JP2003102672A - Method and device for automatically detecting, treating, and collecting objective site of lesion or the like - Google Patents

Method and device for automatically detecting, treating, and collecting objective site of lesion or the like

Info

Publication number
JP2003102672A
JP2003102672A JP2001304992A JP2001304992A JP2003102672A JP 2003102672 A JP2003102672 A JP 2003102672A JP 2001304992 A JP2001304992 A JP 2001304992A JP 2001304992 A JP2001304992 A JP 2001304992A JP 2003102672 A JP2003102672 A JP 2003102672A
Authority
JP
Japan
Prior art keywords
light
lesion
target site
collecting
treating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001304992A
Other languages
Japanese (ja)
Inventor
Yoshinaga Kajimoto
宜永 梶本
Original Assignee
Japan Science & Technology Corp
科学技術振興事業団
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science & Technology Corp, 科学技術振興事業団 filed Critical Japan Science & Technology Corp
Priority to JP2001304992A priority Critical patent/JP2003102672A/en
Publication of JP2003102672A publication Critical patent/JP2003102672A/en
Application status is Pending legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/0059Detecting, measuring or recording for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence

Abstract

PROBLEM TO BE SOLVED: To provide a method and a device for automatically detecting, treating or collecting the objective site of a lesion, etc., which is provided with high detecting performance by improving the local precision and correctness of the objective sites of the lesion, etc. SOLUTION: The objective site 3 of the lesion, etc., is irradiated with light from a light source 1 to select two wavelength area including at least a wavelength area characteristic to the light source and a wavelength area characteristic to the objective site such as irradiated lesion, which include the respective highest light intensity of both of these, in reflected light emitted from the objective site 3 of the irradiated lesion, etc. The relative light intensity of both of these are quantitatively measured by a spectral measuring means 7, and the quantitatively measured value is outputted as an electric signal or a magnetic signal to perform digital control or analog control of a control means 8 to quantitatively detect and treat the lesion of the objective site 3 of the lesion, etc., and to treat (collect) it by a collecting device 10.

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、医療分野において、腫瘍、癌、動脈硬化巣、炎症性病巣等の病変あるいは病巣部位または有益な部位を高い精度と確度で定量的に判定しつつかつ検知し、その検知情報に基づき病巣の破壊、除去、切除、病巣への施薬または有益な部位の採取等により治療または採取するための方法およびその装置に関するもので、外科および内科、特に、脳神経外科、血管外科、心臓内科、呼吸器外科、泌尿器科等の分野および遺伝子治療や遺伝子研究、創薬の分野できわめて有効である。 BACKGROUND OF THE INVENTION [0001] [Technical Field of the Invention The present invention is in the medical field, a tumor, cancer, and high accuracy atherosclerotic plaque, the lesion or lesion site or beneficial sites such as inflammatory foci quantitatively determined with and is detected by the accuracy, the destruction of the lesion based on the detection information, removal, resection, a method and apparatus for treating or collected by collecting such in Seyaku or beneficial site into the lesion , surgery and internal medicine, in particular, neurosurgery, vascular surgery, cardiology, respiratory surgery, field and gene therapy and genetic research of urology, etc., is very effective in the field of drug discovery. 【0002】 【従来の技術】従来、医療分野において、病変や病巣等の対象部位を識別・検知して、これらを除去あるいは治療する方法として、蛍光標識法と放射性同位元素(R [0004] Conventionally, in the medical field, and identify and detect the target portion, such as a lesion or lesions, as a method for removing or treating these, radioactive isotopes and fluorescent labeling (R
I)標識法とが知られている。 I) and the labeling method are known. 前者の蛍光標識法は、事前に蛍光標識した病巣に対して治療中に励起光を照射し、蛍光領域として定性的に認識される病巣部位を肉眼的に識別しつつ、該当病巣組織を切除あるいは治療する方法である。 The former fluorescence labeling method, irradiated with excitation light during treatment with respect to previously fluorescence labeled foci, while visually identifying the lesion site to be qualitatively recognized as fluorescent areas, excised relevant lesion tissue or it is a method of treatment. また、後者の放射性同位元素標識法は、予め放射性同位元素で標識した病変を、放射線検知プローブで探査しつつ、検出された病変組織を治療する方法である。 The latter radioisotope labeling method labeled lesion previously radioisotope, while probed with radiation detection probe, a method of treating the detected diseased tissue. また、検知した病巣を自動的に除去あるいは治療する一種のロボット手術機器としては、遠隔手術ロボット機器や位置決定に係る高精度作動ロボット(例えば人工関節設置ロボット)等が知られている。 As the kind of robotic surgery devices for automatically removing or treating the detected lesions, such as high-precision working robot according to telesurgery robotic instrument or position determination (for example, artificial joints installed robot) is known. 【0003】しかしながら、このような従来の検知および治療方法において、前者の蛍光標識法では、治療対象である病変の有無の診断、および病変組織と正常組織との境界の検知において、手術中では組織が変形するとともに、病変の定量的かつ高精度の評価が不可能であるため、常に目視判断あるいは定性的判別による曖昧さを伴い、治療の自動化装置への進展は期待され得なかった。 However, in such a conventional detection and treatment methods, the former fluorescence labeling method, diagnosis of the presence or absence of a lesion to be treated, and in the detection of the boundary between diseased tissue and normal tissue, tissue in surgery There as well as modified, for evaluation of the lesion quantitative and accurate is not possible, always with the ambiguity visual judgment or qualitative determination, progress toward automation equipment of treatment could not be expected.
また、後者の放射性同位元素標識法では、放射線の空間分解能がきわめて低く、病変の有無の判定に誤差を生じ易く、その上、放射性同位元素の使用場所が法的に限定・制約され、さらに、病変の標識薬についても開発途上にあって実用性に乏しいものであった。 In the latter radioisotope labeling, the spatial resolution of the radiation is very low, easily cause errors in the determination of the presence or absence of the lesion, its top, is legally limited-restriction site of use of radioactive isotopes, furthermore, It was also poor in practicability in the developing for lesions labeling agent. つまり、従来の蛍光標識法や放射性同位元素標識法では、正常な組織や血管の領域にまで治療行為が及んでこれらを損傷する危険性を孕んでいた。 That is, in the conventional fluorescent labeling or radioisotope labeling method was fraught with risk of damage to these spans are therapeutic intervention to a region of normal tissue and blood vessels. したがって、これらの標識法では、 Thus, in these labeling methods,
必ずしも安全性が確保かつ保証され得ないものであった。 Necessarily safety was achieved not be ensured and guaranteed. 【0004】さらに、手術を支援するところの従来のロボット機器については、前述した遠隔手術装置では常に操作ミスが付き纏う虞れがあり、また、CTやMRI等における検知画像から計算される三次元情報に基づいて作動する人工関節設置ロボットでは、弾性を有する人体組織は手術操作で容易に変形するので、かかる三次元情報は無意味となる虞れが生じて、畢竟、その適用範囲が骨等の変形しにくい不動対象に限定されていた。 [0004] Further, for the conventional robot apparatus where supporting surgery, there is the dangle after possibility always operational errors in the remote operation apparatus mentioned above, also the three-dimensional information is calculated from the detected image in CT or MRI, etc. in the artificial joint installation robot that operates on the basis, since human tissue having elasticity is easily deformed by surgical operation, according the three-dimensional information is generated is a possibility that becomes meaningless, after all, the range of application of such bone deformation is difficult to have been limited to immobile object. 換言すれば、手術野での変形移動する病変等の局所情報を正確に判断し、迅速にして確実、なかんずく、安全かつ適格な手術や施薬を確保かつ保証して、手術を自在に支援するロボット手術機器の出現が待たれているところである。 In other words, to accurately determine the local information of the lesion such that deformation movement in the surgical field, quickly and reliably, inter alia, to ensure and guarantee a safe and qualified surgery and Seyaku to freely support the surgical robot it is where the appearance of surgical instruments have been waiting for. 【0005】そのような、手術野での変形移動する病変組織と正常組織との境界を検知できるものとして、特開平6−165783号公報に開示された光診断装置が提案された。 [0005] Such as it can detect the boundary between the modified moving diseased tissue and normal tissue at the surgical field, an optical diagnostic apparatus disclosed in Japanese Patent Laid-Open No. 6-165783 has been proposed. この光診断装置は、頭部内部に挿入され、回転する刃で腫瘍等の病変組織を切除して吸引排出する吸引プローブ内に、低干渉性の光を導光する光ファイバーの先端側を挿通し、光発生部のSLDで発生した低干渉性の光をこの光ファイバーの先端面から出射するとともに、病変組織側からの反射光を導光し、干渉光検出部で光路長を変えた参照光と干渉させることにより、深さ方向での反射光を検出し、2つの波長で得られた反射光の比の信号から病変組織の存在の範囲を判断するもので、 The optical diagnostic device is inserted into the head, in the aspiration probe to ablate aspirated discharged diseased tissue such as a tumor in the rotating blades, and inserting the distal end of the optical fiber which guides low-coherence light , together emits low coherent light generated by the SLD light-generating portion from the distal end surface of the optical fiber, and guides the reflected light from the diseased tissue side, the reference beam and for changing the optical path length in the interference light detector by interfering detects the reflected light in the depth direction, intended to determine the extent of the presence of diseased tissue from the ratio of the signal of the reflected light obtained at two wavelengths,
生体組織における正常組織と病変組織の境界を検知して、安全に手術を行えるようしたものである。 By detecting the boundaries of normal tissue and diseased tissue in a biological tissue, it is obtained by so capable of performing safely surgery. 【0006】 【発明が解決しようとする課題】しかしながら、前記提案の光診断装置では、低干渉性の光を出射し、病変組織側からの反射光を参照光と干渉させ、深さ方向での反射光を検出して病変組織の存在の範囲を判断するため、参照光の発生手段を必要とする他、光路長を変えた参照光の波長と反射光の波長の比の信号から病変組織の存在の範囲を判断するため、病変組織の定性的な判断に止まり、正常組織と病変組織の境界の検知性能が充分とは言い難かった。 [0006] The present invention is, however, the optical diagnostic apparatus of the proposal is to emit low coherent light, the reflected light from the diseased tissue side to interfere with the reference light, in the depth direction since detecting the reflected light to determine the range of the presence of diseased tissue, in addition to requiring a generating means of the reference light, the wavelength of the wavelength of the reference light with different optical path length reflected light from the ratio of the signal of the diseased tissue to determine the scope of the present blind on qualitative judgment of diseased tissue, detection performance of the boundary of the normal tissue and diseased tissue has been difficult to say that sufficient. また、前記提案の光診断装置では、深さ方向の光の分布が判定できるだけであり、病巣に特異的な特徴を検出することは困難であった。 Further, in the above optical diagnostic apparatus proposed is only possible to determine the distribution of light in the depth direction, it is difficult to detect a characteristic specific to the lesion. 【0007】そこで、本発明では、従来の診断装置の課題を分光により解決して、病変等の対象部位の局在の精度および確度を向上させて高い検知性能を備える病変等の対象部位を自動的に検知かつ治療または採取する方法およびその装置を提供することを目的とする。 [0007] In the present invention, the problems of the conventional diagnostic apparatus is solved by spectroscopic, automatic target site of the lesion or the like with a localization of the precision and accuracy higher detection performance by improving the target site of the lesion, etc. and to provide a method and apparatus for to detect and treat or collected. 【0008】 【課題を解決するための手段】このため、第1の発明は、光源から病変等の対象部位に光を照射し、被照射病変等の対象部位が発する反照光のうち少なくとも光源に特異的な波長域と被照射病変等の対象部位に特異的な波長域であってこれら両者の各最高光強度を含む2波長域を選定して、これら両者の相対的光強度を定量計測するとともに、該定量計測値を電気信号または磁気信号として出力してデジタル制御またはアナログ制御することにより、病変等の対象部位を定量的に判定しつつ検知かつ治療または採取することを特徴とする病変等の対象部位を自動的に検知かつ治療または採取する方法にある。 [0008] [Means for Solving the Problems] Accordingly, a first aspect of the present invention, light is irradiated to the target site of the lesion or the like from the light source, at least a light source of reflexion light target site such as the irradiated lesion emitted a specific wavelength region to the subject site such as a specific wavelength region and the irradiated lesion by selecting the two wavelengths range including the maximum light intensity of these two, quantified measure the relative light intensity of these two together, by digital control or analog control outputs the constant amount measurement value as an electrical or magnetic signals, lesion or the like and detecting and treating or collecting the target site of the lesion or the like quantitatively determined with a site of interest to the method for automatically detecting and treating or collected. また、第2の発明は、病変等の対象部位に光を照射する光源と、被照射病変組織が発する反照光を少なくとも2つの波長の光に分光して、各波長の光強度を測定する光強度測定手段と、これら複数波長の光強度のうち光源に特異的な波長域と被照射病変等の対象部位に特異的な波長域であってこれら両者の各最高光強度を含む2波長域を選定して、これら両者の相対的光強度を定量計測する分光的計測手段と、前記相対的光強度の定量的計測値を電圧または電流に変換して電気信号または磁気信号として出力してデジタル制御またはアナログ制御することにより病変等の対象部位を定量的に判定しつつ検知かつ治療または採取する制御手段とを備えることを特徴とする病変等の対象部位を自動的に検知かつ治療または採取する装置にある。 The second invention comprises a light source for irradiating light to the target site of the lesion or the like, and separated into light of at least two wavelengths reflexion light the irradiated lesion tissue emitted, measures the light intensity of each wavelength light and intensity measuring means, the two-wavelength region including the maximum light intensity of both a specific wavelength region to the subject site such as a specific wavelength region and the irradiated lesion source of the light intensity of the plurality wavelengths selection, the output to the digital control of the relative light intensities of both the spectroscopic measurement means for quantifying measures, as electrical or magnetic signals by converting a quantitative measurement of the relative light intensity in the voltage or current or analog control quantitatively determined while detecting and treating or automatically detecting the target portion of the lesion or the like, characterized by a control unit for collecting and treating or collecting an apparatus for target site of the lesion or the like by It is in. また本発明は、前記光源が、レーザー光、 The present invention, the light source is a laser beam,
発光ダイオード、化学ルミネッセンス、白色ランプ、水銀ランプ、キセノンランプおよびハロゲンランプ群から選定される少なくとも1種の発光手段であることを特徴とする。 Emitting diodes, chemiluminescence, white lamp, wherein the mercury lamp, is at least one light emitting means which is selected from xenon lamps and halogen lamps. また本発明は、前記分光かつ選定される2つの波長域の反照光が、光源に特異的な特定波長領域の1種の反射光と、該反射光とは波長が異なる光であって病変等の対象部位に分布するかまたは分布させた色素に起因して特異的に生じる特有波長領域の反射光、吸光、発光、蛍光、ラマン散乱光群から選定される光であることを特徴とする。 The present invention also reflexion light of the two wavelength regions that are the spectral and selection is, the reflected light of one specific a specific wavelength region in the light source, a light having a wavelength different from the reflected light lesions such reflected light characteristic wavelength region due to or distributed allowed dye distributed target site specifically occurs in absorbance, luminescence, fluorescence, characterized in that it is a light selected from the Raman scattering light group. また本発明は、治療または採取作動下で定量計測される2つの波長域の相対光強度が治療または採取作動を開始する直前の前記光強度計測値の閾値を超えない範囲では、該治療または採取作動を継続するように前記制御手段がデジタル制御またはアナログ制御されることを特徴とする。 The present invention is in a range of relative light intensity of the two wavelength regions to be quantified measured under treatment or collection operation does not exceed the threshold value of the light intensity measured value immediately before the start of the treatment or harvesting operation, the treatment or taken said control means so as to continue the operation, characterized in that a digitally controlled or analog control. また本発明は、前記病変等の対象部位への光照射とその病変等の対象部位からの反照光の受光を光ファイバーからなるプローブにて行うように構成したことを特徴とする。 The present invention is characterized by being configured the reception of reflexion light from the target site of the lesion, such as a light irradiation to the target site such as the lesion to perform at a probe consisting of an optical fiber. また本発明は、前記プローブに超音波破壊装置、電気メス、吸引装置、レーザーメス、レーザー照射装置、治療光照射装置あるいは生検装置を組み込んだことを特徴とする。 The present invention is an ultrasonic disrupter to the probe, electric knife, suction device, laser scalpel, a laser irradiation apparatus, characterized in that it incorporates a therapeutic light irradiation apparatus or the biopsy device. また本発明は、前記プローブを手術用カテーテルに組み込んだことを特徴とする。 The present invention is characterized in that incorporating the probe to a surgical catheter. また本発明は、前記病変等の対象部位への光照射とその病変等の対象部位からの反照光の受光をレンズまたは干渉光学系の光伝達手段にて行うように構成したことを特徴とする請求項2ないし5に記載の病変等の対象部位を自動的に検知かつ治療するもので、これらを課題解決のための手段とするものである。 The present invention is characterized by being configured to perform receiving a reflexion light from the target site of the lesion, such as a light irradiation to the target site such as the lesion at the lens or interference optical system of an optical transmission means it claims 2 intended to automatically detect and treat the target site of the lesion or the like according to 5, in which the means for these issues resolved. 【0009】 【実施の形態】以下、本発明の病変等の対象部位を自動的に検知かつ治療または採取する方法およびその装置の実施の形態を図面に基づいて詳細に説明する。 [0009] [Embodiment] Hereinafter will be described in detail with reference to the embodiment of the automatic detection and methods of treating or collecting and apparatus for target site of the lesion or the like in the drawings of the present invention. 図1は本発明の病変等の対象部位を自動的に検知かつ治療または採取する方法およびその装置のシステム化したブロック構成図、図2(a)はプローブとして光ファイバーを使用した例、図2(b)はプローブとしてレンズまたは干渉光学系を使用した例、図2(c)は直接照射の例を示す図、図3(a)は青色発光ダイオードの照射下での無標識正常脳組織写真図、図3(b)は同、フルオレサイドNaで標識した脳腫瘍部位の特異的蛍光による確定写真図、図4(a)は青色発光ダイオードの照射下での正常脳組織反照光の分光計によるスペクトル分布の解析図、図4(b)は同、フルオレサイドNaで標識した脳腫瘍部位の反照光の分光計によるスペクトル分布の解析図である。 Figure 1 is a system of block diagram of automatic detection and methods of treating or collecting and apparatus for target site of a lesion or the like of the present invention, an example of using an optical fiber as FIG. 2 (a) probe, FIG. 2 ( b) the example of using a lens or interference optical system as a probe, shows an example of irradiation FIG. 2 (c) directly, FIG. 3 (a) label-free normal brain tissue photographic view under irradiation of blue light-emitting diode 3 (b) shows the same, fluorenyl side Na labeled with established photographic view by specific fluorescence of brain tumor site, according to FIG. 4 (a) blue light emitting diode spectrometer normal brain tissue reflexion light under irradiation analysis diagram of the spectral distribution, FIG. 4 (b) the, is an analysis diagram of spectral distribution by reflexion light spectrometer labeled brain tumor sites fluorenylmethyl side Na. 【0010】本発明は図1に示すように、光源1から病変等の対象部位3に光を照射し、被照射病変等の対象部位3が発する反照光のうち少なくとも光源に特異的な波長域と被照射病変等の対象部位に特異的な波長域であってこれら両者の各最高光強度を含む2波長域を選定して、これら両者の相対的光強度を分光的計測手段7により定量計測するとともに、該定量計測値を電気信号または磁気信号として出力して制御手段8をデジタル制御またはアナログ制御することにより、病変等の対象部位3 [0010] The present invention, as shown in FIG. 1, the light irradiated from the light source 1 to the target site 3 lesions such as specific wavelength region in at least a light source of reflexion light the target site 3, such as the irradiated lesion emits quantitative measurement and a specific wavelength region to the subject site such as the irradiated lesion by selecting the two wavelengths range including the maximum light intensity of these two, the relative light intensities of both the spectroscopic measuring means 7 as well as, by the control unit 8 outputs a constant-amount measurement value as an electrical or magnetic signals to digital control or analog control, the target site 3 lesions such as
を定量的に判定しつつ検知かつ病巣治療装置10により治療することを特徴とする。 The characterized in that the treatment by quantitatively determined while detecting and focus treatment device 10. 【0011】以下に詳述する。 [0011] will be described in detail below. 前記本発明の病変等の対象部位を自動的に検知かつ治療する方法を実現する装置の1実施の形態として、図1に示すように、光伝達装置4を通じて病変等の対象部位3に光を照射する光源1 Examples 1 embodiment of automatically detecting and treating apparatus for implementing the method of the target site of the lesion or the like of the present invention, as shown in FIG. 1, the target portion 3 of the lesion or the like through the optical transmission device 4 light light source irradiates 1
と、被照射病変等の対象部位3が発する反照光を光伝達装置4を通じて分光的装置5により少なくとも2つの波長の光に分光して、各波長の光強度を測定する光強度測定手段(光センサー)6と、これら複数波長の光強度のうち光源に特異的な波長域と被照射病変等の対象部位に特異的な波長域であってこれら両者の各最高光強度を含む2波長域を選定して、これら両者の相対的光強度を定量計測する分光的計測手段7と、前記相対的光強度の定量的計測値を電圧または電流に変換して電気信号または磁気信号として出力してデジタル制御またはアナログ制御することにより病変等の対象部位を定量的に判定しつつ検知かつ治療または採取する制御手段8とを備える。 If, then split into at least two wavelengths of light by spectral device 5 reflexion light the target site 3, such as the irradiated lesion emits through the optical transmission device 4, the light intensity measurement means (light for measuring light intensity of each wavelength a sensor) 6, the two-wavelength region including the maximum light intensity of both a specific wavelength region to the subject site such as a specific wavelength region and the irradiated lesion source of the light intensity of the plurality wavelengths selection to, and outputs the relative light intensities of both the spectroscopic measurement means 7 for quantitative measurement, as an electrical signal or a magnetic signal into a quantitative measurement of the relative light intensity in the voltage or current digital and a control means 8 for detecting and treating or collected quantitatively determined with the target site of the lesion, such as by controlling or analog control. 【0012】<光源と照射光>前記光源1として、レーザー光、発光ダイオード、化学ルミネッセンス、白色ランプ、各種ランプ例えば、水銀ランプ、キセノンランプおよびハロゲンランプ群から選定される少なくとも1種の発光手段が使用され、標識、染色、または未染色の病巣や病変等の対象部位にこれらの光源から光を照射することにより、かかる被照射体が発する反照光がプローブにて受光され、受光された反照光を光学的フィルター等の分光的装置5によって分光し、光センサーを備える分光的計測手段7によってスペクトル中の強く鮮明な輝線ないしは分光解析図において鋭鋒性が顕著に検出される最高強度を含む2つの波長領域の光を選定する。 [0012] As the light source 1 <irradiation light as a light source>, laser light, light emitting diodes, chemiluminescence, white lamp, various lamps for example, at least one light emitting means that is selected from a mercury lamp, a xenon lamp and a halogen lamp group are used, labeled, staining, or by irradiating light from the light sources to the target site, such as unstained lesion or lesions, reflexion light according irradiated object emitted is received by the probe, received by the reflexion light spectrally by spectroscopic device 5, such as optical filters, 2 containing up strength brunt of attack resistance is significantly detected in strong sharp emission line or spectral analysis diagram of the spectrum by spectroscopically measuring means 7 provided with the optical sensor One of selecting the light in the wavelength region. 両波長の相対的光強度(光強度比)のアルゴリズムにより定量計測を行う。 Perform a quantitative measurement by the algorithm of the relative light intensities of both wavelengths (light intensity ratio). 前記定量計測により明確に区別された定量計測値が電流や電圧に変換された後、これらを電気信号あるいは電磁波信号として出力し、その大きさに応じて制御手段8がデジタル制御あるいはアナログ制御により出力を可変し、その制御下で作動して、メスや病変破壊装置10を駆動し、病変等の対象部位を明確に区別しつつこれを切除ないし治療する。 After quantitative measurements were clearly distinguished by the quantitative measurement is converted to a current or voltage, and outputs them as electric signals or electromagnetic signals, output control means 8 in accordance with the magnitude by the digital control or analog control variable, and operated under its control, it drives the female or lesion destruction device 10, excising or treating it with a clear distinction between target site of the lesion or the like. 【0013】前記検知手段と病変破壊または採取装置とはシステム化され、治療または採取装置あるいはロボット手術機器として提供される。 [0013] The detection means and the lesion destruction or sampling device is systematized, is provided as a therapeutic or collection device, or robotic surgery equipment. なお、前記システム部分を構成するプローブ、光センサーや各装置はいずれも部品として、本発明と同一目的または他の目的のために提供かつ使用が可能である。 Incidentally, the probe constituting the system portion, as both light sensors and each device component, it is possible to provide and use for the present invention the same purpose or other purposes. また、前記システムや部品は、脳腫瘍を含む癌一般の切除手術やレーザー治療、さらには、動脈硬化巣や心筋梗塞等の血管内手術、そして、患部、病巣、病変組織等への直接施薬等の装置または有益部位の採取装置としても使用可能で、かかる目的のために提供される。 Further, the system and components, resection or laser treatment of cancer in general including brain tumors, furthermore, such arteriosclerotic lesion and myocardial infarction endovascular surgery and, diseased, lesions, to diseased tissue such as direct Seyaku etc. also it is used as a collection device for device or beneficial sites are provided for such purposes. 照射光としては、その波長が約2 The irradiation light, the wavelength of about 2
00nmから約4000nmの範囲の光、すなわち、紫外光、可視光、赤外光等を用いることができる。 Light in the range of about 4000nm from nm, i.e., ultraviolet light, visible light, can be used infrared light or the like. 例えば、青色発光ダイオードを使用する場合には、照射光の波長は515nmである。 For example, when using a blue light emitting diode, the wavelength of the irradiating light is 515 nm. なお、被照射体が発光物質、 Incidentally, the irradiated body is luminescent material,
例えば、蛍光標識薬のフルオレサイドNaで標識した場合には、被照射体それ自身が発光するので、励起光とも称する。 For example, when labeled with fluorenylmethoxycarbonyl side Na fluorescent labels drugs, because the irradiated object itself emits light, also referred to as excitation light. 【0014】<反照光と色素>本発明では、物体に光を照射することにより、被照射体が発する光を反照光と称する。 [0014] In <anti illumination and dye> In the present invention, by irradiating light to the object, referred to as anti-illuminating light irradiated body emits. 例えば、被照射体を事前に赤色色素で染色すれば、その被照射体は、緑・黄色系波長の光を吸収し、赤色光を反射する(いわゆる通常の反射光)。 For example, if stained with pre-red dye to be irradiated, the irradiation object is to absorb light in the green and yellow wavelength, it reflects red light (so-called regular reflected light). また、被照射体を前記フルオレサイドNaで標識すると、被照射体は照射下で、波長585nmの蛍光を発する。 Further, when labeling the irradiated body in the fluorenylmethyl side Na, irradiated object under irradiation, emits fluorescence of wavelength 585 nm. さらに、 further,
拍動血管に光照射すると、ドップラー効果により照射光とは振動数が異なる反射光(本発明では、これをドップラー光と称する)が生じる。 When irradiated with light pulsatile vascular, reflected light frequency is different from that of the irradiated light by Doppler effect (in this invention, which is referred to as Doppler light) occurs. なお、該ドップラー光は、 In addition, the Doppler light,
手術における血管損傷の回避マーカーとして評価される。 It is evaluated as to avoid a marker of vascular injury in surgery. これらのことを考慮し、本発明で言う反照光は、特有波長領域の通常の反射光、蛍光、発光、吸光、ドップラー光、ブリュアン散乱光およびラマン散乱光を意味し、これらの反照光を定量計測の対象として用いることができる。 Considering these things, reflexion light in the present invention is generally of the reflected light characteristic wavelength region, fluorescence, luminescence, absorbance, Doppler beam, means Brillouin scattered light and the Raman scattered light, quantifying these reflexion light it can be used as an object of measurement. また、本発明では色素として、光照射下で、 Further, in the present invention as a dye, under light irradiation,
前記特有の波長領域の反照光を生じ、かつ、病巣、病変、患部等の組織を特異的に標識あるいは染色することが可能な物質およびかかる組織に特異的に分布するかまたは分布させることが可能な物質を用いることができる。 Cause reflexion light of the specific wavelength region, and lesions, lesions, can be or distributed specifically distributed capable materials and such tissue be specifically labeled or stained tissue such as diseased it is possible to use such material. 【0015】<分光的装置>本発明では、目的波長すなわち前述した照射光波長および反照光の特有波長領域の分別が可能な分光的装置を適宜選択して用いることができる。 [0015] In <spectroscopic device> The present invention can be used spectroscopic apparatus capable fractionation of specific wavelength region of the target wavelength i.e. the wavelength of the irradiated light and reflexion light described above appropriately selected and. すなわち、前記目的に応じ。 That is, depending on the purpose. 例えば、光学フィルター、分光器、干渉器等を用いることができる。 For example, it is possible to use an optical filter, spectrometer, an interferometer or the like. <光センサー>既存または市販のセンサー、例えば、フォトダイオード、光電子増幅管、撮像管、MOSセンサー、CCD等を加工あるいは修飾して用いることができる。 <Photosensor> existing or commercially available sensors can be used, for example, a photodiode, photomultiplier tube, camera tube, MOS sensor, and processing or modifying the CCD or the like. 【0016】<プローブと光伝達>図2は、本発明における病変等の対象部位を自動的に検知かつ治療または採取する方法および装置にて使用される光伝達手段あるいは対象部位の破壊または採取のためのエネルギー伝達手段を構成するプローブの実施の形態を示すもので、病変等の対象部位への光照射とその反照光の受光を主として行い、図2(a)のものでは、微細化を可能にする光ファイバーによって光伝達手段4を構成した例である。 [0016] <probes and optical transmission> FIG. 2, the target site of the lesion or the like in the present invention automatically detect and treat or optical transmission means used by the method and apparatus for collecting or of sites destroyed or taken It shows an embodiment of a probe constituting the energy transfer means for performs receiving light irradiation and the reflexion light to the target site of the lesion or the like mainly intended in FIG. 2 (a), enables miniaturization an example in which the optical transmission means 4 by an optical fiber to. その微細化は、種々の治療機器等への組込みを可能とするので、新規な治療機器等の装置を創作かつ提供することができる。 Its miniaturization, since it allows the incorporation into a variety of therapeutic devices, etc., can be created and providing an apparatus such as a new treatment apparatus. 例えば、前記プローブに超音波破壊装置やレーザーメスを組み込み、定量計測値に基づきその出力をコントロールすることにより、自動的に病巣等の対象部位を破壊するように構成することもできるし、プローブにレーザー照射装置を組み込んで、病巣を選択的かつ光力学的に治療するように構成することもできる。 For example, the probe incorporates a ultrasonic disrupter or laser scalpel, by controlling the output based on quantitative measurements, it can either be configured to automatically destroy the target site of the lesion or the like, the probe incorporating a laser irradiation apparatus, lesions and may selectively and be configured to photodynamic treated. また、 Also,
プローブを血管等の手術用カテーテルに組み込んで、動脈硬化巣における粥腫を選択的に光力学治療や破壊治療するように構成することもできる。 Incorporate probes to surgical catheters such as blood vessels, it may also be configured to selectively photodynamic therapy or destruction treating atheroma in arteriosclerosis lesions. なお、被照射体への光の照射は、1ないし複数本の光ファイバー、図2 Incidentally, the irradiation of light to the irradiation object, one or a plurality of optical fibers, Fig. 2
(b)に示すような、レンズ光学系、回折格子光学系を介するか、若しくは図2(c)に示すような、発光素子や光照射素子からの直接照射により行うことができる。 (B) a as shown, a lens optical system, or through a diffraction grating optical system, or as shown in FIG. 2 (c), it can be carried out by direct irradiation from the light emitting element and the light irradiation device.
また、光照射に伴う反照光は、蛍光やラマン光の場合には、1ないし複数本の光ファイバー、レンズ光学系、回折格子光学系を介するか、若しくは発光素子への直接入射により分光的装置と光センサーに導く。 Further, reflexion light due to light irradiation, in the case of fluorescence or Raman light, one or a plurality of optical fibers, a lens optical system, a spectral device by direct incidence of or through a diffraction grating optical system, or to the light emitting element leading to the light sensor. また、有益部位を検知して効率的に採取するようにも構成することができる。 Further, it is also be configured to efficiently collect detects beneficial site. 【0017】<分光的処理と計測>対象部位内の色素濃度を、反照光(通常の反射光、発光、蛍光、ラマン散乱光、ドップラー光または吸光)の光度あるいは強度から計測する。 [0017] The dye concentration of <spectral processing and measurement> in the target site, the anti-illuminated measuring (normally reflected light, luminescence, fluorescence, Raman scattered light, the Doppler beam or absorption) from intensity or strength. ただし、吸光を採用の場合は、吸光度から計測する。 However, in the case of adoption of the absorbance, measured from the absorbance. <光の波長とその強度の定義>被照射体の色素に由来の反照光の最強度値を「Iλ0」、その波長を「λ0n "Iλ0" the strongest value of reflexion light from the dye <the wavelength of the light of its definition intensity> irradiation object, the wavelength "λ0n
m」とそれぞれ表記する。 Each referred to as m ". また、前記波長λ0以外の光源に由来の反照光の最強度値を「Iλi」、その波長を「λinm」とそれぞれ表記する。 Further, "Iλi" the strongest value of reflexion light from the light source other than the wavelength .lambda.0, denoted respectively the wavelength and "λinm". なお、バックグランドの光の強度を「Ib」と表記し、これには光センサーとそれに付随するノイズを含む。 Incidentally, the intensity of the background light is referred to as "Ib", this includes a noise and its associated light sensor. 【0018】<特定領域波長の光強度の測定>光源の照射光および被照射体の反照光の波長について、各波長の光の最強度を直接測定する。 [0018] The reflexion wavelength of the irradiation light and the irradiated body of the light source <Measurement of light intensity of a specific wavelength region>, measures the strongest of light of each wavelength directly. 若しくは色素と光源における既知のスペクトル特性と、計測したスペクトル特性との間の相関係数に基づく評価の下で光強度を決定する。 Or a known spectral characteristic in the dye and the light source, determining a light intensity under evaluation based on the correlation coefficient between the measured spectral characteristics. <反照光の強度に基づく被照射体の色素濃度(D)の計測>本発明によれば、次の(1)(2)および(3)式により被照射体の色素濃度Dを光強度として算出し、これより相対光強度を計測・算出する。 According to the present invention <Measurement of dye density of the irradiated object based on the intensity of the anti-illuminated (D)>, the following (1) (2) and (3) as a light intensity of the dye concentration D of the irradiated object by formula calculated, measured and calculated a more relative light intensity this. ただし、これらの計測値における誤差を最小にし精度を高めるには、バックグランドの光の強度(励起光および反射光の波長域以外で検出可能な波長域の光強度または励起光非照射時の反射光波長域の光強度)「Ib」を考慮した式(3)による相対光強度の計測が望ましい。 However, to increase the accuracy and the errors in these measurements to minimize reflection at detectable wavelength region of the light intensity or the excitation light non-irradiated outside the wavelength range of the intensity of the background light (excitation light and the reflected light measurement of the relative light intensity by the light intensity) considering "Ib" equation (3) of the light wavelength region is desirable. 実測光強度 D=Iλ0 ・・・・・(1) 相対光速度 D=Iλ0/Iλi ・・・・・(2) 相対光速度 D=(Iλ0−Ib)/(Iλi−Ib)・・(3) 【0019】<治療装置の制御>前述した被照射体の色素濃度(D)の計測値は電気信号あるいは磁気信号として得られるので、これらは後述の治療または採取装置を作動させる種々のエネルギー源に変換され、その大きさに応じて制御手段がデジタル制御あるいはアナログ制御により出力を可変し、その制御下で作動して、メスや病変破壊装置等を駆動し、病変等の対象部位を明確に区別しつつこれを切除ないし治療または採取することができる。 Found light intensity D = Iλ0 ····· (1) relative light velocity D = Iλ0 / Iλi ····· (2) relative optical velocity D = (Iλ0-Ib) / (Iλi-Ib) ·· (3 ) [0019] since the measurement of the dye concentration of the object to be irradiated as described above <control of the treatment device> (D) is obtained as an electrical signal or a magnetic signal, various energy sources these operating the treatment or sampling apparatus described later It is converted to, varying the output control unit by digital control or analog control in accordance with the size, operating under its control, drives the female or lesion destruction device, clearly the target site of the lesion, etc. it can be cut to treat or collecting the distinguished while. なお、本発明では、治療作動下で定量計測される2 In the present invention, it is quantified measured under treatment operation 2
つの波長域の相対光強度が治療作動を開始する直前の前記光強度計測値の閾値、例えば、連続計測された光強度のゼロ変位点から1/10000の範囲内で選定された光強度の範囲内で、該治療または採取作動を継続するように前記制御手段がデジタル制御またはアナログ制御される。 One of the threshold of the light intensity measured value immediately before the relative light intensity in the wavelength range to start treatment operation, for example, the range of the selected light intensity in the range of 1/10000 zero displacement point of the continuous measurement light intensity an inner, said control means is digitally controlled or analog control to continue the treatment or harvesting operation. <治療装置>病変組織や病巣の治療装置としては、既存のもの、例えば、レーザー照射装置、レーザーメス、超音波破壊装置、電気メス、電動メス、電磁波照射装置、 The <therapy apparatus> diseased tissue or lesion treatment device, the existing ones, for example, laser irradiation device, laser scalpel, an ultrasonic disrupter, electric knife, electric knife, electromagnetic wave irradiation device,
衝撃波発生装置等を用いることができる。 It can be used a shock wave generator and the like. 【0020】<実施例> <病変部位の標識と鑑別>脳腫瘍巣に選択的に取り込まれ、これを特異的に標識するフルオレサイドNa等の蛍光標識薬を予め患者の静脈内に注射し、脳腫瘍摘出の手術中に表面を露出させた腫瘍(図3(a))に対して励起光を照射した。 [0020] <Example> selectively incorporated into <labeled differentiate lesion> brain tumor foci, which specifically labeled to fluorenylmethoxycarbonyl side Na fluorescent labeling agent such as pre-injected into the patient's vein, It was irradiated with excitation light to the tumor exposing the surface during surgery of brain tumors excised (Figure 3 (a)). その結果、腫瘍部位のみが蛍光を呈し、これを特異的に視認鑑別することができた(図3 As a result, only the tumor site exhibits fluorescence, it could be specifically visible distinguish it (Figure 3
(b)). (B)). <標識病変部位の光強度の測定>前記の腫瘍部位に対し、青色光ダイオードを局所的に照射し、その照射部位から反照光を光ファイバーで導き、そのスペクトル分布を分光計で解析した。 Relative to the tumor sites <Measurement of light intensity of the label lesion>, locally irradiated with the blue light diode, guided from the irradiation site reflexion light in the optical fiber, and analyzed their spectral distribution spectrometer. その結果、腫瘍部位周辺の正常な脳組織では青色光ダイオードに特異的な励起光波長(λ As a result, specific excitation light wavelength in the blue light diode in normal brain tissue surrounding the tumor site (lambda
i=515nm)のみの単峰性の反照光が検出され(図4(a))、これに対して腫瘍部位では前記励起光波長(λi=515nm)およびフルオレサイドNaに特異的な蛍光波長(λ0=585nm)からなる2峰性の反照光が検出された(図4(b))。 i = 515 nm) only unimodal reflexion light is detected in (FIG. 4 (a)), specific fluorescent wavelength to the excitation light wavelength (.lambda.i = 515 nm) and fluorenylmethoxycarbonyl side Na in tumor sites for which (λ0 = 585nm) 2 bimodal reflexion light comprising were detected (Figure 4 (b)). 【0021】<相対光強度の算出による標識病変組織の確定>前述した相対光強度に係る式(3)に基づき、次の通り、相対光強度の定量計測値=0.477を得た。 [0021] Based on the formula (3) according to the relative light intensity of the aforementioned <Determination of labeling diseased tissue by calculating the relative light intensity>, as follows, to obtain a quantitative measurement value = 0.477 for the relative light intensity. D=(Iλ0−Ib)/(Iλi−Ib)・・(3) =135/283 =0.477 なお、上記の定量計測値は、正常組織のもの(D=0) D = (Iλ0-Ib) / (Iλi-Ib) ·· (3) = 135/283 = 0.477 Note that quantitative measurement of the above, that of normal tissues (D = 0)
と大きく異なるため、腫瘍部位を特異的かつ定量的に確定することができた。 Greatly differ and could be specifically and quantitatively determine the tumor site. また、励起光の波長を最適化すれば、相対光強度の精度が2桁以上あがることも確認された。 Further, by optimizing the wavelength of the excitation light, the accuracy of the relative light intensity was also confirmed that raised digits. 【0022】このように本発明によれば、蛍光および励起光を分光器や光学フィルターにより励起光および蛍光特有の波長スペクトルに分解し、それぞれの光強度を光センサーにて定量化することによって、高精度かつ信頼性の高い診断が可能となった。 According to the present invention, by fluorescence and excitation light to decompose the excitation light and the fluorescence characteristic wavelength spectrum by a spectroscope or an optical filter, to quantify the respective light intensity at the light sensor, accurate and reliable diagnosis becomes possible. 蛍光強度単独あるいは励起光と蛍光の比をとるアルゴリズムにより、蛍光標識物質の組織内での相対濃度を数値化し、その数値化された相対濃度を電圧出力に変換して出力することで、治療または採取用機器を制御することができる。 The fluorescence intensity alone or algorithm taking the ratio of the excitation light and fluorescence, the relative concentration in the tissue of the fluorescent labels quantified, by outputting and converts the digitized relative concentration to the voltage output, treating or it is possible to control the harvesting equipment. その結果、標識薬の分布する部位ではその濃度に応じて当該部位を破壊もしくは採取できるのに対し、対象部位以外の部位では全く破壊や採取が行われない。 As a result, while the site of the distribution of the labeled agent capable of destroying or collecting the site in accordance with its concentration, is not performed at all destructive and harvesting at a site other than the target site. この特性故に、対象部位選択性が高く安全性や効率の高い治療もしくは採取機器が実現できることとなった。 Therefore this property, high therapeutic or collection device of high safety and efficiency target site selectivity has become possible to be realized. 【0023】以上、本発明の実施の形態について説明してきたが、本発明の趣旨の範囲内で、光源の種類および照射形態、光伝達手段の形状、種類、プローブの形状、 [0023] Having thus described the embodiments of the present invention, within the spirit of the present invention, the type and the irradiation form of the light source, the shape of the light transmitting means, the type, the shape of the probe,
形式、光伝達手段とプローブの関連構成、光センサー等の光強度測定手段の種類、光学フィルター等の分光的装置の種類、分光的計測手段の種類、相対的光強度の定量的計測値の電圧または電流への変換形態、電気信号または磁気信号として出力したデジタル制御形態またはアナログ制御形態、対象部位の自動的な判定、検知かつ治療また採取形態等については適宜選定できる。 Format, related structure of the light transmitting means and the probe, the type of the light intensity measuring means such as an optical sensor, the type of spectral device such as an optical filter, the type of spectroscopic measurement means, voltage quantitative measurement of the relative intensity or transformed form to the current, digital control mode or analog control mode outputted as an electrical or magnetic signals, automatic determination of sites, for detection and treatment also taken the form etc. can be appropriately selected. 【0024】 【発明の効果】以上、詳細に説明したように、本発明では、光源から病変等の対象部位に光を照射し、被照射病変等の対象部位が発する反照光のうち少なくとも光源に特異的な波長域と被照射病変等の対象部位に特異的な波長域であってこれら両者の各最高光強度を含む2波長域を選定して、これら両者の相対的光強度を定量計測するとともに、該定量計測値を電気信号または磁気信号として出力してデジタル制御またはアナログ制御することにより、光強度を定量化して病変等の対象部位を定量的に判定しつつ検知かつ治療または採取することによって、 [0024] [Effect of the Invention] As described above in detail, in the present invention, light is irradiated to the target site of the lesion or the like from the light source, at least a light source of reflexion light target site such as the irradiated lesion emitted a specific wavelength region to the subject site such as a specific wavelength region and the irradiated lesion by selecting the two wavelengths range including the maximum light intensity of these two, quantified measure the relative light intensity of these two together, by outputting the constant-amount measurement value as an electrical or magnetic signals to digital control or analog control, to detect and treat or taken while the light intensity quantified quantitatively determine the target site such as a lesion by,
手術中に変形し易い、腫瘍、動脈硬化巣、炎症性病巣等の病変あるいは病巣部位を高い精度と確度で、なかんずく、安全かつ確実に検知、診断しつつ、対象部位について特異的かつ選択的な治療や採取を行い、迅速で適格な手術・治療や施薬または採取を自動的に行うことが可能となる。 Easily deformed during surgery, the tumor, atherosclerotic plaques, a lesion or disease site, such as inflammatory lesions with high precision and accuracy, inter alia, safely and reliably detected, while diagnosis, specific and selective for the target site performs a treatment or collected, it is possible to automatically carry out a rapid and qualified surgery and treatment and Seyaku or collected. さらに、従来の深さ方向のみの光の分布を判定するものとは異なり、元来より有益な特質を有する部位や、遺伝子改変等により有益な特質を獲得した部位を高い精度で定量的に判定し、効率良く採取することが可能となる。 Furthermore, unlike to determine the distribution of light only conventional depth, quantitatively determining or sites have beneficial qualities than originally the site has acquired the beneficial qualities by genetic modification or the like with high precision and, it is possible to efficiently collected. 【0025】また、病変組織に光を照射する光源と、被照射病変組織が発する反照光を少なくとも2つの波長の光に分光して、各波長の光強度を測定する光強度測定手段と、これら複数波長の光強度のうち光源に特異的な波長域と被照射病変等の対象部位に特異的な波長域であってこれら両者の各最高光強度を含む2波長域を選定して、これら両者の相対的光強度を定量計測する分光的計測手段と、前記相対的光強度の定量的計測値を電圧または電流に変換して電気信号または磁気信号として出力してデジタル制御またはアナログ制御することにより病変等の対象部位を定量的に判定しつつ検知かつ治療する制御手段とを備えることにより、各手段を既製・市販の装置の修飾や改変により低コストで得られるものでありながら、手術あるいは Further, a light source for irradiating light to the diseased tissue, and split into light of at least two wavelengths reflexion light the irradiated lesion tissue emit a light intensity measuring means for measuring the light intensity of each wavelength, these and selecting a 2 wavelength region including the respective maximum light intensity of both a specific wavelength region to the subject site such as a specific wavelength region and the irradiated lesion source of the light intensity of a plurality of wavelengths, both of them a spectroscopic measurement means for quantifying measures the relative light intensity of, by digital control or analog control output as an electrical signal or a magnetic signal into a quantitative measurement of the relative light intensity in the voltage or current by a control means for detecting and treating a target site of the lesion or the like quantitatively determined while, despite those obtained at low cost the means by modification or alteration of ready-commercially available equipment, surgical or 薬中に変形し易い病変部位を、光強度を定量化することによって、高い精度と確度によって確実に検知しつつ他の部位と鑑別して、適格かつ安全に手術・治療や施薬および採取を自動的に行うことが可能となる。 Automatically liable lesion deformed during drug, by quantifying the light intensity, and distinguished from other portions while reliably detected by the high precision and accuracy, the eligibility and safely surgery and treatment and Seyaku and collected it is possible to perform the specific. 【0026】さらに、前記光源が、レーザー光、発光ダイオード、化学ルミネッセンス、白色ランプ、水銀ランプ、キセノンランプおよびハロゲンランプ群から選定される少なくとも1種の発光手段から選ぶことにより、既製あるいは市販の光を光源として採用して、照射光の波長を適正な範囲のものとすることができる。 Furthermore, the light source, laser light, light emitting diodes, chemiluminescence, white lamp, a mercury lamp, by selecting from at least one light emitting means is selected from xenon lamps and halogen lamps, ready-made or commercially available photo the adopted as the light source, it can be of an appropriate range of wavelength of the irradiated light. さらにまた、前記分光かつ選定される2つの波長域の反照光が、 Furthermore, reflexion light of the two wavelength regions that are the spectral and selection is,
光源に特異的な特定波長領域の1種の反射光と、該反射光とは波長が異なる光であって病変等の対象部位に分布するかまたは分布させた色素に起因して特異的に生じる特有波長領域の反射光、吸光、発光、蛍光、ラマン散乱光群から選定される光である場合は、相対光強度の定量計測値が対象部位とそれ以外の部位との間で大きく異なる2峰性の反照光が検出されて、病変等の対象部位を特異的かつ定量的に確定することができる。 One and the reflected light in a specific wavelength region specific to the light source, resulting specifically due to the wavelength is allowed to or distribution of a different light distributed to the target site such as a lesion dyes and reflected light reflected light characteristic wavelength region, absorption, emission, fluorescence, when a light is selected from the Raman scattering light group, significantly different bimodal quantitative measurement of the relative light intensity between the portion other than that the target site is detected sexual reflexion light, it is possible to specifically and quantitatively determine the target site of the lesion or the like. 【0027】また、治療作動下で定量計測される2つの波長域の相対光強度が治療作動を開始する直前の前記光強度計測値の閾値の範囲内では、該治療または採取作動を継続するように前記制御手段がデジタル制御またはアナログ制御される場合は、対象部位を高い精度と確度で、確実に検知、診断しつつ、安全かつ迅速で的確に手術・治療や施薬または採取を自動的に継続することができる。 Further, within the range of the threshold value of the light intensity measured value immediately before the relative light intensity of the two wavelength regions to be quantified measured under treatment operation starts treatment operation, to continue the treatment or harvesting operation wherein when the control means is digitally controlled or analog control, a target site with high precision and accuracy, reliably detect, diagnose while, automatically continued safe and rapid accurately surgery and treatment and Seyaku or taken can do. さらに、前記病変等の対象部位への光照射とその病変等の対象部位からの反照光の受光を光ファイバーからなるプローブにて行うように構成した場合は、病巣プローブがきわめて微細な光ファイバー化することができ、種々の機器に組み込んで、内視鏡下治療、血管内治療等の低侵襲手術や遺伝子関連の研究等の広い分野にわたり適用が可能となる。 Furthermore, case where the reception of reflexion light from the target site of the lesion, such as a light irradiation to the target site such as the lesion to perform at a probe consisting of optical fiber, the focus probe is very fine fibers of can be, incorporated into various devices, endoscopic treatment, it is possible to apply over the minimally invasive surgery and genetic association studies broad fields such of endovascular like. しかも、構造的には可動部分がなく堅牢で、生産コスト面でも低廉である。 Moreover, the structural robust no moving parts, is inexpensive in production cost. 【0028】さらにまた、前記プローブに超音波破壊装置、電気メス、吸引装置、レーザーメス、レーザー照射装置、治療光照射装置あるいは生検装置を組み込んだ場合は、プローブが病巣等の対象部位の検知機能と治療機能とを兼用して構造が簡素化され、定量計測値に基づきその出力をコントロールして、自動的に病巣組織を破壊するように構成することもできるし、治療光照射装置により、病巣を選択的かつ光力学的に治療することができる。 [0028] Furthermore, ultrasonic disruption apparatus in the probe, electric knife, suction device, laser scalpel, a laser irradiation apparatus, when incorporating the therapeutic light irradiation apparatus or the biopsy device, the detection probes of the target site of the lesion, etc. features and simplified combined to structure a therapeutic function, to control the output based on quantitative measurements, to automatically may be configured to destroy the lesion tissue, the therapeutic light irradiation device, lesion can be selectively and photodynamic treated to be a. そして、プローブに生検装置もくは吸引装置等の採取装置を組み込んだ場合は、遺伝子改変等により有益な特質を獲得した部位を高い精度で判定し、採取することができる。 The biopsy device heather the probe when incorporating the collection device such as a suction device, a site that has acquired the beneficial qualities by genetic modification or the like is determined with high accuracy, can be collected. また、前記プローブを手術用カテーテルに組み込んだ場合は、動脈硬化巣における粥腫を選択的に光力学治療や破壊治療を行うことができる。 In addition, when incorporating the probe to the surgical catheter can be carried out selectively photodynamic therapy or destruction treating atheroma in arteriosclerosis lesions. 【0029】さらに、前記病変等の対象部位への光照射とその病変等の対象部位からの反照光の受光をレンズまたは干渉光学系の光伝達手段にて行うように構成した場合は、既存の廉価な光伝達手段が使用できて低コストである。 Furthermore, when configured to perform receiving a reflexion light from the target site of the lesion, such as a light irradiation to the target site such as the lesion at the lens or interference optical system of the optical transmission means, the existing inexpensive optical transmission means is a low cost can be used. このように本発明によれば、病変等の対象部位の局在の精度および確度を向上させて高い検知性能を備える対象部位を自動的に検知かつ治療または採取する方法およびその装置が提供できる。 According to the present invention, a lesion or the like automatically detecting and methods for treating or collecting and apparatus target site with a high detection performance with improved precision and accuracy of the localization of sites of can be provided.

【図面の簡単な説明】 【図1】本発明の病変等の対象部位を自動的に検知かつ治療または採取する方法およびその装置のシステム化したブロック構成図である。 Is a block diagram that system of method and apparatus for automatically detecting and treating or collecting the target site of the lesion, etc. BRIEF DESCRIPTION OF THE DRAWINGS [Figure 1] present invention. 【図2】本発明におけるプローブの各例で、図2(a) In each of the probe in the present invention, FIG, FIGS. 2 (a)
はプローブとして光ファイバーを使用した例、図2 Example of using an optical fiber as a probe, FIG. 2
(b)はプローブとしてレンズまたは干渉光学系を使用した例、図2(c)は直接照射の例を示す図である。 (B) the example of using a lens or interference optical system as a probe, FIG. 2 (c) is a diagram showing an example of a direct illumination. 【図3】図3(a)は青色発光ダイオードの照射下での無標識正常脳組織写真図、図3(b)は同、フルオレサイドNaで標識した脳腫瘍部位の特異的蛍光による確定写真図である。 [3] FIG. 3 (a) is unlabelled normal brain tissue photographic view under irradiation of blue light-emitting diode, FIG. 3 (b) the deterministic by specific fluorescence of brain tumor site labeled with fluorenylmethoxycarbonyl side Na photo it is a diagram. 【図4】図4(a)は青色発光ダイオードの照射下での正常脳組織反照光の分光計によるスペクトル分布の解析図、図4(b)は同、フルオレサイドNaで標識した脳腫瘍部位の反照光の分光計によるスペクトル分布の解析図である。 [4] FIG. 4 (a) analysis diagram of spectral distribution by the blue light emitting diode spectrometer normal brain tissue reflexion light under irradiation, FIG. 4 (b) the, brain tumor site labeled with fluorenylmethyl side Na is an analysis diagram of spectral distribution by the spectrometer of reflexion light. 【符号の説明】 1 光源2 正常組織3 病変等の対象部位4 光伝達手段(光ファイバー等、プローブ兼用) 5 分光的装置(光学フィルター等) 6 光強度測定手段(光センサーおよび増幅装置等) 7 分光的計測手段8 制御手段9 対象部位破壊および採取のためのエネルギー伝達手段10 病巣治療および採取装置 [Reference Numerals] 1 light source 2 normal tissues 3 target site 4 light transmitting means lesions such as (such as an optical fiber, the probe combined) 5 spectroscopic apparatus (optical filter or the like) 6 light intensity measuring means (optical sensor and amplifier, etc.) 7 energy transfer means 10 lesions treatment and collection device for spectroscopic measurement means 8 control unit 9 target region destruction and collected

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl. 7識別記号 FI テーマコート゛(参考) G01N 21/33 G01N 21/33 21/35 21/35 Z 21/63 21/63 Z 21/64 21/64 F Z 21/65 21/65 Fターム(参考) 2G043 AA03 DA02 EA01 EA03 EA10 HA05 JA01 JA02 KA01 KA02 KA03 KA05 KA09 LA01 LA03 NA01 2G059 AA06 BB12 CC16 EE02 EE06 EE07 EE09 EE12 GG01 GG02 GG10 HH01 HH02 HH03 HH06 JJ01 JJ02 JJ05 JJ11 JJ17 KK01 KK04 MM05 MM09 NN01 4C061 BB08 SS21 WW17 ────────────────────────────────────────────────── ─── of the front page continued (51) Int.Cl. 7 identification mark FI theme Court Bu (reference) G01N 21/33 G01N 21/33 21/35 21/35 Z 21/63 21/63 Z 21/64 21 / 64 F Z 21/65 21/65 F-term (reference) 2G043 AA03 DA02 EA01 EA03 EA10 HA05 JA01 JA02 KA01 KA02 KA03 KA05 KA09 LA01 LA03 NA01 2G059 AA06 BB12 CC16 EE02 EE06 EE07 EE09 EE12 GG01 GG02 GG10 HH01 HH02 HH03 HH06 JJ01 JJ02 JJ05 JJ11 JJ17 KK01 KK04 MM05 MM09 NN01 4C061 BB08 SS21 WW17

Claims (1)

  1. 【特許請求の範囲】 【請求項1】 光源から病変等の対象部位に光を照射し、被照射病変等の対象部位が発する反照光のうち少なくとも光源に特異的な波長域と被照射病変等の対象部位に特異的な波長域であってこれら両者の各最高光強度を含む2波長域を選定して、これら両者の相対的光強度を定量計測するとともに、該定量計測値を電気信号または磁気信号として出力してデジタル制御またはアナログ制御することにより、病変等の対象部位を定量的に判定しつつ検知かつ治療または採取することを特徴とする病変等の対象部位を自動的に検知かつ治療または採取する方法。 Light is irradiated to the target site such as a lesion from Patent Claims 1 light source, the wavelength range specific to at least a light source of the target site emitted reflexion light and the irradiated lesion such as the irradiated lesion of a specific wavelength region to the subject site and select a two-wavelength region including the maximum light intensity of these two, as well as quantitative measurement of the relative intensity of these two electrical signals or the constant amount measurement value by digitally controlled or analog control output as a magnetic signal, quantitatively automatically detect and treat the target site of the lesion or the like, characterized by the determined while detecting and treating or collecting the target site of the lesion, etc. or method of collecting. 【請求項2】 病変等の対象部位に光を照射する光源と、被照射病変組織が発する反照光を少なくとも2つの波長の光に分光して、各波長の光強度を測定する光強度測定手段と、これら複数波長の光強度のうち光源に特異的な波長域と被照射病変等の対象部位に特異的な波長域であってこれら両者の各最高光強度を含む2波長域を選定して、これら両者の相対的光強度を定量計測する分光的計測手段と、前記相対的光強度の定量的計測値を電圧または電流に変換して電気信号または磁気信号として出力してデジタル制御またはアナログ制御することにより病変等の対象部位を定量的に判定しつつ検知かつ治療または採取する制御手段とを備えることを特徴とする病変等の対象部位を自動的に検知かつ治療または採取する装置。 2. A light source for irradiating light to the target site such as a lesion, and separated into light of at least two wavelengths reflexion light the irradiated lesion tissue emits, the light intensity measuring means for measuring the light intensity of each wavelength If, by selecting two wavelengths range including the maximum light intensity of both a specific wavelength region to the subject site such as a specific wavelength region and the irradiated lesion source of the light intensity of the plurality wavelengths , a spectroscopic measurement means for quantifying measures the relative intensity of these two, the output to digital control or analog control as an electrical or magnetic signals by converting a quantitative measurement of the relative light intensity in the voltage or current quantitatively determined while detecting and treating or automatically detecting the target portion of the lesion or the like, characterized by a control unit for collecting and treating or collecting an apparatus for target site of the lesion or the like by. 【請求項3】 前記光源が、レーザー光、発光ダイオード、化学ルミネッセンス、白色ランプ、水銀ランプ、キセノンランプおよびハロゲンランプ群から選定される少なくとも1種の発光手段であることを特徴とする請求項2に記載の病変等の対象部位を自動的に検知かつ治療または採取する装置。 Wherein the light source is a laser light, light emitting diodes, chemiluminescence, white lamp, according to claim 2, wherein the mercury lamp, is at least one light emitting means which is selected from xenon lamps and halogen lamps automatically detecting and treating or collecting an apparatus for target site of a lesion or the like according to. 【請求項4】 前記分光かつ選定される2つの波長域の反照光が、光源に特異的な特定波長領域の1種の反射光と、該反射光とは波長が異なる光であって病変等の対象部位に分布するかまたは分布させた色素に起因して特異的に生じる特有波長領域の反射光、吸光、発光、蛍光、 4. A reflexion light of the two wavelength regions that are the spectral and selection is, the reflected light of one specific a specific wavelength region in the light source, a light having a wavelength different from the reflected light lesions such reflected light characteristic wavelength region due to or distributed allowed dye distributed target site specifically occurs in absorbance, luminescence, fluorescence,
    ラマン散乱光群から選定される光であることを特徴とする請求項2または3に記載の病変等の対象部位を自動的に検知かつ治療または採取する装置。 Automatically detecting and treating or collecting an apparatus for target site of a lesion or the like according to claim 2 or 3, characterized in that a light is selected from the Raman scattering light group. 【請求項5】 治療または採取作動下で定量計測される2つの波長域の相対光強度が治療または採取作動を開始する直前の前記光強度計測値の閾値を超えない範囲では、該治療または採取作動を継続するように前記制御手段がデジタル制御またはアナログ制御されることを特徴とする請求項2ないし4のいずれかに記載の病変等の対象部位を自動的に検知かつ治療または採取する装置。 5. To the extent that the relative light intensities of the two wavelength regions to be quantified measured under treatment or collection operation does not exceed the threshold value of the light intensity measured value immediately before the start of the treatment or harvesting operation, the treatment or taken It said control means so as to continue the operation has digital control or automatically detect and treat or collecting an apparatus for target site of a lesion or the like according to any one of claims 2 to 4, characterized in that it is analog control. 【請求項6】 前記病変等の対象部位への光照射とその病変等の対象部位からの反照光の受光を光ファイバーからなるプローブにて行うように構成したことを特徴とする請求項2ないし5に記載の病変等の対象部位を自動的に検知かつ治療または採取する装置。 6. the preceding claims 2, characterized by being configured to perform receiving a reflexion light from the target site of the lesion, such as a light irradiation to the target site such as the lesion at a probe consisting of an optical fiber 5 automatically detecting and treating or collecting an apparatus for target site of a lesion or the like according to. 【請求項7】 前記プローブに超音波破壊装置、電気メス、吸引装置、レーザーメス、レーザー照射装置、治療光照射装置あるいは生検装置を組み込んだことを特徴とする請求項2ないし6のいずれかに記載の病変等の対象部位を自動的に検知かつ治療または採取する装置。 7. The ultrasonic disrupter to the probe, electric knife, suction device, laser scalpel, a laser irradiation apparatus, any one of claims 2 to 6, characterized in that incorporating the therapeutic light irradiation apparatus or the biopsy device automatically detecting and treating or collecting an apparatus for target site of a lesion or the like according to. 【請求項8】 前記プローブを手術用カテーテルに組み込んだことを特徴とする請求項2ないし6のいずれかに記載の病変等の対象部位を自動的に検知かつ治療または採取する装置。 8. automatically detect and treat or collecting an apparatus for target site of a lesion or the like according to any one of claims 2 to 6, characterized in that incorporated in the surgical catheter the probe. 【請求項9】 前記病変等の対象部位への光照射とその病変等の対象部位からの反照光の受光をレンズまたは干渉光学系の光伝達手段にて行うように構成したことを特徴とする請求項2ないし5に記載の病変等の対象部位を自動的に検知かつ治療する装置。 Wherein the 9. and configured to perform at the light transmission means of the lens or interference optics receiving the reflexion light from the target site of the lesion, such as a light irradiation to the target site such as the lesion automatically detecting and treating apparatus target site of a lesion or the like according to claims 2 to 5.
JP2001304992A 2001-10-01 2001-10-01 Method and device for automatically detecting, treating, and collecting objective site of lesion or the like Pending JP2003102672A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001304992A JP2003102672A (en) 2001-10-01 2001-10-01 Method and device for automatically detecting, treating, and collecting objective site of lesion or the like

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001304992A JP2003102672A (en) 2001-10-01 2001-10-01 Method and device for automatically detecting, treating, and collecting objective site of lesion or the like
PCT/JP2002/009906 WO2003030726A1 (en) 2001-10-01 2002-09-26 Method for automatically detecting, and treating or sampling object portion such as affected portion and its apparatus

Publications (1)

Publication Number Publication Date
JP2003102672A true JP2003102672A (en) 2003-04-08

Family

ID=19124846

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001304992A Pending JP2003102672A (en) 2001-10-01 2001-10-01 Method and device for automatically detecting, treating, and collecting objective site of lesion or the like

Country Status (2)

Country Link
JP (1) JP2003102672A (en)
WO (1) WO2003030726A1 (en)

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008522697A (en) * 2004-12-09 2008-07-03 ザ サイエンス アンド テクノロジー ファシリティーズ カウンシルThe Science And Technology Facilities Council Raman spectroscopy analysis of subsurface tissue and fluid
JP2009525838A (en) * 2006-02-08 2009-07-16 ザ ジェネラル ホスピタル コーポレイション The method for obtaining information relating to the anatomical sample using optical microscopy, devices and systems
JP5315237B2 (en) * 2007-05-22 2013-10-16 オリンパス株式会社 The capsule medical apparatus and a capsule medical system
US8896838B2 (en) 2010-03-05 2014-11-25 The General Hospital Corporation Systems, methods and computer-accessible medium which provide microscopic images of at least one anatomical structure at a particular resolution
US8922781B2 (en) 2004-11-29 2014-12-30 The General Hospital Corporation Arrangements, devices, endoscopes, catheters and methods for performing optical imaging by simultaneously illuminating and detecting multiple points on a sample
US8928889B2 (en) 2005-09-29 2015-01-06 The General Hospital Corporation Arrangements and methods for providing multimodality microscopic imaging of one or more biological structures
US8937724B2 (en) 2008-12-10 2015-01-20 The General Hospital Corporation Systems and methods for extending imaging depth range of optical coherence tomography through optical sub-sampling
US9060689B2 (en) 2005-06-01 2015-06-23 The General Hospital Corporation Apparatus, method and system for performing phase-resolved optical frequency domain imaging
US9069130B2 (en) 2010-05-03 2015-06-30 The General Hospital Corporation Apparatus, method and system for generating optical radiation from biological gain media
US9178330B2 (en) 2009-02-04 2015-11-03 The General Hospital Corporation Apparatus and method for utilization of a high-speed optical wavelength tuning source
US9173572B2 (en) 2008-05-07 2015-11-03 The General Hospital Corporation System, method and computer-accessible medium for tracking vessel motion during three-dimensional coronary artery microscopy
US9186067B2 (en) 2006-02-01 2015-11-17 The General Hospital Corporation Apparatus for applying a plurality of electro-magnetic radiations to a sample
US9226665B2 (en) 2003-01-24 2016-01-05 The General Hospital Corporation Speckle reduction in optical coherence tomography by path length encoded angular compounding
US9282931B2 (en) 2000-10-30 2016-03-15 The General Hospital Corporation Methods for tissue analysis
US9326682B2 (en) 2005-04-28 2016-05-03 The General Hospital Corporation Systems, processes and software arrangements for evaluating information associated with an anatomical structure by an optical coherence ranging technique
US9330092B2 (en) 2011-07-19 2016-05-03 The General Hospital Corporation Systems, methods, apparatus and computer-accessible-medium for providing polarization-mode dispersion compensation in optical coherence tomography
US9341783B2 (en) 2011-10-18 2016-05-17 The General Hospital Corporation Apparatus and methods for producing and/or providing recirculating optical delay(s)
US9364143B2 (en) 2006-05-10 2016-06-14 The General Hospital Corporation Process, arrangements and systems for providing frequency domain imaging of a sample
US9415550B2 (en) 2012-08-22 2016-08-16 The General Hospital Corporation System, method, and computer-accessible medium for fabrication miniature endoscope using soft lithography
US9441948B2 (en) 2005-08-09 2016-09-13 The General Hospital Corporation Apparatus, methods and storage medium for performing polarization-based quadrature demodulation in optical coherence tomography
US9510758B2 (en) 2010-10-27 2016-12-06 The General Hospital Corporation Apparatus, systems and methods for measuring blood pressure within at least one vessel
US9516997B2 (en) 2006-01-19 2016-12-13 The General Hospital Corporation Spectrally-encoded endoscopy techniques, apparatus and methods
US9557154B2 (en) 2010-05-25 2017-01-31 The General Hospital Corporation Systems, devices, methods, apparatus and computer-accessible media for providing optical imaging of structures and compositions
US9588046B2 (en) 2011-09-07 2017-03-07 Olympus Corporation Fluorescence observation apparatus
US9615748B2 (en) 2009-01-20 2017-04-11 The General Hospital Corporation Endoscopic biopsy apparatus, system and method
US9629528B2 (en) 2012-03-30 2017-04-25 The General Hospital Corporation Imaging system, method and distal attachment for multidirectional field of view endoscopy
US9646377B2 (en) 2006-01-19 2017-05-09 The General Hospital Corporation Methods and systems for optical imaging or epithelial luminal organs by beam scanning thereof
USRE46412E1 (en) 2006-02-24 2017-05-23 The General Hospital Corporation Methods and systems for performing angle-resolved Fourier-domain optical coherence tomography
US9664615B2 (en) 2004-07-02 2017-05-30 The General Hospital Corporation Imaging system and related techniques
US9733460B2 (en) 2014-01-08 2017-08-15 The General Hospital Corporation Method and apparatus for microscopic imaging
US9763623B2 (en) 2004-08-24 2017-09-19 The General Hospital Corporation Method and apparatus for imaging of vessel segments
US9784681B2 (en) 2013-05-13 2017-10-10 The General Hospital Corporation System and method for efficient detection of the phase and amplitude of a periodic modulation associated with self-interfering fluorescence
KR20170114974A (en) * 2016-04-04 2017-10-16 스페클립스 주식회사 System and method for diagnosis of pigmented lesion
US9795301B2 (en) 2010-05-25 2017-10-24 The General Hospital Corporation Apparatus, systems, methods and computer-accessible medium for spectral analysis of optical coherence tomography images
US9968245B2 (en) 2006-10-19 2018-05-15 The General Hospital Corporation Apparatus and method for obtaining and providing imaging information associated with at least one portion of a sample, and effecting such portion(s)
US9968261B2 (en) 2013-01-28 2018-05-15 The General Hospital Corporation Apparatus and method for providing diffuse spectroscopy co-registered with optical frequency domain imaging
US10058250B2 (en) 2013-07-26 2018-08-28 The General Hospital Corporation System, apparatus and method for utilizing optical dispersion for fourier-domain optical coherence tomography
US10117576B2 (en) 2013-07-19 2018-11-06 The General Hospital Corporation System, method and computer accessible medium for determining eye motion by imaging retina and providing feedback for acquisition of signals from the retina
US10228556B2 (en) 2014-04-04 2019-03-12 The General Hospital Corporation Apparatus and method for controlling propagation and/or transmission of electromagnetic radiation in flexible waveguide(s)
US10285568B2 (en) 2010-06-03 2019-05-14 The General Hospital Corporation Apparatus and method for devices for imaging structures in or at one or more luminal organs

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5579773A (en) * 1994-09-30 1996-12-03 Martin Marietta Energy Systems, Inc. Laser-induced differential normalized fluorescence method for cancer diagnosis
US6119031A (en) * 1996-11-21 2000-09-12 Boston Scientific Corporation Miniature spectrometer
JPH1176403A (en) * 1997-07-11 1999-03-23 Olympus Optical Co Ltd Surgical treatment instrument
JP2000014629A (en) * 1998-07-02 2000-01-18 Olympus Optical Co Ltd Endoscope spectroscopic apparatus
JP3762646B2 (en) * 2001-02-01 2006-04-05 オリンパス株式会社 Fluorescence observation apparatus

Cited By (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9282931B2 (en) 2000-10-30 2016-03-15 The General Hospital Corporation Methods for tissue analysis
US9226665B2 (en) 2003-01-24 2016-01-05 The General Hospital Corporation Speckle reduction in optical coherence tomography by path length encoded angular compounding
US9664615B2 (en) 2004-07-02 2017-05-30 The General Hospital Corporation Imaging system and related techniques
US9763623B2 (en) 2004-08-24 2017-09-19 The General Hospital Corporation Method and apparatus for imaging of vessel segments
US8922781B2 (en) 2004-11-29 2014-12-30 The General Hospital Corporation Arrangements, devices, endoscopes, catheters and methods for performing optical imaging by simultaneously illuminating and detecting multiple points on a sample
JP2008522697A (en) * 2004-12-09 2008-07-03 ザ サイエンス アンド テクノロジー ファシリティーズ カウンシルThe Science And Technology Facilities Council Raman spectroscopy analysis of subsurface tissue and fluid
US9326682B2 (en) 2005-04-28 2016-05-03 The General Hospital Corporation Systems, processes and software arrangements for evaluating information associated with an anatomical structure by an optical coherence ranging technique
US9060689B2 (en) 2005-06-01 2015-06-23 The General Hospital Corporation Apparatus, method and system for performing phase-resolved optical frequency domain imaging
US9441948B2 (en) 2005-08-09 2016-09-13 The General Hospital Corporation Apparatus, methods and storage medium for performing polarization-based quadrature demodulation in optical coherence tomography
US9304121B2 (en) 2005-09-29 2016-04-05 The General Hospital Corporation Method and apparatus for optical imaging via spectral encoding
US9513276B2 (en) 2005-09-29 2016-12-06 The General Hospital Corporation Method and apparatus for optical imaging via spectral encoding
US8928889B2 (en) 2005-09-29 2015-01-06 The General Hospital Corporation Arrangements and methods for providing multimodality microscopic imaging of one or more biological structures
US9646377B2 (en) 2006-01-19 2017-05-09 The General Hospital Corporation Methods and systems for optical imaging or epithelial luminal organs by beam scanning thereof
US9516997B2 (en) 2006-01-19 2016-12-13 The General Hospital Corporation Spectrally-encoded endoscopy techniques, apparatus and methods
US9186066B2 (en) 2006-02-01 2015-11-17 The General Hospital Corporation Apparatus for applying a plurality of electro-magnetic radiations to a sample
US9186067B2 (en) 2006-02-01 2015-11-17 The General Hospital Corporation Apparatus for applying a plurality of electro-magnetic radiations to a sample
JP2009525838A (en) * 2006-02-08 2009-07-16 ザ ジェネラル ホスピタル コーポレイション The method for obtaining information relating to the anatomical sample using optical microscopy, devices and systems
USRE46412E1 (en) 2006-02-24 2017-05-23 The General Hospital Corporation Methods and systems for performing angle-resolved Fourier-domain optical coherence tomography
US9364143B2 (en) 2006-05-10 2016-06-14 The General Hospital Corporation Process, arrangements and systems for providing frequency domain imaging of a sample
US9968245B2 (en) 2006-10-19 2018-05-15 The General Hospital Corporation Apparatus and method for obtaining and providing imaging information associated with at least one portion of a sample, and effecting such portion(s)
JP5315237B2 (en) * 2007-05-22 2013-10-16 オリンパス株式会社 The capsule medical apparatus and a capsule medical system
US9265409B2 (en) 2007-05-22 2016-02-23 Olympus Corporation Capsule medical device and capsule medical system
US9173572B2 (en) 2008-05-07 2015-11-03 The General Hospital Corporation System, method and computer-accessible medium for tracking vessel motion during three-dimensional coronary artery microscopy
US8937724B2 (en) 2008-12-10 2015-01-20 The General Hospital Corporation Systems and methods for extending imaging depth range of optical coherence tomography through optical sub-sampling
US9615748B2 (en) 2009-01-20 2017-04-11 The General Hospital Corporation Endoscopic biopsy apparatus, system and method
US9178330B2 (en) 2009-02-04 2015-11-03 The General Hospital Corporation Apparatus and method for utilization of a high-speed optical wavelength tuning source
US9408539B2 (en) 2010-03-05 2016-08-09 The General Hospital Corporation Systems, methods and computer-accessible medium which provide microscopic images of at least one anatomical structure at a particular resolution
US8896838B2 (en) 2010-03-05 2014-11-25 The General Hospital Corporation Systems, methods and computer-accessible medium which provide microscopic images of at least one anatomical structure at a particular resolution
US9642531B2 (en) 2010-03-05 2017-05-09 The General Hospital Corporation Systems, methods and computer-accessible medium which provide microscopic images of at least one anatomical structure at a particular resolution
US9069130B2 (en) 2010-05-03 2015-06-30 The General Hospital Corporation Apparatus, method and system for generating optical radiation from biological gain media
US9951269B2 (en) 2010-05-03 2018-04-24 The General Hospital Corporation Apparatus, method and system for generating optical radiation from biological gain media
US9557154B2 (en) 2010-05-25 2017-01-31 The General Hospital Corporation Systems, devices, methods, apparatus and computer-accessible media for providing optical imaging of structures and compositions
US9795301B2 (en) 2010-05-25 2017-10-24 The General Hospital Corporation Apparatus, systems, methods and computer-accessible medium for spectral analysis of optical coherence tomography images
US10285568B2 (en) 2010-06-03 2019-05-14 The General Hospital Corporation Apparatus and method for devices for imaging structures in or at one or more luminal organs
US9510758B2 (en) 2010-10-27 2016-12-06 The General Hospital Corporation Apparatus, systems and methods for measuring blood pressure within at least one vessel
US9330092B2 (en) 2011-07-19 2016-05-03 The General Hospital Corporation Systems, methods, apparatus and computer-accessible-medium for providing polarization-mode dispersion compensation in optical coherence tomography
US9588046B2 (en) 2011-09-07 2017-03-07 Olympus Corporation Fluorescence observation apparatus
US9341783B2 (en) 2011-10-18 2016-05-17 The General Hospital Corporation Apparatus and methods for producing and/or providing recirculating optical delay(s)
US9629528B2 (en) 2012-03-30 2017-04-25 The General Hospital Corporation Imaging system, method and distal attachment for multidirectional field of view endoscopy
US9415550B2 (en) 2012-08-22 2016-08-16 The General Hospital Corporation System, method, and computer-accessible medium for fabrication miniature endoscope using soft lithography
US9968261B2 (en) 2013-01-28 2018-05-15 The General Hospital Corporation Apparatus and method for providing diffuse spectroscopy co-registered with optical frequency domain imaging
US9784681B2 (en) 2013-05-13 2017-10-10 The General Hospital Corporation System and method for efficient detection of the phase and amplitude of a periodic modulation associated with self-interfering fluorescence
US10117576B2 (en) 2013-07-19 2018-11-06 The General Hospital Corporation System, method and computer accessible medium for determining eye motion by imaging retina and providing feedback for acquisition of signals from the retina
US10058250B2 (en) 2013-07-26 2018-08-28 The General Hospital Corporation System, apparatus and method for utilizing optical dispersion for fourier-domain optical coherence tomography
US9733460B2 (en) 2014-01-08 2017-08-15 The General Hospital Corporation Method and apparatus for microscopic imaging
US10228556B2 (en) 2014-04-04 2019-03-12 The General Hospital Corporation Apparatus and method for controlling propagation and/or transmission of electromagnetic radiation in flexible waveguide(s)
KR20170114974A (en) * 2016-04-04 2017-10-16 스페클립스 주식회사 System and method for diagnosis of pigmented lesion

Also Published As

Publication number Publication date
WO2003030726A1 (en) 2003-04-17

Similar Documents

Publication Publication Date Title
Mourant et al. Spectroscopic diagnosis of bladder cancer with elastic light scattering
Schomacker et al. Ultraviolet laser-induced fluorescence of colonic polyps
EP1845837B1 (en) Method and apparatus for measuring cancerous changes from reflectance spectral measurements obtained during endoscopic imaging
US5983125A (en) Method and apparatus for in vivo examination of subcutaneous tissues inside an organ of a body using optical spectroscopy
JP3223469B2 (en) Caries in teeth, tartar, discrimination device Nodules or bacterial infection
US5421337A (en) Spectral diagnosis of diseased tissue
JP4789397B2 (en) Tartar detection removal system and method
EP0449883B1 (en) A method for laser induced fluorescence of tissue
Shim et al. In vivo Near‐infrared Raman Spectroscopy: Demonstration of Feasibility During Clinical Gastrointestinal Endoscopy¶
US7236815B2 (en) Method for probabilistically classifying tissue in vitro and in vivo using fluorescence spectroscopy
CA2104960C (en) Systems and methods of molecular spectroscopy to provide for the diagnosis of tissue
EP0635238B1 (en) Tumor tissue characterization apparatus
AU763861B2 (en) Apparatus and method for determining tissue characteristics
EP2359745A1 (en) Method and device for multi-spectral photonic imaging
CN101115986B (en) Raman spectral analysis of sub-surface tissues and fluids
EP0944349B1 (en) Imaging diseased tissue using autofluorescence
Cothren et al. Gastrointestinal tissue diagnosis by laser-induced fluorescence spectroscopy at endoscopy
US6201989B1 (en) Methods and apparatus for detecting the rejection of transplanted tissue
Redd et al. Raman spectroscopic characterization of human breast tissues: implications for breast cancer diagnosis
US8297971B2 (en) System for the detection of dental artefacts
US6922583B1 (en) Method for measuring tissue morphology
US5293872A (en) Method for distinguishing between calcified atherosclerotic tissue and fibrous atherosclerotic tissue or normal cardiovascular tissue using Raman spectroscopy
US20070073156A1 (en) Combined visual-optic and passive infra-red technologies and the corresponding systems for detection and identification of skin cancer precursors, nevi and tumors for early diagnosis
EP0144409B1 (en) Localization of cancerous tissue by monitoring infrared fluorescence emitted by intravenously injected porphyrin in tumor-specific markers excited by long wavelength light
US6317624B1 (en) Apparatus and method for demarcating tumors

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070515

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071023

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080715

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090331

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090525

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090611

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20091029

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20100305