JP2003103457A - Work holding board for polishing and polishing device and polishing method for work - Google Patents

Work holding board for polishing and polishing device and polishing method for work

Info

Publication number
JP2003103457A
JP2003103457A JP2001302859A JP2001302859A JP2003103457A JP 2003103457 A JP2003103457 A JP 2003103457A JP 2001302859 A JP2001302859 A JP 2001302859A JP 2001302859 A JP2001302859 A JP 2001302859A JP 2003103457 A JP2003103457 A JP 2003103457A
Authority
JP
Japan
Prior art keywords
work
polishing
resin
holding
holding plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001302859A
Other languages
Japanese (ja)
Other versions
JP4464019B2 (en
Inventor
Hisashi Masumura
寿 桝村
Fumio Suzuki
文夫 鈴木
Koji Kitagawa
幸司 北川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP2001302859A priority Critical patent/JP4464019B2/en
Priority to KR10-2004-7003543A priority patent/KR20040031071A/en
Priority to PCT/JP2002/010063 priority patent/WO2003030232A1/en
Priority to CNB028192095A priority patent/CN1312740C/en
Priority to EP20020768116 priority patent/EP1437767A1/en
Priority to US10/490,480 priority patent/US8268114B2/en
Publication of JP2003103457A publication Critical patent/JP2003103457A/en
Application granted granted Critical
Publication of JP4464019B2 publication Critical patent/JP4464019B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a polishing device and a polishing method for a work, particularly a polishing work holding board for polishing so that there are no irregular parts of a nanotopography level. SOLUTION: The work holding board for polishing is provided with a work holding board body having a plurality of through holes holding the work by vacuum suction and a holding face of the holding board body is covered by resin. A coefficient of thermal expansion of the resin covering the holding face is <=3×10<-5> /K. The polishing device for the work is provided with the work holding board for polishing. In the polishing method for the work, the resin with the coefficient of thermal expansion of <=3×10<-5> /K covers the holding face of the work holding board for polishing holding the work by vacuum suction, a rear face of the work is held by vacuum suction by the holding face, the work is contacted to abrasive cloth, and a surface of the work is polished.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、ワークの研磨装置
及び研磨方法に関し、特にワークを保持するための研磨
用ワーク保持盤に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polishing device and a polishing method for a work, and more particularly to a work holding plate for holding a work.

【0002】[0002]

【従来の技術】従来、半導体基板材料として用いられる
シリコンウエーハ等のワークの製造方法は、一般にチョ
クラルスキー(Czochralski;CZ )法や浮遊帯域溶融
(Floating Zone;FZ )法等を使用して単結晶インゴッ
トを製造する結晶成長工程と、この単結晶インゴットを
スライスし、少なくとも一主面が鏡面状に加工されるウ
エーハ加工工程を経る。更に詳しくウエーハ加工工程を
示すと、ウエーハ加工工程は、単結晶インゴットをスラ
イスして薄円板状のウエーハを得るスライス工程と、該
スライス工程によって得られたウエーハの割れ、欠けを
防止するためにその外周部を面取りする面取り工程と、
このウエーハを平坦化するラッピング工程と、面取り及
びラッピングされたウエーハに残留する加工歪みを除去
するエッチング工程と、そのウエーハ表面を鏡面化する
研磨(ポリシング)工程と、研磨されたウエーハを洗浄
して、これに付着した研磨剤や異物を除去する洗浄工程
を有している。上記ウエーハ加工工程は、主な工程を示
したもので、他に熱処理工程等の工程が加わったり、同
じ工程を多段で行なったり、工程順が入れ換えられたり
する。
2. Description of the Related Art Conventionally, a method of manufacturing a work such as a silicon wafer used as a semiconductor substrate material is generally performed by using a Czochralski (CZ) method or a floating zone (FZ) method. A crystal growth step of manufacturing a crystal ingot and a wafer processing step of slicing the single crystal ingot and processing at least one main surface into a mirror surface are performed. To show the wafer processing step in more detail, the wafer processing step is a slicing step of slicing the single crystal ingot to obtain a thin disk-shaped wafer, and the cracking of the wafer obtained by the slicing step, in order to prevent chipping. A chamfering step for chamfering the outer peripheral portion,
A lapping process for flattening this wafer, an etching process for removing chamfering and processing strain remaining on the lapping wafer, a polishing (polishing) process for mirror-finishing the surface of the wafer, and a cleaning of the polished wafer , And has a cleaning step for removing the abrasive and the foreign matter adhering thereto. The above-mentioned wafer processing step shows the main steps, and other steps such as a heat treatment step may be added, the same step may be performed in multiple stages, or the order of steps may be changed.

【0003】これらの工程のうち、研磨(ポリシング)
工程では現在のところガラスやセラミック等のプレート
に複数枚のウエーハをワックスで貼り付けて片面を研磨
するワックスマウントバッチ式片面研磨装置が主流であ
る。この装置では、ウエーハの保持されたプレートを、
研磨パッドを貼った定盤上に置き、上部トップリングに
荷重を掛けて、定盤およびトップリングを回転させなが
ら研磨を行なう。この他にもいろいろな形態の研磨装置
がある。例えば、上下定盤間にウエーハを挟み込んで両
面を同時に鏡面化する両面研磨方式や1枚ずつウエーハ
をプレートに真空吸着保持して研磨する枚葉方式、ウエ
ーハをワックス等の接着剤を使用しないで、バッキング
パッドとテンプレートで保持しつつ研磨するワックスフ
リー研磨方式など様々な方式がある。
Of these processes, polishing (polishing)
In the process, a wax mount batch type single-side polishing machine is currently mainstream in which a plurality of wafers are attached to a plate such as glass or ceramic with wax to polish one side. In this device, the plate holding the wafer is
Place on a surface plate with a polishing pad attached, apply a load to the upper top ring, and perform polishing while rotating the surface plate and top ring. In addition to this, there are various types of polishing devices. For example, a double-sided polishing method in which a wafer is sandwiched between upper and lower surface plates so that both surfaces are mirror-finished at the same time, a single-wafer method in which wafers are vacuum-adsorbed and held on a plate one by one, and the wafer is not used with an adhesive such as wax There are various methods such as a wax-free polishing method in which a backing pad and a template hold and polish.

【0004】特に近年では、ウエーハ(ワーク)の大口
径化に伴い1枚ずつウエーハをウエーハ保持盤(プレー
ト)に真空吸着保持して研磨する枚葉方式が行われてい
る。例えばこの様な方式の研磨装置の一例を説明する。
図1は真空吸着方式でウエーハを保持する枚葉研磨ヘッ
ドを具備した研磨装置の構成概要を説明するための説明
図である。
In particular, in recent years, a wafer-by-wafer method has been adopted in which wafers are vacuum-sucked and held on a wafer holding plate (plate) one by one as the diameter of the wafer (work) increases. For example, an example of such a polishing apparatus will be described.
FIG. 1 is an explanatory diagram for explaining the outline of the configuration of a polishing apparatus equipped with a single-wafer polishing head that holds a wafer by a vacuum suction method.

【0005】この研磨装置20は、ワークW、例えば半
導体シリコンウエーハの片面を研磨する装置として構成
され、回転する定盤21と研磨ヘッド10に装着した研
磨用ワーク保持盤1とノズル(研磨剤供給管)23を具
備している。定盤21の上面には研磨布(研磨パッド)
22が貼付してある。定盤21は回転軸により所定の回
転速度で回転される。
The polishing device 20 is configured as a device for polishing one surface of a work W, for example, a semiconductor silicon wafer, and includes a rotating work table 21, a polishing work holding board 1 mounted on a polishing head 10, a nozzle (a polishing agent supply). Tube) 23. A polishing cloth (polishing pad) is provided on the upper surface of the platen 21.
22 is attached. The surface plate 21 is rotated at a predetermined rotation speed by a rotation shaft.

【0006】そして、ワーク保持盤1は、真空吸着等に
よりそのワーク保持面8にワーク(ウエーハ)Wを保持
し、回転軸をもつ研磨ヘッド10に装着され、研磨ヘッ
ド10により回転されると同時に所定の荷重で研磨布2
2にワークWを押しつける。研磨剤24の供給はノズル
23から所定の流量で研磨布22上に供給し、この研磨
剤24がワークWと研磨布22の間に供給されることに
よりワークWが研磨される。
The work holding plate 1 holds a work (wafer) W on its work holding surface 8 by vacuum suction or the like, is mounted on a polishing head 10 having a rotating shaft, and is rotated by the polishing head 10 at the same time. Polishing cloth 2 with a predetermined load
Press work W against 2. The polishing agent 24 is supplied from the nozzle 23 onto the polishing cloth 22 at a predetermined flow rate, and the polishing agent 24 is supplied between the work W and the polishing cloth 22 to polish the work W.

【0007】さらに、ワーク保持盤1は、ワーク保持面
8と多数の真空吸着用の貫通孔4を有するワーク保持盤
本体2およびワーク保持盤裏板5とから構成され、貫通
孔4はワーク保持盤本体2と裏板5の間にある空間部
(真空部)6を経て吸引路7から真空装置につながり、
真空の発生によってワーク保持面8にワークWを吸着保
持するようになっている。この吸着保持機構はウエーハ
の搬送時などにも使われる。
Further, the work holding plate 1 comprises a work holding surface 8 and a work holding plate body 2 having a large number of through holes 4 for vacuum suction and a work holding plate back plate 5, and the through holes 4 hold the work. The space between the board body 2 and the back plate 5 (vacuum part) 6 leads from the suction path 7 to the vacuum device,
The work W is sucked and held on the work holding surface 8 by the generation of vacuum. This suction holding mechanism is also used when the wafer is transported.

【0008】ワーク保持盤本体2のワーク保持面8は、
貫通孔4を有する樹脂層3で被覆したものとなってい
る。これは、金属やセラミックス等のワーク保持盤本体
2の表面に直接ワークを保持すると、ワーク裏面に傷や
汚れが発生するため、それを防止する目的でワーク保持
盤本体2の表面に数十μm〜数mmの極薄のテフロン
(登録商標)、ナイロン等の商標で知られている材料や
塩化ビニール等の樹脂皮膜を被覆したり、真空吸着用の
孔を開けたアクリル樹脂板をワーク保持盤本体2表面に
接着し、その表面を研磨加工したワーク保持盤等が用い
られている。特に、熱硬化性樹脂であるエポキシ樹脂
は、被覆のし易さ、熱硬化後の皮膜物性である硬度や機
械的強度、線膨張係数等の品質の面で特に有用である。
The work holding surface 8 of the work holding plate body 2 is
It is covered with a resin layer 3 having a through hole 4. This is because when a work is directly held on the surface of the work holding plate main body 2 such as metal or ceramics, scratches or stains are generated on the back surface of the work, and the surface of the work holding plate main body 2 is tens of μm in order to prevent it. Ultra-thin Teflon (registered trademark) of a few millimeters, materials known by trademarks such as nylon, resin coatings such as vinyl chloride, and acrylic resin plates with holes for vacuum suction are held on the work holding board. A work holding plate or the like, which is adhered to the surface of the main body 2 and whose surface is polished, is used. In particular, an epoxy resin, which is a thermosetting resin, is particularly useful in terms of easiness of coating, hardness and mechanical strength which are physical properties of the film after thermosetting, and quality such as linear expansion coefficient.

【0009】また、研磨加工の場合、軟質な研磨布を用
いているために、ワーク保持盤の表面を平坦に仕上げて
も、研磨布のクリープ変形等で研磨布表面が徐々に変化
するため、研磨加工後のワークが平坦になるとは限らな
いという問題がある。そこで、上記のようにワーク保持
盤表面に薄い樹脂を被覆し、この樹脂が被覆されたワー
ク保持盤の表面を研磨することで研磨布のクリープ変形
に倣った保持盤を作製しておき、その後、この保持盤に
ワークを保持して研磨する方法も行われている。
Further, in the case of polishing, since a soft polishing cloth is used, even if the surface of the work holding plate is made flat, the surface of the polishing cloth gradually changes due to creep deformation of the polishing cloth, etc. There is a problem that the work after polishing is not always flat. Therefore, as described above, a thin resin is coated on the surface of the work holding plate, and a holding plate is produced in accordance with the creep deformation of the polishing cloth by polishing the surface of the work holding plate coated with this resin, and thereafter. A method of holding a work on the holding plate and polishing the work is also used.

【0010】研磨ヘッド10は、その回転ホルダ11の
内部に加圧空間部13を設け、弾性シート12を介して
研磨用ワーク保持盤1を気密に保持している。加圧空間
部13は加圧空気供給路14を経て空気圧縮機につなが
っている。そして研磨ヘッド10は、ワークWを樹脂層
3から成るワーク保持面8の表面に真空吸着保持してい
るワーク保持盤に回転あるいは揺動を与えると同時にワ
ーク保持盤1の背面を空気により加圧して、ワーク保持
盤1を研磨布22に押し付けるようになっている。
The polishing head 10 is provided with a pressure space 13 inside the rotary holder 11 and holds the polishing work holding plate 1 in an airtight manner via an elastic sheet 12. The pressurized space 13 is connected to the air compressor via a pressurized air supply passage 14. Then, the polishing head 10 applies rotation or swing to the work holding plate that holds the work W on the surface of the work holding surface 8 made of the resin layer 3 by vacuum suction, and at the same time pressurizes the back surface of the work holding plate 1 with air. The work holding plate 1 is pressed against the polishing cloth 22.

【0011】[0011]

【発明が解決しようとする課題】上記のような真空吸着
保持して研磨する枚葉方式の装置で研磨した場合、ウエ
ーハ表面にわずかな凹凸が観察されることがある。特に
吸着孔周りで多く観察された。これは魔鏡像による観察
や、ナノトポグラフィーと言われる微小エリアの凹凸を
評価した場合に観察されるレベルの凹凸である。
When polishing is performed by the above-mentioned single-wafer type apparatus for holding by vacuum suction and polishing, slight irregularities may be observed on the surface of the wafer. Especially, many were observed around the adsorption holes. This is the level of unevenness that is observed when observing with a magic mirror image or when evaluating unevenness in a minute area called nanotopography.

【0012】ナノトポグラフィー(ナノトポロジーとも
言われる)とは、波長が0.1mmから20mm程度で
振幅が数nmから100nm程度の凹凸のことであり、
その評価法としては1辺が0.1mmから10mm程度
の正方形、または直径が0.1mmから10mm程度の
円形のブロック範囲(この範囲はWINDOW SIZE等と呼ば
れる)の領域で、ウエーハ表面の凹凸の高低差(PV値;
peak to valley)を評価する。このPV値はNanotopograp
hy Height等とも呼ばれる。ナノトポグラフィーとして
は、特に評価したウエーハ面内に存在する凹凸の最大値
が小さいことが望まれている。
Nanotopography (also called nanotopology) is unevenness having a wavelength of about 0.1 mm to 20 mm and an amplitude of about several nm to 100 nm.
As an evaluation method, in the area of a square block having a side of about 0.1 mm to 10 mm or a circular block having a diameter of about 0.1 mm to 10 mm (this range is called WINDOW SIZE etc.) Height difference (PV value;
Evaluate peak to valley). This PV value is Nanotopograp
Also called hy height. For nanotopography, it is particularly desired that the maximum value of the unevenness present in the evaluated wafer surface is small.

【0013】デバイス製造工程でウエーハ上に金属配線
を形成し、その上に絶縁膜を形成し、その絶縁膜を研磨
するなどの処理を繰り返すと上記の様なレベルの凹凸の
存在も問題になりつつある。特に、高集積デバイス工程
においては、リソグラフィ露光におけるフォーカス不良
の原因ともなり、高集積デバイスの歩留り低下を招き、
問題であった。
When metal wiring is formed on a wafer in a device manufacturing process, an insulating film is formed on the metal wiring, and the insulating film is polished, the presence of the unevenness at the above level becomes a problem. It's starting. In particular, in the high-integrated device process, it may cause focus failure in lithography exposure, leading to a decrease in the yield of high-integrated devices,
It was a problem.

【0014】本発明は、上記事情を鑑みなされたもので
あって、上記の様なレベルの凹凸が発生しない様に研磨
するための研磨装置及び研磨方法、特に研磨用ワーク保
持盤を提供することを目的とする。
The present invention has been made in view of the above circumstances, and provides a polishing apparatus and a polishing method for polishing such that the above-mentioned level of unevenness does not occur, particularly a polishing work holding plate. With the goal.

【0015】[0015]

【課題を解決するための手段】上記課題を解決するため
の本発明は、ワークを真空吸着保持する多数の貫通孔を
有するワーク保持盤本体を具備し、該保持盤本体の保持
面が樹脂で被覆された研磨用ワーク保持盤において、前
記保持面を被覆する樹脂の熱膨張係数が3×10−5
K以下であることを特徴とする研磨用ワーク保持盤であ
る(請求項1)。
The present invention for solving the above-mentioned problems comprises a work holding plate body having a large number of through-holes for holding a work by vacuum suction, and the holding surface of the holding plate body is made of resin. In the coated polishing work holding plate, the coefficient of thermal expansion of the resin coating the holding surface is 3 × 10 −5 /
It is a polishing work holding plate characterized by being K or less (claim 1).

【0016】このような熱膨張係数が3×10−5/K
以下の低熱膨張樹脂が保持面に被覆された研磨用ワーク
保持盤は、研磨中の保持面の熱変形量が著しく小さいも
のであるため、ナノトポグラフィーの改善されたウエー
ハが製造できるものとなる。つまり、熱膨張係数が3×
10−5/K以下であれば、ナノトポグラフィーの凹凸
に影響するような吸着孔の形状変化が殆ど起こらない。
また、熱膨張係数は3×10−5/Kよりも小さく、で
きる限りワーク保持盤本体と同程度の熱膨張係数であれ
ば好ましい。
Such a coefficient of thermal expansion is 3 × 10 -5 / K
The polishing work holding plate having the following low thermal expansion resin coated on the holding surface has a remarkably small amount of thermal deformation of the holding surface during polishing, so that a wafer with improved nanotopography can be manufactured. . That is, the coefficient of thermal expansion is 3 ×
If it is 10 −5 / K or less, the shape change of the adsorption holes that affects the unevenness of the nanotopography hardly occurs.
Further, the coefficient of thermal expansion is smaller than 3 × 10 −5 / K, and it is preferable that the coefficient of thermal expansion is as similar as possible to the main body of the work holding plate.

【0017】この場合、前記保持面を被覆する樹脂の熱
伝導率が0.4W/mK以上であることが好ましい(請
求項2)。このようにワークを保持する保持面に被覆さ
れた樹脂の熱伝導率が0.4W/mK以上であると、研
磨中に発生する熱が樹脂内で均一になるとともに効果的
に放熱できるため、熱変形によるナノトポグラフィーの
悪化をより効果的に防止できるものとなる。従って熱伝
導率について特に上限を限定するものではない。樹脂の
材質及びそれに添加する添加剤及び添加量(添加可能
量)等により上限は決まってしまうが、熱伝導率が高け
れば高い程、樹脂コーティング層の表裏の温度差が生じ
にくくなり樹脂層の熱変形が抑えられ好ましい。0.4
W/mK以上であればナノトポグラフィーの凹凸に影響
するような吸着孔の形状変化が殆ど起こらない。なお、
本発明でいう樹脂の熱伝導率はJIS R1611に準拠し
た方法により評価した値である。
In this case, it is preferable that the resin coating the holding surface has a thermal conductivity of 0.4 W / mK or more (claim 2). When the thermal conductivity of the resin coated on the holding surface for holding the work is 0.4 W / mK or more, the heat generated during polishing becomes uniform in the resin and can be effectively radiated. It is possible to more effectively prevent deterioration of nanotopography due to thermal deformation. Therefore, the upper limit of the thermal conductivity is not particularly limited. The upper limit is determined by the material of the resin, the additive to be added to it, the amount added (the amount that can be added), etc., but the higher the thermal conductivity, the more difficult the temperature difference between the front and back of the resin coating layer is Thermal deformation is suppressed, which is preferable. 0.4
If it is W / mK or more, the shape change of the adsorption holes that affects the unevenness of the nanotopography hardly occurs. In addition,
The thermal conductivity of the resin referred to in the present invention is a value evaluated by a method according to JIS R1611.

【0018】この場合、前記保持面を被覆する樹脂が、
シリカを充填したエポキシ樹脂であることが好ましい
(請求項3)。このように保持面を被覆する樹脂が、熱
伝導調整剤としてシリカを充填したエポキシ樹脂であれ
ば、保持面の熱膨張係数が小さくなり、また熱伝導性が
増し好ましい。特にシリカは、従来、保持面を被覆する
エポキシ樹脂に充填されていた炭酸カルシウム(充填量
は50重量%程度が限界)より多くの量を充填可能であ
り、更に熱膨張係数も大変小さいことから保持面の熱膨
張係数をより低下させることができるため好ましい。
In this case, the resin coating the holding surface is
It is preferably an epoxy resin filled with silica (claim 3). When the resin coating the holding surface is an epoxy resin filled with silica as a heat conduction adjusting agent, the coefficient of thermal expansion of the holding surface is reduced and the thermal conductivity is increased, which is preferable. In particular, silica can be filled in a larger amount than calcium carbonate (the filling amount is limited to about 50% by weight), which has been conventionally filled in the epoxy resin coating the holding surface, and the coefficient of thermal expansion is very small. This is preferable because the thermal expansion coefficient of the holding surface can be further reduced.

【0019】この場合、前記エポキシ樹脂に充填される
シリカが、エポキシ樹脂の60重量%以上であることが
好ましい(請求項4)。このようにエポキシ樹脂に充填
されるシリカが、エポキシ樹脂の60重量%以上であれ
ば、充分に熱膨張係数が小さくなり熱伝導性が増すた
め、確実に樹脂の熱膨張係数が3×10−5/K以下、
熱伝導率が0.4W/mK以上のものとなり、好まし
い。
In this case, the silica filled in the epoxy resin is preferably 60% by weight or more of the epoxy resin (claim 4). When the silica filled in the epoxy resin is 60% by weight or more of the epoxy resin, the coefficient of thermal expansion is sufficiently small and the thermal conductivity is increased, so that the coefficient of thermal expansion of the resin is 3 × 10 −. 5 / K or less,
The thermal conductivity is preferably 0.4 W / mK or more, which is preferable.

【0020】この場合、前記エポキシ樹脂に充填される
シリカが、粒径1〜10μmの粒状であることが好まし
い(請求項5)。1μm未満の小さなシリカ粒子の場
合、充填された樹脂の粘度が上昇し、樹脂中にあまり多
くのシリカが充填されない。また10μmを超える大き
なシリカ粒子の場合には、コーティングした樹脂表面の
凹凸が大きくなり、その表面にウエーハを保持するとナ
ノトポロジーを悪化させてしまう恐れがある。よって充
填されるシリカ粒子は、粒径1〜10μm程度のものが
好ましい。更に10μm程度で球形に近い大きなシリカ
粒子と1〜3μm程度で球形に近い小さい粒子が充填さ
れた場合、より充填量を増やしたものとすることが可能
であり、熱膨張係数をより小さく、熱伝導率をより高く
したものとすることが出来る。
In this case, the silica filled in the epoxy resin is preferably in the form of particles having a particle size of 1 to 10 μm (claim 5). In the case of small silica particles of less than 1 μm, the viscosity of the filled resin increases, and the resin is not filled with too much silica. Further, in the case of large silica particles having a size of more than 10 μm, the surface roughness of the coated resin becomes large, and holding the wafer on the surface may deteriorate the nanotopology. Therefore, the silica particles to be filled preferably have a particle size of about 1 to 10 μm. Furthermore, when large silica particles having a shape close to a sphere having a size of about 10 μm and small particles having a shape close to a sphere having a size of about 1 to 3 μm are packed, it is possible to further increase the packing amount, thereby reducing the coefficient of thermal expansion and reducing the thermal expansion coefficient. The conductivity can be made higher.

【0021】そして、本発明の研磨用ワーク保持盤を具
備するワークの研磨装置(請求項6)は、研磨用ワーク
保持盤表面の樹脂層が熱変形を起こしにくいため、研磨
するワークのナノトポグラフィーを向上させることがで
きる。特に、シリコンウエーハをワークとして研磨した
場合は、高集積デバイス工程でのリソグラフィ露光にお
けるフォーカス不良を低減することが可能であり、高集
積デバイスの歩留り向上を図ることができる。
Further, according to the present invention, there is provided a polishing apparatus for a work, comprising a polishing work holding plate (claim 6), wherein the resin layer on the surface of the polishing work holding plate is less likely to be thermally deformed. The graph can be improved. In particular, when a silicon wafer is polished as a work, it is possible to reduce focus defects in lithography exposure in the highly integrated device process, and it is possible to improve the yield of highly integrated devices.

【0022】そして本発明は、ワークを真空吸着保持す
る研磨用ワーク保持盤の保持面に熱膨張係数が3×10
−5/K以下の樹脂を被覆し、該保持面によりワークの
裏面を真空吸着保持し、次いで該ワークを研磨布に接触
させてワークの表面を研磨することを特徴とするワーク
の研磨方法である(請求項7)。
According to the present invention, the coefficient of thermal expansion is 3 × 10 on the holding surface of the polishing work holding plate which holds the work by vacuum suction.
A method for polishing a work, which comprises coating a resin of -5 / K or less, vacuum holding the back surface of the work by the holding surface, and then bringing the work into contact with a polishing cloth to polish the surface of the work. There is (claim 7).

【0023】このように、研磨用ワーク保持盤の保持面
に熱膨張係数が3×10−5/K以下の樹脂を被覆する
ことにより、熱変形量を小さくすることが可能となり、
ナノトポグラフィーの改善された研磨をすることができ
る。
As described above, by coating the holding surface of the polishing work holding plate with a resin having a thermal expansion coefficient of 3 × 10 −5 / K or less, the amount of thermal deformation can be reduced.
Improved polishing of nanotopography is possible.

【0024】この場合、前記保持面に被覆する樹脂の熱
伝導率が0.4W/mK以上のものとすることが好まし
い(請求項8)。このように保持面に被覆する樹脂の熱
伝導率を0.4W/mK以上にすると研磨中に発生する
熱を樹脂内で均一にすることができるとともに、効率的
に熱を伝導して放熱できるため、さらに熱変形による異
常が防止でき、ナノトポグラフィーの改善されたウエー
ハが製造できる。
In this case, it is preferable that the resin coating the holding surface has a thermal conductivity of 0.4 W / mK or more (claim 8). When the thermal conductivity of the resin coating the holding surface is 0.4 W / mK or more, the heat generated during polishing can be made uniform in the resin and the heat can be efficiently conducted and radiated. Therefore, abnormalities due to thermal deformation can be further prevented, and a wafer with improved nanotopography can be manufactured.

【0025】また、この場合、ワークの裏面を真空吸着
保持する前に、前記研磨用ワーク保持盤の樹脂で被覆さ
れた保持面を前記研磨布に接触させて研磨した後、該保
持面によりワークの裏面を真空吸着保持し、次いで該ワ
ークを前記研磨布に接触させてワークの表面を研磨する
ことが好ましい(請求項9)。
Further, in this case, before the back surface of the work is vacuum-sucked and held, the holding surface of the polishing work holding plate coated with the resin is brought into contact with the polishing cloth to polish the work, and then the work is held by the holding surface. It is preferable to hold the back surface of the workpiece by vacuum suction and then bring the workpiece into contact with the polishing cloth to polish the surface of the workpiece (claim 9).

【0026】このようにワークの裏面を真空吸着保持す
る前に、前記研磨用ワーク保持盤の樹脂で被覆された保
持面を前記研磨布に接触させて研磨し、保持面の形状を
研磨布の形状に倣わせることにより、研磨布の研磨時に
おける変形の影響によるワーク平坦度の狂いを是正する
ことができ、特にウエーハ等の薄いワークの平坦度の向
上に有効なものとなる。
As described above, before the back surface of the work is vacuum-sucked and held, the holding surface of the polishing work holding plate covered with the resin is brought into contact with the polishing cloth to polish the shape of the holding surface. By following the shape, it is possible to correct the deviation of the flatness of the work due to the influence of the deformation of the polishing cloth during polishing, which is particularly effective for improving the flatness of a thin work such as a wafer.

【0027】以下、本発明についてさらに詳述するが、
本発明はこれらに限定されるものではない。本発明者
が、ワークの研磨工程におけるナノトポグラフィーの悪
化の原因を鋭意調査したところ、ワーク保持面に被覆し
てある樹脂に熱が蓄積し、保持面が変形してしまうこと
が原因であることが明らかになった。そして、この現象
は特に吸着孔付近で顕著であることが判った。
The present invention will be described in more detail below.
The present invention is not limited to these. The present inventor has conducted an intensive investigation on the cause of deterioration of nanotopography in the polishing process of the work, and the cause is that heat is accumulated in the resin coating the work holding surface and the holding surface is deformed. It became clear. Then, it was found that this phenomenon was remarkable especially near the adsorption holes.

【0028】例えば、図2(a)に示したような研磨用
ワーク保持盤においては、エポキシ樹脂からなる樹脂層
3について、ウエーハを保持する面側の温度T1と、S
iC等のセラミックスからなるワーク保持盤本体2と接
触する側の温度T2に差が生じ、樹脂層3のエポキシ樹
脂が変形してしまうことが明らかになった。またこの変
形がナノトポグラフィーレベルの凹凸に影響しているこ
とが判った。
For example, in the polishing work holding plate as shown in FIG. 2A, the temperature T1 of the surface of the resin layer 3 made of epoxy resin for holding the wafer and S
It has been revealed that a difference occurs in the temperature T2 on the side in contact with the work holding plate body 2 made of ceramics such as iC, and the epoxy resin of the resin layer 3 is deformed. It was also found that this deformation affected the nanotopography-level irregularities.

【0029】例えば、図2(b)に示すように、T1>
T2では、ウエーハを真空吸着保持したときに吸着孔付
近が窪んだ形状になってしまい、図2(c)に示すよう
に、T1<T2では、ウエーハを真空吸着保持したとき
に吸着孔付近が盛り上がった形状になってしまう。この
ため、この状態で吸着保持されたウエーハが研磨される
と、T1>T2の場合では、ウエーハの吸着孔付近が、
窪んだ状態で保持されていたために研磨量が足らなくな
ってその研磨後には盛り上がる(図2(b))。逆にT
1<T2では、ウエーハの吸着孔付近が、盛り上がった
状態で保持されていたために研磨量が大きくなって研磨
後には窪んだ形状となる(図2(c))。このような樹
脂層の変形が起こっているため、吸着孔付近でうねりが
生じナノトポグラフィーの悪化が生じると考えられる。
For example, as shown in FIG. 2B, T1>
At T2, when the wafer is vacuum-sucked and held, the vicinity of the suction hole becomes dented. As shown in FIG. 2C, when T1 <T2, the vicinity of the suction hole is held when the wafer is vacuum-sucked and held. It will become a raised shape. Therefore, when the wafer sucked and held in this state is polished, in the case of T1> T2, the vicinity of the suction hole of the wafer becomes
Since it was held in a depressed state, the polishing amount became insufficient, and the polishing amount rose after the polishing (FIG. 2B). Conversely, T
When 1 <T2, since the vicinity of the suction hole of the wafer was held in a raised state, the polishing amount was large and the wafer had a recessed shape (FIG. 2C). Due to such deformation of the resin layer, it is considered that waviness occurs near the adsorption holes and nanotopography deteriorates.

【0030】このようなナノトポグラフィーを悪化させ
ないためにはワーク保持面に被覆する樹脂の熱変形を防
止する必要がある。そのためには、樹脂の熱的特性の
内、特に熱膨張係数及び熱伝導率に注意する必要があ
る。これは、熱膨張係数が小さければ、樹脂層の表裏面
で温度差が大きくても熱変形が起こりにくく、また熱伝
導率が大きければ、研磨中に発生する熱が樹脂内で均一
になりやすくなるとともに、伝熱により効率的に熱を外
部に放熱できるため、さらに熱変形が起こりにくくなる
からである。
In order not to deteriorate such nanotopography, it is necessary to prevent thermal deformation of the resin coating the work holding surface. For that purpose, it is necessary to pay attention to the thermal expansion coefficient and the thermal conductivity among the thermal characteristics of the resin. This is because if the coefficient of thermal expansion is small, thermal deformation does not easily occur even if there is a large temperature difference between the front and back surfaces of the resin layer, and if the thermal conductivity is large, the heat generated during polishing tends to be uniform within the resin. In addition, since the heat can be efficiently dissipated to the outside by the heat transfer, thermal deformation is further unlikely to occur.

【0031】そこで、本発明者が研磨用ワーク保持盤の
熱膨張係数と熱伝導率について鋭意調査したところ、熱
膨張係数については3×10−5/K以下、熱伝導率に
ついて、0.4W/mK以上であれば、このような熱変
形が著しく小さくなる事がわかった。しかし、従来被覆
していた樹脂の熱膨張係数は5×10−5/K、熱伝導
率は0.2〜0.3W/mK程度であった。そこで熱変
形を防止するためには、何らかの手段で樹脂の熱膨張係
数を3×10−5/K以下、熱伝導率を0.4W/mK
以上にすることが必要である。
Therefore, when the present inventor diligently investigated the thermal expansion coefficient and the thermal conductivity of the polishing work holding plate, the thermal expansion coefficient was 3 × 10 −5 / K or less and the thermal conductivity was 0.4 W. It has been found that such thermal deformation is significantly reduced if it is / mK or more. However, the coefficient of thermal expansion of the resin that has been conventionally coated was 5 × 10 −5 / K, and the thermal conductivity was about 0.2 to 0.3 W / mK. Therefore, in order to prevent thermal deformation, the thermal expansion coefficient of the resin is 3 × 10 −5 / K or less and the thermal conductivity is 0.4 W / mK by some means.
It is necessary to do above.

【0032】そこで、本発明者はワーク保持盤本体に被
覆する樹脂として、従来用いられていた炭酸カルシウム
を充填した樹脂の代わりに、充填剤としてシリカを用い
ることを発想した。炭酸カルシウムはエポキシ樹脂に5
0重量%程度しか充填できないが、シリカであれば60
重量%以上充填することが可能であり、熱膨張係数も小
さいため、保持盤本体を被覆する樹脂の熱膨張係数と熱
伝導率を確実に上記範囲とすることができるからであ
る。本発明は以上のような発想に基づき、諸条件を精査
して完成したものである。
Therefore, the inventor of the present invention has conceived that silica is used as a filler instead of the conventionally used resin filled with calcium carbonate as the resin for coating the main body of the work holding plate. Calcium carbonate is 5 in epoxy resin
Can be filled only about 0% by weight, but if it is silica 60
This is because it is possible to fill the resin in a weight percentage or more and the thermal expansion coefficient is small, so that the thermal expansion coefficient and the thermal conductivity of the resin coating the holding plate body can be surely set within the above ranges. The present invention has been completed by scrutinizing various conditions based on the above idea.

【0033】[0033]

【発明の実施の形態】以下、本発明について実施の形態
を図面を参照しながら説明するが、本発明はこれらに限
定されるものではない。本発明に用いられるワーク保持
盤の製造方法の一例を図3に示したフロー図に基づいて
説明する。先ず、工程(a)で熱硬化性樹脂、例えばエ
ポキシ樹脂、及び熱伝導の調整剤、例えばシリカを攪拌
混合槽に仕込み、真空下充分脱泡して空気を除去する。
ここでエポキシ樹脂にシリカを含有させる場合は、確実
にエポキシ樹脂の熱膨張係数を3×10−5/K以下、
熱伝導率を0.4W/mK以上とするため、シリカを6
0重量%以上充填することが好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described with reference to the drawings, but the present invention is not limited thereto. An example of the method for manufacturing the work holding plate used in the present invention will be described based on the flow chart shown in FIG. First, in step (a), a thermosetting resin, for example, an epoxy resin, and a heat conduction adjusting agent, for example, silica are charged into a stirring and mixing tank and sufficiently defoamed under vacuum to remove air.
When the epoxy resin contains silica, the coefficient of thermal expansion of the epoxy resin should be 3 × 10 −5 / K or less,
In order to make the thermal conductivity 0.4 W / mK or more, silica 6
It is preferable to fill 0% by weight or more.

【0034】そのためには、充填するシリカを粒径1〜
10μmの粒状とすることが好ましい。これは、1μm
未満の小さなシリカ粒子の場合、充填された樹脂の粘度
が上昇し、樹脂中にあまり多くのシリカが充填されない
からである。また10μmを超える大きなシリカ粒子の
場合には、保持盤に被覆した樹脂表面の凹凸が大きくな
り、その表面にウエーハを保持するとナノトポロジーを
悪化させてしまう恐れがあるからである。更にこの場
合、10μm程度で球形に近い大きなシリカ粒子と1〜
3μm程度で球形に近い小さい粒子を充填することによ
り、より充填量を増やすことが可能であり、熱膨張係数
をより小さく、熱伝導率をより高くしたものとすること
が出来る。
To this end, the silica to be filled has a particle size of 1 to
It is preferable that the particles have a particle size of 10 μm. This is 1 μm
This is because when the silica particles are smaller than the above, the viscosity of the filled resin increases and the resin is not filled with too much silica. Further, in the case of large silica particles having a particle size of more than 10 μm, the resin surface coated on the holding plate has large irregularities, and holding the wafer on the surface may deteriorate the nanotopology. Further, in this case, the large silica particles having a diameter of about 10 μm and a spherical shape
By filling small particles having a size of about 3 μm and having a nearly spherical shape, the filling amount can be increased, the thermal expansion coefficient can be made smaller, and the thermal conductivity can be made higher.

【0035】工程(b)では、樹脂塗布用治具30の上
に図1に示したようなワーク保持盤1のワーク保持盤本
体2をワーク保持面8を上にして載置し、塗布量調整板
32をセットした後、ワーク保持面8の上に前述したよ
うな熱硬化性樹脂31を流し込む。
In step (b), the work holding plate body 2 of the work holding plate 1 as shown in FIG. After setting the adjusting plate 32, the thermosetting resin 31 as described above is poured onto the work holding surface 8.

【0036】なお、樹脂が被覆されるワーク保持盤本体
2が備えるべき特性については、貫通孔4の孔径を0.
2〜0.5mmとするのがよく、ワーク保持盤本体材料
の線熱膨張係数が1×10−5/K以下と保持盤本体2
の熱膨張係数も小さくすることが望ましく、さらにワー
ク保持盤本体2の材質が炭化けい素(SiC)の焼結体
(セラミックス)であることが好ましい。このように、
貫通孔4の孔径を0.2mm以上にすると、熱硬化性樹
脂31で保持盤本体2の保持面8に樹脂層3を形成する
場合、樹脂31が孔に詰る恐れがなく、0.5mm以下
にすると孔径自体が大き過ぎることに起因してワーク研
磨加工時にワーク表面に孔の跡が転写するようなことが
少なくなる。
Regarding the characteristics that the work holding plate body 2 coated with the resin should have, the diameter of the through hole 4 should be 0.
2 to 0.5 mm is preferable, and the linear thermal expansion coefficient of the work holding board body material is 1 × 10 −5 / K or less and the holding board body 2
It is desirable that the coefficient of thermal expansion is also small, and that the material of the work holding plate body 2 is a sintered body (ceramics) of silicon carbide (SiC). in this way,
When the hole diameter of the through hole 4 is 0.2 mm or more, when the resin layer 3 is formed on the holding surface 8 of the holding plate body 2 with the thermosetting resin 31, the resin 31 does not have a risk of clogging the hole and is 0.5 mm or less. In this case, the traces of holes are less likely to be transferred to the surface of the work during polishing the work due to the hole diameter itself being too large.

【0037】また、ワーク保持盤本体2が低熱膨張係数
をもつ材料で形成されていれば、後述する研磨装置定盤
上でワーク保持盤の保持面を研磨加工する場合とワーク
を研磨加工する場合のワーク保持盤本体の熱変形量差を
小さくでき、また被覆した樹脂の変形等も抑えることが
できるので、高精度なワーク保持盤の保持面形状を維持
することができ、高平坦度のワーク研磨加工が可能とな
る。ワーク保持盤本体としては、金属やセラミックス材
料等で構成すれば良いが、特に低熱膨張係数をもち、高
剛性で研磨加工液等にも腐食されにくい耐食性の高い材
料としては前述の炭化けい素(SiC)が好ましく使用
される。
When the work holding plate body 2 is made of a material having a low coefficient of thermal expansion, the holding surface of the work holding plate and the work are polished on the polishing device surface plate described later. Since the difference in the amount of thermal deformation of the work holding board body can be reduced, and the deformation of the coated resin can be suppressed, it is possible to maintain the holding surface shape of the work holding board with high accuracy, and work with high flatness. Polishing becomes possible. The work holding plate body may be made of a metal or a ceramic material, but as a material having a low coefficient of thermal expansion, high rigidity, and high corrosion resistance that is not easily corroded by a polishing liquid, the above-mentioned silicon carbide ( SiC) is preferably used.

【0038】工程(c)では、塗布量調整板32の上に
バー33を滑らせて余分な樹脂を掻き取り、厚さの均一
な樹脂層を形成する。このワーク保持盤本体2の保持面
を被覆する樹脂層3の厚さは0.5〜3mmであること
が望ましい。このようにワーク保持盤1の樹脂層3の厚
さを3mm以下にするとワーク保持盤本体2の剛性を低
下させることがないので、より高精度なワーク研磨加工
を行うことができ、0.5mm以上にすると高い平坦度
が得られる。
In step (c), the bar 33 is slid on the coating amount adjusting plate 32 to scrape off excess resin to form a resin layer having a uniform thickness. The thickness of the resin layer 3 that covers the holding surface of the work holding board body 2 is preferably 0.5 to 3 mm. When the thickness of the resin layer 3 of the work holding board 1 is 3 mm or less as described above, the rigidity of the work holding board body 2 is not reduced, and thus more precise work polishing can be performed, and the work holding board main body 2 can be polished to 0.5 mm. With the above, high flatness can be obtained.

【0039】次いで、工程(d)では、樹脂31を塗布
したワーク保持盤本体2を樹脂塗布用治具30と共に電
気加熱炉35に設置し、樹脂塗布用治具30の下方から
加熱したガス34を送ってワーク保持盤本体2の貫通孔
4を通過させながら加熱を始め、熱硬化性樹脂31全体
を熱硬化させる。この場合、貫通孔4の周辺部の樹脂3
1を予備硬化させた後、残部樹脂を熱硬化させるように
することができ、このようにすることにより、先ず貫通
孔周辺部の樹脂から先に硬化させるので、貫通孔4の閉
塞防止をより一層確実なものとすることができる。ま
た、熱硬化用のガス34の温度は、樹脂の熱硬化温度と
同じかより高い温度とすることができるが、樹脂の熱硬
化温度と同じにすれば樹脂の熱硬化反応速度が樹脂の加
熱による粘度低下速度よりも律速となるので、貫通孔を
閉塞することなく樹脂層3を形成することができて好ま
しい。
Next, in the step (d), the work holding board body 2 coated with the resin 31 is placed in the electric heating furnace 35 together with the resin coating jig 30, and the gas 34 heated from below the resin coating jig 30 is placed. Is started and heating is started while passing through the through hole 4 of the work holding plate body 2, and the entire thermosetting resin 31 is thermoset. In this case, the resin 3 around the through hole 4
1 can be pre-cured and then the remaining resin can be heat-cured. By doing so, the resin in the peripheral portion of the through hole is cured first, so that the through hole 4 can be prevented more effectively. It can be made more reliable. Further, the temperature of the thermosetting gas 34 can be the same as or higher than the thermosetting temperature of the resin, but if it is the same as the thermosetting temperature of the resin, the thermosetting reaction rate of the resin causes the heating of the resin. Since the rate of decrease in viscosity is determined by the above, it is preferable that the resin layer 3 can be formed without blocking the through holes.

【0040】次に、工程(e)では、樹脂層3で被覆し
たワーク保持盤本体2をラッピングマシン40にセット
し、定盤41を回転させながらノズル42からラップ液
43を滴下して樹脂層3の表面を研削し面修正を行い、
工程(f)で充分洗浄する。
Next, in the step (e), the work holding plate body 2 covered with the resin layer 3 is set on the lapping machine 40, and the lapping liquid 43 is dropped from the nozzle 42 while the platen 41 is rotated to drop the resin layer. The surface of 3 is ground and the surface is corrected,
Thoroughly wash in step (f).

【0041】さらに工程(g)では、ラッピング修正を
終わった樹脂層3で被覆したワーク保持盤本体2を研磨
装置20にセットし、定盤21を回転させながらノズル
23から研磨剤24を滴下して樹脂層3の表面を研磨し
面修正を行い、充分洗浄してワーク保持盤本体2を完成
させ、これにワーク保持盤裏板5を取り付けて研磨ヘッ
ド10を作製することができる。このように熱硬化した
樹脂層3の表面は、先ずラッピング加工によって面修正
し、次いで研磨装置20の定盤上で研磨加工修正するこ
とで、より高精度な保持盤1の保持面形状を形成するこ
とができ、この研磨用ワーク保持盤1を使用することに
よって平坦度の高いワーク研磨加工が可能となる。
Further, in the step (g), the work holding plate body 2 covered with the resin layer 3 after the lapping correction is set in the polishing device 20, and the polishing agent 24 is dropped from the nozzle 23 while rotating the platen 21. The surface of the resin layer 3 is polished to correct the surface, sufficiently washed to complete the work holding plate main body 2, and the work holding plate back plate 5 is attached to the work holding plate main body 2 to manufacture the polishing head 10. The surface of the heat-cured resin layer 3 is first surface-corrected by lapping, and then corrected by polishing on the surface plate of the polishing apparatus 20 to form a more accurate holding surface shape of the holding plate 1. By using this polishing work holding plate 1, polishing work with high flatness can be performed.

【0042】このようにすることで、ワーク保持部のエ
ポキシ樹脂部分に熱伝導調整剤としてシリカが多く添加
されたワーク保持盤が製造できる。熱伝導調整剤として
シリカを適量添加することにより、ワーク保持盤表面の
樹脂の熱伝導率が0.4W/mK以上、熱膨張係数が3
×10−5/K以下のワーク保持盤が確実に得られる。
By doing so, it is possible to manufacture a work holding plate in which a large amount of silica is added as a heat conduction adjusting agent to the epoxy resin portion of the work holding portion. By adding an appropriate amount of silica as a thermal conductivity modifier, the thermal conductivity of the resin on the surface of the work holding plate is 0.4 W / mK or more, and the thermal expansion coefficient is 3
It is possible to reliably obtain a work holding plate having a density of × 10 -5 / K or less.

【0043】このようなワーク保持盤を、図1に示すよ
うな研磨装置に装着し、前述したようにウエーハ等のワ
ークWを研磨する。本発明では、研磨用ワーク保持盤1
が研磨時に熱変形を起こしにくいため、従来問題であっ
た研磨後のワークWのナノトポグラフィーを向上させる
ことができる。
Such a work holding plate is mounted on the polishing apparatus as shown in FIG. 1 and the work W such as a wafer is polished as described above. In the present invention, the polishing work holding plate 1
Since thermal deformation hardly occurs during polishing, the nanotopography of the workpiece W after polishing, which has been a problem in the past, can be improved.

【0044】この場合、研磨時において研磨布22が粘
弾性的な性質を有する変形を起こし、この変形の度合い
は研磨時の研磨布22の状態によっても徐々に変わって
くる。そのため、上記のようにワーク保持盤1のワーク
保持面8を平坦に仕上げても、加工後のワークWが平坦
にはならない場合がある。そこで、ワークWの裏面を真
空吸着保持する前に、研磨用ワーク保持盤1の樹脂で被
覆された保持面8を研磨布22に接触させて研磨を行な
い、ワーク保持面8の形状を研磨布22の変形形状に倣
わせた後、この保持面8によりワークWの裏面を真空吸
着保持し、次いで研磨布22に接触させてワークWの表
面を研磨することで、ワーク保持面8の修正が図られ、
ワークの平坦度を向上させることができる。この方法
は、ウエーハ等の薄いワークを研磨する場合に特に有効
である。
In this case, the polishing cloth 22 undergoes deformation having viscoelastic properties during polishing, and the degree of this deformation gradually changes depending on the state of the polishing cloth 22 during polishing. Therefore, even if the work holding surface 8 of the work holding plate 1 is finished flat as described above, the work W after processing may not be flat. Therefore, before holding the back surface of the work W by vacuum suction, the holding surface 8 of the polishing work holding plate 1 covered with the resin is brought into contact with the polishing cloth 22 for polishing, and the shape of the work holding surface 8 is changed to the polishing cloth. After the deformed shape of the work piece 22 is imitated, the back surface of the work piece W is vacuum-sucked and held by the holding surface 8 and then brought into contact with the polishing cloth 22 to polish the front surface of the work piece W, whereby the work holding surface 8 is corrected. Planned,
The flatness of the work can be improved. This method is particularly effective when polishing a thin work such as a wafer.

【0045】[0045]

【実施例】以下、本発明の実施例および比較例を挙げて
具体的に説明するが、本発明はこれらに限定されるもの
ではない。 (実施例1)図1に示した構造のワーク研磨装置20を
使用してワークの研磨を行った。このワーク保持盤本体
2の保持面8を被覆する樹脂層3は、シリカを70重量
%充填したエポキシ樹脂からなる。樹脂層3の厚さは1
mmであり、熱伝導率0.5W/mK、熱膨張係数1×
10−5/Kであった。ワーク保持盤本体2は、厚さ3
0mmの炭化けい素(SiC)多孔盤であり、熱膨張係
数は4×10−6/Kである。貫通孔4の孔径は0.3
mmのものを用いた。
EXAMPLES Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples, but the present invention is not limited thereto. (Example 1) A work was polished by using the work polishing apparatus 20 having the structure shown in FIG. The resin layer 3 covering the holding surface 8 of the work holding plate body 2 is made of an epoxy resin filled with 70% by weight of silica. The thickness of the resin layer 3 is 1
mm, thermal conductivity 0.5 W / mK, thermal expansion coefficient 1 ×
It was 10 −5 / K. The work holding board body 2 has a thickness of 3
It is a 0 mm silicon carbide (SiC) porous plate and has a thermal expansion coefficient of 4 × 10 −6 / K. The diameter of the through hole 4 is 0.3
The thing of mm was used.

【0046】ワーク研磨条件として、研磨荷重30kP
a、研磨相対速度50m/min、目標研磨加工代10
μmとし、研磨布22として不織布系研磨布、研磨剤2
4としてコロイダルシリカを含有したアルカリ溶液(p
H10.5)を用い研磨した。また、ワークWを吸着保
持して研磨する前に、ワーク保持盤1の樹脂層3で被覆
された保持面8を研磨布22に接触させ研磨した。研磨
条件としては樹脂層研磨加工代40μmでその他の条件
は上記ワーク研磨条件と同じに実施した。
As a work polishing condition, a polishing load of 30 kP
a, relative speed of polishing 50 m / min, target polishing allowance 10
μm, and the polishing cloth 22 is a non-woven cloth-based polishing cloth, polishing agent 2
Alkaline solution containing colloidal silica as 4 (p
H10.5) was used for polishing. Further, before holding the work W by suction and polishing it, the holding surface 8 of the work holding plate 1 covered with the resin layer 3 was brought into contact with the polishing cloth 22 for polishing. The polishing conditions were the resin layer polishing allowance of 40 μm, and the other conditions were the same as the above-mentioned workpiece polishing conditions.

【0047】上記ワーク保持盤1に被研磨ワークWとし
てシリコンウエーハ、直径200mm、厚さ735μm
を真空吸着保持し研磨した。
A silicon wafer having a diameter of 200 mm and a thickness of 735 μm as the work W to be polished is placed on the work holding plate 1.
Was vacuum-adsorbed and held and polished.

【0048】研磨後のワークの平坦度、うねり及びナノ
トポグラフィーを確認した。平坦度は静電容量式厚さ計
(ADE社製ウルトラゲージ9700)にて測定し、ま
た、魔鏡でワーク表面のうねりを観察した。ナノトポグ
ラフィーはADE社製Nanomapperで、測定条件2mm角
にて測定した。
The flatness, waviness and nanotopography of the work after polishing were confirmed. The flatness was measured with a capacitance type thickness gauge (Ultra Gauge 9700 manufactured by ADE), and the waviness of the work surface was observed with a magic mirror. The nanotopography was measured by Nanomapper manufactured by ADE under the measurement condition of 2 mm square.

【0049】その結果、ワークの平坦度は、裏面基準の
SBIRmax (Site Back−side Id
eal Range:SEMI規格M1等で標準化され
ている値、セルサイズ25mm×25mm)で0.13
μmの高平坦度が達成された。また、魔鏡でもワーク表
面にうねりが見られず、高精度な加工が達成された。ナ
ノトポグラフィーも10nm前後であり好ましかった。
As a result, the flatness of the work is determined by SBIRmax (Site Back-side Id) based on the back surface.
eal Range: value standardized by SEMI standard M1 etc., cell size 25 mm x 25 mm) 0.13
A high flatness of μm was achieved. In addition, no waviness was observed on the surface of the work even with a magic mirror, and high-precision machining was achieved. Nanotopography was also around 10 nm, which was preferable.

【0050】(実施例2)ワーク保持盤本体2の保持面
8を被覆したエポキシ樹脂のシリカ充填量が60重量%
である以外は実施例1と同じ条件でワーク保持盤1を作
製し、同条件でワークの研磨加工を実施した。樹脂層3
のシリカ充填エポキシ樹脂の熱伝導率は0.4W/mK
であった。熱膨張係数は3×10−5/Kであった。
(Embodiment 2) The silica filling amount of the epoxy resin coating the holding surface 8 of the work holding plate body 2 is 60% by weight.
The work holding board 1 was produced under the same conditions as in Example 1 except for the above, and the work was polished under the same conditions. Resin layer 3
Thermal conductivity of silica-filled epoxy resin is 0.4W / mK
Met. The coefficient of thermal expansion was 3 × 10 −5 / K.

【0051】その結果、平坦度は実施例1とほぼ同じ
で、ナノトポグラフィーは実施例1よりも若干悪化した
が、15nm前後で全て20nm以下であり良好なレベ
ルであった。
As a result, the flatness was almost the same as that of Example 1, and the nanotopography was slightly worse than that of Example 1, but all around 15 nm were 20 nm or less, which was a good level.

【0052】(比較例1)ワーク保持盤本体2の保持面
8に炭酸カルシウム充填エポキシ樹脂を被覆した以外は
実施例1と同じ条件でワーク保持盤1を作製し、同条件
でワークの研磨加工を実施した。炭酸カルシウム充填エ
ポキシ樹脂の熱伝導率は0.3W/mKであった。熱膨
張係数は4×10−5/Kであった。
(Comparative Example 1) A work holding plate 1 was prepared under the same conditions as in Example 1 except that the holding surface 8 of the work holding plate body 2 was coated with calcium carbonate-filled epoxy resin, and the work was polished under the same conditions. Was carried out. The thermal conductivity of the calcium carbonate-filled epoxy resin was 0.3 W / mK. The coefficient of thermal expansion was 4 × 10 −5 / K.

【0053】その結果、平坦度は実施例1とほぼ同等で
あったが、魔鏡によるワーク表面のうねりが観察され
た。ナノトポグラフィーの値は30nm前後で全て20
nmを越えていた。
As a result, the flatness was almost the same as in Example 1, but the waviness of the work surface due to the magic mirror was observed. Nanotopography values around 30 nm are all 20
It was over nm.

【0054】なお、本発明は、上記実施形態に限定され
るものではない。上記実施形態は、例示であり、本発明
の特許請求の範囲に記載された技術的思想と実質的に同
一な構成を有し、同様な作用効果を奏するものは、いか
なるものであっても本発明の技術的範囲に包含される。
The present invention is not limited to the above embodiment. The above-described embodiment is an exemplification, has substantially the same configuration as the technical idea described in the scope of the claims of the present invention, and has any similar effect to the present invention. It is included in the technical scope of the invention.

【0055】例えば、上記実施形態においては、保持面
を被覆する樹脂としてエポキシ樹脂を用い、熱伝導調整
剤としてシリカが充填された場合につき例を挙げて説明
したが、本発明はこれに限定されず、保持面を被覆する
樹脂の熱膨張係数を3×10 −5/K以下とするもので
あれば、本発明の範囲に含まれる。このような樹脂とし
て、例えば、ポリアミドイミドのような樹脂、又はシリ
カ粒子を33重量%以上添加したポリアミド等を挙げる
ことができる。
For example, in the above embodiment, the holding surface
Epoxy resin is used as the resin for coating the heat conduction adjustment
An example is given for the case where silica is filled as the agent
However, the present invention is not limited to this, and covers the holding surface.
The thermal expansion coefficient of resin is 3 × 10 -5/ K or less
If so, it is included in the scope of the present invention. With such a resin
For example, resin such as polyamide-imide, or silicone
Listed below are polyamides containing 33% by weight or more of particles.
be able to.

【0056】[0056]

【発明の効果】本発明により、高精度のワーク保持面を
有する研磨用ワーク保持盤が提供される。従って、これ
を用いて研磨加工によって優れた平坦度とうねりのない
表面を持ったワークを製造することが出来る。特にワー
クが、本発明の研磨用ワーク保持盤を用いて研磨加工さ
れた半導体ウエーハの場合は、ナノトポグラフィーの改
善されたウエーハであり、高集積デバイス工程でのリソ
グラフィ露光におけるフォーカス不良を低減可能であ
り、高集積デバイスの歩留り向上を図ることができる。
According to the present invention, a polishing work holding plate having a highly accurate work holding surface is provided. Therefore, using this, it is possible to manufacture a work having excellent flatness and a waviness-free surface by polishing. In particular, when the work is a semiconductor wafer polished by using the polishing work holding plate of the present invention, it is a wafer with improved nanotopography, and it is possible to reduce focus defects in lithographic exposure in the highly integrated device process. Therefore, the yield of highly integrated devices can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】研磨装置を示した概略説明図である。FIG. 1 is a schematic explanatory view showing a polishing apparatus.

【図2】(a)〜(c)は、樹脂層の変形についての概
略説明図である。
2A to 2C are schematic explanatory views of deformation of a resin layer.

【図3】(a)〜(g)は、本発明の研磨用ワーク保持
盤の製作工程を示すフロー図である。
3 (a) to 3 (g) are flowcharts showing a manufacturing process of the polishing work holding plate of the present invention.

【符号の説明】[Explanation of symbols]

1…研磨用ワーク保持盤、 2…ワーク保持盤本体、
3…樹脂層、4…貫通孔、 5…ワーク保持盤裏板、
6…空間部(真空部)、7…吸引路、 8…ワーク保持
面、10…研磨ヘッド、 11…回転ホルダ、 12…
弾性シート、13…加圧空間部、 14…加圧空気供給
路、20…研磨装置、 21…定盤、 22…研磨布
(研磨パッド)、23…ノズル(研磨剤供給管)、 2
4…研磨剤、30…樹脂塗布用治具、 31…熱硬化性
樹脂、 32…塗布量調整板、33…バー、 34…ガ
ス、 35…電気加熱炉、40…ラッピングマシン、
41…定盤、 42…ノズル、 43…ラップ液。W…
ワーク(ウエーハ)。
1 ... Polishing work holding board, 2 ... Work holding board body,
3 ... Resin layer, 4 ... Through hole, 5 ... Work holding board back plate,
6 ... Space part (vacuum part), 7 ... Suction path, 8 ... Work holding surface, 10 ... Polishing head, 11 ... Rotation holder, 12 ...
Elastic sheet, 13 ... Pressurized space portion, 14 ... Pressurized air supply passage, 20 ... Polishing device, 21 ... Surface plate, 22 ... Polishing cloth (polishing pad), 23 ... Nozzle (abrasive supply pipe), 2
4 ... Abrasive agent, 30 ... Jig for resin application, 31 ... Thermosetting resin, 32 ... Coating amount adjusting plate, 33 ... Bar, 34 ... Gas, 35 ... Electric heating furnace, 40 ... Lapping machine,
41 ... Surface plate, 42 ... Nozzle, 43 ... Lapping liquid. W ...
Work (wafer).

───────────────────────────────────────────────────── フロントページの続き (72)発明者 鈴木 文夫 福島県西白河郡西郷村大字小田倉字大平 150番地 信越半導体株式会社半導体白河 研究所内 (72)発明者 北川 幸司 福島県西白河郡西郷村大字小田倉字大平 150番地 信越半導体株式会社半導体白河 研究所内 Fターム(参考) 3C058 AA07 AB04 CB01 DA17    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Fumio Suzuki             Odaira, Odakura, Saigo Village, Nishishirakawa-gun, Fukushima Prefecture             No. 150 Shin-Etsu Semiconductor Co., Ltd. Semiconductor Shirakawa             In the laboratory (72) Inventor Koji Kitagawa             Odaira, Odakura, Saigo Village, Nishishirakawa-gun, Fukushima Prefecture             No. 150 Shin-Etsu Semiconductor Co., Ltd. Semiconductor Shirakawa             In the laboratory F-term (reference) 3C058 AA07 AB04 CB01 DA17

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 ワークを真空吸着保持する多数の貫通孔
を有するワーク保持盤本体を具備し、該保持盤本体の保
持面が樹脂で被覆された研磨用ワーク保持盤において、
前記保持面を被覆する樹脂の熱膨張係数が3×10−5
/K以下であることを特徴とする研磨用ワーク保持盤。
1. A polishing work holding plate having a work holding plate main body having a large number of through holes for holding a work by vacuum suction, the holding surface of the holding plate main body being coated with resin.
The coefficient of thermal expansion of the resin coating the holding surface is 3 × 10 −5.
/ K or less, a work holding plate for polishing.
【請求項2】 前記保持面を被覆する樹脂の熱伝導率が
0.4W/mK以上であることを特徴とする請求項1に
記載の研磨用ワーク保持盤。
2. The polishing work holding plate according to claim 1, wherein the resin coating the holding surface has a thermal conductivity of 0.4 W / mK or more.
【請求項3】 前記保持面を被覆する樹脂が、シリカを
充填したエポキシ樹脂であることを特徴とする請求項1
または請求項2に記載の研磨用ワーク保持盤。
3. The resin coating the holding surface is an epoxy resin filled with silica.
Alternatively, the polishing work holding plate according to claim 2.
【請求項4】 前記エポキシ樹脂に充填されるシリカ
が、エポキシ樹脂の60重量%以上であることを特徴と
する請求項3に記載の研磨用ワーク保持盤。
4. The polishing work holding plate according to claim 3, wherein the silica filled in the epoxy resin is 60% by weight or more of the epoxy resin.
【請求項5】 前記エポキシ樹脂に充填されるシリカ
が、粒径1〜10μmの粒状であることを特徴とする請
求項3または請求項4に記載の研磨用ワーク保持盤。
5. The polishing work holding plate according to claim 3, wherein the silica filled in the epoxy resin has a particle size of 1 to 10 μm.
【請求項6】 請求項1ないし請求項5のいずれか1項
に記載した研磨用ワーク保持盤を具備することを特徴と
するワークの研磨装置。
6. A polishing apparatus for a work, comprising the work holding plate for polishing according to any one of claims 1 to 5.
【請求項7】 ワークを真空吸着保持する研磨用ワーク
保持盤の保持面に熱膨張係数が3×10−5/K以下の
樹脂を被覆し、該保持面によりワークの裏面を真空吸着
保持し、次いで該ワークを研磨布に接触させてワークの
表面を研磨することを特徴とするワークの研磨方法。
7. A polishing work holding plate for holding a work by vacuum suction is coated with a resin having a thermal expansion coefficient of 3 × 10 −5 / K or less, and the back surface of the work is vacuum suction held by the holding surface. Then, a method for polishing a work, which comprises contacting the work with a polishing cloth to polish the surface of the work.
【請求項8】 請求項7に記載のワークの研磨方法にお
いて、前記保持面に被覆する樹脂の熱伝導率が0.4W
/mK以上のものとすることを特徴とするワークの研磨
方法。
8. The method of polishing a work according to claim 7, wherein the resin coating the holding surface has a thermal conductivity of 0.4 W.
/ MK or more, a method of polishing a work.
【請求項9】 請求項7または請求項8に記載のワーク
の研磨方法において、ワークの裏面を真空吸着保持する
前に、前記研磨用ワーク保持盤の樹脂で被覆された保持
面を前記研磨布に接触させて研磨した後、該保持面によ
りワークの裏面を真空吸着保持し、次いで該ワークを前
記研磨布に接触させてワークの表面を研磨することを特
徴とするワークの研磨方法。
9. The polishing method for a work according to claim 7, wherein the holding surface of the polishing work holding plate covered with the resin is held on the polishing cloth before the back surface of the work is vacuum-sucked and held. And a surface of the work is polished by vacuum-holding the back surface of the work by the holding surface and then bringing the work into contact with the polishing cloth.
JP2001302859A 2001-09-28 2001-09-28 Polishing work holding plate, work polishing apparatus and polishing method Expired - Fee Related JP4464019B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2001302859A JP4464019B2 (en) 2001-09-28 2001-09-28 Polishing work holding plate, work polishing apparatus and polishing method
KR10-2004-7003543A KR20040031071A (en) 2001-09-28 2002-09-27 Grinding work holding disk, work grinding device and grinding method
PCT/JP2002/010063 WO2003030232A1 (en) 2001-09-28 2002-09-27 Grinding work holding disk, work grinding device and grinding method
CNB028192095A CN1312740C (en) 2001-09-28 2002-09-27 Grinding work holding disk, work grinding device and grinding method
EP20020768116 EP1437767A1 (en) 2001-09-28 2002-09-27 Grinding work holding disk, work grinding device and grinding method
US10/490,480 US8268114B2 (en) 2001-09-28 2002-09-27 Workpiece holder for polishing, workpiece polishing apparatus and polishing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001302859A JP4464019B2 (en) 2001-09-28 2001-09-28 Polishing work holding plate, work polishing apparatus and polishing method

Publications (2)

Publication Number Publication Date
JP2003103457A true JP2003103457A (en) 2003-04-08
JP4464019B2 JP4464019B2 (en) 2010-05-19

Family

ID=19123035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001302859A Expired - Fee Related JP4464019B2 (en) 2001-09-28 2001-09-28 Polishing work holding plate, work polishing apparatus and polishing method

Country Status (1)

Country Link
JP (1) JP4464019B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006303329A (en) * 2005-04-22 2006-11-02 Fuji Electric Holdings Co Ltd Thin plate working method of silicon substrate and working apparatus used for it
CN102909650A (en) * 2012-11-01 2013-02-06 成都精密光学工程研究中心 Surface processing method of strip laser medium
CN106956212A (en) * 2017-03-17 2017-07-18 衢州学院 A kind of aluminium nitride chip polishing method of use chemical polishing solution and ceramic polished disk
JP2021020982A (en) * 2019-07-24 2021-02-18 味の素株式会社 Resin composition

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006303329A (en) * 2005-04-22 2006-11-02 Fuji Electric Holdings Co Ltd Thin plate working method of silicon substrate and working apparatus used for it
CN102909650A (en) * 2012-11-01 2013-02-06 成都精密光学工程研究中心 Surface processing method of strip laser medium
CN106956212A (en) * 2017-03-17 2017-07-18 衢州学院 A kind of aluminium nitride chip polishing method of use chemical polishing solution and ceramic polished disk
JP2021020982A (en) * 2019-07-24 2021-02-18 味の素株式会社 Resin composition

Also Published As

Publication number Publication date
JP4464019B2 (en) 2010-05-19

Similar Documents

Publication Publication Date Title
US8268114B2 (en) Workpiece holder for polishing, workpiece polishing apparatus and polishing method
CN111630213B (en) Seed crystal for growing single crystal 4H-SiC and processing method thereof
TWI430336B (en) Method of fabricating epitaxial silicon wafer
JPH11111653A (en) Manufacture of semiconductor wafer
JP2007266068A (en) Polishing method and device
JP4464019B2 (en) Polishing work holding plate, work polishing apparatus and polishing method
JP6239396B2 (en) Manufacturing method of SOI composite substrate
TW425627B (en) Polishing work holding board and production method thereof and work polishing method and device
JP4793680B2 (en) Semiconductor wafer polishing method
JP2013129023A (en) Method for manufacturing sapphire substrate, and sapphire substrate
CN112372509B (en) Method and apparatus for changing initial state of polishing pad to hydrophilicity
JPH11333703A (en) Polishing machine
JP3907421B2 (en) Polishing work holding disk, polishing apparatus, and polishing method
JP2003103455A (en) Work holding board and polishing device and polishing method for work
JP2000198069A (en) Work holding disc for polishing, manufacture of the same, and work polishing method and device thereof
JP3638138B2 (en) Wafer holding disk manufacturing method and wafer polishing method
JP2004063880A (en) Wafer-bonding apparatus and wafer-bonding method
WO2001096065A1 (en) Method for polishing work
JP3940623B2 (en) Wafer polishing jig, manufacturing method thereof, and wafer polishing apparatus using the same
JP2004098236A (en) Ceramics plate
JP2000308961A (en) Affixing plate and manufacture of same
TW202230499A (en) Method for polishing carrier plate, carrier plate and a method for polishing semiconductor wafer
JP4202703B2 (en) Polishing equipment
JP3849580B2 (en) Work holding disk manufacturing method, work holding disk, and workpiece polishing method using the same
JP2024027073A (en) Ceramic wafer with surface shape and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071016

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071214

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080520

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080704

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080724

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20090626

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100218

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130226

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140226

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees