygen content be as low as possible. It is preferably 0.1% by mass or less. The oxygen content of the flat powder can be controlled by the treatment time of the flattening treatment step and the like.

【0015】上記の扁平化処理前の軟磁性粉末のTD/D
は、0.6以上であることが好ましい。一般に粉末形状が
球状などのように単純であるとTD/Dは大きくなる。扁平
化処理後に高い扁平度を得るためには、扁平化処理工程
において粉砕が優先的に進行することを防止することが
必要であることから、処理前の段階で粉末ができる限り
球状であることが好ましい。したがって、TD/Dを0.6以
上とすることが好ましい。
TD / D of the soft magnetic powder before the flattening treatment
Is preferably 0.6 or more. Generally, if the powder shape is simple, such as spherical, TD / D will increase. In order to obtain a high flatness after the flattening treatment, it is necessary to prevent the crushing from progressing preferentially in the flattening treatment step, so the powder should be as spherical as possible before the treatment. Is preferred. Therefore, it is preferable to set TD / D to 0.6 or more.

【0016】また、上記の出発材料である軟磁性粉末
は、例えば、水アトマイズ法、ガスアトマイズ法、機械
的粉砕法などにより得られたものが使用できるが、上記
のようなTD/Dが0.6以上の球状粉を得ることができると
いう点で、ガスアトマイズ法を使用したものが好まし
い。ちなみに、水アトマイズ法ではTD/Dは0.3程度であ
り、機械粉砕法ではTD/Dは0.4程度である。また、ガス
アトマイズ法を使用することによって、粉末の酸化を抑
制することができ、高い電磁気特性を確保することが可
能となる。
As the soft magnetic powder as the above-mentioned starting material, for example, those obtained by a water atomizing method, a gas atomizing method, a mechanical crushing method or the like can be used, but the above TD / D is 0.6 or more. It is preferable to use the gas atomization method because the spherical powder can be obtained. By the way, TD / D is about 0.3 in the water atomizing method, and TD / D is about 0.4 in the mechanical grinding method. In addition, by using the gas atomizing method, it is possible to suppress the oxidation of the powder and ensure high electromagnetic characteristics.

【0017】さらに、扁平化処理前の粉末の酸素含有量
を0.10質量%にすることが好ましい。すなわち、扁平化
処理後の粉末の酸素含有量を上述したように0.15好まし
くは0.10質量%以下にするためには、扁平化処理過程で
の酸化の進行を考慮すると0.10質量%以下とすることが
好ましく、さらに好ましくは、0.05質量%以下である。
この扁平化処理前の粉末の酸素含有量は、例えば、ガス
アトマイズ工程における処理時間などの諸条件により制
御することができる。
Further, the oxygen content of the powder before the flattening treatment is preferably 0.10% by mass. That is, in order to set the oxygen content of the powder after the flattening treatment to 0.15 preferably 0.10 mass% or less as described above, it may be 0.10 mass% or less in consideration of the progress of oxidation in the flattening process. The content is preferably 0.05 mass% or less.
The oxygen content of the powder before the flattening treatment can be controlled by various conditions such as the treatment time in the gas atomizing step.

【0018】そして、扁平化処理前の粉末の平均粒径D5
0は40μm以上にすることが好ましい。ここで、平均粒
径D50とは、全粒子質量に対する累積質量が50%とな
る粒子径をいう。扁平度の高い粉末を得るためには、面
方向の長軸および短軸の長さをそれぞれできるだけ長く
することが好ましい。そのためには、処理前の粉末の粒
径をできるだけ大きくすることが望まれる。
Then, the average particle diameter D5 of the powder before the flattening treatment
0 is preferably 40 μm or more. Here, the average particle diameter D50 means a particle diameter at which the cumulative mass with respect to the total particle mass is 50%. In order to obtain a powder having a high flatness, it is preferable to make the major axis and minor axis of the plane direction as long as possible. For that purpose, it is desired to make the particle size of the powder before treatment as large as possible.

【0019】そして、扁平化処理後に得られる軟磁性扁
平状粉末の扁平度Fを20以上とすることが好ましく、
それにより、最終製品の高い透磁率ひいては従来材より
も良好な電磁シールド特性および電波吸収特性を実現す
ることができる。この扁平度Fは次式: F=(L+S)/(dmax+dmin) (ただし、式中、Lは前記扁平状粉末の面方向の長軸
長、Sは同じく面方向の短軸長を示し、dmaxは前記扁
平状粉末の最大厚み、dminは同じく最小厚みを示す)
で表される。
The flatness F of the soft magnetic flat powder obtained after the flattening treatment is preferably 20 or more,
As a result, it is possible to realize high magnetic permeability of the final product and thus better electromagnetic shield characteristics and electromagnetic wave absorption characteristics than conventional materials. This flatness F is expressed by the following formula: F = (L + S) / (d max + d min ), where L is the major axis length of the flat powder in the plane direction, and S is the minor axis length of the plane direction. Where d max is the maximum thickness of the flat powder and d min is the minimum thickness as well.)
It is represented by.

【0020】図1は扁平状粉末を模式的に示した斜視図
である。すなわち、図において、扁平状粒子の面方向を
SEM観察し、長軸長Lと短軸長Sをそれぞれ測定し、
その平均値(L+S)/2を求める。次に、粉末を樹脂
に埋め込んだ後、研磨し、光学顕微鏡により観察したと
きの扁平状粉末の最大厚みdmaxと最小厚みdminを測定
する。そして、その平均値(dmax+dmin)/2をその
扁平状粉末の平均厚みとする。
FIG. 1 is a perspective view schematically showing a flat powder. That is, in the figure, the plane direction of the flat particles is observed by SEM, and the major axis length L and the minor axis length S are respectively measured,
The average value (L + S) / 2 is calculated. Next, after embedding the powder in the resin, polishing is performed, and the maximum thickness d max and the minimum thickness d min of the flat powder when observed by an optical microscope are measured. And let the average value ( dmax + dmin ) / 2 be the average thickness of the flat powder.

【0021】そして、上記の平均径と平均厚みとの比: [(L+S)/2]/[(dmax+dmin)/2]=(L+
S)/(dmax+dmin) を扁平度Fとして定義する。以下、本発明の軟磁性扁平
状粉末の製造工程を説明する。すなわち、まず、前述し
たTD/D、および酸素含有量、および平均粒径の軟磁性合
金粉末を、例えば、ガスアトマイズ法により製造する。
つづいて、得られた粉末に対して扁平化処理を行う。こ
の扁平化処理工程はとくに限定されるものではないが、
例えば、アトライターなどを使用して実施することが好
ましい。
Then, the ratio of the above average diameter to the average thickness: [(L + S) / 2] / [(d max + d min ) / 2] = (L +
S) / (d max + d min ) is defined as the flatness F. The manufacturing process of the soft magnetic flat powder of the present invention will be described below. That is, first, the soft magnetic alloy powder having the above-described TD / D, oxygen content, and average particle diameter is manufactured by, for example, a gas atomizing method.
Subsequently, the obtained powder is subjected to a flattening treatment. This flattening process step is not particularly limited,
For example, it is preferable to use an attritor or the like.

【0022】具体的には、粉末に分散媒、潤滑剤を混入
し、所定の処理条件で扁平化する。このときに使用され
る分散媒としては、キシレン、トルエンなどの非水溶性
溶剤、エタノール、アセトンなどの水溶性溶剤をあげる
ことができるが、処理中の粉末表面の酸化を抑制する上
で、非水溶性溶剤を用いることが好ましい。上記の扁平
化処理後、例えば真空中、100〜150℃において、
乾燥させ、さらに、例えば不活性ガス雰囲気中で、60
0〜800℃において、1〜3時間歪み除去を目的とす
る熱処理を行い、本発明の軟磁性扁平状粉末を得る。
Specifically, the powder is mixed with a dispersion medium and a lubricant and flattened under predetermined processing conditions. The dispersion medium used at this time may be a non-water-soluble solvent such as xylene or toluene, or a water-soluble solvent such as ethanol or acetone. It is preferable to use a water-soluble solvent. After the above flattening treatment, for example, in a vacuum at 100 to 150 ° C.,
Dried, and further, for example, in an inert gas atmosphere, 60
At 0 to 800 ° C., heat treatment for the purpose of removing strain for 1 to 3 hours is performed to obtain the soft magnetic flat powder of the present invention.

【0023】そして、上記により得られた軟磁性扁平状
粉末に、バインダーとして例えば塩素化ポリエチレン、
安定剤、可塑剤などをそれぞれ所定量添加し、ニーダー
などにより混練した後、シート化して電磁波吸収体、電
磁シールド材など様々な用途に供することができる。
Then, to the soft magnetic flat powder obtained above, for example, chlorinated polyethylene as a binder,
A stabilizer, a plasticizer and the like are added in predetermined amounts, kneaded by a kneader or the like, and then formed into a sheet for various uses such as an electromagnetic wave absorber and an electromagnetic shield material.

【0024】[0024]

【実施例】実施例1〜4,比較例1〜5 (1)軟磁性扁平状粉末の調製 機械粉砕法を使用した比較例1を除き、ガスアトマイズ
法を使用して表1に示したTD/D、酸素含有量およびD50
を有するFe-Si-Al合金粉末(原料粉末)を調製した。な
お、以下に示す粉末のTD/D、および扁平度はいずれも前
述した方法により測定し、数値を算出した。また、各粉
末の平均粒径D50は、レーザー回折式粒度分布計を使用
して測定した。
EXAMPLES Examples 1 to 4, Comparative Examples 1 to 5 (1) Preparation of soft magnetic flat powder Except for Comparative Example 1 using the mechanical pulverization method, TD / D, oxygen content and D50
Fe-Si-Al alloy powder (raw material powder) having the above was prepared. The TD / D and the flatness of the powders shown below were both measured by the methods described above, and the numerical values were calculated. The average particle size D50 of each powder was measured using a laser diffraction particle size distribution analyzer.

【0025】つづいて、アトライターを使用して各粉末
の扁平化処理を行った。すなわち、ボール重量18k
g、粉末充填量1.8kg、分散媒(非水溶性有機溶剤
または水溶性有機溶剤)1.8L、潤滑剤(ステアリン
酸)を粉末質量に対して1質量%をアトライターに投入
して、回転数250rpmで10〜20時間の扁平化処
理を行い、処理時間を変化させることにより得られた扁
平状粉末のTD/Dおよび扁平度を制御した。
Subsequently, each powder was flattened using an attritor. That is, ball weight 18k
g, powder filling amount 1.8 kg, dispersion medium (non-water-soluble organic solvent or water-soluble organic solvent) 1.8 L, 1% by mass of lubricant (stearic acid) with respect to the mass of the powder was put into an attritor, A flattening treatment was performed for 10 to 20 hours at a rotation speed of 250 rpm, and the TD / D and flatness of the obtained flat powder were controlled by changing the treatment time.

【0026】得られた扁平状粉末のTD/D、酸素含有量お
よび扁平度を表1に示した。 (2)特性評価試験 上記により得られた各軟磁性扁平状粉末を真空中、13
0℃において乾燥した後、不活性ガス雰囲気中、800
℃で1時間熱処理した。次に、扁平化粉末1250質量
部に対して、塩素化ポリエチレン100質量部、安定剤
および可塑剤を合計で40質量部添加し、ニーダーで混
練し、厚さ1.0mmのゴムシートを作製した。
Table 1 shows TD / D, oxygen content and flatness of the obtained flat powder. (2) Characteristic evaluation test Each soft magnetic flat powder obtained as described above was placed in a vacuum for 13
After drying at 0 ° C, in an inert gas atmosphere, 800
It heat-processed at 1 degreeC for 1 hour. Next, 100 parts by mass of chlorinated polyethylene, 40 parts by mass of stabilizer and a total of 40 parts by mass of stabilizer were added to 1250 parts by mass of the flattened powder and kneaded with a kneader to prepare a rubber sheet having a thickness of 1.0 mm. .

【0027】各ゴムシートを外径7mm、内径3mmに
打抜き加工し、それに12ターンの巻線を施し、インピ
ーダンスアナライザーで100MHzまでのインダクタ
ンスと抵抗を測定し、それらの値から透磁率の実数分
μ'と虚数分μ''を算出して結果を表1に示した。
Each rubber sheet was punched into an outer diameter of 7 mm and an inner diameter of 3 mm, wound with 12 turns, and measured for inductance and resistance up to 100 MHz with an impedance analyzer. 'And the imaginary number μ''were calculated and the results are shown in Table 1.

【0028】[0028]

【表1】 [Table 1]

【0029】一般に高い電磁波シールド効果を実現する
ためには、透磁率の実数分μ'が高いことが要求され、
一方、高い電磁吸収効果を実現するためには、透磁率の
実数分μ'と虚数分μ''が共に高いことが要求される。
表1の結果からも明らかなように、本発明の軟磁性扁平
状粉末を使用したものは、透磁率の実数分、虚数分のい
ずれをも高い値にすることが可能となる。とくに、実施
例3では原料粉末の酸素含有量を0.03質量%と非常に低
く抑えることにより、扁平状粉末の酸素含有量も低い値
に維持することができ、TD/Dの値を高くすることができ
る。さらに、実施例4では原料粉末のD50を45と高い値
にすることにより、扁平化処理工程において扁平化が優
先して進行し、電磁気特性を向上させることができるこ
とが確認された。
In general, in order to realize a high electromagnetic wave shielding effect, it is required that the real number of magnetic permeability μ'is high,
On the other hand, in order to realize a high electromagnetic absorption effect, it is required that both the real part μ ′ and the imaginary part μ ″ of the magnetic permeability are high.
As is clear from the results shown in Table 1, those using the soft magnetic flat powder of the present invention can have high values for both the real number and the imaginary number of the magnetic permeability. Particularly, in Example 3, by keeping the oxygen content of the raw material powder as low as 0.03% by mass, the oxygen content of the flat powder can be maintained at a low value, and the TD / D value should be increased. You can Furthermore, in Example 4, it was confirmed that by setting the D50 of the raw material powder to a high value of 45, flattening preferentially progressed in the flattening treatment step, and the electromagnetic characteristics could be improved.

【0030】それに対し、機械粉砕法により得られた原
料粉末を使用した場合(比較例1)は当初のTD/Dが0.42
と低く、酸素含有量が0.15と高いため、扁平化工程にお
いても粉砕が進行し、TD/Dを上げることができず、扁平
度は15と低い値になっている。また酸素含有量も0.25
と大きく、表面酸化が進むことによって、電磁気特性が
低下していることが確認された。
On the other hand, when the raw material powder obtained by the mechanical pulverization method was used (Comparative Example 1), the initial TD / D was 0.42.
Since the oxygen content is as high as 0.15, the pulverization progresses even in the flattening step, TD / D cannot be increased, and the flatness is as low as 15. The oxygen content is also 0.25
It was confirmed that the electromagnetic characteristics were deteriorated due to the progress of surface oxidation.

【0031】比較例2は、ガスアトマイズ法を使用し
て、原料粉末を酸化させたもので原料粉末の酸素含有量
が多く、表面酸化膜の影響で扁平化処理時に粉砕が進
み、得られた扁平状粉末のTD/Dが低くなっている。比較
例3は同じくガスアトマイズ法で得られた原料粉末を使
用しているが、扁平化の処理時間を短くして得られた扁
平状粉末のTD/Dを0.35を高くしたものである。当然のこ
とながら扁平化が十分に行われず、扁平度が14と低
く、電磁気特性も低い。
Comparative Example 2 was obtained by oxidizing the raw material powder by using the gas atomizing method, and the raw material powder had a large oxygen content, and the pulverization proceeded during the flattening treatment due to the influence of the surface oxide film, and the obtained flattened surface was obtained. TD / D of powdery powder is low. Comparative Example 3 also uses the raw material powder obtained by the gas atomization method, but the TD / D of the flattened powder obtained by shortening the flattening treatment time is increased to 0.35. As a matter of course, the flattening is not sufficiently performed, the flatness is as low as 14, and the electromagnetic characteristics are also low.

【0032】比較例4は、扁平化処理時に分散媒として
水溶性溶剤を使用したものである。そのため、扁平状粉
末が処理中に酸化して酸素量が0.20質量%まで増大し、
その結果電磁気特性が低くなった。さらに、比較例5は
扁平化処理時に処理時間を長くしたものである。その結
果粉砕が進みTD/Dが小さい。また酸素含有量も高く、電
磁気特性が低い。
In Comparative Example 4, a water-soluble solvent was used as a dispersion medium during the flattening treatment. Therefore, the flattened powder is oxidized during the treatment and the amount of oxygen increases to 0.20% by mass.
As a result, the electromagnetic characteristics became poor. Further, in Comparative Example 5, the processing time was lengthened during the flattening process. As a result, crushing progresses and TD / D is small. It also has a high oxygen content and low electromagnetic properties.

【0033】[0033]

【発明の効果】以上の説明から明らかなように、本発明
の軟磁性扁平状粉末は酸素含有量が低くしかも高い扁平
度を有するため、電磁シールド材、電波吸収体として使
用した際の電磁気特性に優れており、その工業的価値は
極めて大である。
As is apparent from the above description, the soft magnetic flat powder of the present invention has a low oxygen content and a high flatness, and therefore has an electromagnetic characteristic when used as an electromagnetic shield material or a radio wave absorber. And its industrial value is extremely high.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明における扁平状粉末の扁平度の算出方法
を説明するための模式図である。
FIG. 1 is a schematic diagram for explaining a method of calculating a flatness of a flat powder according to the present invention.

【符号の説明】[Explanation of symbols]

1 扁平状粉末 S 短軸長 L 長軸長 dmax 最大厚み dmin 最小厚み1 Flat powder S Minor axis length L Major axis length d max Maximum thickness d min Minimum thickness

───────────────────────────────────────────────────── フロントページの続き (72)発明者 矢萩 慎一郎 愛知県名古屋市港区竜宮町10番地 大同特 殊鋼株式会社築地工場内 Fターム(参考) 4K017 AA03 AA04 BA03 BA06 CA01 CA03 DA02 EB00 EK01 FA14 4K018 BA04 BA13 BB01 BC08 BD01 BD05 KA42 5E041 AA11 AA14 AA17 HB17 NN01 NN06    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Shinichiro Yahagi             Daido Special, 10 Ryugucho, Minato-ku, Nagoya City, Aichi Prefecture             Special Steel Co., Ltd., Tsukiji Factory F-term (reference) 4K017 AA03 AA04 BA03 BA06 CA01                       CA03 DA02 EB00 EK01 FA14                 4K018 BA04 BA13 BB01 BC08 BD01                       BD05 KA42                 5E041 AA11 AA14 AA17 HB17 NN01                       NN06

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 軟磁性粉末を扁平化処理することにより
得られた扁平状粉末であって、前記扁平状粉末を所定容
量の容器に充填し、所定回数の振動を与えたときの嵩密
度(タップ密度:TD)と比重(D)との比(TD/D)が0.1
〜0.25で、かつ、酸素含有量が0.15質量%以下であるこ
とを特徴とする軟磁性扁平状粉末。
1. A flattened powder obtained by flattening a soft magnetic powder, wherein the flattened powder is filled in a container of a predetermined volume and subjected to a predetermined number of vibrations to obtain a bulk density ( Tap density: TD) and specific gravity (D) ratio (TD / D) is 0.1
~ 0.25, and oxygen content is 0.15 mass% or less, a soft magnetic flat powder.
【請求項2】 前記扁平化処理前の前記軟磁性粉末のタ
ップ密度(TD)と比重(D)との比(TD/D)が0.6以上で
ある請求項1記載の軟磁性扁平状粉末。
2. The soft magnetic flat powder according to claim 1, wherein the ratio (TD / D) between the tap density (TD) and the specific gravity (D) of the soft magnetic powder before the flattening treatment is 0.6 or more.
【請求項3】 前記扁平化処理前の前記軟磁性粉末の酸
素含有量が0.10質量%以下である請求項1または2記載
の軟磁性扁平状粉末。
3. The soft magnetic flat powder according to claim 1, wherein the oxygen content of the soft magnetic powder before the flattening treatment is 0.10 mass% or less.
【請求項4】 前記扁平化処理前の前記軟磁性粉末の平
均粒径(D50)が40μm以上である請求項1〜3いずれ
かに記載の軟磁性扁平状粉末。
4. The soft magnetic flat powder according to claim 1, wherein the soft magnetic powder before the flattening treatment has an average particle diameter (D50) of 40 μm or more.
【請求項5】 前記扁平化処理前の前記軟磁性粉末がガ
ス噴霧法により製造されたものである請求項1〜4いず
れかに記載の軟磁性扁平状粉末。
5. The soft magnetic flat powder according to claim 1, wherein the soft magnetic powder before the flattening treatment is produced by a gas atomization method.
【請求項6】 次式で表される前記軟磁性扁平状粉末の
扁平度F: F=(L+S)/(dmax+dmin) (ただし、式中、Lは前記扁平状粉末の面方向の長軸
長、Sは同じく面方向の短軸長を示し、dmaxは前記扁
平状粉末の最大厚み、dminは同じく最小厚みを示す)
が、20以上である請求項1〜5いずれかに記載の軟磁
性扁平状粉末。
6. A flatness F of the soft magnetic flat powder represented by the following formula: F = (L + S) / (d max + d min ) (where L is a plane direction of the flat powder) The major axis length, S also represents the minor axis length in the surface direction, d max represents the maximum thickness of the flat powder, and d min also represents the minimum thickness.)
Is 20 or more, The soft magnetic flat powder according to claim 1.
JP2001303529A 2001-09-28 2001-09-28 Soft magnetic flat-shaped powder Pending JP2003105403A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001303529A JP2003105403A (en) 2001-09-28 2001-09-28 Soft magnetic flat-shaped powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001303529A JP2003105403A (en) 2001-09-28 2001-09-28 Soft magnetic flat-shaped powder

Publications (1)

Publication Number Publication Date
JP2003105403A true JP2003105403A (en) 2003-04-09

Family

ID=19123602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001303529A Pending JP2003105403A (en) 2001-09-28 2001-09-28 Soft magnetic flat-shaped powder

Country Status (1)

Country Link
JP (1) JP2003105403A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005213621A (en) * 2004-01-30 2005-08-11 Sumitomo Electric Ind Ltd Soft magnetic material and powder magnetic core
JP2005307291A (en) * 2004-04-22 2005-11-04 Alps Electric Co Ltd Amorphous soft-magnetic alloy powder, and powder magnetic core and electromagnetic wave absorber using it
JP2010010501A (en) * 2008-06-30 2010-01-14 Hitachi Ltd Oriented dust core
JP2012009797A (en) * 2010-06-28 2012-01-12 Mate Co Ltd Soft magnetic resin composition and electromagnetic wave absorber
US20130089749A1 (en) * 2011-10-08 2013-04-11 The Boeing Company System and method for reducing the bulk density of metal powder
WO2014185443A1 (en) * 2013-05-16 2014-11-20 山陽特殊製鋼株式会社 Soft-magnetic flat powder for magnetic sheet, magnetic sheet using same, and production method for soft-magnetic flat powder
CN107077938A (en) * 2014-10-02 2017-08-18 山阳特殊制钢株式会社 The flat powder of soft magnetism and its manufacture method
JP2020015936A (en) * 2018-07-24 2020-01-30 山陽特殊製鋼株式会社 Powder for magnetic member

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005213621A (en) * 2004-01-30 2005-08-11 Sumitomo Electric Ind Ltd Soft magnetic material and powder magnetic core
WO2005072894A1 (en) * 2004-01-30 2005-08-11 Sumitomo Electric Industries, Ltd. Soft magnetic material and dust core
JP2005307291A (en) * 2004-04-22 2005-11-04 Alps Electric Co Ltd Amorphous soft-magnetic alloy powder, and powder magnetic core and electromagnetic wave absorber using it
JP4562022B2 (en) * 2004-04-22 2010-10-13 アルプス・グリーンデバイス株式会社 Amorphous soft magnetic alloy powder and powder core and electromagnetic wave absorber using the same
JP2010010501A (en) * 2008-06-30 2010-01-14 Hitachi Ltd Oriented dust core
JP2012009797A (en) * 2010-06-28 2012-01-12 Mate Co Ltd Soft magnetic resin composition and electromagnetic wave absorber
US20130089749A1 (en) * 2011-10-08 2013-04-11 The Boeing Company System and method for reducing the bulk density of metal powder
US9555473B2 (en) * 2011-10-08 2017-01-31 The Boeing Company System and method for increasing the bulk density of metal powder
US10596629B2 (en) 2011-10-08 2020-03-24 The Boeing Company System for increasing the bulk density of metal powder
WO2014185443A1 (en) * 2013-05-16 2014-11-20 山陽特殊製鋼株式会社 Soft-magnetic flat powder for magnetic sheet, magnetic sheet using same, and production method for soft-magnetic flat powder
JP2014225548A (en) * 2013-05-16 2014-12-04 山陽特殊製鋼株式会社 Soft magnetic flat powder for magnetic sheet having high magnetic permeability excellent in smoothness on sheet surface, magnetic sheet using the same, and method of manufacturing soft magnetic flat powder
CN105122390A (en) * 2013-05-16 2015-12-02 山阳特殊制钢株式会社 Soft-magnetic flat powder for magnetic sheet, magnetic sheet using same, and production method for soft-magnetic flat powder
CN107077938A (en) * 2014-10-02 2017-08-18 山阳特殊制钢株式会社 The flat powder of soft magnetism and its manufacture method
US10586637B2 (en) 2014-10-02 2020-03-10 Sanyo Special Steel Co., Ltd. Soft magnetic flattened powder and method for producing the same
JP2020015936A (en) * 2018-07-24 2020-01-30 山陽特殊製鋼株式会社 Powder for magnetic member

Similar Documents

Publication Publication Date Title
JP5617173B2 (en) Method for producing flat soft magnetic powder and electromagnetic wave absorber
JP6788328B2 (en) Flat soft magnetic powder and its manufacturing method
JP6380769B2 (en) Soft magnetic metal powder and soft magnetic metal powder core.
JP6757117B2 (en) Soft magnetic flat powder and its manufacturing method
JP5299983B2 (en) Porous iron powder, method for producing porous iron powder, electromagnetic wave absorber
JP2009266960A (en) Flat soft magnetic material, and manufacturing method thereof
JP6442236B2 (en) Soft magnetic flat powder and method for producing the same
KR102369149B1 (en) Magnetic flat powder and magnetic sheet containing same
JP6742440B2 (en) MnCoZn ferrite and method for producing the same
JP2003105403A (en) Soft magnetic flat-shaped powder
JP2007046074A5 (en)
JP6955685B2 (en) Soft magnetic metal powder and its manufacturing method
JP6882905B2 (en) Soft magnetic flat powder
JP2003332113A (en) Flat soft magnetic powder and composite magnetic sheet using the same
WO2018143472A1 (en) Soft magnetic flat powder
JP2018031041A (en) Soft magnetic metal powder body and composite magnetic sheet body containing the same
WO2018079498A1 (en) Flat powder for high frequency applications and magnetic sheet
JP7165690B2 (en) Method for producing flat soft magnetic powder
JP7133666B2 (en) Soft magnetic flat powder
JPWO2019167393A1 (en) MnCoZn ferrite and method for producing the same
JP7282331B2 (en) Method for producing magnet powder and magnet powder
JP5331425B2 (en) Method for producing soft magnetic ferrite particles
WO2019167393A1 (en) Mncozn ferrite and production method for same
Wang et al. Crystallization kinetics and magnetic properties of Fe73. 5Si13. 5B9Cu1Nb1V2 nanocrystalline powder cores
JP2002294302A (en) Iron powder for magnetic material, and its manufacturing method