JP2003103367A - Output control method of pulse arc welding power supply unit - Google Patents

Output control method of pulse arc welding power supply unit

Info

Publication number
JP2003103367A
JP2003103367A JP2001296346A JP2001296346A JP2003103367A JP 2003103367 A JP2003103367 A JP 2003103367A JP 2001296346 A JP2001296346 A JP 2001296346A JP 2001296346 A JP2001296346 A JP 2001296346A JP 2003103367 A JP2003103367 A JP 2003103367A
Authority
JP
Japan
Prior art keywords
welding
value
cycle
current
variable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001296346A
Other languages
Japanese (ja)
Other versions
JP4704632B2 (en
Inventor
Kogun Do
紅軍 仝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihen Corp
Original Assignee
Daihen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihen Corp filed Critical Daihen Corp
Priority to JP2001296346A priority Critical patent/JP4704632B2/en
Publication of JP2003103367A publication Critical patent/JP2003103367A/en
Application granted granted Critical
Publication of JP4704632B2 publication Critical patent/JP4704632B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an output control method capable of forming an external characteristics having an inclination Ks [V/A] of the proper value in order to improve weldability in a pulse arc welding power supply unit. SOLUTION: The output control method of the pulse arc welding power supply unit that performs welding by forming the external characteristics having the inclination Ks of the proper value by controlling the output of the welding power supply unit so that the welding current average value Iw(n) during a period of time and the welding voltage average value Vw(n) during a period of time in the pulse period Tpb(n) of an nth time during welding can maintain the relationship of Vw(n)=Ks.(Is-Iw(n))+Vs by setting in advance the inclination Ks of the external characteristics and the welding current set value Is and the welding voltage set value Vs.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、消耗電極パルスア
ーク溶接において、予め定めた傾きKsを有する外部特
性を形成する溶接電源装置の出力制御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of controlling the output of a welding power source device for forming an external characteristic having a predetermined slope Ks in consumable electrode pulse arc welding.

【0002】[0002]

【従来の技術】消耗電極パルスアーク溶接では、美しい
ビード外観、均一な溶込み深さ等の溶接品質を良好にす
るためには、溶接中のアーク長を適正値に維持すること
が極めて重要である。一般的に、アーク長は溶接ワイヤ
の送給速度と溶融速度とのバランスによって決まる。し
たがって、溶接中の送給速度が略一定であり、かつ、こ
の送給速度が、溶接電流の平均値に略比例する溶融速度
と略等しくなると、アーク長は常に一定となる。しか
し、送給モータの回転速度の変動、溶接トーチの曲がり
による送給経路の摩擦力の変動等によって、溶接中の送
給速度は変動するために、溶融速度とのバランスが崩れ
てアーク長は変化する。また、溶接作業者の手振れ等に
よるチップ・被溶接物間距離の変動、溶融池の不規則な
振動等によってもアーク長は変化する。したがって、こ
れらの種々の変動(以下、外乱という)によるアーク長
の変化を抑制するためには、外乱に応じて常に溶融速度
を調整してアーク長の変化を抑制する必要がある(以
下、アーク長制御という)。
2. Description of the Related Art In consumable electrode pulse arc welding, it is extremely important to maintain the arc length during welding at an appropriate value in order to improve the welding quality such as beautiful bead appearance and uniform penetration depth. is there. Generally, the arc length is determined by the balance between the feed rate of the welding wire and the melting rate. Therefore, if the feed rate during welding is substantially constant, and this feed rate becomes substantially equal to the melting rate that is substantially proportional to the average value of the welding current, the arc length will always be constant. However, the feed rate during welding fluctuates due to fluctuations in the rotation speed of the feed motor, fluctuations in the frictional force in the feed path due to bending of the welding torch, etc. Change. Further, the arc length also changes due to fluctuations in the distance between the tip and the work piece due to hand shake of the welding operator, irregular vibration of the molten pool, and the like. Therefore, in order to suppress changes in the arc length due to these various fluctuations (hereinafter, referred to as disturbance), it is necessary to constantly adjust the melting rate according to the disturbance to suppress changes in the arc length (hereinafter, referred to as arc). Long control).

【0003】このアーク長制御方法としては、アーク長
と溶接電圧の平均値とが略比例関係にあることを利用し
て、溶接電圧の平均値が予め定めた目標値と等しくなる
ように溶接電源装置の出力を制御する方法が一般的に使
用されている。以下、従来技術1の出力制御方法につい
て説明する。
This arc length control method utilizes the fact that the arc length and the average value of the welding voltage are substantially proportional to each other, so that the average value of the welding voltage becomes equal to a predetermined target value. Methods of controlling the output of the device are commonly used. Hereinafter, the output control method of the prior art 1 will be described.

【0004】[従来技術1]図1は、パルスアーク溶接
の電流・電圧波形図である。同図(A)は溶接電流瞬時
値Ioの時間変化を示し、同図(B)は溶接電圧瞬時値
Voの時間変化を示す。以下、同図を参照して説明す
る。
[Prior Art 1] FIG. 1 is a current / voltage waveform diagram of pulse arc welding. The same figure (A) shows the temporal change of the welding current instantaneous value Io, and the same figure (B) shows the temporal change of the welding voltage instantaneous value Vo. Hereinafter, description will be given with reference to FIG.

【0005】 時刻t1〜t2の期間(ベース期間T
b) 予め定めたベース期間Tbの間は、同図(A)に示すよ
うに、溶滴移行をさせないために20〜80[A]程度
の低電流値に予め定めたベース電流Ibを通電し、同図
(B)に示すように、溶接電圧瞬時値Voは、上記の通
電に応じてベース電圧Vbとなる。また、上記のベース
期間Tbの時間長さは、溶接ワイヤの送給速度、材質、
直径等に対応して適正値に予め設定される。
A period from time t1 to t2 (base period T
b) During a predetermined base period Tb, as shown in FIG. 7A, a predetermined base current Ib is applied to a low current value of about 20 to 80 [A] to prevent droplet transfer. As shown in FIG. 7B, the welding voltage instantaneous value Vo becomes the base voltage Vb according to the above energization. Further, the time length of the base period Tb is determined by the welding wire feeding speed, material,
It is preset to an appropriate value corresponding to the diameter and the like.

【0006】 時刻t2〜t3の期間(ピーク期間T
p) ピーク期間Tpの間は、同図(A)に示すように、溶滴
移行をさせるために300〜600[A]程度に予め定
めたピーク電流Ipを通電し、同図(B)に示すよう
に、溶接電圧瞬時値Voは、上記の通電に応じてピーク
電圧Vpとなる。
A period from time t2 to t3 (peak period T
p) During the peak period Tp, a predetermined peak current Ip of about 300 to 600 [A] is applied to transfer droplets, as shown in FIG. As shown, the welding voltage instantaneous value Vo becomes the peak voltage Vp according to the above energization.

【0007】[0007]

【0008】同図(A)に示すように、溶接電流瞬時値
Ioの1周期(パルス周期Tpb)の間の平均値が1周期
溶接電流平均値Iwとなり、同様に、同図(B)に示す
ように、溶接電圧瞬時値Voの1周期(パルス周期Tp
b)の間の平均値が1周期溶接電圧平均値Vwとなる。
パルスアーク溶接電源装置において、前述したように、
アーク長を適正値に維持するための出力制御は以下のよ
うに行われる。すなわち、1周期溶接電圧平均値Vw
は、下式で表わされる。 Vw=(1/Tpb)・∫Vo・dt (1)式 但し、上記の積分はパルス周期Tpb(時刻t1〜t3)
の間行う。上式に示す1周期溶接電圧平均値Vwが予め
定めた目標値の溶接電圧設定値Vsと略等しくなるよう
に、パルス周期Tpbの時間長さが制御される。なお、
(1)式にVw=Vsを代入して変形すると下式とな
る。 ∫(Vs−Vo)・dt=0 (2)式 但し、上記の積分は、パルス周期Tpbの間行う。上式に
おいて、電圧誤差積分値Sv=∫(Vs−Vo)・dt
と定義する。時刻t1のパルス周期Tpbの開始時点から
上記電圧誤差積分値Svの演算を開始し、時刻t2以降
のピーク期間Tp中の上記の電圧誤差積分値Svが0
[V]となった時点で、パルス周期Tpbを終了し、次の
パルス周期Tpbを開始する。このように、従来技術1の
出力制御方法では、各周期ごとの1周期溶接電圧平均値
Vwが電圧設定値Vsと等しくなるようにパルス周期T
pbの時間長さを制御することによってアーク長を適正値
に維持する。
As shown in FIG. 1A, the average value of the welding current instantaneous value Io during one cycle (pulse period Tpb) becomes the one cycle welding current average value Iw, and similarly, in FIG. As shown, one cycle of the welding voltage instantaneous value Vo (pulse cycle Tp
The average value during b) is the one cycle welding voltage average value Vw.
In the pulse arc welding power supply device, as described above,
Output control for maintaining the arc length at an appropriate value is performed as follows. That is, one cycle welding voltage average value Vw
Is represented by the following formula. Vw = (1 / Tpb) · ∫Vo · dt (1) Formula However, the above integration is pulse period Tpb (time t1 to t3)
Do between The time length of the pulse period Tpb is controlled so that the one-cycle welding voltage average value Vw shown in the above equation becomes substantially equal to the welding voltage setting value Vs of the predetermined target value. In addition,
Substituting Vw = Vs into equation (1) and transforming yields the following equation. ∫ (Vs−Vo) · dt = 0 (2) Formula However, the above integration is performed during the pulse period Tpb. In the above equation, the voltage error integrated value Sv = ∫ (Vs−Vo) · dt
It is defined as The calculation of the voltage error integrated value Sv is started from the start of the pulse period Tpb at time t1, and the voltage error integrated value Sv during the peak period Tp after time t2 is 0.
When it becomes [V], the pulse cycle Tpb is ended and the next pulse cycle Tpb is started. As described above, in the output control method of the prior art 1, the pulse cycle T is set so that the one-cycle welding voltage average value Vw for each cycle becomes equal to the voltage setting value Vs.
The arc length is maintained at a proper value by controlling the time length of pb.

【0009】[従来技術2]図2は、横軸に示す1周期
溶接電流平均値Iwと縦軸に示す1周期溶接電圧平均値
Vwとの関係を示す溶接電源装置の外部特性図である。
以下、同図を参照して説明する。同図において、特性L
1は傾きKs=0[V/A]の外部特性を示し、特性L
2は傾きKs=−0.1[V/A]の外部特性を示す。
前述した従来技術1の出力制御方法では、1周期溶接電
圧平均値Vwは、1周期溶接電流平均値Iwの値とは関
係なく予め定めた溶接電圧設定値Vsと等しくなるよう
に出力制御されるために、傾きKs=0の上記の外部特
性L1を形成することになる。
[Prior Art 2] FIG. 2 is an external characteristic diagram of a welding power source device showing a relationship between a one-cycle welding current average value Iw on the horizontal axis and a one-cycle welding voltage average value Vw on the vertical axis.
Hereinafter, description will be given with reference to FIG. In the figure, the characteristic L
1 indicates the external characteristic of the slope Ks = 0 [V / A], and the characteristic L
Reference numeral 2 indicates an external characteristic having a slope Ks = -0.1 [V / A].
In the output control method of the above-described conventional technique 1, the one-cycle welding voltage average value Vw is output-controlled to be equal to the predetermined welding voltage set value Vs regardless of the one-cycle welding current average value Iw. Therefore, the above-mentioned external characteristic L1 having the inclination Ks = 0 is formed.

【0010】ところで、溶接電源装置の外部特性の傾き
Ksによってアーク長制御系の安定性(自己制御作用と
呼ばれる)が大きく影響されることが従来から広く知ら
れている。すなわち、アーク長制御系を安定化するため
には、種々の溶接法に対応して外部特性の傾きKsを適
正値に設定する必要がある。例えば、炭酸ガスアーク溶
接法では外部特性の傾きKsの適正値は(0〜−0.0
3)[V/A]程度であり、パルスアーク溶接法では外
部特性の傾きKsの適正値は(-0.05〜−0.3)
[V/A]程度であることが知られている。したがっ
て、本発明の対象であるパルスアーク溶接法において
は、アーク長制御系を安定化するためには、同図に示す
外部特性L1ではなく、-0.05〜−0.3[V/
A]程度の範囲内で予め定めた傾きKsを有する外部特
性L2を形成する必要がある。しかしながら、前述した
ように、従来技術1の出力制御方法では0[V/A]以
外の傾きKsを有する外部特性を形成することはできな
い。そこで、この問題を解決するために、以下に説明す
る従来技術2の出力制御方法が提案されている。以下、
図面を参照して従来技術2の出力制御方法について説明
する。
By the way, it has been widely known that the stability (called self-control action) of the arc length control system is greatly affected by the inclination Ks of the external characteristic of the welding power source device. That is, in order to stabilize the arc length control system, it is necessary to set the inclination Ks of the external characteristic to an appropriate value in accordance with various welding methods. For example, in the carbon dioxide arc welding method, the proper value of the slope Ks of the external characteristics is (0 to -0.0).
3) It is about [V / A], and the proper value of the slope Ks of the external characteristic is (-0.05 to -0.3) in the pulse arc welding method.
It is known to be about [V / A]. Therefore, in the pulse arc welding method which is the object of the present invention, in order to stabilize the arc length control system, not the external characteristic L1 shown in the same figure but −0.05 to −0.3 [V /
It is necessary to form the external characteristic L2 having a predetermined slope Ks within the range of A]. However, as described above, the output control method of the prior art 1 cannot form the external characteristic having the slope Ks other than 0 [V / A]. Therefore, in order to solve this problem, an output control method of Conventional Technique 2 described below has been proposed. Less than,
An output control method of the prior art 2 will be described with reference to the drawings.

【0011】以下の説明において、前述した図2の外部
特性L2を、形成される目標の外部特性とする。したが
って、外部特性L2の直線の式は、予め定めた溶接電流
設定値Is、溶接電圧設定値Vs及び傾きKsによっ
て、下式となる。 Vw=Ks・(Iw−Is)+Vs (3)式 以下、上式で示す外部特性L2を形成するための出力制
御方法について説明する。
In the following description, the external characteristic L2 shown in FIG. 2 will be referred to as a target external characteristic to be formed. Therefore, the straight line expression of the external characteristic L2 is the following expression based on the predetermined welding current setting value Is, welding voltage setting value Vs, and inclination Ks. Vw = Ks · (Iw−Is) + Vs (3) Formula Hereinafter, an output control method for forming the external characteristic L2 shown by the above formula will be described.

【0012】図3は、上記(3)式で示す外部特性L2
を形成する従来技術2の出力制御方法を説明するための
電流・電圧波形図である。同図(A)は溶接電流瞬時値
Ioの時間変化を示し、同図(B)は溶接電圧瞬時値V
oの時間変化を示す。以下、同図を参照して説明する。
FIG. 3 shows the external characteristic L2 expressed by the equation (3).
FIG. 7 is a current / voltage waveform diagram for explaining an output control method of the related art 2 for forming the circuit. The same figure (A) shows the time change of the welding current instantaneous value Io, and the same figure (B) shows the welding voltage instantaneous value V.
The time change of o is shown. Hereinafter, description will be given with reference to FIG.

【0013】第n回目のパルス周期Tpb(n)が開始する
時点t(n)において、第n−1回目のパルス周期Tpb(n-
1)中の前周期溶接電流平均値Iw(n-1)を算出し、Iw
=Iw(n-1)を前述した(3)式に代入して1周期溶接
電圧平均値Vwの目標値である電圧制御設定値Vsc(n)
=Ks・(Iw(n-1)−Is)+Vsを演算する。この
演算は、前述した図2の外部特性L2上のP1点の電圧
制御設定値Vsc(n)を演算することになる。続いて、こ
の電圧制御設定値Vsc(n)及び溶接電圧瞬時値Voによ
って、時刻t(n)からの(2)式で前述した電圧誤差積
分値Sv=∫(Vsc(n)−Vo)・dtを演算する。そ
して、第n回目のパルス周期Tpb(n)のピーク期間中の
電圧誤差積分値Svが0[V]になった時点t(n+1)
で、第n回目のパルス周期Tpb(n)を終了して第n+1
回目のパルス周期Tpb(n+1)を開始する。したがって、
第n回目のパルス周期Tpb(n)中の1周期溶接電圧平均
値Vw(n)=Vsc(n)となる。以後、上記の動作を繰り返
して出力制御を行う。上述した従来技術2の出力制御方
法によって、予め定めた傾きKsを有する外部特性を形
成することができる。
At the time point t (n) at which the n-th pulse period Tpb (n) starts, the (n-1) -th pulse period Tpb (n-
The previous period welding current average value Iw (n-1) in 1) is calculated, and Iw
= Iw (n-1) is substituted into the above-mentioned formula (3) to set the voltage control set value Vsc (n) which is the target value of the one cycle welding voltage average value Vw.
= Ks. (Iw (n-1) -Is) + Vs is calculated. This calculation is to calculate the voltage control set value Vsc (n) at the point P1 on the external characteristic L2 shown in FIG. Then, by the voltage control set value Vsc (n) and the welding voltage instantaneous value Vo, the voltage error integral value Sv = ∫ (Vsc (n) −Vo) · Equation (2) from time t (n). Calculate dt. Then, the time t (n + 1) at which the voltage error integration value Sv during the peak period of the n-th pulse period Tpb (n) becomes 0 [V].
Then, the n-th pulse cycle Tpb (n) is finished and
The second pulse cycle Tpb (n + 1) is started. Therefore,
One cycle welding voltage average value Vw (n) = Vsc (n) in the nth pulse cycle Tpb (n). After that, the above operation is repeated to control the output. An external characteristic having a predetermined slope Ks can be formed by the output control method of the conventional technique 2 described above.

【0014】図4は、上述した従来技術2の出力制御方
法を実施するための溶接電源装置PSのブロック図であ
る。以下、同図を参照して各回路ブロックについて説明
する。電圧検出回路VDは、溶接電圧瞬時値Voを検出
して、電圧検出信号Vdを出力する。電流検出回路ID
は、溶接電流瞬時値Ioを検出して、電流検出信号Id
を出力する。1周期溶接電流平均値算出回路IWは、上
記の電流検出信号Idの1周期の間の平均値を算出し
て、1周期溶接電流平均値信号Iwを出力する。
FIG. 4 is a block diagram of a welding power source device PS for implementing the above-described output control method of the prior art 2. Hereinafter, each circuit block will be described with reference to FIG. The voltage detection circuit VD detects the welding voltage instantaneous value Vo and outputs a voltage detection signal Vd. Current detection circuit ID
Detects the welding current instantaneous value Io and detects the current detection signal Id.
Is output. The one-cycle welding current average value calculation circuit IW calculates the average value of the current detection signal Id for one cycle and outputs the one-cycle welding current average value signal Iw.

【0015】溶接電源装置の外部に設置された溶接電圧
設定回路VSは、予め定めた溶接電圧設定信号Vsを出
力する。溶接電源装置の外部に設置された溶接電流設定
回路ISは、予め定めた溶接電流設定信号Isを出力す
る。図示していないが、この溶接電流設定信号Isに対
応した送給速度で溶接ワイヤ1が送給される。傾き設定
回路KSは、予め定めた外部特性の傾き設定信号Ksを
出力する。外部特性制御回路VSCは、上記の1周期溶
接電流平均値信号Iw、溶接電圧設定信号Vs、溶接電
流設定信号Is及び傾き設定信号Ksを入力として、前
述した(3)式の演算によって、電圧制御設定信号Vsc
を出力する。電圧誤差積分回路SVは、上記の電圧検出
信号Vd及び電圧制御設定信号Vscを入力として、各パ
ルス周期の開始時点から前述した(2)式の積分を行
い、電圧誤差積分値信号Svを出力する。比較回路CM
は、上記の電圧誤差積分値信号Svと0[V]とを比較
して、両値が等しくなった時点で、短時間Highレベ
ルとなる比較信号Cmを出力する。上記の外部特性制御
回路VSC、電圧誤差積分回路SV及び比較回路CMに
よって、図3の説明の項で前述した従来技術2の出力制
御方法の主要部を形成する。
A welding voltage setting circuit VS provided outside the welding power supply device outputs a predetermined welding voltage setting signal Vs. The welding current setting circuit IS installed outside the welding power supply device outputs a predetermined welding current setting signal Is. Although not shown, the welding wire 1 is fed at a feeding speed corresponding to the welding current setting signal Is. The slope setting circuit KS outputs a slope setting signal Ks having a predetermined external characteristic. The external characteristic control circuit VSC receives the above-mentioned one-cycle welding current average value signal Iw, welding voltage setting signal Vs, welding current setting signal Is, and inclination setting signal Ks as input, and performs voltage control by the calculation of the above-mentioned formula (3). Setting signal Vsc
Is output. The voltage error integration circuit SV receives the voltage detection signal Vd and the voltage control setting signal Vsc as described above, performs integration of the above equation (2) from the start point of each pulse cycle, and outputs a voltage error integration value signal Sv. . Comparison circuit CM
Compares the above voltage error integrated value signal Sv with 0 [V], and outputs a comparison signal Cm that becomes High level for a short time when both values become equal. The external characteristic control circuit VSC, the voltage error integration circuit SV, and the comparison circuit CM described above form the main part of the output control method of the prior art 2 described above in the description of FIG.

【0016】タイマ回路MMは、上記の比較信号Cmを
トリガ信号として、予め定めたベース期間Tbの間Hi
ghレベルとなる切換信号Mmを出力する。ベース電流
設定回路IBは、予め定めたベース電流設定信号Ibを
出力する。ピーク電流設定回路IPは、予め定めたピー
ク電流設定信号Ipを出力する。ベース/ピーク切換回
路SWは、上記の切換信号Mmを入力として、入力信号
がHighレベルのときはa側に切り換わり上記のベー
ス電流設定信号Ibを電流制御設定信号Iscとして出力
し、入力信号がLowレベルのときはb側に切り換わり
上記のピーク電流設定信号Ipを電流制御設定信号Isc
として出力する。電流誤差増幅回路EIは、上記の電流
制御設定信号Iscと電流検出信号Idとの誤差を増幅し
て、電流誤差増幅信号Eiを出力する。
The timer circuit MM uses the above-mentioned comparison signal Cm as a trigger signal to hold Hi for a predetermined base period Tb.
It outputs the switching signal Mm which becomes the gh level. The base current setting circuit IB outputs a predetermined base current setting signal Ib. The peak current setting circuit IP outputs a predetermined peak current setting signal Ip. The base / peak switching circuit SW receives the switching signal Mm as an input, switches to the a side when the input signal is at the high level, and outputs the base current setting signal Ib as the current control setting signal Isc, and the input signal is At the low level, it switches to the b side and the peak current setting signal Ip is changed to the current control setting signal Isc.
Output as. The current error amplification circuit EI amplifies the error between the current control setting signal Isc and the current detection signal Id and outputs a current error amplification signal Ei.

【0017】出力制御回路INVは、上記の電流誤差増
幅信号Eiを制御信号とし、交流商用電源(3相200
[V]等)を入力としてインバータ制御、サイリスタ位
相制御等によって出力制御して、上記の電流制御設定信
号Iscに相当する溶接電流瞬時値Ioを通電する。すな
わち、Isc=Ibのときにはベース電流Ibが通電し、
Isc=Ipのときにはピーク電流Ipが通電する。ま
た、溶接ワイヤ1はワイヤ送給装置の送給ロール5aに
よって溶接トーチ4を通って送給されて、被溶接物2と
の間にアーク3が発生する。
The output control circuit INV uses the above current error amplification signal Ei as a control signal and uses an AC commercial power supply (three-phase 200
[V] or the like) is used as an input to perform output control by inverter control, thyristor phase control, or the like, and the welding current instantaneous value Io corresponding to the current control setting signal Isc is supplied. That is, when Isc = Ib, the base current Ib is conducted,
When Isc = Ip, the peak current Ip is conducted. Further, the welding wire 1 is fed through the welding torch 4 by the feeding roll 5a of the wire feeding device, and the arc 3 is generated between the welding wire 1 and the object to be welded 2.

【0018】図5は、上述した溶接電源装置PSの各信
号のタイミングチャートである。同図(A)は溶接電流
瞬時値Ioの時間変化を示し、同図(B)は溶接電圧瞬
時値Voの時間変化を示し、同図(C)は電圧誤差積分
値信号Svの時間変化を示し、同図(D)は比較信号C
mの時間変化を示し、同図(E)は切換信号Mmの時間
変化を示す。同図(A)及び(B)は、前述した図1と
同一である。以下、同図を参照して説明する。
FIG. 5 is a timing chart of each signal of the above-mentioned welding power source device PS. The same figure (A) shows the time variation of the welding current instantaneous value Io, the same figure (B) shows the time variation of the welding voltage instantaneous value Vo, and the same figure (C) shows the time variation of the voltage error integral value signal Sv. The comparison signal C is shown in FIG.
m shows the change over time, and FIG. 7E shows the change over time of the switching signal Mm. 1A and 1B are the same as FIG. 1 described above. Hereinafter, description will be given with reference to FIG.

【0019】 時刻t(n-1)〜t(n)の期間(第n−1
回目のパルス周期Tpb(n-1))時刻t(n-1)において、同
図(C)に示すように、電圧誤差積分値信号Svが0
[V]になると、同図(D)に示すように、比較信号C
mが短時間Highレベルになる。この変化に応じて、
同図(E)に示すように、切換信号Mmはベース期間T
bの間Highレベルとなり、同図(A)に示すよう
に、溶接電流瞬時値信号Ioはベース電流Ibとなる。
このベース期間Tb中は、電圧誤差積分値信号Sv=∫
(Vsc(n-1)−Vo)・dt=∫(Vsc(n-1)−Vb)・
dtの演算が行われる。ここで、V(n-1)>Vbなの
で、同図(C)に示すように、電圧誤差積分値信号Sv
は、時間経過と共に増加する。
A period from time t (n−1) to t (n) (n−1th)
At the time t (n-1) of the pulse cycle Tpb (n-1) of the second time, the voltage error integrated value signal Sv becomes 0 as shown in FIG.
At [V], as shown in FIG.
m becomes High level for a short time. In response to this change,
As shown in FIG. 7E, the switching signal Mm has a base period T.
During the period b, the level becomes High, and the welding current instantaneous value signal Io becomes the base current Ib as shown in FIG.
During this base period Tb, the voltage error integrated value signal Sv = ∫
(Vsc (n-1) -Vo) ・ dt = ∫ (Vsc (n-1) -Vb) ・
The calculation of dt is performed. Since V (n-1)> Vb, the voltage error integrated value signal Sv as shown in FIG.
Increases with time.

【0020】同図(E)に示すように、切換信号Mmが
Lowレベルに変化すると、同図(A)に示すように、
溶接電流瞬時値信号Ioはピーク電流Ipとなる。この
ピーク期間Tp中は、電圧誤差積分値信号Sv=∫(V
sc(n-1)−Vo)・dt=∫(Vsc(n-1)−Vp)・dt
の演算が行われる。ここで、V(n-1)<Vpなので、同
図(C)に示すように、電圧誤差積分値信号Svは、時
間経過と共に減少し、時刻t(n)において0[V]にな
る。
When the switching signal Mm changes to the low level as shown in FIG. 7E, as shown in FIG.
The welding current instantaneous value signal Io becomes the peak current Ip. During this peak period Tp, the voltage error integrated value signal Sv = ∫ (V
sc (n-1) -Vo) ・ dt = ∫ (Vsc (n-1) -Vp) ・ dt
Is calculated. Here, since V (n-1) <Vp, the voltage error integrated value signal Sv decreases with the passage of time and becomes 0 [V] at time t (n), as shown in FIG.

【0021】 時刻t(n)以降の期間(第n回目のパ
ルス周期Tpb(n) 第n回目のパルス周期Tpb(n)の開始時点t(n)におい
て、図4の説明の項で前述したように、時刻t(n-1)〜
T(n)の間の前周期溶接電流平均値Iw(n-1)の算出値を
(3)式に代入して、同図(B)に示すように、第n回
目のパルス周期Tpb(n)の電圧制御設定信号Vsc(n)が演
算される。これ以降の動作は、上記項の動作と同様で
あるので、説明を省略する。上述したように、従来技術
2の出力制御方法では、予め定めた傾きKsを有する外
部特性を形成することができる。
A period after the time t (n) (n-th pulse period Tpb (n) at the start time t (n) of the n-th pulse period Tpb (n) has been described above in the section of FIG. , From time t (n-1)
Substituting the calculated value of the previous period welding current average value Iw (n-1) during T (n) into the equation (3), as shown in FIG. 7B, the nth pulse period Tpb ( The voltage control setting signal Vsc (n) of (n) is calculated. The subsequent operation is the same as the operation described in the above section, and the description thereof will be omitted. As described above, the output control method of the conventional technique 2 can form the external characteristic having the predetermined slope Ks.

【0022】[0022]

【発明が解決しようとする課題】 図6は、解決課題
を説明するための前述した図3に対応する電流・電圧波
形図である。同図(A)は溶接電流瞬時値Ioの時間変
化を示し、同図(B)は溶接電圧瞬時値Voの時間変化
を示す。同図は、第n−1回目のパルス周期Tpb(n-1)
中に溶接ワイヤと被溶接物との短絡が発生した場合であ
る。一般的に、パルスアーク溶接においては、溶滴移行
に伴って1秒間に数回〜数十回の短絡が発生する。以
下、同図を参照して説明する。
FIG. 6 is a current / voltage waveform diagram corresponding to FIG. 3 described above for explaining the problem to be solved. The same figure (A) shows the temporal change of the welding current instantaneous value Io, and the same figure (B) shows the temporal change of the welding voltage instantaneous value Vo. This figure shows the (n-1) th pulse period Tpb (n-1)
This is the case where a short circuit occurs between the welding wire and the object to be welded. Generally, in pulse arc welding, short-circuiting occurs several times to several tens of times per second due to droplet transfer. Hereinafter, description will be given with reference to FIG.

【0023】同図(A)に示すように、第n−1回目の
パルス周期Tpb(n-1)中に短絡が発生すると、通常、短
絡状態を早期に解除してアークを再発生させるために大
きな値の短絡解除電流Itを通電する。このために、第
n−1回目のパルス周期Tpb(n-1)中の前周期溶接電流
平均値Iw(n-1)は、その前の周期の値よりも大きくな
る。図3の説明の項で前述したように、傾きKsを有す
る外部特性を形成するために、この前周期溶接電流平均
値Iw(n-1)を(3)式に代入して、次周期の電圧制御
設定値Vsc(n)を演算する。したがって、前周期溶接電
流平均値Iw(n-1)が大きくなると、第n回目のパルス
周期Tpb(n)の電圧制御設定値Vsc(n)は小さくなる。そ
の結果、1周期溶接電圧平均値Vw(n)も小さくなるた
めに、第n回目のパルス周期Tpb(n)中のアーク長は前
周期よりも短くなり、さらに短絡が発生しやすい状態と
なる。すなわち、1回の短絡の発生が次の短絡を誘発す
ることになり、アーク状態は不安定になり、ビード外観
の悪化、溶込み深さの不均一、スパッタの大量発生等の
溶接不良が生じやすい。特に、高速溶接時においては、
アンダーカット等の溶接欠陥の発生を防止するために、
通常、アーク長を短く設定して溶接を行う必要がある。
このために、短絡が発生しやすい状態にあり、従来技術
の出力制御方法ではアーク状態が不安定になりやすい。
When a short circuit occurs during the (n-1) th pulse period Tpb (n-1) as shown in FIG. 9A, normally, the short circuit state is released early to regenerate the arc. A short circuit release current It having a large value is applied to the. Therefore, the previous period welding current average value Iw (n-1) in the (n-1) th pulse period Tpb (n-1) becomes larger than the value of the previous period. As described above in the description of FIG. 3, in order to form the external characteristic having the slope Ks, the previous period welding current average value Iw (n-1) is substituted into the equation (3), and The voltage control set value Vsc (n) is calculated. Therefore, when the previous period welding current average value Iw (n-1) increases, the voltage control set value Vsc (n) of the nth pulse period Tpb (n) decreases. As a result, the one cycle welding voltage average value Vw (n) also becomes smaller, so the arc length in the nth pulse cycle Tpb (n) becomes shorter than in the previous cycle, and a short circuit is more likely to occur. . In other words, the occurrence of one short circuit induces the next short circuit, the arc state becomes unstable, the bead appearance deteriorates, the penetration depth becomes uneven, and welding defects such as large amount of spatter occur. Cheap. Especially during high-speed welding,
In order to prevent the occurrence of welding defects such as undercut,
Usually, it is necessary to set the arc length short and perform welding.
Therefore, a short circuit is likely to occur, and the arc state is likely to be unstable in the output control method of the conventional technique.

【0024】 従来技術2の出力制御方法では、前周
期の状態をフィードバックして、次周期の出力制御を行
うために、原理的にフィードバック制御系の位相余裕が
小さくなり、制御系が不安定になりやすい状態にある。
例えば、第n−1回目のパルス周期Tpb(n-1)中の外乱
によって溶接電圧瞬時値Voが大きくなると、電圧制御
設定値Vsc(n-1)と等しくなるようにパルス周期Tpb(n-
1)の時間長さは長くなる。このため、第n−1回目の前
周期溶接電流平均値Iw(n-1)が小さくなるために、次
周期の電圧制御設定値Vsc(n)は、次周期中のアーク状
態とは関係なく大きくなる。このように、前周期中の外
乱によって次周期の電圧制御設定値Vsc(n)が変化し、
次周期のアーク長に影響を及ぼすことになる。その結
果、1つの外乱の発生に誘発されて、次周期以降のアー
ク長が変化する場合が生じる。
In the output control method of the prior art 2, since the state of the previous cycle is fed back and the output control of the next cycle is performed, the phase margin of the feedback control system is reduced in principle, and the control system becomes unstable. It is in a state where it is easy to become.
For example, when the welding voltage instantaneous value Vo increases due to a disturbance in the (n-1) th pulse period Tpb (n-1), the pulse period Tpb (n- is set to be equal to the voltage control set value Vsc (n-1).
The time length of 1) becomes longer. Therefore, the average value Iw (n-1) of the welding current in the previous cycle of the (n-1) th cycle becomes small, so that the voltage control set value Vsc (n) of the next cycle is independent of the arc state in the next cycle. growing. Thus, the voltage control set value Vsc (n) in the next cycle changes due to the disturbance in the previous cycle,
This will affect the arc length of the next cycle. As a result, the occurrence of one disturbance may change the arc length in the next period and thereafter.

【0025】そこで、本発明では、予め定めた傾きKs
を有する外部特性を形成すると共に、安定した制御系に
よって現周期の外乱によるアーク長への影響を現周期中
に抑制し、次周期のアーク長に影響を与えない溶接電源
装置の出力制御方法を提供する。
Therefore, in the present invention, the predetermined slope Ks
The output control method of the welding power supply device, which suppresses the influence on the arc length due to the disturbance of the current cycle during the current cycle by the stable control system while forming the external characteristics having, and does not affect the arc length of the next cycle. provide.

【0026】[0026]

【課題を解決するための手段】第1の発明は、図7〜9
に示すように、予め定めたベース期間Tb中は溶滴移行
をさせない値に予め定めたベース電流Ibを通電し、続
けてピーク期間Tp中は溶滴移行をさせる値に予め定め
たピーク電流Ipを通電し、これら1周期の通電をパル
ス周期Tpbとして繰り返し通電して溶接する消耗電極パ
ルスアーク溶接に使用する溶接電源装置の出力制御方法
において、溶接電源装置の外部特性の傾きKs及び溶接
電流設定値Is及び溶接電圧設定値Vsを予め設定し、
上記設定値によって第1の変数A=Ks・(Ip−I
s)及び第2の変数B=Ks・(Ip−Ib)・Tbを
演算した後に、溶接中の溶接電圧瞬時値Voを検出して
第n回目のパルス周期Tpb(n)の開始時点からの傾き形
成電圧誤差積分値Sva=∫(A+Vs−Vo)・dtを
演算し、上記第n回目のベース期間Tb(n)に続く第n
回目のピーク期間Tp(n)中の上記傾き形成電圧誤差積
分値Svaが上記第2の変数Bの値以下になった時点で上
記第n回目のパルス周期Tpb(n)を終了し、続けて第n
+1回目のパルス周期Tpb(n+1)を開始して上記動作を
繰り返し行うことによって上記傾きKsを有する外部特
性を形成して溶接を行うパルスアーク溶接電源装置の出
力制御方法である。
The first aspect of the invention is shown in FIGS.
As shown in, the predetermined base current Ib is supplied to a value that does not cause droplet transfer during the predetermined base period Tb, and then the peak current Ip that is predetermined at a value that causes droplet transfer during the peak period Tp. In the output control method of the welding power supply device used for consumable electrode pulse arc welding, in which the current is supplied for 1 cycle and the current is repeatedly supplied as the pulse cycle Tpb, the slope Ks of the external characteristics of the welding power supply device and the welding current setting are set. The value Is and the welding voltage setting value Vs are preset,
The first variable A = Ks · (Ip−I
s) and the second variable B = Ks · (Ip−Ib) · Tb are calculated, the welding voltage instantaneous value Vo during welding is detected, and the nth pulse period Tpb (n) from the start time point is detected. The slope forming voltage error integrated value Sva = ∫ (A + Vs−Vo) · dt is calculated, and the nth base period Tb (n) subsequent to the nth base period Tb (n) is calculated.
At the time when the slope forming voltage error integrated value Sva during the peak period Tp (n) becomes equal to or less than the value of the second variable B, the n-th pulse cycle Tpb (n) is ended, and the pulse cycle Tpb (n) is continued. Nth
This is an output control method for a pulse arc welding power supply device in which the + 1st pulse cycle Tpb (n + 1) is started and the above operation is repeated to form an external characteristic having the above-mentioned inclination Ks and welding is performed.

【0027】第2の発明は、第1の発明に記載する第1
の変数A及び第2の変数Bの演算を、溶接中の予め定め
た変数演算周期Tc毎に又はパルス周期の開始時点毎に
行うパルスアーク溶接電源装置の出力制御方法である。
The second invention is the first invention described in the first invention.
Of the variable A and the second variable B is performed for each predetermined variable calculation cycle Tc during welding or for each start point of the pulse cycle, the output control method of the pulse arc welding power supply device.

【0028】第3の発明は、図10〜11に示すよう
に、溶接ワイヤの送給速度設定値Ws並びに溶接ワイヤ
の材質及び直径を設定し、これらによって溶接電流設定
値Isを算出する第1又は第2の発明に記載するパルス
アーク溶接電源装置の出力制御方法である。
As shown in FIGS. 10 to 11, the third invention sets the feed rate setting value Ws of the welding wire and the material and diameter of the welding wire, and calculates the welding current setting value Is from them. Alternatively, it is an output control method of the pulse arc welding power supply device described in the second invention.

【0029】以下、本発明の実施の形態を例示する実施
例1〜3について説明する。 [実施例1]図7は、本発明の出力制御方法の動作原理
を説明するための電流・電圧波形図である。同図(A)
は溶接電流瞬時値Ioの時間変化を示し、同図(B)は
溶接電圧瞬時値Voの時間変化を示す。同図において、
実施例1の出力制御方法によって形成される目標の外部
特性は、前述した(3)式と同様に、予め定めた溶接電
流設定値Is、溶接電圧設定値Vs及び傾きKsによっ
てVw=Ks・(Iw−Is)+Vsで示す直線であ
る。以下、同図を参照して説明する。
Examples 1 to 3 illustrating the embodiment of the present invention will be described below. [Embodiment 1] FIG. 7 is a current / voltage waveform diagram for explaining the operation principle of the output control method of the present invention. Same figure (A)
Shows the temporal change of the welding current instantaneous value Io, and FIG. 7B shows the temporal change of the welding voltage instantaneous value Vo. In the figure,
The target external characteristic formed by the output control method according to the first embodiment is Vw = Ks. (Ws) according to the predetermined welding current setting value Is, the welding voltage setting value Vs, and the slope Ks, as in the above-described formula (3). Iw-Is) + Vs is a straight line. Hereinafter, description will be given with reference to FIG.

【0030】同図に示すように、第n回目のパルス周期
Tpb(n)中の1周期溶接電流平均値Iw(n)及び1周期溶
接電圧平均値Vw(n)を算出し、両算出値にVw(n)=K
s・(Iw(n)−Is)+Vsの関係が成立した時点t
(n+1)で、第n回目のパルス周期Tpb(n)を終了し、第n
+1回目のパルス周期Tpb(n+1)を開始するように出力
制御する。これによって、(3)式で示す目標の外部特
性が形成されると共に、従来技術2では前周期溶接電流
平均値Iw(n-1)と現周期の1周期溶接電圧平均値Vw
(n)とが(3)式の関係にあったのに対して、実施例1
では、現周期の1周期溶接電流平均値Iw(n)と現周期
の1周期溶接電圧平均値Vw(n)とが(3)式の関係に
ある。したがって、前周期に発生した外乱によって、現
周期の出力制御が影響を受けることはない。以下、本発
明の基礎となる前述した(2)式に対応する制御式を導
出する。
As shown in the figure, the 1-cycle welding current average value Iw (n) and the 1-cycle welding voltage average value Vw (n) in the n-th pulse period Tpb (n) are calculated, and both calculated values are calculated. Vw (n) = K
Time point t when the relationship of s · (Iw (n) −Is) + Vs is established
At (n + 1), the n-th pulse cycle Tpb (n) is finished and
The output is controlled to start the + 1st pulse cycle Tpb (n + 1). As a result, the target external characteristic shown by the equation (3) is formed, and in the prior art 2, the previous period welding current average value Iw (n-1) and the current period one period welding voltage average value Vw.
While (n) and (3) were in the relationship of the formula (3), Example 1
Then, the one-cycle welding current average value Iw (n) of the current cycle and the one-cycle welding voltage average value Vw (n) of the current cycle have the relationship of the equation (3). Therefore, the output control in the current cycle is not affected by the disturbance generated in the previous cycle. Hereinafter, the control formula corresponding to the above-mentioned formula (2) which is the basis of the present invention will be derived.

【0031】下記のすべての式における積分は、第n回
目のパルス周期Tpb(n)の開始時点から終了時点までの
間行うものとする。 (1) 1周期溶接電流平均値Iw[A]は、ピーク電流
Ip[A]、ベース電流Ib[A]、ベース期間Tb
[s]及び第n回目のピーク期間Tp(n)[s]によっ
て、下式で表わされる。 Iw=Ip−((Ip−Ib)・Tb/(Tp(n)+Tb)) (41)式 (2) 上式において、Iw=電流設定値Is[A]のと
きTp=Tpsとすると下式となる。 Is=Ip−((Ip−Ib)・Tb/(Tps+Tb) (42)式 (3) (41)式及び(42)式から下式が得られる。 Iw−Is=(Ip−Ib)・Tb・((1/(Tps+Tb))−(1/( Tp(n)+Tb))) (43)式
It is assumed that the integration in all the following equations is performed from the start time point to the end time point of the n-th pulse period Tpb (n). (1) 1 cycle welding current average value Iw [A] is peak current Ip [A], base current Ib [A], base period Tb
[S] and the nth peak period Tp (n) [s] are represented by the following equation. Iw = Ip − ((Ip−Ib) · Tb / (Tp (n) + Tb)) (41) Equation (2) In the above equation, when Iw = current set value Is [A], Tp = Tps Becomes Is = Ip-((Ip-Ib) * Tb / (Tps + Tb) (42) Expression (3) The following expression is obtained from the expressions (41) and (42): Iw-Is = (Ip-Ib) * Tb・ ((1 / (Tps + Tb))-(1 / (Tp (n) + Tb))) (43) Expression

【0032】(4) 外部特性の傾きKs[V/A]は、
第n回目の1周期溶接電圧平均値Vw(n)[V]、電圧
設定値Vs[V]、第n回目の1周期溶接電流平均値I
w(n)[A]及び電流設定値Is[A]によって、下式
で表わされる。 Ks=(Vw(n)−Vs)/(Iw(n)−Is) (44)式 (5) 上式に(43)式を代入すると下式となる。 Vw(n)−Vs=Ks・(Ip−Ib)・Tb・((1/(Tps+Tb)) −(1/(Tp(n)+Tb))) (45)式 (6) 1周期溶接電圧平均値Vw(n)は、溶接電圧瞬時値
Voによって下式で定義される。 Vw(n)=(1/(Tp(n)+Tb))・∫Vo・dt (46)式
(4) The slope Ks [V / A] of the external characteristic is
1st cycle welding voltage average value Vw (n) [V] of the nth time, voltage setting value Vs [V], 1st cycle welding current average value I of the nth time
It is represented by the following equation by w (n) [A] and current set value Is [A]. Ks = (Vw (n) -Vs) / (Iw (n) -Is) (44) Equation (5) Substituting Equation (43) into the above equation yields the following equation. Vw (n) -Vs = Ks. (Ip-Ib) .Tb. ((1 / (Tps + Tb))-(1 / (Tp (n) + Tb))) (45) Formula (6) One cycle welding voltage average The value Vw (n) is defined by the following equation by the welding voltage instantaneous value Vo. Vw (n) = (1 / (Tp (n) + Tb)) ・ ∫Vo ・ dt (46) Formula

【0033】(7) 上式を(45)式に代入すると下式とな
る。 (1/(Tp(n)+Tb))・∫(Vo−Vs)・dt=Ks・(Ip−I b)・Tb・((1/(Tps+Tb))−(1/(Tp(n)+Tb))) (4 7)式 (8) 上式を変形すると下式となる。 ∫(Vo−Vs)・dt=Ks・(Ip−Ib)・Tb・((Tp(n)+T b)/(Tps+Tb))−Ks・(Ip−Ib)・Tb (48)式 (9) (42)式を変形すると下式となる。 (Ip−Ib)・Tb/(Tps+Tb)=Ip−Is (49)式 (10) 上式を(48)式に代入すると下式となる。 ∫(Vo−Vs)・dt=Ks・(Ip−Is)・(Tp(n)+Tb)−K s・(Ip−Ib)・Tb (410)式 (11) 上式を変形すると下式となる。 ∫Ks・(Ip−Is)・dt−∫(Vo−Vs)・dt=Ks・(Ip− Ib)・Tb (411)式
(7) Substituting the above equation into the equation (45) gives the following equation. (1 / (Tp (n) + Tb)) ・ ∫ (Vo-Vs) ・ dt = Ks ・ (Ip-Ib) ・ Tb ・ ((1 / (Tps + Tb))-(1 / (Tp (n) + Tb ))) (47) Equation (8) The above equation is transformed into the following equation. ∫ (Vo-Vs) * dt = Ks * (Ip-Ib) * Tb * ((Tp (n) + Tb) / (Tps + Tb))-Ks * (Ip-Ib) * Tb (48) Formula (9) When the equation (42) is modified, it becomes the following equation. (Ip−Ib) · Tb / (Tps + Tb) = Ip−Is (49) Formula (10) Substituting the above formula into the formula (48) gives the following formula. ∫ (Vo-Vs) * dt = Ks * (Ip-Is) * (Tp (n) + Tb) -Ks * (Ip-Ib) * Tb (410) Equation (11) Become. ∫Ks · (Ip−Is) · dt−∫ (Vo−Vs) · dt = Ks · (Ip−Ib) · Tb (411) Formula

【0034】(12) ここで、式を簡潔にするために、第
1の変数Aを導入して下式で定義する。 A=Ks・(Ip−Is) (5)式 (13) 同様に、第2の変数Bを導入して下式で定義す
る。 B=Ks・(Ip−Ib)・Tb (6)式 (14) (5)式及び(6)式を(411)式に代入する
と、本発明の制御式である下式が得られる。 ∫(A+Vs−Vo)・dt=B (7)式
(12) Here, in order to simplify the equation, the first variable A is introduced and defined by the following equation. A = Ks · (Ip−Is) (5) Formula (13) Similarly, the second variable B is introduced and defined by the following formula. B = Ks · (Ip−Ib) · Tb (6) Equation (14) By substituting Equation (5) and Equation (6) into Equation (411), the following equation, which is a control equation of the present invention, is obtained. ∫ (A + Vs−Vo) · dt = B (7) Formula

【0035】したがって、第n回目のパルス周期Tpb
(n)の終了時点において、上式が成立することになる。
第n回目のパルス周期Tpb(n)の開始時点においては、
傾きKs、ピーク電流Ip、電流設定値Is、ベース電
流Ib及びベース期間Tbの設定値パラメータは定数と
みなすことができるので、上記(5)式で示す第1の変
数A及び上記(6)式で示す第2の変数Bは共に定数と
みなすことができる。ここで、第n回目のパルス周期T
pb(n)の開始時点からの傾き形成電圧誤差積分値Svaを
上記(7)式の左辺である Sva=∫(A+Vs−Vo)・dt と定義する。通常、Ks≦0、Ib<Is<Ip、Tb
>0なので、A=Ks・(Ip−Is)≦0及びB=K
s・(Ip−Ib)・Tb≦0となる。図7において、
ベース期間Tb中はVs>Vo(=Vb)となるが、
(A+Vs−Vo)の値は上記の設定値パラメータの値
によって正の値にも負の値にもなる。他方、ピーク期間
Tp中はVs<Vo(=Vp)なので、(A+Vs−V
o)<0となり、上記の傾き形成電圧誤差積分値Svaの
値は、ピーク期間Tp中は時間経過と共に次第に小さく
なる。したがって、第n回目のパルス周期Tpb(n)の開
始時点からの傾き形成電圧誤差積分値Svaを演算し、そ
の演算値が第2の変数Bの値と等しくなるか又は第2の
変数Bの値以下になった時点で、第n回目のパルス周期
Tpb(n)を終了する。すなわち、下式が成立した時点で
パルス周期を終了する。 Sva=∫(A+Vs−Vo)・dt≦B (8)式 但し、上記積分は、第n回目のパルス周期Tpb(n)の間
行う。
Therefore, the nth pulse period Tpb
At the end of (n), the above equation will hold.
At the start of the n-th pulse cycle Tpb (n),
Since the set value parameters of the slope Ks, the peak current Ip, the current set value Is, the base current Ib, and the base period Tb can be regarded as constants, the first variable A shown in the above equation (5) and the above equation (6) are given. The second variable B indicated by can be both regarded as a constant. Here, the n-th pulse period T
The slope forming voltage error integrated value Sva from the start point of pb (n) is defined as Sva = ∫ (A + Vs−Vo) · dt, which is the left side of the above equation (7). Usually, Ks ≦ 0, Ib <Is <Ip, Tb
Since> 0, A = Ks · (Ip−Is) ≦ 0 and B = K
s · (Ip−Ib) · Tb ≦ 0. In FIG.
Vs> Vo (= Vb) during the base period Tb,
The value of (A + Vs−Vo) can be a positive value or a negative value depending on the value of the set value parameter. On the other hand, since Vs <Vo (= Vp) during the peak period Tp, (A + Vs−V
o) <0, and the value of the slope forming voltage error integrated value Sva decreases gradually with the passage of time during the peak period Tp. Therefore, the slope forming voltage error integrated value Sva from the start time of the n-th pulse period Tpb (n) is calculated, and the calculated value becomes equal to the value of the second variable B or the second variable B When it becomes less than or equal to the value, the n-th pulse cycle Tpb (n) is ended. That is, the pulse period ends when the following equation is established. Sva = ∫ (A + Vs−Vo) · dt ≦ B Equation (8) However, the integration is performed during the n-th pulse period Tpb (n).

【0036】上述したように、本発明は、第1の変数A
=Ks・(Ip−Is)及び第2の変数B=Ks・(I
p−Ib)・Tbを演算した後に、溶接中の溶接電圧瞬
時値Voを検出して第n回目のパルス周期Tpb(n)の開
始時点からの傾き形成電圧誤差積分値Sva=∫(A+V
s−Vo)・dtを演算し、上記第n回目のベース期間
Tbに続く第n回目のピーク期間Tp中の上記傾き形成
電圧誤差積分値Svaの値が上記第2の変数Bの値以下に
なった時点で、上記第n回目のパルス周期Tpb(n)を終
了し、続けて第n+1回目のパルス周期Tpb(n+1)を開
始して上記動作を繰り返し行うことによって、上記傾き
Ksを有する外部特性を形成して溶接を行うパルスアー
ク溶接電源装置の出力制御方法である。
As described above, according to the present invention, the first variable A
= Ks · (Ip−Is) and the second variable B = Ks · (I
p−Ib) · Tb is calculated, then the welding voltage instantaneous value Vo during welding is detected, and the slope forming voltage error integrated value Sva = ∫ (A + V) from the start of the n-th pulse cycle Tpb (n).
s-Vo) .dt is calculated, and the value of the slope forming voltage error integrated value Sva during the nth peak period Tp following the nth base period Tb becomes equal to or less than the value of the second variable B. At this point, the n-th pulse cycle Tpb (n) is ended, the n + 1-th pulse cycle Tpb (n + 1) is subsequently started, and the above-mentioned operation is repeated to thereby obtain the above-mentioned inclination Ks. It is an output control method of a pulse arc welding power supply device for forming an external characteristic and performing welding.

【0037】なお、傾きKs=0と設定すると、第1の
変数A=0及び第2の変数B=0となるので、(8)式
は Sva=∫(Vs−Vo)・dt≦0 となり、前述した従来技術のときの(2)式と一致す
る。すなわち、本発明の出力制御方法を示す(8)式に
おける特別な場合(Ks=0)が、従来技術の出力制御
方法を示す(2)式の場合となる。
When the slope Ks = 0 is set, the first variable A = 0 and the second variable B = 0, so that the equation (8) becomes Sva = ∫ (Vs−Vo) · dt ≦ 0. , Which coincides with the equation (2) in the case of the above-mentioned conventional technique. That is, the special case (Ks = 0) in the expression (8) showing the output control method of the present invention is the case of the expression (2) showing the output control method of the prior art.

【0038】図8は、上述した本発明を実施するための
実施例1のパルス周期毎制御溶接電源装置PSAのブロ
ック図である。同図において、前述した図4と同一の回
路ブロックには同一符号を付し、それらの説明は省略す
る。以下、図4とは異なる点線で示す回路ブロックにつ
いて説明する。
FIG. 8 is a block diagram of the pulse-period-controlled welding power supply PSA of the first embodiment for carrying out the present invention described above. In the figure, the same circuit blocks as those in FIG. 4 described above are designated by the same reference numerals, and the description thereof will be omitted. Hereinafter, a circuit block indicated by a dotted line different from FIG. 4 will be described.

【0039】第1の変数演算回路CAは、傾き設定信号
Ks、ピーク電流設定信号Ip及び溶接電流設定信号I
sを入力として、前述した(5)式の演算を行い、第1
の変数演算値信号Caを出力する。第2の変数演算回路
CBは、傾き設定信号Ks、ピーク電流設定信号Ip、
ベース電流設定信号Ib及びベース期間設定信号Tbを
入力として、前述した(6)式の演算を行い、第2の変
数演算値信号Cbを出力する。
The first variable operation circuit CA has a slope setting signal Ks, a peak current setting signal Ip and a welding current setting signal I.
Using s as an input, the operation of the equation (5) described above is performed, and
The variable calculation value signal Ca of is output. The second variable calculation circuit CB has a slope setting signal Ks, a peak current setting signal Ip,
Using the base current setting signal Ib and the base period setting signal Tb as inputs, the calculation of the above-described equation (6) is performed, and the second variable calculation value signal Cb is output.

【0040】傾き形成電圧誤差積分回路SVAは、上記
の第1の変数演算値信号Ca、溶接電圧設定信号Vs及
び電圧検出信号Vdを入力として、第n回目のパルス周
期Tpb(n)の開始時点から前述した(8)式左辺の積分
を行い、傾き形成電圧誤差積分値信号Svaを出力する。
変数比較回路CMAは、上記の傾き形成電圧誤差積分値
信号Svaと上記の第2の変数演算値信号Cbとを比較し
て、SVa≦Cbになった時点で、短時間Highレベル
となる比較信号Cmを出力する。すなわち、上記の傾き
形成電圧誤差積分回路SVA及び変数比較回路CMAに
よって、本発明の出力制御方法を示す前述した(8)式
の演算を行う。これ以降の動作の説明は、図4のときと
同様であるので省略する。
The slope forming voltage error integrating circuit SVA receives the first variable calculation value signal Ca, the welding voltage setting signal Vs and the voltage detection signal Vd as input, and starts the n-th pulse period Tpb (n). Then, the left side of the above equation (8) is integrated to output the slope forming voltage error integrated value signal Sva.
The variable comparison circuit CMA compares the slope forming voltage error integrated value signal Sva with the second variable operation value signal Cb, and when it becomes SVa ≦ Cb, a comparison signal which becomes High level for a short time. Output Cm. That is, the above-mentioned slope forming voltage error integration circuit SVA and the variable comparison circuit CMA perform the calculation of the above-mentioned equation (8) showing the output control method of the present invention. The description of the operation thereafter is the same as that of FIG.

【0041】図9は、前述した(8)式左辺に示す傾き
形成電圧誤差積分値Svaの時間変化とパルス周期Tpbと
の関係を示す図である。同図(A)は溶接電流瞬時値I
oの時間変化を示し、同図(B)は、縦軸にパルス周期
の開始時点(t0)からの傾き形成電圧誤差積分値Sva
の時間変化を示し、横軸にパルス周期Tpbの時間長さを
示す。同図に示す3つの特性Y1〜Y3は、図7の説明
の項で前述した設定値パラメータが同一であり、そのた
めに(8)式における第1の変数A、第2の変数B及び
溶接電圧設定値Vsが同一である場合において、溶接中
のアーク長が適正値の場合(特性Y2)、適正値よりも
短い場合(特性Y1)及び適正値よりも長い場合(特性
Y3)を示す。以下、同図を参照して説明する。
FIG. 9 is a diagram showing the relationship between the time change of the slope forming voltage error integrated value Sva shown on the left side of the above equation (8) and the pulse period Tpb. The figure (A) shows the welding current instantaneous value I.
In the same figure (B), the vertical axis represents the change in o, and the vertical axis represents the slope forming voltage error integrated value Sva from the start point (t0) of the pulse period.
Of the pulse period Tpb is shown on the horizontal axis. The three characteristics Y1 to Y3 shown in the figure have the same set value parameters described in the section of the description of FIG. 7, and therefore the first variable A, the second variable B and the welding voltage in the equation (8) are used. When the set values Vs are the same, the arc length during welding is a proper value (characteristic Y2), is shorter than the proper value (characteristic Y1), and is longer than the proper value (characteristic Y3). Hereinafter, description will be given with reference to FIG.

【0042】 アーク長が適正値の場合(特性Y2) アーク長が適正値の場合のベース電圧をVb2とし、ピー
ク電圧をVp2とする。同図(A)に示す時刻t0〜t1
までのベース期間Tb中は、傾き形成電圧誤差積分値S
vaはSva=∫(A+Vs-Vb2)・dtの演算値として
時間経過と共に次第に小さくなる。そして、時刻t1以
降のピーク期間Tp中は、傾き形成電圧誤差積分値Sva
はSva=∫(A+Vs-Vp2)・dtの演算値として時
間経過と共に、上記のベース期間Tb中とは異なる傾斜
で次第に小さくなり、時刻t3においてSva≦Bとなる
とパルス周期Tpb2が終了する。
When the arc length is a proper value (characteristic Y2) The base voltage when the arc length is a proper value is Vb2 and the peak voltage is Vp2. Times t0 to t1 shown in FIG.
Up to the base period Tb, the slope forming voltage error integration value S
va is a calculated value of Sva = ∫ (A + Vs−Vb2) dt and gradually decreases with the passage of time. Then, during the peak period Tp after the time t1, the slope forming voltage error integrated value Sva.
Becomes gradually smaller as the calculated value of Sva = ∫ (A + Vs−Vp2) dt with the lapse of time, with a slope different from that during the base period Tb, and when Sva ≦ B at time t3, the pulse period Tpb2 ends.

【0043】 アーク長が適正値よりも短い場合(特
性Y1) 溶接電圧瞬時値Voはアーク長に略比例するので、アー
ク長が適正値よりも短い場合のベース電圧はVb1<Vb2
となり、ピーク電圧はVp1<Vp2となる。同図(A)に
示す時刻t0〜t1までのベース期間Tb中は、傾き形
成電圧誤差積分値SvaはSva=∫(A+Vs-Vb1)・
dtの演算値として時間経過と共に、上記項のときよ
りも緩やか勾配で小さくなる。そして、時刻t1以降の
ピーク期間Tp中は、傾き形成電圧誤差積分値SvaはS
va=∫(A+Vs-Vp1)・dtの演算値として時間経
過と共に、ベース期間Tb中とは異なる勾配で小さくな
り、時刻t4においてSva≦Bとなるとパルス周期Tpb
1が終了する。したがって、アーク長が適正値よりも短
い場合には、パルス周期Tpb1は上記項のときのTpb2
よりも長くなり、1周期溶接電圧平均値Vwが大きくな
るので、アーク長は長くなる方向に変化して適正値に近
づくことになる。
When the arc length is shorter than the proper value (characteristic Y1) Since the welding voltage instantaneous value Vo is substantially proportional to the arc length, the base voltage when the arc length is shorter than the proper value is Vb1 <Vb2.
And the peak voltage becomes Vp1 <Vp2. During the base period Tb from time t0 to t1 shown in FIG. 7A, the slope forming voltage error integrated value Sva is Sva = ∫ (A + Vs−Vb1).
As the calculated value of dt, it becomes smaller with a gradual gradient as compared with the case of the above term with the passage of time. Then, during the peak period Tp after the time t1, the slope forming voltage error integrated value Sva is S
As the calculated value of va = ∫ (A + Vs−Vp1) · dt decreases with the passage of time with a gradient different from that during the base period Tb, and when Sva ≦ B at time t4, the pulse period Tpb
1 ends. Therefore, when the arc length is shorter than the proper value, the pulse period Tpb1 is Tpb2 in the above term.
And the one-cycle welding voltage average value Vw increases, the arc length changes in the increasing direction and approaches an appropriate value.

【0044】 アーク長が適正値よりも長い場合(特
性Y3) 前述したように、溶接電圧瞬時値Voはアーク長に略比
例するので、アーク長が適正値よりも長い場合のベース
電圧はVb3>Vb2となり、ピーク電圧はVp3>Vp2とな
る。同図(A)に示す時刻t0〜t1までのベース期間
Tb中は、傾き形成電圧誤差積分値SvaはSva=∫(A
+Vs-Vb3)・dtの演算値として時間経過と共に、
上記項のときよりも急な勾配で小さくなる。そして、
時刻t1以降のピーク期間Tp中は、傾き形成電圧誤差
積分値SvaはSva=∫(A+Vs-Vp3)・dtの演算
値として時間経過と共にベース期間Tb中とは異なる勾
配で小さくなり、時刻t2においてSva≦Bとなるとパ
ルス周期Tpb3が終了する。したがって、アーク長が適
正値よりも長い場合には、パルス周期Tpb3は上記項
のときのTpb2よりも短くなり、1周期溶接電圧平均値
Vwが小さくなるので、アーク長は短くなる方向に変化
して適正値に近づくことになる。上述したように、溶接
中のアーク長の変動に応じて、傾き形成電圧誤差積分値
Svaの勾配が変化することによってパルス周期が変化
し、その結果、1周期溶接電圧平均値Vwが変化してア
ーク長の変動を抑制する。
When the arc length is longer than the proper value (characteristic Y3) As described above, the welding voltage instantaneous value Vo is substantially proportional to the arc length. Therefore, when the arc length is longer than the proper value, the base voltage is Vb3>. It becomes Vb2 and the peak voltage becomes Vp3> Vp2. In the base period Tb from time t0 to t1 shown in FIG. 9A, the slope forming voltage error integrated value Sva is Sva = ∫ (A
+ Vs-Vb3) ・ dt as the calculated value,
It becomes smaller with a steeper slope than in the above case. And
During the peak period Tp after the time t1, the slope forming voltage error integrated value Sva becomes a calculated value of Sva = ∫ (A + Vs−Vp3) · dt and becomes smaller with a gradient different from that during the base period Tb over time, and at the time t2. When Sva ≦ B, the pulse cycle Tpb3 ends. Therefore, when the arc length is longer than the proper value, the pulse period Tpb3 becomes shorter than Tpb2 in the above term, and the one-cycle welding voltage average value Vw becomes smaller, so the arc length changes in the direction of shortening. Will approach the proper value. As described above, the pulse period changes as the slope of the slope forming voltage error integrated value Sva changes according to the variation of the arc length during welding, and as a result, the one-cycle welding voltage average value Vw changes. Suppress fluctuations in arc length.

【0045】[実施例2]実施例2の発明は、上述した
実施例1の発明における第1の変数A及び第2の変数B
の演算を、溶接中の予め定めた変数演算周期Tc[s]
毎に又はパルス周期Tpbの開始時点毎に行うパルスアー
ク溶接電源装置の出力制御方法である。以下、実施例2
の発明について説明する。
[Embodiment 2] The invention of Embodiment 2 is the first variable A and the second variable B in the invention of Embodiment 1 described above.
Is calculated by a predetermined variable calculation cycle Tc [s] during welding.
This is a method of controlling the output of the pulse arc welding power supply device, which is performed for each time or each time when the pulse period Tpb is started. Hereinafter, Example 2
The invention will be described.

【0046】実施例2の出力制御方法を実施するための
溶接電源装置は、前述した図8における第1の変数演算
回路CA及び第2の変数演算回路CBの動作を以下のよ
うに変更した構成となる。実施例2の第1の変数演算回
路CAは、傾き設定信号Ks、ピーク電流設定信号Ip
及び溶接電流設定信号Isを入力として、予め定めた変
数演算周期Tc毎に又は変数比較信号Cmが短時間Hi
ghレベルとなるパルス周期Tpbの開始時点毎に、前述
した(5)式の演算を行い、第1の変数演算値信号Ca
を出力する。実施例2の第2の変数演算回路CBは、傾
き設定信号Ks、ピーク電流設定信号Ip、ベース電流
設定信号Ib及びベース期間設定信号Tbを入力とし
て、予め定めた変数演算周期Tc毎に又は変数比較信号
Cmが短時間Highレベルとなるパルス周期Tpbの開
始時点毎に、前述した(6)式の演算を行い、第2の変
数演算値信号Cbを出力する。
The welding power source apparatus for carrying out the output control method of the second embodiment has a configuration in which the operations of the first variable arithmetic circuit CA and the second variable arithmetic circuit CB in FIG. 8 described above are changed as follows. Becomes The first variable calculation circuit CA according to the second embodiment has a slope setting signal Ks and a peak current setting signal Ip.
And the welding current setting signal Is as an input, the variable comparison signal Cm is output for a short time Hi at every predetermined variable calculation cycle Tc.
At each start time point of the pulse period Tpb which becomes the gh level, the calculation of the above-mentioned formula (5) is performed, and the first variable calculation value signal Ca
Is output. The second variable calculation circuit CB of the second embodiment receives the slope setting signal Ks, the peak current setting signal Ip, the base current setting signal Ib, and the base period setting signal Tb as input, or every predetermined variable calculation cycle Tc or variable. Every time the pulse period Tpb at which the comparison signal Cm becomes High level for a short period of time is started, the calculation of the equation (6) is performed, and the second variable calculation value signal Cb is output.

【0047】実施例2の発明では、溶接中に設定値パラ
メータが変化しても、その変化に対応して第1の変数A
及び第2の変数Bが再演算されるので、常にその時点で
の設定値パラメータに応じた適正な出力制御が行われ
る。
In the invention of the second embodiment, even if the set value parameter changes during welding, the first variable A is corresponding to the change.
Since the second variable B and the second variable B are recalculated, appropriate output control is always performed according to the set value parameter at that time.

【0048】[実施例3]実施例3の発明は、溶接ワイ
ヤの送給速度設定値Ws並びに溶接ワイヤの材質及び直
径を設定し、それらによって実施例1又は実施例2の発
明における溶接電流設定値Isを算出するパルスアーク
溶接電源装置の出力制御方法である。以下、実施例3の
発明について説明する。
[Third Embodiment] The invention of the third embodiment sets the feed rate setting value Ws of the welding wire and the material and diameter of the welding wire, and sets the welding current in the invention of the first or second embodiment. It is the output control method of the pulse arc welding power supply device which calculates the value Is. Hereinafter, the invention of Example 3 will be described.

【0049】実施例3の発明を実施するための溶接電源
装置は、前述した図8における溶接電流設定回路ISを
図110で後述する溶接電流設定値算出回路CISに置
換した構成となる。図10は、上記の溶接電流設定値算
出回路CISのブロック図である。溶接電源装置の外部
に設置された送給速度設定回路WSは、予め定めた送給
速度設定信号Wsを出力する。溶接電源装置に内蔵され
た溶接電流設定値算出回路CISは、上記の送給速度設
定信号Ws、溶接ワイヤの材質及び溶接ワイヤの直径を
入力として、図11に例示する溶融特性によって算出し
た溶接電流設定信号Isを出力する。
The welding power source device for carrying out the invention of the third embodiment has a structure in which the welding current setting circuit IS in FIG. 8 described above is replaced with a welding current set value calculation circuit CIS described later in FIG. 110. FIG. 10 is a block diagram of the welding current set value calculation circuit CIS. The feeding speed setting circuit WS installed outside the welding power source device outputs a predetermined feeding speed setting signal Ws. The welding current set value calculation circuit CIS built in the welding power source device inputs the above-mentioned feed rate setting signal Ws, the material of the welding wire and the diameter of the welding wire, and calculates the welding current calculated by the melting characteristics illustrated in FIG. The setting signal Is is output.

【0050】図11は、縦軸に示す送給速度設定値Ws
と横軸に示す溶接電流設定値Isとの関係を示す溶融特
性図である。同図は、溶接ワイヤの材質はアルミニウム
合金A5356の場合であり、溶接ワイヤの直径が1.
2[mm]又は1.6[mm]の場合の溶融特性を示す。例
えば、送給速度設定値Ws=900[cm/分]のときの
溶接電流設定値Isは、直径1.2[mm]のときはIs
=150[A]となり、直径1.6[mm]のときはIs
=250[A]となる。溶接ワイヤの材質が鉄鋼、ステ
ンレス鋼等の場合にも、同図に相当する溶融特性図から
溶接電流設定値Isを算出する。
FIG. 11 shows the feed rate set value Ws shown on the vertical axis.
FIG. 6 is a melting characteristic diagram showing the relationship between the welding current setting value Is shown on the horizontal axis and the welding current setting value Is. In the figure, the material of the welding wire is aluminum alloy A5356, and the diameter of the welding wire is 1.
The melting characteristics in the case of 2 [mm] or 1.6 [mm] are shown. For example, the welding current setting value Is when the feeding speed setting value Ws = 900 [cm / min] is Is when the diameter is 1.2 [mm].
= 150 [A], and when the diameter is 1.6 [mm], Is
= 250 [A]. Even when the material of the welding wire is steel, stainless steel, etc., the welding current setting value Is is calculated from the melting characteristic diagram corresponding to the figure.

【0051】上述した実施例3の発明では、実用上は溶
接電流設定信号Isに代えて多く使用される送給速度設
定信号Wsが外部から入力される場合においても、本発
明の出力制御方法を実施することができる。
In the above-described third embodiment of the invention, the output control method of the present invention is applied even when the feed speed setting signal Ws, which is often used in place of the welding current setting signal Is, is input from the outside. It can be carried out.

【0052】[0052]

【発明の効果】本発明では、各パルス周期Tpb中の1周
期溶接電流平均値Iwと1周期溶接電圧平均値Vwとの
動作点は必ず目標の外部特性上に存在するので、各パル
ス周期Tpb中の外乱によるアーク長の変動は、その周期
中に抑制される。したがって、外乱に対する過渡応答性
に優れているので、溶接中のアーク長の変動が少なくな
り、常に良好な溶接品質を得ることができる。さらに、
実施例2の発明では、溶接中に設定値パラメータが変化
しても、それに応じて第1の変数A及び第2の変数Bを
再演算することによって、常に適正な出力制御を行うこ
とができる。さらに、実施例3の発明では、外部から溶
接電流設定信号Isに代えて送給速度設定信号Wsが入
力される場合でも、本発明の出力制御方法を実施するこ
とができる。
According to the present invention, since the operating points of the one-cycle welding current average value Iw and the one-cycle welding voltage average value Vw in each pulse period Tpb always exist on the target external characteristic, each pulse period Tpb. Fluctuations in arc length due to internal disturbances are suppressed during that period. Therefore, since the transient response to the disturbance is excellent, the variation of the arc length during welding is reduced, and good welding quality can always be obtained. further,
In the invention of the second embodiment, even if the set value parameter changes during welding, by appropriately recalculating the first variable A and the second variable B, it is possible to always perform appropriate output control. . Furthermore, in the invention of the third embodiment, the output control method of the present invention can be implemented even when the feed speed setting signal Ws is input from the outside in place of the welding current setting signal Is.

【図面の簡単な説明】[Brief description of drawings]

【図1】パルスアーク溶接の電流・電圧波形図[Figure 1] Current / voltage waveform diagram of pulse arc welding

【図2】溶接電源装置の外部特性図[Fig. 2] External characteristic diagram of welding power source device

【図3】従来技術2の出力制御方法を説明するための電
流・電圧波形図
FIG. 3 is a current / voltage waveform diagram for explaining an output control method according to Related Art 2.

【図4】従来技術2の溶接電源装置のブロック図FIG. 4 is a block diagram of a welding power source device of prior art 2.

【図5】従来技術2の溶接電源装置のタイミングチャー
FIG. 5 is a timing chart of a welding power supply device according to the related art 2.

【図6】解決課題を説明するための電流・電圧波形図FIG. 6 is a current / voltage waveform diagram for explaining a problem to be solved.

【図7】実施例1の出力制御方法を説明するための電流
・電圧波形図
FIG. 7 is a current / voltage waveform diagram for explaining the output control method of the first embodiment.

【図8】実施例1の溶接電源装置のブロック図FIG. 8 is a block diagram of the welding power supply device according to the first embodiment.

【図9】実施例1の傾き形成電圧誤差積分値Svaの時間
変化とパルス周期Tpbとの関係を示す図
FIG. 9 is a diagram showing the relationship between the time change of the slope forming voltage error integrated value Sva and the pulse period Tpb of the first embodiment.

【図10】実施例3における溶接電流設定値算出回路C
ISのブロック図
FIG. 10 is a welding current set value calculation circuit C according to the third embodiment.
Block diagram of IS

【図11】送給速度設定値Wsと溶接電流設定値Isと
の関係を示す溶融特性図
FIG. 11 is a melting characteristic diagram showing the relationship between the feed rate set value Ws and the welding current set value Is.

【符号の説明】[Explanation of symbols]

1 溶接ワイヤ 2 被溶接物 3 アーク 4 溶接トーチ 5a ワイヤ送給装置の送給ロール A 第1の変数 B 第2の変数 CA 第1の変数演算回路 Ca 第1の変数演算値信号 CB 第2の変数演算回路 Cb 第2の変数演算値信号 CIS 溶接電流設定値算出回路 CM 比較回路 Cm 比較信号 CMA 変数比較回路 EI 電流誤差増幅回路 Ei 電流誤差増幅信号 IB ベース期間設定回路 Ib ベース電流(設定信号) ID 電流検出回路 Id 電流検出信号 INV 出力制御回路 Io 溶接電流瞬時値 IP ピーク期間設定回路 Ip ピーク電流(設定信号) IS 溶接電流設定回路 Is 溶接電流設定(値/信号) Isc 電流制御設定信号 It 短絡解除電流 IW 1周期溶接電流平均値算出回路 Iw、Iw(n) 1周期溶接電流平均値(信号) KS 傾き設定回路 Ks 外部特性の傾き(設定信号) L1、L2 外部特性 MM タイマ回路 Mm 切換信号 P1 動作点 PS 溶接電源装置 PSA パルス周期毎制御溶接電源装置 SV 電圧誤差積分回路 Sv 電圧誤差積分値(信号) SVA 傾き形成電圧誤差積分回路 Sva 傾き形成電圧誤差積分値(信号) SW ベース/ピーク切換回路 Tb ベース期間(設定信号) Tp ピーク期間 Tpb、Tpb(n) パルス周期 Vb ベース電圧 VD 電圧検出回路 Vd 電圧検出信号 Vo 溶接電圧瞬時値 Vp ピーク電圧 VS 溶接電圧設定回路 Vs 溶接電圧設定(値/信号) VSC 外部特性制御回路 Vsc 電圧制御設定(値/信号) Vw、Vw(n) 1周期溶接電圧平均値 WS 送給速度設定回路 Ws 送給速度設定(値/信号) Y1〜Y3 溶融特性 1 welding wire 2 Objects to be welded 3 arc 4 welding torch 5a Feeding roll of wire feeding device A first variable B second variable CA first variable calculation circuit Ca First variable calculation value signal CB Second variable operation circuit Cb second variable operation value signal CIS welding current set value calculation circuit CM comparison circuit Cm comparison signal CMA variable comparison circuit EI current error amplifier circuit Ei Current error amplification signal IB base period setting circuit Ib base current (setting signal) ID current detection circuit Id current detection signal INV output control circuit Io Welding current instantaneous value IP peak period setting circuit Ip peak current (setting signal) IS welding current setting circuit Is welding current setting (value / signal) Isc current control setting signal It Short circuit release current IW 1 cycle welding current average value calculation circuit Iw, Iw (n) 1 cycle welding current average value (signal) KS slope setting circuit Ks External characteristic slope (setting signal) L1, L2 external characteristics MM timer circuit Mm switching signal P1 operating point PS welding power supply PSA Pulse cycle control welding power supply device SV voltage error integration circuit Sv Voltage error integrated value (signal) SVA slope forming voltage error integrating circuit Sva slope forming voltage error integrated value (signal) SW base / peak switching circuit Tb base period (setting signal) Tp peak period Tpb, Tpb (n) pulse period Vb base voltage VD voltage detection circuit Vd voltage detection signal Vo Welding voltage instantaneous value Vp peak voltage VS welding voltage setting circuit Vs welding voltage setting (value / signal) VSC external characteristic control circuit Vsc voltage control setting (value / signal) Vw, Vw (n) 1 cycle welding voltage average value WS feed speed setting circuit Ws feeding speed setting (value / signal) Y1 to Y3 melting characteristics

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 予め定めたベース期間Tb中は溶滴移行
をさせない値に予め定めたベース電流Ibを通電し、続
けてピーク期間中は溶滴移行をさせる値に予め定めたピ
ーク電流Ipを通電し、これら1周期の通電をパルス周
期として繰り返し通電して溶接する消耗電極パルスアー
ク溶接に使用する溶接電源装置の出力制御方法におい
て、 溶接電源装置の外部特性の傾きKs及び溶接電流設定値
Is及び溶接電圧設定値Vsを予め設定し、前記設定値
によって第1の変数A=Ks・(Ip−Is)及び第2
の変数B=Ks・(Ip−Ib)・Tbを演算した後
に、溶接中の溶接電圧瞬時値Voを検出して第n回目の
パルス周期の開始時点からの傾き形成電圧誤差積分値S
va=∫(A+Vs−Vo)・dtを演算し、前記第n回
目のベース期間に続く第n回目のピーク期間中の前記傾
き形成電圧誤差積分値Svaが前記第2の変数Bの値以下
になった時点で前記第n回目のパルス周期を終了し、続
けて第n+1回目のパルス周期を開始して前記動作を繰
り返し行うことによって前記傾きKsを有する外部特性
を形成して溶接を行うパルスアーク溶接電源装置の出力
制御方法。
1. A predetermined base current Ib is applied to a value that does not cause droplet transfer during a predetermined base period Tb, and a predetermined peak current Ip is continuously applied to a value that causes droplet transfer during a peak period. In an output control method of a welding power supply device used for consumable electrode pulse arc welding in which energization is performed and welding is performed by repeatedly energizing these one cycle as a pulse cycle, a slope Ks of an external characteristic of the welding power supply device and a welding current set value Is And a welding voltage set value Vs are preset, and the first variable A = Ks · (Ip−Is) and the second variable are set according to the set value.
After calculating the variable B = Ks · (Ip−Ib) · Tb, the welding voltage instantaneous value Vo during welding is detected and the slope forming voltage error integrated value S from the start point of the n-th pulse cycle is detected.
va = ∫ (A + Vs−Vo) · dt is calculated so that the slope forming voltage error integrated value Sva during the nth peak period following the nth base period becomes equal to or less than the value of the second variable B. At this point, the n-th pulse cycle is ended, the (n + 1) -th pulse cycle is subsequently started, and the above-described operation is repeated to form an external characteristic having the inclination Ks and perform welding. Output control method for welding power supply device.
【請求項2】 請求項1に記載する第1の変数A及び第
2の変数Bの演算を、溶接中の予め定めた変数演算周期
毎に又はパルス周期の開始時点毎に行うパルスアーク溶
接電源装置の出力制御方法。
2. A pulse arc welding power source for performing the calculation of the first variable A and the second variable B according to claim 1 at each predetermined variable calculation cycle during welding or at each start point of the pulse cycle. Output control method of device.
【請求項3】 溶接ワイヤの送給速度設定値並びに溶接
ワイヤの材質及び直径を設定し、これらによって溶接電
流設定値Isを算出する請求項1又は請求項2に記載す
るパルスアーク溶接電源装置の出力制御方法。
3. The pulse arc welding power supply device according to claim 1, wherein the welding wire feed rate setting value and the material and diameter of the welding wire are set, and the welding current setting value Is is calculated from them. Output control method.
JP2001296346A 2001-09-27 2001-09-27 Output control method for pulse arc welding power supply Expired - Fee Related JP4704632B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001296346A JP4704632B2 (en) 2001-09-27 2001-09-27 Output control method for pulse arc welding power supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001296346A JP4704632B2 (en) 2001-09-27 2001-09-27 Output control method for pulse arc welding power supply

Publications (2)

Publication Number Publication Date
JP2003103367A true JP2003103367A (en) 2003-04-08
JP4704632B2 JP4704632B2 (en) 2011-06-15

Family

ID=19117608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001296346A Expired - Fee Related JP4704632B2 (en) 2001-09-27 2001-09-27 Output control method for pulse arc welding power supply

Country Status (1)

Country Link
JP (1) JP4704632B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101362246B (en) * 2008-09-23 2011-01-12 四川电子焊接设备公司 Pulse energy control method for carbon dioxide shield-arc welding and drug-core no gas welding
JP2011167720A (en) * 2010-02-18 2011-09-01 Jfe Engineering Corp Arc sensor control method in tandem oscillation welding

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102199736B1 (en) * 2019-11-01 2021-01-07 효성중공업 주식회사 Feeder compatible with existing welding power and Welding system using the same

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51128661A (en) * 1975-05-01 1976-11-09 Stanley Electric Co Ltd Method of d*c* arc welder using expendable electrodes
JPS5227040A (en) * 1975-08-27 1977-03-01 Stanley Electric Co Ltd Power source device for welding machine
JPS57124572A (en) * 1981-01-28 1982-08-03 Hitachi Ltd Arc welding method
JPS5855176A (en) * 1981-09-29 1983-04-01 Osaka Denki Kk Controlling method for automatic arc welding
JPH03116271A (en) * 1989-09-29 1991-05-17 Toshiba Corp Analyzing method for fast fourier transformation of two-dimensional picture
JPH07314136A (en) * 1992-05-29 1995-12-05 Osaka Denki Co Ltd Consumable electrode type arc voltage automatic control method and controller therefor
JPH09271945A (en) * 1996-04-09 1997-10-21 Daihen Corp Arc length reset control method and welding equipment in consumable electrode arc welding
JPH09277044A (en) * 1996-04-10 1997-10-28 Daihen Corp Arc length recovery control method of pulse arc welding and welding equipment
JPH11192553A (en) * 1997-12-26 1999-07-21 Daihen Corp Method for consumable electrode gas shielded arc welding and device therefor

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51128661A (en) * 1975-05-01 1976-11-09 Stanley Electric Co Ltd Method of d*c* arc welder using expendable electrodes
JPS5227040A (en) * 1975-08-27 1977-03-01 Stanley Electric Co Ltd Power source device for welding machine
JPS57124572A (en) * 1981-01-28 1982-08-03 Hitachi Ltd Arc welding method
JPS5855176A (en) * 1981-09-29 1983-04-01 Osaka Denki Kk Controlling method for automatic arc welding
JPH03116271A (en) * 1989-09-29 1991-05-17 Toshiba Corp Analyzing method for fast fourier transformation of two-dimensional picture
JPH07314136A (en) * 1992-05-29 1995-12-05 Osaka Denki Co Ltd Consumable electrode type arc voltage automatic control method and controller therefor
JPH09271945A (en) * 1996-04-09 1997-10-21 Daihen Corp Arc length reset control method and welding equipment in consumable electrode arc welding
JPH09277044A (en) * 1996-04-10 1997-10-28 Daihen Corp Arc length recovery control method of pulse arc welding and welding equipment
JPH11192553A (en) * 1997-12-26 1999-07-21 Daihen Corp Method for consumable electrode gas shielded arc welding and device therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101362246B (en) * 2008-09-23 2011-01-12 四川电子焊接设备公司 Pulse energy control method for carbon dioxide shield-arc welding and drug-core no gas welding
JP2011167720A (en) * 2010-02-18 2011-09-01 Jfe Engineering Corp Arc sensor control method in tandem oscillation welding

Also Published As

Publication number Publication date
JP4704632B2 (en) 2011-06-15

Similar Documents

Publication Publication Date Title
JP4490088B2 (en) Output control method of pulse arc welding and output control method of arc length fluctuation pulse arc welding
US8338750B2 (en) AC pulse arc welding control method
JP4334930B2 (en) Arc length control method for pulse arc welding
WO2019203162A1 (en) Arc welding control method
JP5070119B2 (en) Output control method of pulse arc welding
JP4181384B2 (en) Welding current control method for pulse arc welding
JP5622230B2 (en) AC pulse arc welding control method
JP5154872B2 (en) Output control method of pulse arc welding
JP4704612B2 (en) Output control method for pulse arc welding power supply
JP4704632B2 (en) Output control method for pulse arc welding power supply
JP5805952B2 (en) Arc start control method for plasma MIG welding
JP4459768B2 (en) AC pulse arc welding welding current control method
JP4847142B2 (en) Output control method for consumable electrode pulse arc welding
JP2006205213A (en) Method for controlling output of pulse arc welding
JP2011050981A (en) Output control method for pulsed arc welding
JP2024027931A (en) Feed control method for pulsed arc welding
EP4155019A1 (en) Direct current arc welding control method
JP7045798B2 (en) Output control method for AC pulse arc welding
JP2020138207A (en) Output control method of pulse arc welding
US20210031290A1 (en) Arc-welding control method
JP5280268B2 (en) Output control method of pulse arc welding
JP4757426B2 (en) Pulse arc welding control method
JP6746452B2 (en) AC arc welding control method
JP2010012506A (en) Pulsed arc welding output control method
JP2006167767A (en) Method for controlling arc length in pulsed arc welding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080820

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110310

LAPS Cancellation because of no payment of annual fees