JP2003100295A - Positive electrode material for lithium secondary battery and manufacturing method thereof - Google Patents

Positive electrode material for lithium secondary battery and manufacturing method thereof

Info

Publication number
JP2003100295A
JP2003100295A JP2002166236A JP2002166236A JP2003100295A JP 2003100295 A JP2003100295 A JP 2003100295A JP 2002166236 A JP2002166236 A JP 2002166236A JP 2002166236 A JP2002166236 A JP 2002166236A JP 2003100295 A JP2003100295 A JP 2003100295A
Authority
JP
Japan
Prior art keywords
positive electrode
electrode material
secondary battery
lithium secondary
discharge capacity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002166236A
Other languages
Japanese (ja)
Other versions
JP3976249B2 (en
Inventor
Yoshiaki Hamano
嘉昭 浜野
Hidefumi Konnai
秀文 近内
Toshihiko Funabashi
敏彦 船橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Mineral Co Ltd
Original Assignee
Kawatetsu Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawatetsu Mining Co Ltd filed Critical Kawatetsu Mining Co Ltd
Priority to JP2002166236A priority Critical patent/JP3976249B2/en
Publication of JP2003100295A publication Critical patent/JP2003100295A/en
Application granted granted Critical
Publication of JP3976249B2 publication Critical patent/JP3976249B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To revise the conventional means for measuring the heat stability of a positively electrode material, and to provide a new means, which is used to provide a positive electrode material with a superior heat stability for improving the safety of a battery, a manufacturing method of the positive electrode material, and a secondary battery using the positive electrode material. SOLUTION: The positive electrode material for the lithium secondary battery is made of a compound represented by the chemical formula Lix Niy Coz Mm O2 , and of which BET (Brunauer-Emmett-Teller) specific surface area value is 0.8 m<2> /g or less, the heat stability is high, and discharge capacity is large. In the above formula, M represents one or more than two elements selected from barium, strontium, and boron, and (x), (y), (z) and (m) represents the molar ratio value of each element, where each value is within the range of: 0.9<=x<=1.1, 0.5<=y<=0.95, 0.05<=z<=0.5, and 0.0005<=m<=0.02.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、リチウム二次電池
用正極材料、特にニッケル・コバルト複合酸リチウムに
おいてアルカリ土類金属等を配合してなるリチウム二次
電池用正極材料、その製造方法及びリチウム二次電池に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a positive electrode material for a lithium secondary battery, particularly a positive electrode material for a lithium secondary battery obtained by blending an alkaline earth metal or the like in nickel-cobalt complex lithium oxide, a method for producing the same and lithium. Regarding secondary batteries.

【0002】[0002]

【従来の技術】リチウム二次電池用の正極物質であるニ
ッケル酸リチウムは、放電容量が大きいという特徴があ
る。しかし、充放電が繰り返されるとリチウムイオンが
ディインターカレートされた状態のリチウムニッケル複
合酸化物はリチウム欠損のない状態に相変態する傾向が
ある。この傾向は、電池の使用温度が高くなると著しく
なる。
2. Description of the Related Art Lithium nickel oxide, which is a positive electrode material for lithium secondary batteries, is characterized by a large discharge capacity. However, when charge and discharge are repeated, the lithium nickel composite oxide in which lithium ions are deintercalated tends to undergo phase transformation into a state without lithium deficiency. This tendency becomes remarkable as the operating temperature of the battery increases.

【0003】この相変態は、不可逆反応であるため、正
極活物質としてのリチウムニッケル系複合酸化物の絶対
量が減少し、その結果、放電容量が低下するという問題
が起こる。また、発生した酸素は電池を構成する電解液
と反応しやすく、使用温度が高いときには、電池が破裂
や発火する危険さえある。
Since this phase transformation is an irreversible reaction, the absolute amount of the lithium-nickel composite oxide as the positive electrode active material decreases, resulting in a problem that the discharge capacity decreases. Further, the generated oxygen easily reacts with the electrolytic solution forming the battery, and there is a danger that the battery may burst or ignite when the operating temperature is high.

【0004】この問題を解決するために、例えば特開20
01-23629号公報では、リチウムニッケル系複合酸化物を
リチウム二次電池正極物質に用いてリチウム二次電池を
形成後、該二次電池に充放電操作を行い、前記リチウム
ニッケル系複合酸化物からリチウムイオンのディインタ
ーカレートを生じさせた後、該リチウムニッケル系複合
酸化物の熱重量分析を行うことによりリチウム二次電池
に用いる正極物質のの熱安定性の評価を行う手段が提案
されている。また、そのような手段によって評価したリ
チウムイオン二次電池正極活物質として、Ni1モルに対
してCoを0.05〜0.3モルの割合で含有し、更にB、Al、M
g、Ca、Sr、Ba、Fe、Ti、Zr、Y、LaおよびCeから選ばれ
た1又は2種以上の元素を合計で0.001〜0.1モル含有す
る組成物が示されている。
In order to solve this problem, for example, Japanese Unexamined Patent Publication No. 20
In No. 01-23629, after forming a lithium secondary battery by using a lithium nickel-based composite oxide as a positive electrode material for a lithium secondary battery, the secondary battery is charged / discharged, and the lithium nickel-based composite oxide is used. A method for evaluating the thermal stability of a positive electrode material used in a lithium secondary battery by performing thermogravimetric analysis of the lithium nickel-based composite oxide after generating deintercalation of lithium ions has been proposed. There is. Further, as a lithium ion secondary battery positive electrode active material evaluated by such means, it contains Co at a ratio of 0.05 to 0.3 mol with respect to 1 mol of Ni, and further contains B, Al and M.
A composition containing 0.001 to 0.1 mol in total of one or more elements selected from g, Ca, Sr, Ba, Fe, Ti, Zr, Y, La and Ce is shown.

【0005】[0005]

【発明が解決しようとする課題】しかし、上記従来の手
段で正極物質の熱安定性、ひいてはそれを用いた電池の
安全性を評価したのでは、必ずしも十分でないことが本
発明者等の研究の結果明らかになった。例えば、電池が
充電された状態の正極において、酸素ガスは170℃付近
あるいはそれ以上の高温域で発生すると考えられ、発生
した酸素と電池を構成する電解液とが反応する危険が生
ずる。200〜300℃までの重量減少量によって正極物質の
熱安定性を評価した場合、正極又は電解液の分解ガスに
よる電池の膨れや破裂を予測することができる。しかし
ながら、正極から発生する酸素が電解液と反応し始める
ことにより電池に異変が生じ始めることは、上記の200
〜300℃までの重量減少量によっては予測できない。そ
のため、上記方法によっては、電池の安全性を十分把握
できないという問題がある。本発明は、従来の正極物質
の熱安定性を測定する手段を改良し、それを用いて電池
の安全性の向上に寄与する熱安定性に優れた正極物質、
その製造方法及び当該正極物質を用いた安定性に優れた
二次電池を提案することを目的とする。
However, it is not necessarily sufficient to evaluate the thermal stability of the positive electrode material and thus the safety of the battery using it by the above-mentioned conventional means. The result is clear. For example, it is considered that oxygen gas is generated in a high temperature range around 170 ° C. or higher in the positive electrode in a state where the battery is charged, and there is a risk that the generated oxygen reacts with the electrolytic solution forming the battery. When the thermal stability of the positive electrode material is evaluated by the amount of weight loss from 200 to 300 ° C., it is possible to predict the swelling or rupture of the battery due to the decomposition gas of the positive electrode or the electrolytic solution. However, when oxygen generated from the positive electrode begins to react with the electrolytic solution, an abnormal change in the battery begins to occur.
Unpredictable due to weight loss up to ~ 300 ° C. Therefore, the above method has a problem that the safety of the battery cannot be sufficiently grasped. The present invention improves the conventional means for measuring the thermal stability of the positive electrode material, using the positive electrode material excellent in thermal stability to contribute to the improvement of the safety of the battery,
It is an object of the present invention to propose a manufacturing method thereof and a secondary battery excellent in stability using the positive electrode material.

【0006】[0006]

【課題を解決するための手段】本発明者等は、充電状態
における正極物質のDTG曲線(Derivative Thermogravim
etry;熱重量曲線の温度に関する一次微分曲線)には材
料間で相違が認められ、それがより高温で変化しはじめ
るものが熱安定性に優れた正極物質であることを見出
し、そのような特性を与えるには、一定の組成を有する
正極物質においてその比表面積を小さく維持すること、
さらには当該正極物質の充電状態におけるDTG増大開始
温度が重要であることを見出して本発明を完成した。
Means for Solving the Problems The present inventors have found that the DTG curve (Derivative Thermogravim
etry; primary differential curve with respect to temperature of thermogravimetric curve) was found to be different among the materials, and it was found that the one that begins to change at higher temperatures is the positive electrode material with excellent thermal stability. To maintain the specific surface area of the positive electrode material having a constant composition small,
Furthermore, they have found that the DTG increase start temperature in the charged state of the positive electrode material is important and completed the present invention.

【0007】ここに、本発明のリチウム二次電池用正極
材料は、化学式LixNiyCozMmO2で表される化合物からな
り、かつそのBET比表面積値が0.8m2/g以下であり、熱安
定性が高く、かつ放電容量の大きいものである。ここ
に、上記化学式においてMはBa,Sr及びBから選んだ1種又
は2種以上の元素であり、x,y,z及びmは各元素のモル比
の値であって、それぞれ0.9≦x≦1.1、0.5≦y≦0.95、
0.05≦z≦0.5、0.0005≦m≦0.02である。
The positive electrode material for lithium secondary batteries of the present invention comprises a compound represented by the chemical formula Li x Ni y Co z M m O 2 and has a BET specific surface area value of 0.8 m 2 / g or less. It has high thermal stability and a large discharge capacity. Here, in the above chemical formula, M is Ba, Sr and one or more elements selected from B, x, y, z and m are the values of the molar ratio of each element, 0.9 ≤ x ≦ 1.1, 0.5 ≦ y ≦ 0.95,
0.05 ≦ z ≦ 0.5 and 0.0005 ≦ m ≦ 0.02.

【0008】上記化学式LixNiyCozMmO2で表される化合
物は、充電状態において化学式LiaNi bCocMnO2で表され
る化合物であって、該充電状態における化合物のDTG増
大開始温度が215℃以上、好ましくは230℃以上であるこ
とが望ましい。ここに、上記化学式においてMはBa,Sr,
及びBから選んだ1種又は2種以上の元素であり、x,y,z,
m,a,b,c及びnは各元素のモル比の値であって、それぞれ
0.9≦x≦1.1、0.5≦y≦0.95、0.05≦z≦0.5、0.0005≦m
≦0.02、0.2≦a≦0.4、0.5≦b≦0.95、0.05≦c≦0.5、
0.0005≦n≦0.02である。
The above chemical formula LixNiyCozMmO2Compound represented by
In the charged state, the chemical formula LiaNi bCocMnO2Represented by
Which is a compound that increases the DTG of the compound in the charged state.
The large starting temperature should be 215 ° C or higher, preferably 230 ° C or higher.
And is desirable. Here, in the above chemical formula, M is Ba, Sr,
And one or more elements selected from B, x, y, z,
m, a, b, c and n are the values of the molar ratio of each element,
0.9 ≦ x ≦ 1.1, 0.5 ≦ y ≦ 0.95, 0.05 ≦ z ≦ 0.5, 0.0005 ≦ m
≤0.02, 0.2≤a≤0.4, 0.5≤b≤0.95, 0.05≤c≤0.5,
0.0005 ≦ n ≦ 0.02.

【0009】上記正極材料において、BET比表面積値は
0.5m2/g未満であることが好ましく、また、タップ密度
が1.5g/cm3以上であることが、電池に充填される正極材
料の量を多くして電池単位体積当たりの充放電容量を大
きくする点で好適である。
In the above positive electrode material, the BET specific surface area value is
It is preferably less than 0.5 m 2 / g, and the tap density is 1.5 g / cm 3 or more, the amount of the positive electrode material filled in the battery is increased to increase the charge / discharge capacity per unit volume of the battery. It is suitable for increasing the size.

【0010】このようなリチウム二次電池用正極材料
は、NiyCoz(OH)2で表される化合物にリチウム塩並びに
元素Mを含む塩を添加・混合後、焼成、解砕して化学式L
ixNiyCozMmO2で表されるリチウム二次電池用正極材料を
製造するに当たり、前記NiyCoz(OH)2で表される化合物
をタップ密度1.8g/cm3以上、平均粒径5〜20μmの粉末、
好ましくは球状粉末とすることにより製造することがで
きる。この場合において上記焼成は酸素雰囲気において
300〜500℃で2〜6hの保持を行う予備焼成と、該予備焼
成後5〜30℃/minで昇温する昇温段階と、該昇温段階に
引き続き650〜900℃で2〜30hの保持を行う最終焼成段階
を順次行うようにするのが好ましい。ここに、上記元素
MはBa,Sr及びBから選んだ1種又は2種以上の元素であ
り、x,y,z及びmは各元素のモル比の値であって、それぞ
れ0.9≦x≦1.1、0.5≦y≦0.95、0.05≦z≦0.5、0.0005
≦m≦0.02である。なお、前記平均粒径はレーザー回折
法で測定したものである。
Such a positive electrode material for a lithium secondary battery is prepared by adding a lithium salt and a salt containing the element M to a compound represented by Ni y Co z (OH) 2 and mixing them, followed by firing and crushing to obtain a chemical formula. L
In producing a lithium secondary battery positive electrode material represented by i x Ni y Co z M m O 2 , the compound represented by Ni y Co z (OH) 2 has a tap density of 1.8 g / cm 3 or more, Powder with an average particle size of 5 to 20 μm,
It can be preferably produced by using a spherical powder. In this case, the firing is performed in an oxygen atmosphere.
Pre-baking to hold for 2 to 6 hours at 300 ~ 500 ℃, heating step to raise the temperature at 5 to 30 ℃ / min after the pre-baking, and 650 to 900 ℃ for 2 to 30 hours subsequent to the heating step. It is preferable to carry out the final firing steps for holding in sequence. Where the above elements
M is one or more elements selected from Ba, Sr and B, x, y, z and m are the values of the molar ratio of each element, 0.9 ≤ x ≤ 1.1, 0.5 ≤ y ≦ 0.95, 0.05 ≦ z ≦ 0.5, 0.0005
≦ m ≦ 0.02. The average particle size is measured by a laser diffraction method.

【0011】本発明のリチウム二次電池は、電池の活物
質が上記に記載した正極材料を含むものあるいは正極材
料からなるものとして構成されるものであり、これによ
り二次電池の安全性が格段に向上し、高温に曝された場
合にも電池が発火したり破裂する危険が避けられる。
The lithium secondary battery of the present invention is configured such that the active material of the battery contains the positive electrode material described above or is composed of the positive electrode material, and thus the safety of the secondary battery is remarkably high. The danger that the battery will ignite or burst even when exposed to high temperatures is avoided.

【0012】[0012]

【発明の実施の形態】本発明者等は多数のリチウム二次
電池用正極材料について充電状態における化合物のDTG
の測定を行い、そのDTG増大開始温度と電池の安全性と
の関係を調査した。ここに、リチウム二次電池用正極材
料とは充電前の正極材料化合物をいい、充電状態におけ
る化合物とは後述するDTG測定法により前記正極材料化
合物に対して充放電試験を行い、その充電状態における
正極材料をいう。
BEST MODE FOR CARRYING OUT THE INVENTION The present inventors have developed a number of positive electrode materials for lithium secondary batteries in which DTG of a compound in a charged state is used.
Was measured, and the relationship between the DTG increase start temperature and the safety of the battery was investigated. Here, the positive electrode material for a lithium secondary battery refers to a positive electrode material compound before charging, and the compound in a charged state is subjected to a charge / discharge test on the positive electrode material compound by the DTG measurement method described later, and in the charged state. A positive electrode material.

【0013】図1は、表1に示すNo.3,6,9,11および14
のリチウム二次電池用正極材料の充電状態における化合
物のDTG曲線を測定した結果である。図1から分かるよ
うに、充電状態における化合物のDTGは、およそ190℃か
ら増大しはじめ、220〜290℃間にピークを有する。
FIG. 1 shows Nos. 3, 6, 9, 11 and 14 shown in Table 1.
2 is a result of measuring a DTG curve of a compound of the positive electrode material for a lithium secondary battery in a charged state. As can be seen from FIG. 1, the DTG of the compound in the charged state starts to increase from approximately 190 ° C. and has a peak between 220 and 290 ° C.

【0014】[0014]

【表1】 [Table 1]

【0015】上記の充電状態における化合物のDTG測定
法および初期放電容量の測定は以下の手順にしたがって
行った。リチウム二次電池用正極材料粉末90mass%、ア
セチレンブラック5mass%及びポリ弗化ビニリデン5mass%
にN-メチル-2ピロリドンを添加し、十分混練した後、ア
ルミニウム集電体に約150μmの厚さに塗布し、200kg/cm
2程度で加圧後、直径14mmの円板に打ち抜いたものを150
℃にて15hの真空乾燥し正極とした。負極にはリチウム
金属シートを用い、セパレーターにはポリプロピレン製
多孔質膜(商品名セルガード#2400)を用いた。また、
エチレンカーボネート(EC)/ジメチルカーボネート(DM
C)を体積比で1:1の混合溶液1lにLiClO4を1mol溶解させ
非水電解液とした。
The DTG measuring method and the initial discharge capacity of the compound in the above charged state were measured according to the following procedures. 90 mass% of positive electrode material powder for lithium secondary battery, 5 mass% of acetylene black and 5 mass% of polyvinylidene fluoride
N-Methyl-2pyrrolidone was added to, and after sufficiently kneading, applied to an aluminum current collector to a thickness of about 150 μm, and 200 kg / cm
After pressurizing at about 2 , 150 pieces punched into a disc with a diameter of 14 mm
It was vacuum dried at 15 ° C. for 15 hours to obtain a positive electrode. A lithium metal sheet was used for the negative electrode, and a polypropylene porous membrane (trade name Celgard # 2400) was used for the separator. Also,
Ethylene carbonate (EC) / Dimethyl carbonate (DM
LiClO 4 (1 mol) was dissolved in a mixed solution (1 l) having a volume ratio of 1: 1 to prepare a nonaqueous electrolytic solution.

【0016】これらを用いてアルゴンで置換したグロー
ブボックス内で試験セルに組み立て、電流密度を1mA/cm
2の一定値とし、かつ電圧を2.75〜4.2Vの範囲で充放電
を行い、初期放電容量を測定した。このようにして充放
電を行った後、4.2V充電状態で正極を試験セルから取り
出し、アルミニウム集電体からリチウム二次電池用正極
材料粉末を剥離し、これをジメチルカーボネートで洗浄
し、100℃で真空乾燥した。
These were assembled into a test cell in a glove box substituted with argon, and the current density was 1 mA / cm 2.
The initial discharge capacity was measured with a constant value of 2 and charging / discharging in the voltage range of 2.75 to 4.2V. After charging and discharging in this way, the positive electrode was taken out from the test cell in a 4.2V charged state, the positive electrode material powder for a lithium secondary battery was peeled off from the aluminum current collector, washed with dimethyl carbonate, and 100 ° C. It was dried in vacuum.

【0017】このようにして得られたリチウム二次電池
用正極材料の充電状態における化合物の化学式をLiaNib
CocMnO2として化学分析法にて各元素のモル比を算出す
ると、Liのモル比aはNiとCoの合計量に対して0.2ない
し0.4モルの範囲であった。この充電状態における化合
物粉末を、熱重量測定装置を用いてアルゴン雰囲気下で
10℃/minの速度で昇温してDTGを測定した。なお、DTGの
増大開始温度とは、DTGが0.015%/℃を超える温度をい
う。
The chemical formula of the compound in the charged state of the positive electrode material for a lithium secondary battery thus obtained is represented by Li a Ni b
When the molar ratio of each element was calculated by chemical analysis as Co c M n O 2 , the molar ratio a of Li was in the range of 0.2 to 0.4 mol with respect to the total amount of Ni and Co. The compound powder in this charged state was placed under an argon atmosphere using a thermogravimetric measuring device.
The temperature was raised at a rate of 10 ° C./min to measure DTG. The DTG increase start temperature means the temperature at which DTG exceeds 0.015% / ° C.

【0018】電池の安全性に関する試験は以下のように
行った。 リチウムニッケル系複合酸化物90mass%、カーボンブ
ラック5mass%、ポリビニリデンフロリド5mass%に対し、
N-メチル-2ピロリドンを加えてペースト状となし、これ
をアルミ箔上に塗付乾燥して正極とした。 黒鉛粉末とN-メチル-2ピロリドンとからなるペースト
を銅箔上に塗付・乾燥して負極とした。 上記正極と負極の間にセパレータを介し、電解液とし
てエチレンカーボネート(EC)とジエチルカーボネート
(DEC)が体積比1:1の混合溶液1lに対してLiPF6を1モル
溶解したものを用い、18650サイズの円筒形のリチウム
イオン二次電池とした。 正極材料が同じ円筒型電池を10個ずつ作製し、高温貯
蔵試験及び釘差し試験に各5個づつ供した。
The test on the safety of the battery was conducted as follows. Lithium-nickel-based composite oxide 90 mass%, carbon black 5 mass%, polyvinylidene fluoride 5 mass%,
N-Methyl-2pyrrolidone was added to form a paste, which was applied on an aluminum foil and dried to obtain a positive electrode. A paste consisting of graphite powder and N-methyl-2pyrrolidone was applied onto a copper foil and dried to give a negative electrode. With a separator interposed between the positive electrode and the negative electrode, 1 mol of LiPF 6 was dissolved in 1 l of a mixed solution of ethylene carbonate (EC) and diethyl carbonate (DEC) at a volume ratio of 1: 1 as an electrolytic solution. A cylindrical lithium ion secondary battery having a size was used. Ten cylindrical batteries each having the same positive electrode material were produced and subjected to a high temperature storage test and a nail insertion test, five each.

【0019】高温貯蔵試験では4.2V充電状態にて150
℃、5hの大気雰囲気下で貯蔵した場合に電池の変形や破
裂あるいは破裂に伴う発火の有無を調査した。釘差し試
験は、4.4V充電状態にして大気雰囲気下において、直径
2.5mmの釘を貫通させ、電池からの発火の有無を調査し
た。
In the high temperature storage test, 150V at 4.2V charge state
It was investigated whether the battery was deformed, ruptured, or ignited by the rupture when stored in an atmosphere of 5 ° C for 5 hours. The nailing test is conducted with a 4.4V charged state and in an air atmosphere.
A 2.5 mm nail was pierced and the presence or absence of ignition from the battery was investigated.

【0020】その結果、表1に示すように正極材料の充
電状態における化合物のDTG増大開始温度と上記評価基
準による電池の安全性との間には相関があり、充電状態
における化合物のDTG増大開始温度が高い方が電池の安
全性が優れていることが分かった。充電状態における化
合物のDTGは、昇温過程における正極材料が充電された
状態における熱分解速度の指標と考えられるので、その
増大開始温度が高いものが電池の安全性の向上をもたら
したものと推定される。
As a result, as shown in Table 1, there is a correlation between the DTG increasing start temperature of the compound in the charged state of the positive electrode material and the safety of the battery according to the above evaluation criteria, and the DTG increasing start of the compound in the charged state is started. It was found that the higher the temperature, the better the safety of the battery. The DTG of the compound in the charged state is considered to be an index of the thermal decomposition rate in the state where the positive electrode material in the temperature rising process is charged, so it is presumed that the one with a high increase initiation temperature brought about the improvement of the safety of the battery. To be done.

【0021】具体的には、215℃を境にして充電状態に
おける化合物のDTG増大開始温度が高い正極材料の場合
に、電池の高温貯蔵試験結果が良好である。また、釘差
し試験でも充電状態における化合物のDTG増大開始温度
が215℃を境にして、結果が異なり、215℃以上では良好
である。さらに、充電状態における化合物のDTG増大開
始温度が230℃以上では非常に良好な結果となる。この
ように、充電状態における化合物のDTG増大開始温度が
高い正極材料を用いたものほど電池の安全性が向上する
ものと推定できる。
Specifically, in the case of a positive electrode material having a high DTG increasing start temperature of the compound in a charged state at a boundary of 215 ° C., the high temperature storage test result of the battery is good. Further, in the nailing test, the results are different when the DTG increase starting temperature of the compound in the charged state is 215 ° C as a boundary, and it is good at 215 ° C or higher. Furthermore, when the DTG increase start temperature of the compound in the charged state is 230 ° C. or higher, very good results are obtained. Thus, it can be presumed that the safety of the battery is improved by using the positive electrode material having a higher DTG increasing start temperature of the compound in the charged state.

【0022】図2は、表1に示す化学式LixNiyCozMmO2
で表される各種リチウム二次電池用正極材料のBET比表
面積値とその充電状態における化合物のDTG増大開始温
度との関係を示すグラフである。ここに示すように、こ
の系のリチウム二次電池用正極材料の充電状態における
化合物のDTG増大開始温度は充電前のリチウム二次電池
用正極材料のBET比表面積と密接な関係があり、BET比表
面積値が0.8m2/g以下のとき、充電状態における化合物
のDTG増大開始温度が215℃以上に上昇する。なお、上記
化学式において、MはBa,Sr及びBから選んだ1種又は2種
以上の元素であり、x,y,z及びmは各元素のモル比の値で
あって、それぞれ0.9≦x≦1.1、0.5≦y≦0.95、0.05≦z
≦0.5、0.0005≦m≦0.02である。また、比表面積は、窒
素ガスの吸着量から求めるBET法によって測定したもの
である。
FIG. 2 shows the chemical formula Li x Ni y Co z M m O 2 shown in Table 1.
3 is a graph showing the relationship between the BET specific surface area value of each positive electrode material for lithium secondary batteries represented by and the DTG increase start temperature of the compound in the charged state. As shown here, the DTG increase start temperature of the compound in the charge state of the lithium secondary battery positive electrode material of this system is closely related to the BET specific surface area of the lithium secondary battery positive electrode material before charging, and the BET ratio When the surface area value is 0.8 m 2 / g or less, the DTG increase start temperature of the compound in the charged state rises to 215 ° C. or higher. In the above chemical formula, M is one or more elements selected from Ba, Sr and B, x, y, z and m are values of the molar ratio of each element, 0.9 ≦ x, respectively. ≦ 1.1, 0.5 ≦ y ≦ 0.95, 0.05 ≦ z
≦ 0.5 and 0.0005 ≦ m ≦ 0.02. Further, the specific surface area is measured by the BET method obtained from the adsorption amount of nitrogen gas.

【0023】本発明の最も重要な点は、上記のようにリ
チウム二次電池用正極材料の熱安定性の評価指標として
充電状態における化合物のDTG増大開始温度を用い、そ
れと充電前の正極材料のBET比表面積との関係を明かに
したところにある。本発明ではこの関係を前記化学式Li
xNiyCozMmO2で表される化合物なるリチウム二次電池用
正極材料に適用する。
The most important point of the present invention is to use the DTG increasing start temperature of the compound in the charged state as an index for evaluating the thermal stability of the positive electrode material for a lithium secondary battery as described above, and the positive temperature of the positive electrode material before charging. The relationship with the BET specific surface area is clarified. In the present invention, this relationship is expressed by the chemical formula Li
It is applied to a positive electrode material for a lithium secondary battery, which is a compound represented by x Ni y Co z M m O 2 .

【0024】なお、化学式LixNiyCozMmO2とする理由を
説明すると、以下のとおりである。まず、本発明では放
電容量が大きなリチウムニッケル複合酸化物をベースと
する。しかし、LiNiO2そのものは正極材料の中で放電容
量が高い反面、その熱安定性に問題がある。そこで、Ni
のうち0.05から0.5モルをCoに置換して熱安定性を高め
る。Coは0.05モル以上で熱安定性の向上が認められる
が、0.5モルより多いと放電容量が低下する。
The reason why the chemical formula Li x Ni y Co z M m O 2 is used is as follows. First, the present invention is based on a lithium nickel composite oxide having a large discharge capacity. However, while LiNiO 2 itself has a high discharge capacity among the positive electrode materials, it has a problem in its thermal stability. So Ni
Substituting 0.05 to 0.5 mol of Co with Co to improve thermal stability. When Co is 0.05 mol or more, the thermal stability is improved, but when it is more than 0.5 mol, the discharge capacity decreases.

【0025】更にB、SrあるいはBaをNiとCoの合計量に
対して0.0005〜0.02モルの割合で配合して熱安定性を改
善し、かつ十分な放電容量を得ている。これらの元素
は、0.0005モルより少ないと熱安定性の改善が不十分で
あり、0.2モルより多いと放電容量が低下する。なお、L
iは、これが少ないとリチウム欠損が多い結晶構造にな
り、容量が低下する。また、Liが多すぎると水和物や炭
酸化物を生成し、電極を作製する際にゲル化状態にな
り、ハンドリング性を悪化するために0.9〜1.1の範囲と
する。
Further, B, Sr or Ba is blended in a proportion of 0.0005 to 0.02 mol with respect to the total amount of Ni and Co to improve thermal stability and obtain a sufficient discharge capacity. If the amount of these elements is less than 0.0005 mol, the improvement of thermal stability is insufficient, and if it is more than 0.2 mol, the discharge capacity decreases. In addition, L
When i is small, i has a crystal structure with many lithium deficiencies, and the capacity decreases. Further, if the amount of Li is too large, hydrates and carbonates are generated, and a gelled state occurs when an electrode is produced, and the handling property deteriorates, so the range is 0.9 to 1.1.

【0026】上記発明において、タップ密度を1.5g/cm3
以上とすることは、電池に充填される正極材料の量を多
くして電池単位体積当たりの放電容量を大きくするので
好ましい。なお、タップ密度はホソカワミクロン社製パ
ウダーテスターを用い、タップ密度測定用100ml容器を
使用して200回タッピングを行うことにによって測定し
たものである。
In the above invention, the tap density is 1.5 g / cm 3
The above is preferable because the amount of the positive electrode material filled in the battery is increased and the discharge capacity per unit volume of the battery is increased. The tap density was measured by using a powder tester manufactured by Hosokawa Micron Co., Ltd. and tapping 200 times using a 100 ml container for tap density measurement.

【0027】このようなリチウム二次電池用正極材料は
以下のようにして製造することができる。まず出発物質
としてNiとCoの合計量に対するCoの割合がモル比で0.05
〜0.5に調整されたNiyCoz(OH)2を製造する。その製造に
当たっては、例えば湿式溶液合成法によって緻密なNiyC
oz(OH)2の粉状物を製造し、その際、平均粒径が5〜20μ
m、かつタップ密度が1.8g/cm3以上となるように調整す
ることが望ましい。なお、一般にリチウム複合酸化物を
合成する場合には、出発物質であるNiyCoz(OH) 2の形状
や緻密度はそのまま継承されるので、上記粉状物の粒子
形態を球状とするのが特に好ましい。これにより、本発
明にかかる比表面積が小さく、かつタップ密度の大きい
正極材料を得ることができる。
The positive electrode material for such a lithium secondary battery is
It can be manufactured as follows. First the starting material
The molar ratio of Co to the total amount of Ni and Co is 0.05.
Ni adjusted to ~ 0.5yCoz(OH)2To manufacture. In its manufacture
For this purpose, for example, a dense NiyC
oz(OH)2Of powder, the average particle size is 5 to 20μ
m, and tap density is 1.8g / cm3Adjust to be above
Is desirable. In addition, in general, lithium composite oxide
When synthesizing, the starting material is NiyCoz(OH) 2Shape of
Since the fineness and compactness are inherited as they are,
It is particularly preferable that the form is spherical. With this,
Clearly has a small specific surface area and a large tap density
A positive electrode material can be obtained.

【0028】上記により得られた球状で緻密なNiyCoz(O
H)2にリチウム塩及びMを含む塩を混合後、焼成、解砕し
て化学式LixNiyCozMmO2で表されるリチウム二次電池用
正極材料とするが、その際、焼成条件を酸素雰囲気にお
いて300〜500℃で2〜6hの保持を行う予備焼成と、該予
備焼成後5〜30℃/minで昇温する昇温段階と、該昇温段
階に引き続き650〜900℃で2〜30hの保持を行う最終焼成
段階を順次行うようにするのがよい。
The spherical and dense Ni y Co z (O
H) 2 is mixed with a lithium salt and a salt containing M, followed by firing and crushing to obtain a lithium secondary battery positive electrode material represented by the chemical formula Li x Ni y Co z M m O 2 , at that time, Pre-baking is performed by holding the firing conditions in an oxygen atmosphere at 300 to 500 ° C. for 2 to 6 hours, a temperature raising step of raising the temperature at 5 to 30 ° C./min after the preliminary firing, and 650 to 900 subsequent to the temperature raising step. It is advisable to carry out a final firing step in which the holding is carried out for 2 to 30 hours at ℃.

【0029】予備焼成は、リチウムとニッケル等との反
応を抑えつつ原料中の結晶水の水分を完全に除去するこ
とが目的であるため、300〜500℃で2h以上保持するのが
好ましい。しかし6hを超えると生産性が低下するので好
ましくない。昇温過程での昇温速度は、焼成用るつぼや
焼成用の耐火物の保護及び生産性の観点から5〜30℃/mi
nとするのがよい。また、最終焼成温度は、650℃未満で
は反応が進行しづらく、900℃を超えるとリチウムの飛
散が発生するので好ましくない。保持時間は反応性及び
生産性を考慮して2〜30hとするのがよい。
The pre-baking is intended to completely remove the water of crystallization water in the raw material while suppressing the reaction between lithium and nickel, so it is preferable to hold the temperature at 300 to 500 ° C. for 2 hours or more. However, if it exceeds 6 hours, productivity is lowered, which is not preferable. The rate of temperature rise in the temperature raising process is 5 to 30 ° C / mi from the viewpoint of protection and productivity of the crucible for firing and refractory for firing.
It should be n. If the final firing temperature is less than 650 ° C, the reaction is difficult to proceed, and if it exceeds 900 ° C, lithium is scattered, which is not preferable. The holding time is preferably 2 to 30 hours in consideration of reactivity and productivity.

【0030】[0030]

【実施例】表2に示す組成を有する一般式LixNiyCozMmO
2を有する正極材料を製造し、その比表面積、タップ密
度、放電容量及びDTG増大開始温度を測定した。製造に
当たりNo.11,12,15及び16では出発原料としてタップ密
度1.8g/cm3未満の粉末状の試薬を用いたのを除き、タッ
プ密度1.9〜2.1g/cm3の緻密な球状のNiyCoz(OH)2を用い
た。また、焼成条件は、酸素雰囲気で次に記載した短時
間焼成、或いは長時間焼成を採用した。測定結果は、表
2に併せて示してある。
EXAMPLES General formula Li x Ni y Co z M m O having the composition shown in Table 2
A positive electrode material having 2 was manufactured, and its specific surface area, tap density, discharge capacity and DTG increasing start temperature were measured. Except that the using powdered reagents under tap density 1.8 g / cm 3 as the starting material in per No.11,12,15 and 16 in the manufacture of dense spherical tap density 1.9~2.1g / cm 3 Ni y Co z (OH) 2 was used. As the firing conditions, short-time firing or long-term firing described below in an oxygen atmosphere was adopted. The measurement results are also shown in Table 2.

【0031】短時間焼成 予備焼成:400℃で4h保持 昇温速度:10℃/min 最終焼成:800℃で4h保持 長時間焼成 予備焼成:500℃で6h保持 昇温速度:20℃/min 最終焼成:750℃12h保持Short-time firing Pre-baking: Hold at 400 ℃ for 4h Temperature rising rate: 10 ℃ / min Final firing: Hold at 800 ℃ for 4 hours Long time firing Pre-baking: Hold at 500 ℃ for 6h Temperature rising rate: 20 ℃ / min Final firing: 750 ℃ 12h hold

【0032】[0032]

【表2】 [Table 2]

【0033】ここに示すように本発明の組成を有し、か
つ所定の比表面積を有する正極材料は、放電容量が高
く、かつDTG増大開始温度が高い。また、タップ密度が
大きいときには、電池に充填できる正極材料の量を多く
することができ、その分、電池単位体積当たりの充放電
容量を大きくすることができる。
As shown here, the positive electrode material having the composition of the present invention and having a predetermined specific surface area has a high discharge capacity and a high DTG increasing start temperature. When the tap density is high, the amount of the positive electrode material that can be filled in the battery can be increased, and the charge / discharge capacity per unit volume of the battery can be increased accordingly.

【0034】[0034]

【発明の効果】本発明は、上記のようにリチウム二次電
池用正極材料の熱安定性に関してBET比表面積を小さく
することによって充電状態における化合物のDTG増大開
始温度が上昇し、それによって二次電池の安全性が格段
に向上し、二次電池が高温状態に曝された場合にも電池
が破裂や発火するなどの危険が避けられる。
As described above, the present invention reduces the BTG specific surface area with respect to the thermal stability of the positive electrode material for lithium secondary batteries, thereby increasing the DTG increasing start temperature of the compound in the charged state, thereby increasing the secondary temperature. The safety of the battery is remarkably improved, and even when the secondary battery is exposed to a high temperature state, the risk of the battery exploding or igniting can be avoided.

【図面の簡単な説明】[Brief description of drawings]

【図1】 充電状態における各種リチウム二次電池用正
極材料をアルゴン雰囲気下、10℃/minの条件で昇温した
ときのDTGの変化状態を示すグラフである。
FIG. 1 is a graph showing changes in DTG when the positive electrode materials for various lithium secondary batteries in a charged state are heated in an argon atmosphere at 10 ° C./min.

【図2】化学式LixNiyCozMmO2で表される化合物からな
るリチウム二次電池用正極材料のDTG増大開始温度とそ
の比表面積との関係を表すグラフである。
FIG. 2 is a graph showing the relationship between the DTG increase initiation temperature and the specific surface area of a positive electrode material for a lithium secondary battery, which is composed of a compound represented by the chemical formula Li x Ni y Co z M m O 2 .

───────────────────────────────────────────────────── フロントページの続き (72)発明者 船橋 敏彦 千葉県千葉市中央区新浜町1番地 川鉄鉱 業株式会社技術研究所内 Fターム(参考) 4G048 AA04 AA05 AB01 AC06 AD03 AE05 5H029 AJ03 AJ12 AK03 AL07 AM03 AM05 AM07 BJ02 CJ02 CJ08 CJ28 HJ00 HJ02 HJ05 HJ07 HJ08 HJ14 5H050 AA08 AA15 BA17 CA08 CB08 GA02 GA05 GA10 GA26 GA27 HA02 HA05 HA07 HA08 HA14 HA20    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Toshihiko Funabashi             River iron ore, 1 Niihama-cho, Chuo-ku, Chiba-shi, Chiba Prefecture             Engineering Co., Ltd. F-term (reference) 4G048 AA04 AA05 AB01 AC06 AD03                       AE05                 5H029 AJ03 AJ12 AK03 AL07 AM03                       AM05 AM07 BJ02 CJ02 CJ08                       CJ28 HJ00 HJ02 HJ05 HJ07                       HJ08 HJ14                 5H050 AA08 AA15 BA17 CA08 CB08                       GA02 GA05 GA10 GA26 GA27                       HA02 HA05 HA07 HA08 HA14                       HA20

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 化学式LixNiyCozMmO2で表される化合物
からなり、かつそのBET比表面積値が0.8m2/g以下である
ことを特徴とする熱安定性が高く、かつ放電容量の大き
いリチウム二次電池用正極材料。ここに、上記化学式に
おいてMはBa,Sr及びBから選んだ1種又は2種以上の元素
であり、x,y,z及びmは各元素のモル比の値であって、そ
れぞれ0.9≦x≦1.1、0.5≦y≦0.95、0.05≦z≦0.5、0.0
005≦m≦0.02である。
1. A high thermal stability characterized by comprising a compound represented by the chemical formula Li x Ni y Co z M m O 2 and having a BET specific surface area value of 0.8 m 2 / g or less, Also, a positive electrode material for a lithium secondary battery having a large discharge capacity. Here, in the above chemical formula, M is Ba, Sr and one or more elements selected from B, x, y, z and m are the values of the molar ratio of each element, 0.9 ≤ x ≤1.1, 0.5 ≤ y ≤ 0.95, 0.05 ≤ z ≤ 0.5, 0.0
005 ≦ m ≦ 0.02.
【請求項2】 化学式LixNiyCozMmO2で表される化合物
は充電状態において化学式LiaNibCocMnO2であって、該
充電状態における化合物のDTG増大開始温度が215℃以上
である請求項1記載の熱安定性が高く、かつ放電容量の
大きいリチウム二次電池用正極材料。ここに、上記化学
式においてMはBa,Sr,及びBから選んだ1種又は2種以上の
元素であり、x,y,z,m,a,b,c及びnは各元素のモル比の値
であって、それぞれ0.9≦x≦1.1、0.5≦y≦0.95、0.05
≦z≦0.5、0.0005≦m≦0.02、0.2≦a≦0.4、0.5≦b≦
0.95、0.05≦c≦0.5、0.0005≦n≦0.02である。
2. The compound represented by the chemical formula Li x Ni y Co z M m O 2 has the chemical formula Li a Ni b Co c M n O 2 in the charged state, and the DTG increase starting temperature of the compound in the charged state. 2. The positive electrode material for lithium secondary batteries according to claim 1, having a high thermal stability and a large discharge capacity. Here, in the above chemical formula, M is Ba, Sr, and one or more elements selected from B, and x, y, z, m, a, b, c and n are molar ratios of each element. Values, 0.9 ≦ x ≦ 1.1, 0.5 ≦ y ≦ 0.95, 0.05, respectively
≦ z ≦ 0.5, 0.0005 ≦ m ≦ 0.02, 0.2 ≦ a ≦ 0.4, 0.5 ≦ b ≦
0.95, 0.05 ≤ c ≤ 0.5, and 0.0005 ≤ n ≤ 0.02.
【請求項3】 DTG増大開始温度が230℃以上である請求
項2記載の熱安定性が高く、かつ放電容量の大きいリチ
ウム二次電池用正極材料。
3. The positive electrode material for a lithium secondary battery, which has a high thermal stability and a large discharge capacity, according to claim 2, which has a DTG increase start temperature of 230 ° C. or higher.
【請求項4】 BET比表面積値が0.5m2/g未満であること
を特徴とする請求項1〜3のいずれかに記載の熱安定性
が高く、かつ放電容量の大きいリチウム二次電池用正極
材料。
4. A lithium secondary battery with high thermal stability and large discharge capacity according to any one of claims 1 to 3, which has a BET specific surface area value of less than 0.5 m 2 / g. Positive electrode material.
【請求項5】 タップ密度が1.5g/cm3以上であることを
特徴とする請求項1〜4のいずれかに記載の熱安定性が
高く、かつ放電容量の大きいリチウム二次電池用正極材
料。
5. The positive electrode material for a lithium secondary battery having high thermal stability and large discharge capacity according to claim 1, wherein the tap density is 1.5 g / cm 3 or more. .
【請求項6】 NiyCoz(OH)2で表される化合物にリチウ
ム塩並びに元素Mを含む塩を添加・混合後、焼成、解砕
して化学式LixNiyCozMmO2で表されるリチウム二次電池
用正極材料を製造するに当たり、 前記NiyCoz(OH)2で表される化合物がタップ密度1.8g/cm
3以上、平均粒径5〜20μmの粉状物であることを特徴と
する請求項1〜5のいずれかに記載の熱安定性が高く、
かつ放電容量の大きいリチウム二次電池用正極材料の製
造方法。ここに、上記元素MはBa,Sr及びBから選んだ1種
又は2種以上の元素であり、x,y,z及びmは各元素のモル
比の値であって、それぞれ0.9≦x≦1.1、0.5≦y≦0.9
5、0.05≦z≦0.5、0.0005≦m≦0.02である。
6. A compound represented by Ni y Co z (OH) 2 is added with and mixed with a lithium salt and a salt containing the element M, followed by firing and crushing to obtain a chemical formula Li x Ni y Co z M m O 2 In producing a positive electrode material for a lithium secondary battery represented by, the compound represented by Ni y Co z (OH) 2 has a tap density of 1.8 g / cm 3.
3 or more, a powdery material having an average particle size of 5 to 20 μm, having high thermal stability according to any one of claims 1 to 5,
And a method for producing a positive electrode material for a lithium secondary battery having a large discharge capacity. Here, the element M is Ba, Sr and one or more elements selected from B, x, y, z and m are the values of the molar ratio of each element, 0.9 ≤ x ≤ 1.1, 0.5 ≦ y ≦ 0.9
5, 0.05 ≦ z ≦ 0.5 and 0.0005 ≦ m ≦ 0.02.
【請求項7】 NiyCoz(OH)2で表される化合物が球状粉
末であることを特徴とする請求項6記載の熱安定性が高
く、かつ放電容量の大きいリチウム二次電池用正極材料
の製造方法。
7. The positive electrode for a lithium secondary battery having high thermal stability and large discharge capacity according to claim 6, wherein the compound represented by Ni y Co z (OH) 2 is a spherical powder. Material manufacturing method.
【請求項8】 焼成は酸素雰囲気において300〜500℃で
2〜6hの保持を行う予備焼成と、該予備焼成後5〜30℃/m
inで昇温する昇温段階と、該昇温段階に引き続き650〜9
00℃で2〜30hの保持を行う最終焼成段階を順次行うもの
であることを特徴とする請求項6又は7記載の熱安定性
が高く、かつ放電容量の大きいリチウム二次電池用正極
材料の製造方法。
8. The firing is performed in an oxygen atmosphere at 300 to 500 ° C.
Pre-baking to hold for 2-6 hours, and 5-30 ° C / m after the pre-baking
a temperature raising step of raising the temperature in, and 650-9 after the temperature raising step.
The positive electrode material for a lithium secondary battery with high thermal stability and large discharge capacity according to claim 6 or 7, characterized in that a final firing step of holding at 00 ° C for 2 to 30 hours is sequentially performed. Production method.
【請求項9】 正極の活物質が請求項1ないし5のいず
れかに記載の正極材料を含むリチウム二次電池。
9. A lithium secondary battery in which the positive electrode active material contains the positive electrode material according to any one of claims 1 to 5.
【請求項10】 正極の活物質が請求項1ないし5のい
ずれかに記載の正極材料であるリチウム二次電池。
10. A lithium secondary battery in which the positive electrode active material is the positive electrode material according to any one of claims 1 to 5.
JP2002166236A 2001-06-07 2002-06-06 Positive electrode material for lithium secondary battery and method for producing the same Expired - Lifetime JP3976249B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002166236A JP3976249B2 (en) 2001-06-07 2002-06-06 Positive electrode material for lithium secondary battery and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001-173285 2001-06-07
JP2001173285 2001-06-07
JP2002166236A JP3976249B2 (en) 2001-06-07 2002-06-06 Positive electrode material for lithium secondary battery and method for producing the same

Publications (2)

Publication Number Publication Date
JP2003100295A true JP2003100295A (en) 2003-04-04
JP3976249B2 JP3976249B2 (en) 2007-09-12

Family

ID=26616565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002166236A Expired - Lifetime JP3976249B2 (en) 2001-06-07 2002-06-06 Positive electrode material for lithium secondary battery and method for producing the same

Country Status (1)

Country Link
JP (1) JP3976249B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004119172A (en) * 2002-09-26 2004-04-15 Sumitomo Metal Mining Co Ltd Positive electrode active material for nonaqueous electrolyte rechargeable battery, its manufacturing method, and nonaqueous electrolyte rechargeable battery
WO2021049198A1 (en) 2019-09-09 2021-03-18 パナソニック株式会社 Non-aqueous electrolyte secondary battery
WO2021059728A1 (en) 2019-09-27 2021-04-01 パナソニックIpマネジメント株式会社 Positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
WO2021095360A1 (en) 2019-11-14 2021-05-20 パナソニックIpマネジメント株式会社 Positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
WO2021100305A1 (en) 2019-11-19 2021-05-27 パナソニックIpマネジメント株式会社 Non-aqueous electrolyte secondary battery
WO2021106324A1 (en) 2019-11-29 2021-06-03 パナソニックIpマネジメント株式会社 Positive-electrode active material for nonaqueous-electrolyte secondary battery, method for producing positive-electrode active material for nonaqueous-electrolyte secondary battery, and nonaqueous-electrolyte secondary battery
WO2021152996A1 (en) 2020-01-31 2021-08-05 パナソニックIpマネジメント株式会社 Positive electrode active material for nonaqueous electrolyte secondary batteries, method for producing positive electrode active material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004119172A (en) * 2002-09-26 2004-04-15 Sumitomo Metal Mining Co Ltd Positive electrode active material for nonaqueous electrolyte rechargeable battery, its manufacturing method, and nonaqueous electrolyte rechargeable battery
WO2021049198A1 (en) 2019-09-09 2021-03-18 パナソニック株式会社 Non-aqueous electrolyte secondary battery
WO2021059728A1 (en) 2019-09-27 2021-04-01 パナソニックIpマネジメント株式会社 Positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
WO2021095360A1 (en) 2019-11-14 2021-05-20 パナソニックIpマネジメント株式会社 Positive electrode active material for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
WO2021100305A1 (en) 2019-11-19 2021-05-27 パナソニックIpマネジメント株式会社 Non-aqueous electrolyte secondary battery
WO2021106324A1 (en) 2019-11-29 2021-06-03 パナソニックIpマネジメント株式会社 Positive-electrode active material for nonaqueous-electrolyte secondary battery, method for producing positive-electrode active material for nonaqueous-electrolyte secondary battery, and nonaqueous-electrolyte secondary battery
WO2021152996A1 (en) 2020-01-31 2021-08-05 パナソニックIpマネジメント株式会社 Positive electrode active material for nonaqueous electrolyte secondary batteries, method for producing positive electrode active material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP3976249B2 (en) 2007-09-12

Similar Documents

Publication Publication Date Title
JP6568268B2 (en) Ni-based cathode material for rechargeable lithium-ion battery
TWI423505B (en) A positive electrode active material for a lithium ion battery, a positive electrode for a lithium ion battery, and a lithium ion battery
TWI424606B (en) A positive electrode active material for a lithium ion battery, a positive electrode for a lithium ion battery, and a lithium ion battery
TWI423506B (en) A positive electrode active material for a lithium ion battery, a positive electrode for a lithium ion battery, and a lithium ion battery
KR101330843B1 (en) Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
TWI423503B (en) A positive electrode active material for a lithium ion battery, a positive electrode for a lithium ion battery, and a lithium ion battery
JP2002158011A (en) Lithium secondary cell positive electrode activator, and manufacturing method of the same
JP2005222953A (en) Positive electrode active material used for lithium secondary battery, method of manufacturing the same, and lithium secondary battery including the same
EP2937917A1 (en) Positive electrode material for lithium secondary batteries
JP2004253169A (en) Lithium secondary battery and manufacturing method of positive electrode active material used therefor
KR100734197B1 (en) Cathode material for use in lithium secondary battery and manufacturing method thereof
JP3976249B2 (en) Positive electrode material for lithium secondary battery and method for producing the same
EP1432056B1 (en) Positive electrode material for lithium secondary battery, method for producing the same, and lithium secondary battery
TWI492444B (en) A positive electrode active material for a lithium ion battery, a positive electrode for a lithium ion battery, and a lithium ion battery
JP2002298915A (en) Nonaqueous electrolyte secondary battery
KR100424638B1 (en) Method of preparing positive active material for rechargeable lithium batteries and preparing the same
TWI424607B (en) A positive electrode active material for a lithium ion battery, a positive electrode for a lithium ion battery, and a lithium ion battery
JP2006185793A (en) Non-aqueous electrolyte secondary battery, and its charging method
TWI424605B (en) A positive electrode active material for a lithium ion battery, a positive electrode for a lithium ion battery, and a lithium ion battery
JP2002246021A (en) Method of producing lithium-containing composite nitride for negative electrode for non-aqueous electrolyte secondary battery
JPH10275613A (en) Nonaqueous electrolyte secondary battery
JP2000260430A (en) Positive electrode active material for organic electrolyte secondary battery, its manufacture and organic electrolyte secondary battery
JP2002075355A (en) Positive electrode active material for organic electrolyte secondary battery, manufacturing method of the positive electrode active material, and organic electrolyte secondary battery using the positive electrode active material
JP2000313621A (en) Substituted lithium manganate, its production, positive pole material for organic electrolyte secondary battery and metalorganic electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040806

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070614

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070615

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100629

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 3976249

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110629

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120629

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130629

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130629

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140629

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term