JP2003102672A - Method and device for automatically detecting, treating, and collecting objective site of lesion or the like - Google Patents

Method and device for automatically detecting, treating, and collecting objective site of lesion or the like

Info

Publication number
JP2003102672A
JP2003102672A JP2001304992A JP2001304992A JP2003102672A JP 2003102672 A JP2003102672 A JP 2003102672A JP 2001304992 A JP2001304992 A JP 2001304992A JP 2001304992 A JP2001304992 A JP 2001304992A JP 2003102672 A JP2003102672 A JP 2003102672A
Authority
JP
Japan
Prior art keywords
light
lesion
target site
treating
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001304992A
Other languages
Japanese (ja)
Inventor
Yoshinaga Kajimoto
宜永 梶本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Corp filed Critical Japan Science and Technology Corp
Priority to JP2001304992A priority Critical patent/JP2003102672A/en
Priority to PCT/JP2002/009906 priority patent/WO2003030726A1/en
Publication of JP2003102672A publication Critical patent/JP2003102672A/en
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence

Abstract

PROBLEM TO BE SOLVED: To provide a method and a device for automatically detecting, treating or collecting the objective site of a lesion, etc., which is provided with high detecting performance by improving the local precision and correctness of the objective sites of the lesion, etc. SOLUTION: The objective site 3 of the lesion, etc., is irradiated with light from a light source 1 to select two wavelength area including at least a wavelength area characteristic to the light source and a wavelength area characteristic to the objective site such as irradiated lesion, which include the respective highest light intensity of both of these, in reflected light emitted from the objective site 3 of the irradiated lesion, etc. The relative light intensity of both of these are quantitatively measured by a spectral measuring means 7, and the quantitatively measured value is outputted as an electric signal or a magnetic signal to perform digital control or analog control of a control means 8 to quantitatively detect and treat the lesion of the objective site 3 of the lesion, etc., and to treat (collect) it by a collecting device 10.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、医療分野におい
て、腫瘍、癌、動脈硬化巣、炎症性病巣等の病変あるい
は病巣部位または有益な部位を高い精度と確度で定量的
に判定しつつかつ検知し、その検知情報に基づき病巣の
破壊、除去、切除、病巣への施薬または有益な部位の採
取等により治療または採取するための方法およびその装
置に関するもので、外科および内科、特に、脳神経外
科、血管外科、心臓内科、呼吸器外科、泌尿器科等の分
野および遺伝子治療や遺伝子研究、創薬の分野できわめ
て有効である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to, in the medical field, detection of lesions such as tumors, cancers, arteriosclerotic lesions, inflammatory lesions or lesion sites or beneficial sites while quantitatively determining with high accuracy and accuracy. However, the present invention relates to a method and an apparatus for treating or collecting by destruction, removal, excision of a lesion, drug application to a lesion or collection of a beneficial site based on the detection information, and surgery and internal medicine, in particular, neurosurgery, It is extremely effective in the fields of vascular surgery, cardiology, respiratory surgery, urology, gene therapy, gene research, and drug discovery.

【0002】[0002]

【従来の技術】従来、医療分野において、病変や病巣等
の対象部位を識別・検知して、これらを除去あるいは治
療する方法として、蛍光標識法と放射性同位元素(R
I)標識法とが知られている。前者の蛍光標識法は、事
前に蛍光標識した病巣に対して治療中に励起光を照射
し、蛍光領域として定性的に認識される病巣部位を肉眼
的に識別しつつ、該当病巣組織を切除あるいは治療する
方法である。また、後者の放射性同位元素標識法は、予
め放射性同位元素で標識した病変を、放射線検知プロー
ブで探査しつつ、検出された病変組織を治療する方法で
ある。また、検知した病巣を自動的に除去あるいは治療
する一種のロボット手術機器としては、遠隔手術ロボッ
ト機器や位置決定に係る高精度作動ロボット(例えば人
工関節設置ロボット)等が知られている。
2. Description of the Related Art Conventionally, in the medical field, a fluorescent labeling method and a radioisotope (R) method have been used as a method for identifying and detecting target sites such as lesions and lesions and removing or treating them.
I) A labeling method is known. The former fluorescent labeling method irradiates excitation light to a fluorescently labeled lesion during treatment, while visually recognizing a lesion site that is qualitatively recognized as a fluorescent region, or excising the relevant lesion tissue. It is a method of treatment. The latter radioisotope labeling method is a method of treating a lesion tissue detected while probing a lesion labeled with a radioisotope in advance with a radiation detection probe. Further, as a kind of robotic surgical instrument for automatically removing or treating the detected lesion, a remote surgical robotic instrument, a high-precision actuating robot for position determination (for example, an artificial joint setting robot), and the like are known.

【0003】しかしながら、このような従来の検知およ
び治療方法において、前者の蛍光標識法では、治療対象
である病変の有無の診断、および病変組織と正常組織と
の境界の検知において、手術中では組織が変形するとと
もに、病変の定量的かつ高精度の評価が不可能であるた
め、常に目視判断あるいは定性的判別による曖昧さを伴
い、治療の自動化装置への進展は期待され得なかった。
また、後者の放射性同位元素標識法では、放射線の空間
分解能がきわめて低く、病変の有無の判定に誤差を生じ
易く、その上、放射性同位元素の使用場所が法的に限定
・制約され、さらに、病変の標識薬についても開発途上
にあって実用性に乏しいものであった。つまり、従来の
蛍光標識法や放射性同位元素標識法では、正常な組織や
血管の領域にまで治療行為が及んでこれらを損傷する危
険性を孕んでいた。したがって、これらの標識法では、
必ずしも安全性が確保かつ保証され得ないものであっ
た。
However, in such conventional detection and treatment methods, in the former fluorescence labeling method, in the diagnosis of the presence or absence of the lesion to be treated and the detection of the boundary between the diseased tissue and the normal tissue, the tissue during surgery is detected. Since the lesion is deformed and the lesion cannot be evaluated quantitatively and with high accuracy, there is always ambiguity due to visual judgment or qualitative discrimination, and progress toward an automated treatment device could not be expected.
Further, in the latter radioisotope labeling method, the spatial resolution of radiation is extremely low, errors are likely to occur in the determination of the presence or absence of a lesion, and the use place of the radioisotope is legally limited and restricted. A lesion marker was also under development and was of little practical utility. In other words, the conventional fluorescent labeling method and radioisotope labeling method have a risk of causing a therapeutic action to the normal tissue and blood vessel regions and damaging them. Therefore, in these labeling methods,
The safety could not always be secured and guaranteed.

【0004】さらに、手術を支援するところの従来のロ
ボット機器については、前述した遠隔手術装置では常に
操作ミスが付き纏う虞れがあり、また、CTやMRI等
における検知画像から計算される三次元情報に基づいて
作動する人工関節設置ロボットでは、弾性を有する人体
組織は手術操作で容易に変形するので、かかる三次元情
報は無意味となる虞れが生じて、畢竟、その適用範囲が
骨等の変形しにくい不動対象に限定されていた。換言す
れば、手術野での変形移動する病変等の局所情報を正確
に判断し、迅速にして確実、なかんずく、安全かつ適格
な手術や施薬を確保かつ保証して、手術を自在に支援す
るロボット手術機器の出現が待たれているところであ
る。
Further, with respect to the conventional robot equipment that supports the surgery, there is always a possibility that an operation error may be associated with the above-mentioned remote surgery device, and the three-dimensional information calculated from the detection image in CT or MRI. In the artificial joint installation robot that operates based on, since the human body tissue having elasticity is easily deformed by a surgical operation, such three-dimensional information may be meaningless, and the scope of the three-dimensional information may be such as bone and the like. It was limited to immobile objects that are difficult to deform. In other words, a robot that accurately determines local information such as lesions that move and deform in the surgical field, quickly and surely, above all, secures and guarantees safe and qualified surgery and medication, and freely supports surgery. The emergence of surgical equipment is awaiting.

【0005】そのような、手術野での変形移動する病変
組織と正常組織との境界を検知できるものとして、特開
平6−165783号公報に開示された光診断装置が提
案された。この光診断装置は、頭部内部に挿入され、回
転する刃で腫瘍等の病変組織を切除して吸引排出する吸
引プローブ内に、低干渉性の光を導光する光ファイバー
の先端側を挿通し、光発生部のSLDで発生した低干渉
性の光をこの光ファイバーの先端面から出射するととも
に、病変組織側からの反射光を導光し、干渉光検出部で
光路長を変えた参照光と干渉させることにより、深さ方
向での反射光を検出し、2つの波長で得られた反射光の
比の信号から病変組織の存在の範囲を判断するもので、
生体組織における正常組織と病変組織の境界を検知し
て、安全に手術を行えるようしたものである。
An optical diagnostic apparatus disclosed in Japanese Patent Application Laid-Open No. 6-165783 has been proposed as a device capable of detecting the boundary between a deformed and moving lesion tissue and a normal tissue in the surgical field. This optical diagnostic device is inserted inside the head, and the tip side of the optical fiber that guides the light with low coherence is inserted into the suction probe that excises and discharges the diseased tissue such as tumor with a rotating blade. , The low coherence light generated by the SLD of the light generation part is emitted from the tip end surface of this optical fiber, and the reflected light from the diseased tissue side is guided, and the reference light whose optical path length is changed by the interference light detection part The reflected light in the depth direction is detected by causing interference, and the range of the presence of the diseased tissue is judged from the signal of the ratio of the reflected light obtained at the two wavelengths.
This is to detect a boundary between a normal tissue and a diseased tissue in a living tissue and safely perform an operation.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、前記提
案の光診断装置では、低干渉性の光を出射し、病変組織
側からの反射光を参照光と干渉させ、深さ方向での反射
光を検出して病変組織の存在の範囲を判断するため、参
照光の発生手段を必要とする他、光路長を変えた参照光
の波長と反射光の波長の比の信号から病変組織の存在の
範囲を判断するため、病変組織の定性的な判断に止ま
り、正常組織と病変組織の境界の検知性能が充分とは言
い難かった。また、前記提案の光診断装置では、深さ方
向の光の分布が判定できるだけであり、病巣に特異的な
特徴を検出することは困難であった。
However, in the above-mentioned proposed optical diagnostic apparatus, low coherence light is emitted, the reflected light from the lesioned tissue side interferes with the reference light, and the reflected light in the depth direction is reflected. In order to determine the range of the presence of diseased tissue by detecting, the range of presence of diseased tissue is required from the signal of the ratio of the wavelength of the reference light and the wavelength of the reflected light in which the optical path length is changed Therefore, it is difficult to say that the detection performance of the boundary between the normal tissue and the diseased tissue is sufficient because the judgment is made only by qualitatively judging the diseased tissue. Further, with the above-described optical diagnostic apparatus, it is only possible to determine the distribution of light in the depth direction, and it is difficult to detect features specific to the lesion.

【0007】そこで、本発明では、従来の診断装置の課
題を分光により解決して、病変等の対象部位の局在の精
度および確度を向上させて高い検知性能を備える病変等
の対象部位を自動的に検知かつ治療または採取する方法
およびその装置を提供することを目的とする。
Therefore, in the present invention, the problem of the conventional diagnostic apparatus is solved by spectroscopy, and the accuracy and accuracy of localization of a target site such as a lesion is improved and a target site such as a lesion having a high detection performance is automatically detected. It is an object of the present invention to provide a method and a device for the automatic detection and treatment or collection.

【0008】[0008]

【課題を解決するための手段】このため、第1の発明
は、光源から病変等の対象部位に光を照射し、被照射病
変等の対象部位が発する反照光のうち少なくとも光源に
特異的な波長域と被照射病変等の対象部位に特異的な波
長域であってこれら両者の各最高光強度を含む2波長域
を選定して、これら両者の相対的光強度を定量計測する
とともに、該定量計測値を電気信号または磁気信号とし
て出力してデジタル制御またはアナログ制御することに
より、病変等の対象部位を定量的に判定しつつ検知かつ
治療または採取することを特徴とする病変等の対象部位
を自動的に検知かつ治療または採取する方法にある。ま
た、第2の発明は、病変等の対象部位に光を照射する光
源と、被照射病変組織が発する反照光を少なくとも2つ
の波長の光に分光して、各波長の光強度を測定する光強
度測定手段と、これら複数波長の光強度のうち光源に特
異的な波長域と被照射病変等の対象部位に特異的な波長
域であってこれら両者の各最高光強度を含む2波長域を
選定して、これら両者の相対的光強度を定量計測する分
光的計測手段と、前記相対的光強度の定量的計測値を電
圧または電流に変換して電気信号または磁気信号として
出力してデジタル制御またはアナログ制御することによ
り病変等の対象部位を定量的に判定しつつ検知かつ治療
または採取する制御手段とを備えることを特徴とする病
変等の対象部位を自動的に検知かつ治療または採取する
装置にある。また本発明は、前記光源が、レーザー光、
発光ダイオード、化学ルミネッセンス、白色ランプ、水
銀ランプ、キセノンランプおよびハロゲンランプ群から
選定される少なくとも1種の発光手段であることを特徴
とする。また本発明は、前記分光かつ選定される2つの
波長域の反照光が、光源に特異的な特定波長領域の1種
の反射光と、該反射光とは波長が異なる光であって病変
等の対象部位に分布するかまたは分布させた色素に起因
して特異的に生じる特有波長領域の反射光、吸光、発
光、蛍光、ラマン散乱光群から選定される光であること
を特徴とする。また本発明は、治療または採取作動下で
定量計測される2つの波長域の相対光強度が治療または
採取作動を開始する直前の前記光強度計測値の閾値を超
えない範囲では、該治療または採取作動を継続するよう
に前記制御手段がデジタル制御またはアナログ制御され
ることを特徴とする。また本発明は、前記病変等の対象
部位への光照射とその病変等の対象部位からの反照光の
受光を光ファイバーからなるプローブにて行うように構
成したことを特徴とする。また本発明は、前記プローブ
に超音波破壊装置、電気メス、吸引装置、レーザーメ
ス、レーザー照射装置、治療光照射装置あるいは生検装
置を組み込んだことを特徴とする。また本発明は、前記
プローブを手術用カテーテルに組み込んだことを特徴と
する。また本発明は、前記病変等の対象部位への光照射
とその病変等の対象部位からの反照光の受光をレンズま
たは干渉光学系の光伝達手段にて行うように構成したこ
とを特徴とする請求項2ないし5に記載の病変等の対象
部位を自動的に検知かつ治療するもので、これらを課題
解決のための手段とするものである。
Therefore, according to the first invention, a light source irradiates a target site such as a lesion with light, and at least a light source is selected from among the anti-illumination light emitted from the target site such as a lesion to be irradiated. The wavelength range and the wavelength range specific to the target site such as the irradiated lesion are selected, and two wavelength ranges including the respective maximum light intensities of the both are selected, and the relative light intensities of the both are quantitatively measured, and Target area such as a lesion characterized by quantitatively determining the target area such as a lesion and detecting and treating or collecting the same by outputting a quantitative measurement value as an electric signal or a magnetic signal and performing digital control or analog control. Is automatically detected and treated or collected. Further, the second invention is a light source for irradiating a target site such as a lesion with light, and a light for irradiating the illuminated lesion tissue with light to split light into at least two wavelengths and measuring the light intensity of each wavelength. Intensity measuring means, and a wavelength range specific to the light source and a wavelength range specific to the target site such as an irradiated lesion among the light intensities of the plurality of wavelengths, and two wavelength ranges including the respective maximum light intensities of both Selective and spectroscopic measuring means for quantitatively measuring the relative light intensity of the both, and the quantitative measurement value of the relative light intensity is converted into a voltage or current and output as an electric signal or a magnetic signal for digital control. Or a device for automatically detecting and treating or collecting a target site such as a lesion, which is provided with a control means for quantitatively determining the target site such as a lesion by analog control and detecting and treating or collecting the target site. It is in. In the present invention, the light source is a laser beam,
It is characterized in that it is at least one kind of light emitting means selected from a light emitting diode, chemiluminescence, white lamp, mercury lamp, xenon lamp and halogen lamp group. Further, according to the present invention, the anti-illumination of the two wavelength regions which are spectroscopically selected is a kind of reflected light in a specific wavelength region specific to the light source, and a light having a different wavelength from the reflected light, such as a lesion. The light is selected from the group of reflected light, light absorption, light emission, fluorescence, and Raman scattered light of a specific wavelength region specifically generated due to the dye distributed or distributed in the target region. The present invention also provides the treatment or sampling within a range in which the relative light intensities of the two wavelength regions that are quantitatively measured under the treatment or sampling operation do not exceed the threshold value of the light intensity measurement value immediately before the start of the treatment or sampling operation. It is characterized in that the control means is digitally controlled or analogically controlled so as to continue the operation. Further, the present invention is characterized in that light irradiation to the target site such as the lesion and reception of anti-illumination light from the target site such as the lesion are performed by a probe formed of an optical fiber. Further, the present invention is characterized in that an ultrasonic destruction device, an electric knife, a suction device, a laser knife, a laser irradiation device, a therapeutic light irradiation device or a biopsy device is incorporated in the probe. Further, the present invention is characterized in that the probe is incorporated in a surgical catheter. Further, the present invention is characterized in that light irradiation to a target site such as the lesion and reception of anti-illumination light from the target site such as the lesion are configured to be performed by a lens or a light transmitting unit of an interference optical system. The present invention automatically detects and treats a target site such as a lesion according to claims 2 to 5, and uses these as means for solving the problem.

【0009】[0009]

【実施の形態】以下、本発明の病変等の対象部位を自動
的に検知かつ治療または採取する方法およびその装置の
実施の形態を図面に基づいて詳細に説明する。図1は本
発明の病変等の対象部位を自動的に検知かつ治療または
採取する方法およびその装置のシステム化したブロック
構成図、図2(a)はプローブとして光ファイバーを使
用した例、図2(b)はプローブとしてレンズまたは干
渉光学系を使用した例、図2(c)は直接照射の例を示
す図、図3(a)は青色発光ダイオードの照射下での無
標識正常脳組織写真図、図3(b)は同、フルオレサイ
ドNaで標識した脳腫瘍部位の特異的蛍光による確定写
真図、図4(a)は青色発光ダイオードの照射下での正
常脳組織反照光の分光計によるスペクトル分布の解析
図、図4(b)は同、フルオレサイドNaで標識した脳
腫瘍部位の反照光の分光計によるスペクトル分布の解析
図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The embodiments of the method and apparatus for automatically detecting and treating or collecting a target site such as a lesion of the present invention will be described below in detail with reference to the drawings. FIG. 1 is a systematic block configuration diagram of a method for automatically detecting and treating or collecting a target site such as a lesion according to the present invention, and FIG. 2A is an example in which an optical fiber is used as a probe. b) is an example of using a lens or an interference optical system as a probe, FIG. 2 (c) is a diagram showing an example of direct irradiation, and FIG. 3 (a) is a photograph of unlabeled normal brain tissue under irradiation of a blue light emitting diode. Fig. 3 (b) is the same as the confirmed photograph of the specific fluorescence of the brain tumor site labeled with fluorescein Na. Fig. 4 (a) is the spectrophotometer of normal brain tissue anti-illumination under the irradiation of blue light emitting diode. FIG. 4B is an analysis diagram of the spectral distribution, and FIG. 4B is an analysis diagram of the spectral distribution of the anti-illumination of the brain tumor site labeled with fluorescein Na by a spectrometer.

【0010】本発明は図1に示すように、光源1から病
変等の対象部位3に光を照射し、被照射病変等の対象部
位3が発する反照光のうち少なくとも光源に特異的な波
長域と被照射病変等の対象部位に特異的な波長域であっ
てこれら両者の各最高光強度を含む2波長域を選定し
て、これら両者の相対的光強度を分光的計測手段7によ
り定量計測するとともに、該定量計測値を電気信号また
は磁気信号として出力して制御手段8をデジタル制御ま
たはアナログ制御することにより、病変等の対象部位3
を定量的に判定しつつ検知かつ病巣治療装置10により
治療することを特徴とする。
As shown in FIG. 1, the present invention irradiates light from a light source 1 to a target site 3 such as a lesion, and at least a wavelength range specific to the light source in the anti-illumination light emitted from the target site 3 such as an irradiated lesion. And a wavelength range specific to a target site such as a lesion to be irradiated, which includes the respective highest light intensities of both of them, and the relative light intensities of the both are quantitatively measured by the spectroscopic measuring means 7. At the same time, the quantitative measurement value is output as an electric signal or a magnetic signal and the control means 8 is digitally or analogically controlled, so that the target site 3 such as a lesion is obtained.
Is detected and treated by the lesion treatment device 10 while being quantitatively determined.

【0011】以下に詳述する。前記本発明の病変等の対
象部位を自動的に検知かつ治療する方法を実現する装置
の1実施の形態として、図1に示すように、光伝達装置
4を通じて病変等の対象部位3に光を照射する光源1
と、被照射病変等の対象部位3が発する反照光を光伝達
装置4を通じて分光的装置5により少なくとも2つの波
長の光に分光して、各波長の光強度を測定する光強度測
定手段(光センサー)6と、これら複数波長の光強度の
うち光源に特異的な波長域と被照射病変等の対象部位に
特異的な波長域であってこれら両者の各最高光強度を含
む2波長域を選定して、これら両者の相対的光強度を定
量計測する分光的計測手段7と、前記相対的光強度の定
量的計測値を電圧または電流に変換して電気信号または
磁気信号として出力してデジタル制御またはアナログ制
御することにより病変等の対象部位を定量的に判定しつ
つ検知かつ治療または採取する制御手段8とを備える。
The details will be described below. As one embodiment of the apparatus for realizing the method for automatically detecting and treating a target site such as a lesion of the present invention, as shown in FIG. 1, light is transmitted to a target site 3 such as a lesion through a light transmission device 4. Light source for irradiation 1
And a light intensity measuring means (light intensity measuring means for measuring the light intensity of each wavelength by splitting the anti-illumination emitted from the target site 3 such as the irradiated lesion into light of at least two wavelengths by the spectroscopic device 5 through the light transmission device 4. Sensor) 6, and a wavelength range specific to the light source and a wavelength range specific to the target site such as the irradiated lesion among the light intensities of these plural wavelengths, and two wavelength ranges including the respective maximum light intensities of both of them. Selective and spectroscopic measuring means 7 for quantitatively measuring the relative light intensity of both of them, and a quantitative measurement value of the relative light intensity is converted into a voltage or current and output as an electric signal or a magnetic signal to be digitally output. The control means 8 detects and treats or collects a target site such as a lesion quantitatively by performing control or analog control.

【0012】<光源と照射光>前記光源1として、レー
ザー光、発光ダイオード、化学ルミネッセンス、白色ラ
ンプ、各種ランプ例えば、水銀ランプ、キセノンランプ
およびハロゲンランプ群から選定される少なくとも1種
の発光手段が使用され、標識、染色、または未染色の病
巣や病変等の対象部位にこれらの光源から光を照射する
ことにより、かかる被照射体が発する反照光がプローブ
にて受光され、受光された反照光を光学的フィルター等
の分光的装置5によって分光し、光センサーを備える分
光的計測手段7によってスペクトル中の強く鮮明な輝線
ないしは分光解析図において鋭鋒性が顕著に検出される
最高強度を含む2つの波長領域の光を選定する。両波長
の相対的光強度(光強度比)のアルゴリズムにより定量
計測を行う。前記定量計測により明確に区別された定量
計測値が電流や電圧に変換された後、これらを電気信号
あるいは電磁波信号として出力し、その大きさに応じて
制御手段8がデジタル制御あるいはアナログ制御により
出力を可変し、その制御下で作動して、メスや病変破壊
装置10を駆動し、病変等の対象部位を明確に区別しつ
つこれを切除ないし治療する。
<Light Source and Irradiation Light> As the light source 1, at least one light emitting means selected from laser light, light emitting diode, chemiluminescence, white lamp, various lamps such as mercury lamp, xenon lamp and halogen lamp group is used. By irradiating a target site such as a lesion, lesion, etc. that is used with labeling, staining, or unstaining, the light emitted from these light sources is received by the probe, and the received anti-light is received. Is separated by a spectroscopic device 5 such as an optical filter, and a strong and clear bright line in the spectrum or the highest intensity at which sharpness is remarkably detected in the spectroscopic analysis chart by the spectroscopic measurement means 7 including an optical sensor 2 Select light in one wavelength range. Quantitative measurement is performed by the algorithm of relative light intensity (light intensity ratio) of both wavelengths. After the quantitatively measured values clearly distinguished by the quantitative measurement are converted into current or voltage, these are output as an electric signal or an electromagnetic wave signal, and the control means 8 outputs them by digital control or analog control according to their magnitude. Is operated and controlled to drive the scalpel and the lesion destruction device 10 to excise or treat the lesion while clearly distinguishing the target site.

【0013】前記検知手段と病変破壊または採取装置と
はシステム化され、治療または採取装置あるいはロボッ
ト手術機器として提供される。なお、前記システム部分
を構成するプローブ、光センサーや各装置はいずれも部
品として、本発明と同一目的または他の目的のために提
供かつ使用が可能である。また、前記システムや部品
は、脳腫瘍を含む癌一般の切除手術やレーザー治療、さ
らには、動脈硬化巣や心筋梗塞等の血管内手術、そし
て、患部、病巣、病変組織等への直接施薬等の装置また
は有益部位の採取装置としても使用可能で、かかる目的
のために提供される。照射光としては、その波長が約2
00nmから約4000nmの範囲の光、すなわち、紫
外光、可視光、赤外光等を用いることができる。例え
ば、青色発光ダイオードを使用する場合には、照射光の
波長は515nmである。なお、被照射体が発光物質、
例えば、蛍光標識薬のフルオレサイドNaで標識した場
合には、被照射体それ自身が発光するので、励起光とも
称する。
The detection means and the lesion destruction or collection device are systemized and provided as a treatment or collection device or a robot surgical instrument. It should be noted that the probe, the optical sensor, and each device constituting the system part can be provided and used as parts for the same purpose as the present invention or for other purposes. In addition, the system and parts include surgical resection and laser treatment of general cancers including brain tumors, further intravascular surgery such as arteriosclerotic lesions and myocardial infarction, and direct administration to affected areas, lesions, diseased tissues, etc. It can also be used as a device or a device for harvesting a benefit site and is provided for such a purpose. The irradiation light has a wavelength of about 2
Light in the range of 00 nm to about 4000 nm, that is, ultraviolet light, visible light, infrared light, or the like can be used. For example, when a blue light emitting diode is used, the wavelength of irradiation light is 515 nm. In addition, the irradiated object is a luminescent substance
For example, in the case of labeling with the fluorescent labeling agent fluorescein Na, the irradiated object itself emits light, and is also referred to as excitation light.

【0014】<反照光と色素>本発明では、物体に光を
照射することにより、被照射体が発する光を反照光と称
する。例えば、被照射体を事前に赤色色素で染色すれ
ば、その被照射体は、緑・黄色系波長の光を吸収し、赤
色光を反射する(いわゆる通常の反射光)。また、被照
射体を前記フルオレサイドNaで標識すると、被照射体
は照射下で、波長585nmの蛍光を発する。さらに、
拍動血管に光照射すると、ドップラー効果により照射光
とは振動数が異なる反射光(本発明では、これをドップ
ラー光と称する)が生じる。なお、該ドップラー光は、
手術における血管損傷の回避マーカーとして評価され
る。これらのことを考慮し、本発明で言う反照光は、特
有波長領域の通常の反射光、蛍光、発光、吸光、ドップ
ラー光、ブリュアン散乱光およびラマン散乱光を意味
し、これらの反照光を定量計測の対象として用いること
ができる。また、本発明では色素として、光照射下で、
前記特有の波長領域の反照光を生じ、かつ、病巣、病
変、患部等の組織を特異的に標識あるいは染色すること
が可能な物質およびかかる組織に特異的に分布するかま
たは分布させることが可能な物質を用いることができ
る。
<Anti-illumination and Dye> In the present invention, the light emitted from the object to be illuminated by illuminating the object is referred to as anti-illumination. For example, if the irradiated body is dyed with a red dye in advance, the irradiated body absorbs light of green / yellowish wavelengths and reflects red light (so-called normal reflected light). When the irradiated body is labeled with the above-mentioned fluorescein Na, the irradiated body emits fluorescence having a wavelength of 585 nm under irradiation. further,
When the pulsating blood vessel is irradiated with light, reflected light (which is referred to as Doppler light in the present invention) having a frequency different from that of the irradiated light is generated due to the Doppler effect. The Doppler light is
It is evaluated as a marker for avoiding vascular damage during surgery. In consideration of these, the anti-illumination referred to in the present invention means normal reflected light in a specific wavelength region, fluorescence, emission, absorption, Doppler light, Brillouin scattered light and Raman scattered light, and these anti-illuminated light is quantified. It can be used as a measurement target. Further, in the present invention, as a dye, under light irradiation,
A substance capable of producing anti-illumination in the aforementioned specific wavelength region and capable of specifically labeling or staining tissues such as lesions, lesions and affected areas, and a substance which can be specifically distributed or distributed in such tissues Any substance can be used.

【0015】<分光的装置>本発明では、目的波長すな
わち前述した照射光波長および反照光の特有波長領域の
分別が可能な分光的装置を適宜選択して用いることがで
きる。すなわち、前記目的に応じ。例えば、光学フィル
ター、分光器、干渉器等を用いることができる。 <光センサー>既存または市販のセンサー、例えば、フ
ォトダイオード、光電子増幅管、撮像管、MOSセンサ
ー、CCD等を加工あるいは修飾して用いることができ
る。
<Spectroscopic Device> In the present invention, a spectroscopic device capable of discriminating the target wavelength, that is, the wavelength range of the irradiation light and the specific wavelength region of the anti-illumination light can be appropriately selected and used. That is, depending on the purpose. For example, an optical filter, a spectroscope, an interferometer, or the like can be used. <Optical Sensor> An existing or commercially available sensor, for example, a photodiode, a photoelectron amplification tube, an image pickup tube, a MOS sensor, a CCD or the like can be processed or modified and used.

【0016】<プローブと光伝達>図2は、本発明にお
ける病変等の対象部位を自動的に検知かつ治療または採
取する方法および装置にて使用される光伝達手段あるい
は対象部位の破壊または採取のためのエネルギー伝達手
段を構成するプローブの実施の形態を示すもので、病変
等の対象部位への光照射とその反照光の受光を主として
行い、図2(a)のものでは、微細化を可能にする光フ
ァイバーによって光伝達手段4を構成した例である。そ
の微細化は、種々の治療機器等への組込みを可能とする
ので、新規な治療機器等の装置を創作かつ提供すること
ができる。例えば、前記プローブに超音波破壊装置やレ
ーザーメスを組み込み、定量計測値に基づきその出力を
コントロールすることにより、自動的に病巣等の対象部
位を破壊するように構成することもできるし、プローブ
にレーザー照射装置を組み込んで、病巣を選択的かつ光
力学的に治療するように構成することもできる。また、
プローブを血管等の手術用カテーテルに組み込んで、動
脈硬化巣における粥腫を選択的に光力学治療や破壊治療
するように構成することもできる。なお、被照射体への
光の照射は、1ないし複数本の光ファイバー、図2
(b)に示すような、レンズ光学系、回折格子光学系を
介するか、若しくは図2(c)に示すような、発光素子
や光照射素子からの直接照射により行うことができる。
また、光照射に伴う反照光は、蛍光やラマン光の場合に
は、1ないし複数本の光ファイバー、レンズ光学系、回
折格子光学系を介するか、若しくは発光素子への直接入
射により分光的装置と光センサーに導く。また、有益部
位を検知して効率的に採取するようにも構成することが
できる。
<Probe and Light Transmission> FIG. 2 shows the light transmission means used in the method and apparatus for automatically detecting and treating or collecting a target site such as a lesion according to the present invention or destruction or collection of the target site. FIG. 2A shows an embodiment of a probe that constitutes an energy transmission means for the purpose of mainly irradiating light to a target site such as a lesion and receiving its anti-illumination light, and in FIG. 2A, miniaturization is possible. It is an example in which the optical transmission means 4 is configured by the optical fiber. The miniaturization enables incorporation into various treatment devices and the like, so that a device such as a new treatment device can be created and provided. For example, by incorporating an ultrasonic destruction device or a laser scalpel into the probe and controlling the output based on a quantitative measurement value, it is possible to automatically destroy the target site such as a lesion, or the probe. A laser irradiation device may also be incorporated and configured to selectively and photodynamically treat the lesion. Also,
The probe may be incorporated in a surgical catheter such as a blood vessel to selectively perform photodynamic treatment or destructive treatment of atherosclerotic plaque. It should be noted that the irradiation of the light on the irradiation object is performed by one or a plurality of optical fibers, as shown in FIG.
It can be performed through a lens optical system or a diffraction grating optical system as shown in (b) or by direct irradiation from a light emitting element or a light irradiation element as shown in FIG. 2 (c).
In the case of fluorescence or Raman light, the anti-illumination caused by light irradiation is transmitted through one or more optical fibers, a lens optical system, a diffraction grating optical system, or a spectroscopic device by direct incidence on a light emitting element. Guide to the light sensor. Further, it can be configured to detect a beneficial part and efficiently collect it.

【0017】<分光的処理と計測>対象部位内の色素濃
度を、反照光(通常の反射光、発光、蛍光、ラマン散乱
光、ドップラー光または吸光)の光度あるいは強度から
計測する。ただし、吸光を採用の場合は、吸光度から計
測する。 <光の波長とその強度の定義>被照射体の色素に由来の
反照光の最強度値を「Iλ0」、その波長を「λ0n
m」とそれぞれ表記する。また、前記波長λ0以外の光
源に由来の反照光の最強度値を「Iλi」、その波長を
「λinm」とそれぞれ表記する。なお、バックグラン
ドの光の強度を「Ib」と表記し、これには光センサー
とそれに付随するノイズを含む。
<Spectral Processing and Measurement> The dye concentration in the target area is measured from the luminous intensity or intensity of anti-illumination light (normal reflected light, luminescence, fluorescence, Raman scattered light, Doppler light or light absorption). However, when the light absorption is adopted, it is measured from the light absorption. <Definition of wavelength of light and its intensity> The maximum intensity value of the anti-illumination derived from the dye of the irradiated object is “Iλ0”, and its wavelength is “λ0n.
m ”respectively. Further, the maximum intensity value of the anti-illumination light derived from a light source other than the wavelength λ0 is described as “Iλi”, and the wavelength thereof is described as “λinm”. In addition, the intensity of the background light is expressed as “Ib”, which includes the optical sensor and the noise accompanying it.

【0018】<特定領域波長の光強度の測定>光源の照
射光および被照射体の反照光の波長について、各波長の
光の最強度を直接測定する。若しくは色素と光源におけ
る既知のスペクトル特性と、計測したスペクトル特性と
の間の相関係数に基づく評価の下で光強度を決定する。 <反照光の強度に基づく被照射体の色素濃度(D)の計
測>本発明によれば、次の(1)(2)および(3)式
により被照射体の色素濃度Dを光強度として算出し、こ
れより相対光強度を計測・算出する。ただし、これらの
計測値における誤差を最小にし精度を高めるには、バッ
クグランドの光の強度(励起光および反射光の波長域以
外で検出可能な波長域の光強度または励起光非照射時の
反射光波長域の光強度)「Ib」を考慮した式(3)に
よる相対光強度の計測が望ましい。 実測光強度 D=Iλ0 ・・・・・(1) 相対光速度 D=Iλ0/Iλi ・・・・・(2) 相対光速度 D=(Iλ0−Ib)/(Iλi−Ib)・・(3)
<Measurement of Light Intensity of Specific Region Wavelength> The maximum intensity of the light of each wavelength is directly measured with respect to the wavelength of the irradiation light of the light source and the anti-illumination light of the irradiation object. Alternatively, the light intensity is determined under evaluation based on the correlation coefficient between the known spectral characteristic of the dye and the light source and the measured spectral characteristic. <Measurement of Dye Concentration (D) of Irradiated Object Based on Anti-Illumination Intensity> According to the present invention, the dye concentration D of the irradiated object is defined as the light intensity by the following equations (1), (2) and (3). The relative light intensity is measured and calculated from this. However, in order to minimize the error in these measured values and improve the accuracy, the intensity of the background light (the light intensity in the wavelength range that can be detected outside the wavelength range of the excitation light and the reflected light or the reflection when the excitation light is not irradiated) is used. It is desirable to measure the relative light intensity by the equation (3) in consideration of “Ib” in the light wavelength region). Measured Light Intensity D = Iλ0 (1) Relative Light Velocity D = Iλ0 / Iλi (2) Relative Light Velocity D = (Iλ0−Ib) / (Iλi−Ib) · (3 )

【0019】<治療装置の制御>前述した被照射体の色
素濃度(D)の計測値は電気信号あるいは磁気信号とし
て得られるので、これらは後述の治療または採取装置を
作動させる種々のエネルギー源に変換され、その大きさ
に応じて制御手段がデジタル制御あるいはアナログ制御
により出力を可変し、その制御下で作動して、メスや病
変破壊装置等を駆動し、病変等の対象部位を明確に区別
しつつこれを切除ないし治療または採取することができ
る。なお、本発明では、治療作動下で定量計測される2
つの波長域の相対光強度が治療作動を開始する直前の前
記光強度計測値の閾値、例えば、連続計測された光強度
のゼロ変位点から1/10000の範囲内で選定された
光強度の範囲内で、該治療または採取作動を継続するよ
うに前記制御手段がデジタル制御またはアナログ制御さ
れる。 <治療装置>病変組織や病巣の治療装置としては、既存
のもの、例えば、レーザー照射装置、レーザーメス、超
音波破壊装置、電気メス、電動メス、電磁波照射装置、
衝撃波発生装置等を用いることができる。
<Control of Treatment Device> Since the above-mentioned measured value of the dye concentration (D) of the irradiated body is obtained as an electric signal or a magnetic signal, these are provided to various energy sources for operating the treatment or sampling device described later. After being converted, the control means changes the output by digital control or analog control according to the size, operates under that control, drives the scalpel, lesion destruction device, etc., and clearly distinguishes the target site such as lesion However, it can be excised, treated or collected. In the present invention, 2 is quantitatively measured under the treatment operation.
The threshold value of the light intensity measurement value immediately before the relative light intensity of one wavelength region starts the treatment operation, for example, the range of the light intensity selected within the range of 1/10000 from the zero displacement point of the continuously measured light intensity. In which the control means is digitally or analog controlled to continue the treatment or sampling operation. <Treatment device> As a treatment device for a lesioned tissue or a lesion, there are existing treatment devices, for example, a laser irradiation device, a laser knife, an ultrasonic destruction device, an electric knife, an electric knife, an electromagnetic wave irradiation device,
A shock wave generator or the like can be used.

【0020】<実施例> <病変部位の標識と鑑別>脳腫瘍巣に選択的に取り込ま
れ、これを特異的に標識するフルオレサイドNa等の蛍
光標識薬を予め患者の静脈内に注射し、脳腫瘍摘出の手
術中に表面を露出させた腫瘍(図3(a))に対して励
起光を照射した。その結果、腫瘍部位のみが蛍光を呈
し、これを特異的に視認鑑別することができた(図3
(b)). <標識病変部位の光強度の測定>前記の腫瘍部位に対
し、青色光ダイオードを局所的に照射し、その照射部位
から反照光を光ファイバーで導き、そのスペクトル分布
を分光計で解析した。その結果、腫瘍部位周辺の正常な
脳組織では青色光ダイオードに特異的な励起光波長(λ
i=515nm)のみの単峰性の反照光が検出され(図
4(a))、これに対して腫瘍部位では前記励起光波長
(λi=515nm)およびフルオレサイドNaに特異
的な蛍光波長(λ0=585nm)からなる2峰性の反
照光が検出された(図4(b))。
<Example><Labeling and differentiation of lesion site> A fluorescent labeling agent such as fluorescein Na which is selectively taken into a brain tumor nest and specifically labels it is injected into a patient's vein in advance, During the operation for removing the brain tumor, the surface-exposed tumor (FIG. 3A) was irradiated with excitation light. As a result, only the tumor site exhibited fluorescence, which could be visually identified and differentiated (Fig. 3).
(B)). <Measurement of Light Intensity of Marked Lesion Site> The above-mentioned tumor site was locally irradiated with a blue photodiode, and anti-illumination was guided from the irradiation site with an optical fiber, and its spectral distribution was analyzed by a spectrometer. As a result, in the normal brain tissue around the tumor site, the excitation light wavelength (λ
i = 515 nm) only unimodal re-illumination was detected (FIG. 4 (a)), whereas in the tumor site, the excitation light wavelength (λi = 515 nm) and the fluorescence wavelength specific to fluorescein Na were detected. A bimodal anti-illumination composed of (λ0 = 585 nm) was detected (FIG. 4 (b)).

【0021】<相対光強度の算出による標識病変組織の
確定>前述した相対光強度に係る式(3)に基づき、次
の通り、相対光強度の定量計測値=0.477を得た。 D=(Iλ0−Ib)/(Iλi−Ib)・・(3) =135/283 =0.477 なお、上記の定量計測値は、正常組織のもの(D=0)
と大きく異なるため、腫瘍部位を特異的かつ定量的に確
定することができた。また、励起光の波長を最適化すれ
ば、相対光強度の精度が2桁以上あがることも確認され
た。
<Definition of Labeled Lesion Tissue by Calculating Relative Light Intensity> Based on the above-mentioned formula (3) relating to relative light intensity, a quantitative measurement value of relative light intensity = 0.477 was obtained as follows. D = (Iλ0-Ib) / (Iλi-Ib) ··· (3) = 135/283 = 0.477 The above quantitative measurement values are for normal tissue (D = 0).
It was possible to determine the tumor site specifically and quantitatively because it was significantly different from. It was also confirmed that if the wavelength of the excitation light was optimized, the accuracy of the relative light intensity would increase by two digits or more.

【0022】このように本発明によれば、蛍光および励
起光を分光器や光学フィルターにより励起光および蛍光
特有の波長スペクトルに分解し、それぞれの光強度を光
センサーにて定量化することによって、高精度かつ信頼
性の高い診断が可能となった。蛍光強度単独あるいは励
起光と蛍光の比をとるアルゴリズムにより、蛍光標識物
質の組織内での相対濃度を数値化し、その数値化された
相対濃度を電圧出力に変換して出力することで、治療ま
たは採取用機器を制御することができる。その結果、標
識薬の分布する部位ではその濃度に応じて当該部位を破
壊もしくは採取できるのに対し、対象部位以外の部位で
は全く破壊や採取が行われない。この特性故に、対象部
位選択性が高く安全性や効率の高い治療もしくは採取機
器が実現できることとなった。
As described above, according to the present invention, the fluorescence and the excitation light are decomposed into a wavelength spectrum specific to the excitation light and the fluorescence by a spectroscope or an optical filter, and the respective light intensities are quantified by an optical sensor. Highly accurate and reliable diagnosis has become possible. By treating the fluorescence intensity alone or an algorithm that takes the ratio of excitation light and fluorescence, the relative concentration in the tissue of the fluorescent labeling substance is digitized, and the digitized relative concentration is converted into a voltage output and output. The collection equipment can be controlled. As a result, the site where the labeled drug is distributed can be destroyed or collected depending on its concentration, whereas the site other than the target site is not destroyed or collected at all. Due to this characteristic, it has become possible to realize a treatment or sampling device with high target site selectivity and high safety and efficiency.

【0023】以上、本発明の実施の形態について説明し
てきたが、本発明の趣旨の範囲内で、光源の種類および
照射形態、光伝達手段の形状、種類、プローブの形状、
形式、光伝達手段とプローブの関連構成、光センサー等
の光強度測定手段の種類、光学フィルター等の分光的装
置の種類、分光的計測手段の種類、相対的光強度の定量
的計測値の電圧または電流への変換形態、電気信号また
は磁気信号として出力したデジタル制御形態またはアナ
ログ制御形態、対象部位の自動的な判定、検知かつ治療
また採取形態等については適宜選定できる。
Although the embodiments of the present invention have been described above, within the scope of the gist of the present invention, the type and irradiation form of the light source, the shape and type of the light transmitting means, the shape of the probe,
Type, related configuration of light transmitting means and probe, type of light intensity measuring means such as optical sensor, type of spectroscopic device such as optical filter, type of spectroscopic measuring means, voltage of quantitative measurement value of relative light intensity Alternatively, the form of conversion into electric current, the form of digital control or analog control output as an electric signal or a magnetic signal, the automatic determination of the target site, the detection and treatment, and the form of collection can be appropriately selected.

【0024】[0024]

【発明の効果】以上、詳細に説明したように、本発明で
は、光源から病変等の対象部位に光を照射し、被照射病
変等の対象部位が発する反照光のうち少なくとも光源に
特異的な波長域と被照射病変等の対象部位に特異的な波
長域であってこれら両者の各最高光強度を含む2波長域
を選定して、これら両者の相対的光強度を定量計測する
とともに、該定量計測値を電気信号または磁気信号とし
て出力してデジタル制御またはアナログ制御することに
より、光強度を定量化して病変等の対象部位を定量的に
判定しつつ検知かつ治療または採取することによって、
手術中に変形し易い、腫瘍、動脈硬化巣、炎症性病巣等
の病変あるいは病巣部位を高い精度と確度で、なかんず
く、安全かつ確実に検知、診断しつつ、対象部位につい
て特異的かつ選択的な治療や採取を行い、迅速で適格な
手術・治療や施薬または採取を自動的に行うことが可能
となる。さらに、従来の深さ方向のみの光の分布を判定
するものとは異なり、元来より有益な特質を有する部位
や、遺伝子改変等により有益な特質を獲得した部位を高
い精度で定量的に判定し、効率良く採取することが可能
となる。
As described above in detail, according to the present invention, a light source irradiates a target site such as a lesion, and at least the light source of the anti-illumination light emitted from the target site such as the irradiated lesion is specific to the light source. The wavelength range and the wavelength range specific to the target site such as the irradiated lesion are selected, and two wavelength ranges including the respective maximum light intensities of the both are selected, and the relative light intensities of the both are quantitatively measured, and By outputting a quantitative measurement value as an electric signal or a magnetic signal and performing digital control or analog control, by quantifying the light intensity and quantitatively determining the target site such as a lesion, and detecting or treating or collecting,
With high accuracy and accuracy, it is possible to detect and diagnose tumors, arteriosclerotic lesions, inflammatory lesions, and other lesions or lesions that are easily deformed during surgery. It is possible to carry out treatment and collection, and to automatically perform prompt and qualified surgery / treatment, medication, and collection. Furthermore, unlike the conventional method that determines the distribution of light only in the depth direction, it is possible to quantitatively determine with high accuracy a site that originally has a beneficial property or a site that has acquired a beneficial property due to genetic modification, etc. However, it becomes possible to collect efficiently.

【0025】また、病変組織に光を照射する光源と、被
照射病変組織が発する反照光を少なくとも2つの波長の
光に分光して、各波長の光強度を測定する光強度測定手
段と、これら複数波長の光強度のうち光源に特異的な波
長域と被照射病変等の対象部位に特異的な波長域であっ
てこれら両者の各最高光強度を含む2波長域を選定し
て、これら両者の相対的光強度を定量計測する分光的計
測手段と、前記相対的光強度の定量的計測値を電圧また
は電流に変換して電気信号または磁気信号として出力し
てデジタル制御またはアナログ制御することにより病変
等の対象部位を定量的に判定しつつ検知かつ治療する制
御手段とを備えることにより、各手段を既製・市販の装
置の修飾や改変により低コストで得られるものでありな
がら、手術あるいは施薬中に変形し易い病変部位を、光
強度を定量化することによって、高い精度と確度によっ
て確実に検知しつつ他の部位と鑑別して、適格かつ安全
に手術・治療や施薬および採取を自動的に行うことが可
能となる。
Further, a light source for irradiating the diseased tissue with light, and light intensity measuring means for measuring the light intensity of each wavelength by splitting the anti-illumination light emitted by the irradiated diseased tissue into light of at least two wavelengths, Of the light intensities of multiple wavelengths, a wavelength range specific to the light source and a wavelength range specific to the target site such as a lesion to be irradiated, and two wavelength ranges including the respective highest light intensities of both are selected, and both of these are selected. Spectroscopic measuring means for quantitatively measuring the relative light intensity, and by converting the quantitative measurement value of the relative light intensity into a voltage or current and outputting it as an electric signal or a magnetic signal for digital control or analog control. By providing a control means that detects and treats a target site such as a lesion quantitatively, each means can be obtained at low cost by modifying or altering an off-the-shelf or commercially available device, By quantifying the light intensity, the lesion site that is easily deformed in the drug can be detected accurately with high accuracy and accuracy, and can be distinguished from other sites to automatically and appropriately perform surgery / treatment and drug administration and collection. It becomes possible to do it.

【0026】さらに、前記光源が、レーザー光、発光ダ
イオード、化学ルミネッセンス、白色ランプ、水銀ラン
プ、キセノンランプおよびハロゲンランプ群から選定さ
れる少なくとも1種の発光手段から選ぶことにより、既
製あるいは市販の光を光源として採用して、照射光の波
長を適正な範囲のものとすることができる。さらにま
た、前記分光かつ選定される2つの波長域の反照光が、
光源に特異的な特定波長領域の1種の反射光と、該反射
光とは波長が異なる光であって病変等の対象部位に分布
するかまたは分布させた色素に起因して特異的に生じる
特有波長領域の反射光、吸光、発光、蛍光、ラマン散乱
光群から選定される光である場合は、相対光強度の定量
計測値が対象部位とそれ以外の部位との間で大きく異な
る2峰性の反照光が検出されて、病変等の対象部位を特
異的かつ定量的に確定することができる。
Further, the light source is selected from at least one light emitting means selected from the group consisting of laser light, light emitting diode, chemiluminescence, white lamp, mercury lamp, xenon lamp and halogen lamp group. Can be used as a light source to adjust the wavelength of the irradiation light within an appropriate range. Furthermore, the anti-illumination of the above-mentioned spectral and two wavelength regions selected is
One kind of reflected light in a specific wavelength region specific to a light source, and light having a different wavelength from the reflected light, which is specifically generated due to a pigment distributed or distributed to a target site such as a lesion In the case of light selected from reflected light, light absorption, light emission, fluorescence, and Raman scattered light groups in a specific wavelength region, the quantitative measurement value of the relative light intensity is greatly different between the target site and other sites. It is possible to specifically and quantitatively determine a target site such as a lesion by detecting the sexual anti-illumination.

【0027】また、治療作動下で定量計測される2つの
波長域の相対光強度が治療作動を開始する直前の前記光
強度計測値の閾値の範囲内では、該治療または採取作動
を継続するように前記制御手段がデジタル制御またはア
ナログ制御される場合は、対象部位を高い精度と確度
で、確実に検知、診断しつつ、安全かつ迅速で的確に手
術・治療や施薬または採取を自動的に継続することがで
きる。さらに、前記病変等の対象部位への光照射とその
病変等の対象部位からの反照光の受光を光ファイバーか
らなるプローブにて行うように構成した場合は、病巣プ
ローブがきわめて微細な光ファイバー化することがで
き、種々の機器に組み込んで、内視鏡下治療、血管内治
療等の低侵襲手術や遺伝子関連の研究等の広い分野にわ
たり適用が可能となる。しかも、構造的には可動部分が
なく堅牢で、生産コスト面でも低廉である。
Further, if the relative light intensities of the two wavelength regions quantitatively measured under the treatment operation are within the threshold value of the light intensity measurement value immediately before the start of the treatment operation, the treatment or sampling operation is continued. If the control means is digitally controlled or analog controlled, the target site can be detected and diagnosed with high accuracy and accuracy, while safely, promptly and accurately continuing the surgery / treatment, drug administration or sampling automatically. can do. Further, when the probe is composed of an optical fiber for irradiating the target site such as the lesion and receiving the anti-illumination light from the target site such as the lesion, the lesion probe should be an extremely fine optical fiber. It can be applied to various fields such as endoscopic treatment, endovascular treatment and other minimally invasive surgery, and gene-related research. Moreover, the structure is robust with no moving parts, and the production cost is low.

【0028】さらにまた、前記プローブに超音波破壊装
置、電気メス、吸引装置、レーザーメス、レーザー照射
装置、治療光照射装置あるいは生検装置を組み込んだ場
合は、プローブが病巣等の対象部位の検知機能と治療機
能とを兼用して構造が簡素化され、定量計測値に基づき
その出力をコントロールして、自動的に病巣組織を破壊
するように構成することもできるし、治療光照射装置に
より、病巣を選択的かつ光力学的に治療することができ
る。そして、プローブに生検装置もくは吸引装置等の採
取装置を組み込んだ場合は、遺伝子改変等により有益な
特質を獲得した部位を高い精度で判定し、採取すること
ができる。また、前記プローブを手術用カテーテルに組
み込んだ場合は、動脈硬化巣における粥腫を選択的に光
力学治療や破壊治療を行うことができる。
Furthermore, when an ultrasonic destruction device, an electric scalpel, a suction device, a laser scalpel, a laser irradiation device, a therapeutic light irradiation device or a biopsy device is incorporated in the probe, the probe detects a target site such as a lesion. The structure is simplified by combining the function and the treatment function, the output can be controlled based on the quantitative measurement value, and the lesion tissue can be automatically destroyed. The lesion can be treated selectively and photodynamically. When a biopsy device or a suction device such as a suction device is incorporated in the probe, it is possible to highly accurately determine and collect a site that has acquired a beneficial property due to genetic modification or the like. Further, when the probe is incorporated into a surgical catheter, it is possible to selectively perform photodynamic treatment or destructive treatment of atheroma in an arteriosclerotic lesion.

【0029】さらに、前記病変等の対象部位への光照射
とその病変等の対象部位からの反照光の受光をレンズま
たは干渉光学系の光伝達手段にて行うように構成した場
合は、既存の廉価な光伝達手段が使用できて低コストで
ある。このように本発明によれば、病変等の対象部位の
局在の精度および確度を向上させて高い検知性能を備え
る対象部位を自動的に検知かつ治療または採取する方法
およびその装置が提供できる。
Further, when the light irradiation to the target site such as the lesion and the reception of the anti-illumination light from the target site such as the lesion are carried out by the lens or the optical transmission means of the interference optical system, the existing structure is used. Low cost light transmission means can be used, and the cost is low. As described above, according to the present invention, it is possible to provide a method and an apparatus for automatically detecting and treating or collecting a target site having high detection performance by improving accuracy and accuracy of localization of the target site such as a lesion.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の病変等の対象部位を自動的に検知かつ
治療または採取する方法およびその装置のシステム化し
たブロック構成図である。
FIG. 1 is a systematic block configuration diagram of a method and apparatus for automatically detecting and treating or collecting a target site such as a lesion according to the present invention.

【図2】本発明におけるプローブの各例で、図2(a)
はプローブとして光ファイバーを使用した例、図2
(b)はプローブとしてレンズまたは干渉光学系を使用
した例、図2(c)は直接照射の例を示す図である。
2 is an example of a probe according to the present invention, and FIG.
Is an example of using an optical fiber as a probe, Fig. 2
FIG. 2B is a diagram showing an example in which a lens or an interference optical system is used as a probe, and FIG. 2C is a diagram showing an example of direct irradiation.

【図3】図3(a)は青色発光ダイオードの照射下での
無標識正常脳組織写真図、図3(b)は同、フルオレサ
イドNaで標識した脳腫瘍部位の特異的蛍光による確定
写真図である。
FIG. 3 (a) is a photograph of an unlabeled normal brain tissue under irradiation of a blue light emitting diode, and FIG. 3 (b) is a photograph of the same which is confirmed by specific fluorescence of a brain tumor site labeled with fluorescein Na. It is a figure.

【図4】図4(a)は青色発光ダイオードの照射下での
正常脳組織反照光の分光計によるスペクトル分布の解析
図、図4(b)は同、フルオレサイドNaで標識した脳
腫瘍部位の反照光の分光計によるスペクトル分布の解析
図である。
FIG. 4 (a) is an analysis diagram of a spectral distribution of normal brain tissue anti-illumination under irradiation of a blue light emitting diode by a spectrometer, and FIG. 4 (b) is a brain tumor site labeled with fluorescein Na. FIG. 4 is an analysis diagram of a spectral distribution of the anti-illumination spectrometer of FIG.

【符号の説明】[Explanation of symbols]

1 光源 2 正常組織 3 病変等の対象部位 4 光伝達手段(光ファイバー等、プローブ兼用) 5 分光的装置(光学フィルター等) 6 光強度測定手段(光センサーおよび増幅装置
等) 7 分光的計測手段 8 制御手段 9 対象部位破壊および採取のためのエネルギー伝
達手段 10 病巣治療および採取装置
DESCRIPTION OF SYMBOLS 1 light source 2 normal tissue 3 target site such as lesion 4 light transmission means (optical fiber etc., also serving as probe) 5 spectroscopic device (optical filter etc.) 6 light intensity measuring means (optical sensor and amplification device etc.) 7 spectroscopic measuring means 8 Control means 9 Energy transmission means for destruction and collection of target site 10 Focal treatment and collection device

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) G01N 21/33 G01N 21/33 21/35 21/35 Z 21/63 21/63 Z 21/64 21/64 F Z 21/65 21/65 Fターム(参考) 2G043 AA03 DA02 EA01 EA03 EA10 HA05 JA01 JA02 KA01 KA02 KA03 KA05 KA09 LA01 LA03 NA01 2G059 AA06 BB12 CC16 EE02 EE06 EE07 EE09 EE12 GG01 GG02 GG10 HH01 HH02 HH03 HH06 JJ01 JJ02 JJ05 JJ11 JJ17 KK01 KK04 MM05 MM09 NN01 4C061 BB08 SS21 WW17 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) G01N 21/33 G01N 21/33 21/35 21/35 Z 21/63 21/63 Z 21/64 21 / 64 F Z 21/65 21/65 F-term (reference) 2G043 AA03 DA02 EA01 EA03 EA10 HA05 JA01 JA02 KA01 KA02 KA03 KA05 KA09 LA01 LA03 NA01 2G059 AA06 BB12 CC16 EE02 EE06 EE07 EE09 EE12 GG01 GG02 GG10 HH01 HH02 HH03 HH06 JJ01 JJ02 JJ05 JJ11 JJ17 KK01 KK04 MM05 MM09 NN01 4C061 BB08 SS21 WW17

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 光源から病変等の対象部位に光を照射
し、被照射病変等の対象部位が発する反照光のうち少な
くとも光源に特異的な波長域と被照射病変等の対象部位
に特異的な波長域であってこれら両者の各最高光強度を
含む2波長域を選定して、これら両者の相対的光強度を
定量計測するとともに、該定量計測値を電気信号または
磁気信号として出力してデジタル制御またはアナログ制
御することにより、病変等の対象部位を定量的に判定し
つつ検知かつ治療または採取することを特徴とする病変
等の対象部位を自動的に検知かつ治療または採取する方
法。
1. A light source irradiates a target site such as a lesion with light, and at least a wavelength range specific to the light source and a target site such as the irradiated lesion are included in the anti-illumination light emitted from the target site such as the irradiated lesion. 2 wavelength ranges including the maximum light intensities of both of them are selected, the relative light intensities of these two are quantitatively measured, and the quantitative measurement value is output as an electric signal or a magnetic signal. A method for automatically detecting, treating, or collecting a target site such as a lesion, which is characterized by quantitatively determining the target site such as a lesion by digital control or analog control.
【請求項2】 病変等の対象部位に光を照射する光源
と、被照射病変組織が発する反照光を少なくとも2つの
波長の光に分光して、各波長の光強度を測定する光強度
測定手段と、これら複数波長の光強度のうち光源に特異
的な波長域と被照射病変等の対象部位に特異的な波長域
であってこれら両者の各最高光強度を含む2波長域を選
定して、これら両者の相対的光強度を定量計測する分光
的計測手段と、前記相対的光強度の定量的計測値を電圧
または電流に変換して電気信号または磁気信号として出
力してデジタル制御またはアナログ制御することにより
病変等の対象部位を定量的に判定しつつ検知かつ治療ま
たは採取する制御手段とを備えることを特徴とする病変
等の対象部位を自動的に検知かつ治療または採取する装
置。
2. A light intensity measuring means for splitting at least two wavelengths of light from a light source for irradiating a target site such as a lesion with light from an irradiated lesion tissue to measure the light intensity of each wavelength. Of the light intensities of these plural wavelengths, a wavelength range specific to the light source and a wavelength range specific to the target site such as a lesion to be irradiated, and two wavelength ranges including the respective maximum light intensities of both of them are selected. A spectroscopic measuring means for quantitatively measuring the relative light intensity of the both, and a digital control or analog control for converting the quantitative measurement value of the relative light intensity into a voltage or a current and outputting it as an electric signal or a magnetic signal. A device for automatically detecting, treating, or collecting a target site such as a lesion, which is provided with a control means for detecting and treating or collecting the target site such as a lesion quantitatively.
【請求項3】 前記光源が、レーザー光、発光ダイオー
ド、化学ルミネッセンス、白色ランプ、水銀ランプ、キ
セノンランプおよびハロゲンランプ群から選定される少
なくとも1種の発光手段であることを特徴とする請求項
2に記載の病変等の対象部位を自動的に検知かつ治療ま
たは採取する装置。
3. The light source is at least one kind of light emitting means selected from the group consisting of laser light, light emitting diode, chemiluminescence, white lamp, mercury lamp, xenon lamp and halogen lamp group. A device for automatically detecting and treating or collecting a target site such as a lesion described in 1.
【請求項4】 前記分光かつ選定される2つの波長域の
反照光が、光源に特異的な特定波長領域の1種の反射光
と、該反射光とは波長が異なる光であって病変等の対象
部位に分布するかまたは分布させた色素に起因して特異
的に生じる特有波長領域の反射光、吸光、発光、蛍光、
ラマン散乱光群から選定される光であることを特徴とす
る請求項2または3に記載の病変等の対象部位を自動的
に検知かつ治療または採取する装置。
4. The reflected light of the two wavelength bands selected by the spectroscopic analysis is one kind of reflected light in a specific wavelength range specific to the light source and light having a different wavelength from the reflected light, such as a lesion. Reflected light, absorption, luminescence, fluorescence in a specific wavelength region specifically generated due to the dye distributed or distributed in the target site of
The device for automatically detecting and treating or collecting a target site such as a lesion according to claim 2 or 3, which is light selected from a Raman scattered light group.
【請求項5】 治療または採取作動下で定量計測される
2つの波長域の相対光強度が治療または採取作動を開始
する直前の前記光強度計測値の閾値を超えない範囲で
は、該治療または採取作動を継続するように前記制御手
段がデジタル制御またはアナログ制御されることを特徴
とする請求項2ないし4のいずれかに記載の病変等の対
象部位を自動的に検知かつ治療または採取する装置。
5. The treatment or sampling within a range in which the relative light intensities of the two wavelength regions quantitatively measured under the treatment or sampling operation do not exceed the threshold value of the light intensity measurement value immediately before the start of the treatment or sampling operation. The device for automatically detecting and treating or collecting a target site such as a lesion according to any one of claims 2 to 4, wherein the control means is digitally controlled or analogically controlled so as to continue the operation.
【請求項6】 前記病変等の対象部位への光照射とその
病変等の対象部位からの反照光の受光を光ファイバーか
らなるプローブにて行うように構成したことを特徴とす
る請求項2ないし5に記載の病変等の対象部位を自動的
に検知かつ治療または採取する装置。
6. A probe comprising an optical fiber is configured to irradiate light on a target site such as the lesion and receive anti-illumination light from the target site such as the lesion. A device for automatically detecting and treating or collecting a target site such as a lesion described in 1.
【請求項7】 前記プローブに超音波破壊装置、電気メ
ス、吸引装置、レーザーメス、レーザー照射装置、治療
光照射装置あるいは生検装置を組み込んだことを特徴と
する請求項2ないし6のいずれかに記載の病変等の対象
部位を自動的に検知かつ治療または採取する装置。
7. The probe according to claim 2, wherein an ultrasonic destruction device, an electric knife, a suction device, a laser knife, a laser irradiation device, a therapeutic light irradiation device or a biopsy device is incorporated in the probe. A device for automatically detecting and treating or collecting a target site such as a lesion described in 1.
【請求項8】 前記プローブを手術用カテーテルに組み
込んだことを特徴とする請求項2ないし6のいずれかに
記載の病変等の対象部位を自動的に検知かつ治療または
採取する装置。
8. The device for automatically detecting and treating or collecting a target site such as a lesion according to claim 2, wherein the probe is incorporated in a surgical catheter.
【請求項9】 前記病変等の対象部位への光照射とその
病変等の対象部位からの反照光の受光をレンズまたは干
渉光学系の光伝達手段にて行うように構成したことを特
徴とする請求項2ないし5に記載の病変等の対象部位を
自動的に検知かつ治療する装置。
9. A light transmitting means of a lens or an interference optical system is configured to irradiate light to a target site such as the lesion and receive anti-illumination light from the target site such as the lesion. An apparatus for automatically detecting and treating a target site such as a lesion according to claim 2.
JP2001304992A 2001-10-01 2001-10-01 Method and device for automatically detecting, treating, and collecting objective site of lesion or the like Pending JP2003102672A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2001304992A JP2003102672A (en) 2001-10-01 2001-10-01 Method and device for automatically detecting, treating, and collecting objective site of lesion or the like
PCT/JP2002/009906 WO2003030726A1 (en) 2001-10-01 2002-09-26 Method for automatically detecting, and treating or sampling object portion such as affected portion and its apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001304992A JP2003102672A (en) 2001-10-01 2001-10-01 Method and device for automatically detecting, treating, and collecting objective site of lesion or the like

Publications (1)

Publication Number Publication Date
JP2003102672A true JP2003102672A (en) 2003-04-08

Family

ID=19124846

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001304992A Pending JP2003102672A (en) 2001-10-01 2001-10-01 Method and device for automatically detecting, treating, and collecting objective site of lesion or the like

Country Status (2)

Country Link
JP (1) JP2003102672A (en)
WO (1) WO2003030726A1 (en)

Cited By (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008522697A (en) * 2004-12-09 2008-07-03 ザ サイエンス アンド テクノロジー ファシリティーズ カウンシル Raman spectroscopic analysis of subsurface tissues and fluids
JP2009525838A (en) * 2006-02-08 2009-07-16 ザ ジェネラル ホスピタル コーポレイション Method, apparatus and system for obtaining information relating to anatomical samples using optical microscopy
US8369669B2 (en) 2004-07-02 2013-02-05 The General Hospital Corporation Imaging system and related techniques
US8416818B2 (en) 2003-06-06 2013-04-09 The General Hospital Corporation Process and apparatus for a wavelength tuning source
US8559012B2 (en) 2003-01-24 2013-10-15 The General Hospital Corporation Speckle reduction in optical coherence tomography by path length encoded angular compounding
JP5315237B2 (en) * 2007-05-22 2013-10-16 オリンパス株式会社 Capsule type medical device and capsule type medical system
US8593619B2 (en) 2008-05-07 2013-11-26 The General Hospital Corporation System, method and computer-accessible medium for tracking vessel motion during three-dimensional coronary artery microscopy
US8760663B2 (en) 2005-09-29 2014-06-24 The General Hospital Corporation Method and apparatus for optical imaging via spectral encoding
US8804126B2 (en) 2010-03-05 2014-08-12 The General Hospital Corporation Systems, methods and computer-accessible medium which provide microscopic images of at least one anatomical structure at a particular resolution
US8922781B2 (en) 2004-11-29 2014-12-30 The General Hospital Corporation Arrangements, devices, endoscopes, catheters and methods for performing optical imaging by simultaneously illuminating and detecting multiple points on a sample
US8937724B2 (en) 2008-12-10 2015-01-20 The General Hospital Corporation Systems and methods for extending imaging depth range of optical coherence tomography through optical sub-sampling
US9060689B2 (en) 2005-06-01 2015-06-23 The General Hospital Corporation Apparatus, method and system for performing phase-resolved optical frequency domain imaging
US9069130B2 (en) 2010-05-03 2015-06-30 The General Hospital Corporation Apparatus, method and system for generating optical radiation from biological gain media
US9178330B2 (en) 2009-02-04 2015-11-03 The General Hospital Corporation Apparatus and method for utilization of a high-speed optical wavelength tuning source
US9186066B2 (en) 2006-02-01 2015-11-17 The General Hospital Corporation Apparatus for applying a plurality of electro-magnetic radiations to a sample
US9282931B2 (en) 2000-10-30 2016-03-15 The General Hospital Corporation Methods for tissue analysis
US9326682B2 (en) 2005-04-28 2016-05-03 The General Hospital Corporation Systems, processes and software arrangements for evaluating information associated with an anatomical structure by an optical coherence ranging technique
US9330092B2 (en) 2011-07-19 2016-05-03 The General Hospital Corporation Systems, methods, apparatus and computer-accessible-medium for providing polarization-mode dispersion compensation in optical coherence tomography
US9341783B2 (en) 2011-10-18 2016-05-17 The General Hospital Corporation Apparatus and methods for producing and/or providing recirculating optical delay(s)
US9364143B2 (en) 2006-05-10 2016-06-14 The General Hospital Corporation Process, arrangements and systems for providing frequency domain imaging of a sample
US9415550B2 (en) 2012-08-22 2016-08-16 The General Hospital Corporation System, method, and computer-accessible medium for fabrication miniature endoscope using soft lithography
US9441948B2 (en) 2005-08-09 2016-09-13 The General Hospital Corporation Apparatus, methods and storage medium for performing polarization-based quadrature demodulation in optical coherence tomography
US9510758B2 (en) 2010-10-27 2016-12-06 The General Hospital Corporation Apparatus, systems and methods for measuring blood pressure within at least one vessel
US9516997B2 (en) 2006-01-19 2016-12-13 The General Hospital Corporation Spectrally-encoded endoscopy techniques, apparatus and methods
US9557154B2 (en) 2010-05-25 2017-01-31 The General Hospital Corporation Systems, devices, methods, apparatus and computer-accessible media for providing optical imaging of structures and compositions
US9588046B2 (en) 2011-09-07 2017-03-07 Olympus Corporation Fluorescence observation apparatus
US9615748B2 (en) 2009-01-20 2017-04-11 The General Hospital Corporation Endoscopic biopsy apparatus, system and method
US9629528B2 (en) 2012-03-30 2017-04-25 The General Hospital Corporation Imaging system, method and distal attachment for multidirectional field of view endoscopy
US9646377B2 (en) 2006-01-19 2017-05-09 The General Hospital Corporation Methods and systems for optical imaging or epithelial luminal organs by beam scanning thereof
USRE46412E1 (en) 2006-02-24 2017-05-23 The General Hospital Corporation Methods and systems for performing angle-resolved Fourier-domain optical coherence tomography
US9733460B2 (en) 2014-01-08 2017-08-15 The General Hospital Corporation Method and apparatus for microscopic imaging
US9763623B2 (en) 2004-08-24 2017-09-19 The General Hospital Corporation Method and apparatus for imaging of vessel segments
US9784681B2 (en) 2013-05-13 2017-10-10 The General Hospital Corporation System and method for efficient detection of the phase and amplitude of a periodic modulation associated with self-interfering fluorescence
US9795301B2 (en) 2010-05-25 2017-10-24 The General Hospital Corporation Apparatus, systems, methods and computer-accessible medium for spectral analysis of optical coherence tomography images
US9968261B2 (en) 2013-01-28 2018-05-15 The General Hospital Corporation Apparatus and method for providing diffuse spectroscopy co-registered with optical frequency domain imaging
US9968245B2 (en) 2006-10-19 2018-05-15 The General Hospital Corporation Apparatus and method for obtaining and providing imaging information associated with at least one portion of a sample, and effecting such portion(s)
US10058250B2 (en) 2013-07-26 2018-08-28 The General Hospital Corporation System, apparatus and method for utilizing optical dispersion for fourier-domain optical coherence tomography
US10117576B2 (en) 2013-07-19 2018-11-06 The General Hospital Corporation System, method and computer accessible medium for determining eye motion by imaging retina and providing feedback for acquisition of signals from the retina
US10228556B2 (en) 2014-04-04 2019-03-12 The General Hospital Corporation Apparatus and method for controlling propagation and/or transmission of electromagnetic radiation in flexible waveguide(s)
US10285568B2 (en) 2010-06-03 2019-05-14 The General Hospital Corporation Apparatus and method for devices for imaging structures in or at one or more luminal organs
US10426548B2 (en) 2006-02-01 2019-10-01 The General Hosppital Corporation Methods and systems for providing electromagnetic radiation to at least one portion of a sample using conformal laser therapy procedures
US10478072B2 (en) 2013-03-15 2019-11-19 The General Hospital Corporation Methods and system for characterizing an object
US10534129B2 (en) 2007-03-30 2020-01-14 The General Hospital Corporation System and method providing intracoronary laser speckle imaging for the detection of vulnerable plaque
US10736494B2 (en) 2014-01-31 2020-08-11 The General Hospital Corporation System and method for facilitating manual and/or automatic volumetric imaging with real-time tension or force feedback using a tethered imaging device
US10835110B2 (en) 2008-07-14 2020-11-17 The General Hospital Corporation Apparatus and method for facilitating at least partial overlap of dispersed ration on at least one sample
US10893806B2 (en) 2013-01-29 2021-01-19 The General Hospital Corporation Apparatus, systems and methods for providing information regarding the aortic valve
US10912462B2 (en) 2014-07-25 2021-02-09 The General Hospital Corporation Apparatus, devices and methods for in vivo imaging and diagnosis
US11179028B2 (en) 2013-02-01 2021-11-23 The General Hospital Corporation Objective lens arrangement for confocal endomicroscopy
US11452433B2 (en) 2013-07-19 2022-09-27 The General Hospital Corporation Imaging apparatus and method which utilizes multidirectional field of view endoscopy
US11490797B2 (en) 2012-05-21 2022-11-08 The General Hospital Corporation Apparatus, device and method for capsule microscopy
US11490826B2 (en) 2009-07-14 2022-11-08 The General Hospital Corporation Apparatus, systems and methods for measuring flow and pressure within a vessel

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5579773A (en) * 1994-09-30 1996-12-03 Martin Marietta Energy Systems, Inc. Laser-induced differential normalized fluorescence method for cancer diagnosis
US6119031A (en) * 1996-11-21 2000-09-12 Boston Scientific Corporation Miniature spectrometer
JPH1176403A (en) * 1997-07-11 1999-03-23 Olympus Optical Co Ltd Surgical treatment instrument
JP2000014629A (en) * 1998-07-02 2000-01-18 Olympus Optical Co Ltd Endoscope spectroscopic apparatus
JP3762646B2 (en) * 2001-02-01 2006-04-05 オリンパス株式会社 Fluorescence observation equipment

Cited By (69)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9282931B2 (en) 2000-10-30 2016-03-15 The General Hospital Corporation Methods for tissue analysis
US9226665B2 (en) 2003-01-24 2016-01-05 The General Hospital Corporation Speckle reduction in optical coherence tomography by path length encoded angular compounding
US8559012B2 (en) 2003-01-24 2013-10-15 The General Hospital Corporation Speckle reduction in optical coherence tomography by path length encoded angular compounding
US8416818B2 (en) 2003-06-06 2013-04-09 The General Hospital Corporation Process and apparatus for a wavelength tuning source
US8369669B2 (en) 2004-07-02 2013-02-05 The General Hospital Corporation Imaging system and related techniques
US9664615B2 (en) 2004-07-02 2017-05-30 The General Hospital Corporation Imaging system and related techniques
US8676013B2 (en) 2004-07-02 2014-03-18 The General Hospital Corporation Imaging system using and related techniques
US9763623B2 (en) 2004-08-24 2017-09-19 The General Hospital Corporation Method and apparatus for imaging of vessel segments
US8922781B2 (en) 2004-11-29 2014-12-30 The General Hospital Corporation Arrangements, devices, endoscopes, catheters and methods for performing optical imaging by simultaneously illuminating and detecting multiple points on a sample
JP2008522697A (en) * 2004-12-09 2008-07-03 ザ サイエンス アンド テクノロジー ファシリティーズ カウンシル Raman spectroscopic analysis of subsurface tissues and fluids
US9326682B2 (en) 2005-04-28 2016-05-03 The General Hospital Corporation Systems, processes and software arrangements for evaluating information associated with an anatomical structure by an optical coherence ranging technique
US9060689B2 (en) 2005-06-01 2015-06-23 The General Hospital Corporation Apparatus, method and system for performing phase-resolved optical frequency domain imaging
US9441948B2 (en) 2005-08-09 2016-09-13 The General Hospital Corporation Apparatus, methods and storage medium for performing polarization-based quadrature demodulation in optical coherence tomography
US8760663B2 (en) 2005-09-29 2014-06-24 The General Hospital Corporation Method and apparatus for optical imaging via spectral encoding
US9513276B2 (en) 2005-09-29 2016-12-06 The General Hospital Corporation Method and apparatus for optical imaging via spectral encoding
US8928889B2 (en) 2005-09-29 2015-01-06 The General Hospital Corporation Arrangements and methods for providing multimodality microscopic imaging of one or more biological structures
US9304121B2 (en) 2005-09-29 2016-04-05 The General Hospital Corporation Method and apparatus for optical imaging via spectral encoding
US9646377B2 (en) 2006-01-19 2017-05-09 The General Hospital Corporation Methods and systems for optical imaging or epithelial luminal organs by beam scanning thereof
US9516997B2 (en) 2006-01-19 2016-12-13 The General Hospital Corporation Spectrally-encoded endoscopy techniques, apparatus and methods
US10987000B2 (en) 2006-01-19 2021-04-27 The General Hospital Corporation Methods and systems for optical imaging or epithelial luminal organs by beam scanning thereof
US9186066B2 (en) 2006-02-01 2015-11-17 The General Hospital Corporation Apparatus for applying a plurality of electro-magnetic radiations to a sample
US9186067B2 (en) 2006-02-01 2015-11-17 The General Hospital Corporation Apparatus for applying a plurality of electro-magnetic radiations to a sample
US10426548B2 (en) 2006-02-01 2019-10-01 The General Hosppital Corporation Methods and systems for providing electromagnetic radiation to at least one portion of a sample using conformal laser therapy procedures
US10800831B2 (en) 2006-02-08 2020-10-13 The General Hospital Corporation Systems and methods for obtaining information associated with an anatomical sample using optical microscopy
JP2009525838A (en) * 2006-02-08 2009-07-16 ザ ジェネラル ホスピタル コーポレイション Method, apparatus and system for obtaining information relating to anatomical samples using optical microscopy
USRE46412E1 (en) 2006-02-24 2017-05-23 The General Hospital Corporation Methods and systems for performing angle-resolved Fourier-domain optical coherence tomography
US9364143B2 (en) 2006-05-10 2016-06-14 The General Hospital Corporation Process, arrangements and systems for providing frequency domain imaging of a sample
US10413175B2 (en) 2006-05-10 2019-09-17 The General Hospital Corporation Process, arrangements and systems for providing frequency domain imaging of a sample
US9968245B2 (en) 2006-10-19 2018-05-15 The General Hospital Corporation Apparatus and method for obtaining and providing imaging information associated with at least one portion of a sample, and effecting such portion(s)
US10534129B2 (en) 2007-03-30 2020-01-14 The General Hospital Corporation System and method providing intracoronary laser speckle imaging for the detection of vulnerable plaque
US9265409B2 (en) 2007-05-22 2016-02-23 Olympus Corporation Capsule medical device and capsule medical system
JP5315237B2 (en) * 2007-05-22 2013-10-16 オリンパス株式会社 Capsule type medical device and capsule type medical system
US8593619B2 (en) 2008-05-07 2013-11-26 The General Hospital Corporation System, method and computer-accessible medium for tracking vessel motion during three-dimensional coronary artery microscopy
US9173572B2 (en) 2008-05-07 2015-11-03 The General Hospital Corporation System, method and computer-accessible medium for tracking vessel motion during three-dimensional coronary artery microscopy
US10835110B2 (en) 2008-07-14 2020-11-17 The General Hospital Corporation Apparatus and method for facilitating at least partial overlap of dispersed ration on at least one sample
US8937724B2 (en) 2008-12-10 2015-01-20 The General Hospital Corporation Systems and methods for extending imaging depth range of optical coherence tomography through optical sub-sampling
US9615748B2 (en) 2009-01-20 2017-04-11 The General Hospital Corporation Endoscopic biopsy apparatus, system and method
US9178330B2 (en) 2009-02-04 2015-11-03 The General Hospital Corporation Apparatus and method for utilization of a high-speed optical wavelength tuning source
US11490826B2 (en) 2009-07-14 2022-11-08 The General Hospital Corporation Apparatus, systems and methods for measuring flow and pressure within a vessel
US8804126B2 (en) 2010-03-05 2014-08-12 The General Hospital Corporation Systems, methods and computer-accessible medium which provide microscopic images of at least one anatomical structure at a particular resolution
US10463254B2 (en) 2010-03-05 2019-11-05 The General Hospital Corporation Light tunnel and lens which provide extended focal depth of at least one anatomical structure at a particular resolution
US9642531B2 (en) 2010-03-05 2017-05-09 The General Hospital Corporation Systems, methods and computer-accessible medium which provide microscopic images of at least one anatomical structure at a particular resolution
US9408539B2 (en) 2010-03-05 2016-08-09 The General Hospital Corporation Systems, methods and computer-accessible medium which provide microscopic images of at least one anatomical structure at a particular resolution
US8896838B2 (en) 2010-03-05 2014-11-25 The General Hospital Corporation Systems, methods and computer-accessible medium which provide microscopic images of at least one anatomical structure at a particular resolution
US9069130B2 (en) 2010-05-03 2015-06-30 The General Hospital Corporation Apparatus, method and system for generating optical radiation from biological gain media
US9951269B2 (en) 2010-05-03 2018-04-24 The General Hospital Corporation Apparatus, method and system for generating optical radiation from biological gain media
US9557154B2 (en) 2010-05-25 2017-01-31 The General Hospital Corporation Systems, devices, methods, apparatus and computer-accessible media for providing optical imaging of structures and compositions
US9795301B2 (en) 2010-05-25 2017-10-24 The General Hospital Corporation Apparatus, systems, methods and computer-accessible medium for spectral analysis of optical coherence tomography images
US10939825B2 (en) 2010-05-25 2021-03-09 The General Hospital Corporation Systems, devices, methods, apparatus and computer-accessible media for providing optical imaging of structures and compositions
US10285568B2 (en) 2010-06-03 2019-05-14 The General Hospital Corporation Apparatus and method for devices for imaging structures in or at one or more luminal organs
US9510758B2 (en) 2010-10-27 2016-12-06 The General Hospital Corporation Apparatus, systems and methods for measuring blood pressure within at least one vessel
US9330092B2 (en) 2011-07-19 2016-05-03 The General Hospital Corporation Systems, methods, apparatus and computer-accessible-medium for providing polarization-mode dispersion compensation in optical coherence tomography
US9588046B2 (en) 2011-09-07 2017-03-07 Olympus Corporation Fluorescence observation apparatus
US9341783B2 (en) 2011-10-18 2016-05-17 The General Hospital Corporation Apparatus and methods for producing and/or providing recirculating optical delay(s)
US9629528B2 (en) 2012-03-30 2017-04-25 The General Hospital Corporation Imaging system, method and distal attachment for multidirectional field of view endoscopy
US11490797B2 (en) 2012-05-21 2022-11-08 The General Hospital Corporation Apparatus, device and method for capsule microscopy
US9415550B2 (en) 2012-08-22 2016-08-16 The General Hospital Corporation System, method, and computer-accessible medium for fabrication miniature endoscope using soft lithography
US9968261B2 (en) 2013-01-28 2018-05-15 The General Hospital Corporation Apparatus and method for providing diffuse spectroscopy co-registered with optical frequency domain imaging
US10893806B2 (en) 2013-01-29 2021-01-19 The General Hospital Corporation Apparatus, systems and methods for providing information regarding the aortic valve
US11179028B2 (en) 2013-02-01 2021-11-23 The General Hospital Corporation Objective lens arrangement for confocal endomicroscopy
US10478072B2 (en) 2013-03-15 2019-11-19 The General Hospital Corporation Methods and system for characterizing an object
US9784681B2 (en) 2013-05-13 2017-10-10 The General Hospital Corporation System and method for efficient detection of the phase and amplitude of a periodic modulation associated with self-interfering fluorescence
US10117576B2 (en) 2013-07-19 2018-11-06 The General Hospital Corporation System, method and computer accessible medium for determining eye motion by imaging retina and providing feedback for acquisition of signals from the retina
US11452433B2 (en) 2013-07-19 2022-09-27 The General Hospital Corporation Imaging apparatus and method which utilizes multidirectional field of view endoscopy
US10058250B2 (en) 2013-07-26 2018-08-28 The General Hospital Corporation System, apparatus and method for utilizing optical dispersion for fourier-domain optical coherence tomography
US9733460B2 (en) 2014-01-08 2017-08-15 The General Hospital Corporation Method and apparatus for microscopic imaging
US10736494B2 (en) 2014-01-31 2020-08-11 The General Hospital Corporation System and method for facilitating manual and/or automatic volumetric imaging with real-time tension or force feedback using a tethered imaging device
US10228556B2 (en) 2014-04-04 2019-03-12 The General Hospital Corporation Apparatus and method for controlling propagation and/or transmission of electromagnetic radiation in flexible waveguide(s)
US10912462B2 (en) 2014-07-25 2021-02-09 The General Hospital Corporation Apparatus, devices and methods for in vivo imaging and diagnosis

Also Published As

Publication number Publication date
WO2003030726A1 (en) 2003-04-17

Similar Documents

Publication Publication Date Title
JP2003102672A (en) Method and device for automatically detecting, treating, and collecting objective site of lesion or the like
US6377841B1 (en) Tumor demarcation using optical spectroscopy
JP3752693B2 (en) Laser-induced differential normalization fluorescence cancer diagnosis method and apparatus
Vo‐Dinh et al. In vivo cancer diagnosis of the esophagus using differential normalized fluorescence (DNF) indices
JP5701615B2 (en) Biopsy guidance with electromagnetic tracking and light needle
Panjehpour et al. Laser‐induced fluorescence spectroscopy for in vivo diagnosis of non‐melanoma skin cancers
US5131398A (en) Method and apparatus for distinguishing cancerous tissue from benign tumor tissue, benign tissue or normal tissue using native fluorescence
US6693287B2 (en) Laser imaging apparatus using biomedical markers that bind to cancer cells
JP2011115658A (en) Optical imaging of induced signal in vivo under ambient light condition
EP2814375B1 (en) Photonic probe apparatus with integrated tissue marking facility
US20090326385A1 (en) Obtaining optical tissue properties
WO2009144653A2 (en) Needle with integrated photon detector
JP2002505900A (en) Optical student examination device and tissue diagnosis method
WO1993003672A1 (en) Optical histochemical analysis, in vivo detection and real-time guidance for ablation of abnormal tissues using a raman spectroscopic detection system
JP2002543859A (en) Method and apparatus for detecting, locating and targeting internal sites in a living body using optical contrast factors
JP2005501586A (en) Multi-sensor probe for tissue identification
Eker et al. Multivariate analysis of laryngeal fluorescence spectra recorded in vivo
JP2001095750A (en) Fluorescence identification and equipment
Borisova et al. Early differentiation between caries and tooth demineralization using laser‐induced autofluorescence spectroscopy
Nishioka Laser-induced fluorescence spectroscopy
JPH11511048A (en) Endoscopic imaging for detection of cancer lesions
RU2184486C2 (en) Method and device for diagnosing oncological diseases
RU2372873C1 (en) Sapphire-blade system for biological tissue resection and optical diagnostics of malignancy
Sokolov et al. Clinical fluorescence diagnostics in the course of photodynamic therapy of cancer with the photosensitizer PHOTOGEM
Vo-Dinh et al. Laser-induced fluorescence for the detection of esophageal and skin cancer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070515

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071023

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080715

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090331

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090525

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090611

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20091029

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20100305