JP2000313621A - Substituted lithium manganate, its production, positive pole material for organic electrolyte secondary battery and metalorganic electrolyte secondary battery - Google Patents

Substituted lithium manganate, its production, positive pole material for organic electrolyte secondary battery and metalorganic electrolyte secondary battery

Info

Publication number
JP2000313621A
JP2000313621A JP11122043A JP12204399A JP2000313621A JP 2000313621 A JP2000313621 A JP 2000313621A JP 11122043 A JP11122043 A JP 11122043A JP 12204399 A JP12204399 A JP 12204399A JP 2000313621 A JP2000313621 A JP 2000313621A
Authority
JP
Japan
Prior art keywords
lithium
secondary battery
compound
substituted
electrolyte secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11122043A
Other languages
Japanese (ja)
Inventor
Masatsugu Yamaguchi
雅嗣 山口
Keizo Iwatani
敬三 岩谷
Eriko Kawashima
恵利子 川島
Hisao Oikawa
尚夫 及川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JNC Corp
Original Assignee
Chisso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chisso Corp filed Critical Chisso Corp
Priority to JP11122043A priority Critical patent/JP2000313621A/en
Publication of JP2000313621A publication Critical patent/JP2000313621A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an organic electrolyte secondary battery excellent in charge and discharge cycle characteristics at high temperatures. SOLUTION: This substituted lithium manganate represented by the formula (Li1-wZnw)8a [Mn2-xLix]16dO4-yFy (0.02<=w<=0.1; 0<=x<=0.1; 0.01<=y<=0.2) in which a lithium site is substituted with zinc and an oxygen site is substituted with fluorine in a lithium manganese compound oxide forming a spinel type crystal structure is used as a positive pole material for an organic electrolyte secondary battery. The substituted lithium manganate can be produced by passing a compound selected from, e.g. an aluminum compound, a cobalt compound and a nickel compound, dimanganese trioxide obtained by heat-treating a manganese oxide at 550-750 deg.C, a lithium compound, a zinc compound and a fluorine compound through a process for mixing thereof, then heat-treating the resultant mixture in an air atmosphere at 600-900 deg.C and subsequently annealing the heat- treated mixture to at least 300 deg.C at <=10 deg.C/min temperature decreasing rate.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、有機電解液二次電
池用置換マンガン酸リチウムおよびその製造方法、有機
電解液二次電池用正極材料、並びに金属有機電解液二次
電池に関する。
The present invention relates to a substituted lithium manganate for an organic electrolyte secondary battery, a method for producing the same, a positive electrode material for an organic electrolyte secondary battery, and a metal organic electrolyte secondary battery.

【0002】[0002]

【従来の技術】リチウム塩を含む非水電解液を用いるリ
チウム二次電池は公知である。その代表的なものの一つ
は、正極活物質としてLiMn2O4を用い、負極活物質とし
てリチウム、リチウム合金又はリチウムを吸蔵・放出す
る物質を用いたものである。
2. Description of the Related Art A lithium secondary battery using a non-aqueous electrolyte containing a lithium salt is known. One of the typical ones uses LiMn 2 O 4 as a positive electrode active material and uses lithium, a lithium alloy, or a substance that absorbs and releases lithium as a negative electrode active material.

【0003】特開平4−169076号公報には、LiMn
2-xMexO4(Me:Co、Cr、Ni、Ta、Znの少なくとも一種であ
る)で表されるマンガン主体の複合酸化物を正極活物質
とすることが提案されている。しかしながら、該公報で
は、請求項においては、少なくとも一種と記載されてい
るが、詳細な説明や実施例において、二種以上の金属で
置換されたマンガン酸リチウムは記載されていない。ま
た、Crのみで置換された置換マンガン酸リチウムを正極
活物質とした二次電池は、高温時のサイクル特性は著し
く改善されるが、電池の処理の際に、六価クロムの生成
が考えられ、工業的ではない。また、他の金属系(Co、
Ni、Ta、Zn)では、高温時のサイクル特性の改善が十分
ではない。サイクル特性とは、電池を繰り返し使用した
時の、容量の低下の度合いを表すもので、サイクル特性
がいいというのは、繰り返し使用によっても、容量低下
が見られず、初期容量を長く維持する事である。
[0003] JP-A-4-169076 discloses LiMn.
It has been proposed that a manganese-based composite oxide represented by 2-x Me x O 4 (Me: at least one of Co, Cr, Ni, Ta, and Zn) be used as a positive electrode active material. However, in this publication, although the claims state at least one kind, the detailed description and Examples do not disclose lithium manganate substituted with two or more kinds of metals. A secondary battery using a substituted lithium manganate substituted only with Cr as a positive electrode active material has remarkably improved cycle characteristics at high temperatures, but may generate hexavalent chromium during battery treatment. , Not industrial. In addition, other metal systems (Co,
Ni, Ta, and Zn) do not sufficiently improve the cycle characteristics at high temperatures. The cycle characteristics indicate the degree of decrease in capacity when the battery is used repeatedly.A good cycle characteristic means that the capacity does not decrease even after repeated use and the initial capacity is maintained for a long time. It is.

【0004】特開平10−199532号公報には、ス
ピネル型結晶構造のリチウム・マンガン複合酸化物のリ
チウムサイトの一部を、亜鉛、ガリウム、インジウムの
うちいずれか選択された一種又は二種以上の金属元素で
置換することにより、スピネル型結晶構造の安定化を行
っている。しかしながら、電池にした時の高温特性は不
十分である。
Japanese Patent Application Laid-Open No. Hei 10-199532 discloses that a lithium site of a lithium-manganese composite oxide having a spinel-type crystal structure is partially replaced with one or more selected from zinc, gallium and indium. By substituting with a metal element, the spinel crystal structure is stabilized. However, the high temperature characteristics of a battery are insufficient.

【0005】特開平10−177860号公報には、サ
イクル特性改善の為に、Li1+xMn2-xO4-yFz(ここで、x
は0.0133≦x≦0.333、yは0<y≦0.2、
zは0.01≦z≦0.2であり、かつz≦yである)を
正極活物質として用いることが提案されている。しかし
ながら、Fのみで置換された置換マンガン酸リチウムを
正極活物質とした二次電池は、高温特性はまだ不十分で
ある。
Japanese Patent Laid-Open Publication No. Hei 10-177860 discloses that Li 1 + x Mn 2-x O 4-y F z (where x
Is 0.0133 ≦ x ≦ 0.333, y is 0 <y ≦ 0.2,
It is proposed that z be 0.01 ≦ z ≦ 0.2 and z ≦ y) as the positive electrode active material. However, a secondary battery using a substituted lithium manganate substituted only with F as a positive electrode active material still has insufficient high-temperature characteristics.

【0006】[0006]

【発明が解決しようとする課題】本発明の目的は、高温
時においてサイクル特性に優れたスピネル構造の置換マ
ンガン酸リチウムおよびその製造方法、並びにその置換
マンガン酸リチウムを正極活物質として用いた有機電解
液二次電池用正極材料と有機電解液二次電池を提供する
ことである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a substituted lithium manganate having a spinel structure having excellent cycle characteristics at a high temperature, a method for producing the same, and an organic electrolysis using the substituted lithium manganate as a positive electrode active material. An object of the present invention is to provide a positive electrode material for a liquid secondary battery and an organic electrolyte secondary battery.

【0007】[0007]

【課題を解決するための手段】本発明者らは、組成式:
(Li1-wZnw8a[Mn2-xLix16dO4-yFy(0.02≦w
≦0.1、0≦x≦0.1、0.01≦y≦0.2)で
表される置換マンガン酸リチウムを正極活物質として用
いた有機電解液二次電池が、高温時においてサイクル特
性に優れていることを見出し、本発明を完成させるに至
った。
Means for Solving the Problems The present inventors have a composition formula:
(Li 1-w Zn w ) 8a [Mn 2-x Li x ] 16d O 4-y F y (0.02 ≦ w
≤ 0.1, 0 ≤ x ≤ 0.1, 0.01 ≤ y ≤ 0.2), the organic electrolyte secondary battery using the substituted lithium manganate as a positive electrode active material is cycled at high temperatures. They have found that the characteristics are excellent, and have completed the present invention.

【0008】本発明は、下記に示される。 (1)組成式(Li1-wZnw8a[Mn2-xLix16dO4-yF
y(0.02≦w≦0.1、0≦x≦0.1、0.01
≦y≦0.2)で表される置換マンガン酸リチウム。 (2)マンガン酸化物を550〜750℃で熱処理して
得られた三酸化二マンガン、リチウム化合物、亜鉛化合
物およびフッ素化合物を混合後、600〜900℃の空
気雰囲気下で加熱処理後、次いで10℃/分以下の降温
速度で300℃まで徐冷する過程を経て製造された前記
第一項記載の置換マンガン酸リチウム。
The present invention is described below. (1) Composition formula (Li 1-w Zn w ) 8a [Mn 2-x Li x ] 16d O 4-y F
y (0.02 ≦ w ≦ 0.1, 0 ≦ x ≦ 0.1, 0.01
≦ y ≦ 0.2) substituted lithium manganate. (2) Dimanganese trioxide, a lithium compound, a zinc compound and a fluorine compound obtained by heat-treating manganese oxide at 550 to 750 ° C. are mixed, and then heat-treated in an air atmosphere at 600 to 900 ° C .; 2. The substituted lithium manganate according to the above item 1, which is produced through a process of gradually cooling to 300 ° C. at a temperature lowering rate of not more than ° C./min.

【0009】(3)前記第2項において加熱処理後、徐
冷する過程の降温速度を1℃/分以下とすることにより
製造された前記第2項記載の置換マンガン酸リチウム。 (4)マンガン酸化物を550〜750℃で熱処理して
得られた三酸化二マンガン、リチウム化合物、亜鉛化合
物およびフッ素化合物を混合後、600〜900℃の空
気雰囲気下で加熱処理後、次いで10℃/分以下の降温
速度で300℃まで徐冷する過程を経ることによる前記
第1項に記載された置換マンガン酸リチウムの製造方
法。
(3) The substituted lithium manganate according to (2), wherein the temperature is lowered at a rate of 1 ° C./min or less in the step of gradually cooling after the heat treatment in (2). (4) Mixing dimanganese trioxide, a lithium compound, a zinc compound and a fluorine compound obtained by heat-treating manganese oxide at 550 to 750 ° C, heat-treating in an air atmosphere at 600 to 900 ° C, and then 10 2. The method for producing a substituted lithium manganate according to the above item 1, wherein the method comprises a step of gradually cooling to 300 ° C. at a temperature lowering rate of not more than 300 ° C./min.

【0010】(5)前記第4項記載の製造方法において
加熱処理後、徐冷する過程の降温速度を1℃/分以下と
する前記4項記載の置換マンガン酸リチウムの製造方
法。 (6)リチウム、リチウム合金またはリチウムイオンを
吸蔵・放出しうる炭素材料を負極活物質とし、有機溶媒
とリチウム塩電解質の混合液を電解液として用いた有機
電解液二次電池において、該電池用の正極活物質とし
て、前記第1項〜第3項のいずれか1項記載の置換マン
ガン酸リチウムを含んだ有機電解液二次電池用正極材
料。 (7) 前記第6項記載の有機電解液二次電池用正極材
料からなる有機電解液二次電池。
(5) The method for producing a substituted lithium manganate according to the above (4), wherein the rate of temperature decrease in the step of slow cooling after the heat treatment in the production method of the above (4) is 1 ° C./min or less. (6) An organic electrolyte secondary battery using lithium, a lithium alloy or a carbon material capable of occluding and releasing lithium ions as a negative electrode active material and a mixed solution of an organic solvent and a lithium salt electrolyte as an electrolyte. 4. A positive electrode material for an organic electrolyte secondary battery, comprising the substituted lithium manganate according to any one of the above items 1 to 3 as a positive electrode active material. (7) An organic electrolyte secondary battery comprising the positive electrode material for an organic electrolyte secondary battery according to the above (6).

【0011】[0011]

【発明の実施の形態】本発明について更に詳細に説明す
ると、本発明の置換マンガン酸リチウムは、(Li1-wZ
nw8a[Mn2-xLix16dO4-yFy(0.02≦w≦0.
1、0≦x≦0.1、0.01≦y≦0.2)で表され
る化合物であり、マンガン酸化物を550〜750℃で
熱処理して得られた三酸化二マンガン、リチウム化合
物、亜鉛化合物およびフッ素化合物を混合後、600〜
900℃の空気雰囲気下で加熱処理後、次いで10℃/
分以下の降温速度で300℃以下まで徐冷する過程を経
て製造でする。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in more detail. The substituted lithium manganate of the present invention comprises (Li 1-w Z
n w ) 8a [Mn 2-x Li x ] 16d O 4-y F y (0.02 ≦ w ≦ 0.
1, 0 ≦ x ≦ 0.1, 0.01 ≦ y ≦ 0.2), a dimanganese trioxide, lithium compound obtained by heat-treating a manganese oxide at 550 to 750 ° C. , After mixing a zinc compound and a fluorine compound,
After heat treatment in an air atmosphere of 900 ° C, then 10 ° C /
It is manufactured through a process of gradually cooling to a temperature of 300 ° C. or less at a temperature lowering rate of less than one minute.

【0012】本発明の置換マンガン酸リチウムは、マン
ガン酸リチウム(LiMn2O4)のリチウムサイトをZn置換
しているので、かかる置換マンガン酸リチウムを、有機
電解液二次電池の有機電解液二次電池用正極材料に用い
ると、得られる二次電池の高温特性の改善される。
In the substituted lithium manganate of the present invention, the lithium site of lithium manganate (LiMn 2 O 4 ) is Zn-substituted. Therefore, the substituted lithium manganate is replaced with an organic electrolyte solution of an organic electrolyte secondary battery. When used as a positive electrode material for a secondary battery, the high temperature characteristics of the resulting secondary battery are improved.

【0013】また、LiMn2O4の酸素サイトをF置換する
と、得られる置換マンガン酸リチウムを用いた二次電池
の高温特性の改善・容量増加が可能となる。本発明にあ
っては、Zn-Fの複合の置換マンガン酸リチウムを用いる
ことにより、Zn単独より高温特性が著しく改善される二
次電池が得られる。
Further, when the oxygen site of LiMn 2 O 4 is substituted with F, it is possible to improve the high temperature characteristics and increase the capacity of a secondary battery using the obtained substituted lithium manganate. In the present invention, the use of the Zn-F composite substituted lithium manganate can provide a secondary battery having significantly improved high-temperature characteristics as compared to Zn alone.

【0014】本発明の置換マンガン酸リチウムの製造方
法において、用いられるリチウム化合物としては、硝酸
塩、酢酸塩、水酸化物、酸化物などがあげられる。具体
的には、用いられるリチウム化合物としては、炭酸リチ
ウム、水酸化リチウム、硝酸リチウム、酢酸リチウム等
があげられる。また、マンガン酸化物としては、電解二
酸化マンガン(EMD)、化学合成二酸化マンガン(C
MD)、炭酸マンガン、硝酸マンガン、酢酸マンガンが
あげられる。
In the method for producing a substituted lithium manganate of the present invention, the lithium compound used includes nitrates, acetates, hydroxides, oxides and the like. Specifically, the lithium compound used includes lithium carbonate, lithium hydroxide, lithium nitrate, lithium acetate and the like. The manganese oxide includes electrolytic manganese dioxide (EMD) and chemically synthesized manganese dioxide (C
MD), manganese carbonate, manganese nitrate, and manganese acetate.

【0015】本発明の置換マンガン酸リチウムの製造方
法における三酸化二マンガン、リチウム化合物、亜鉛化
合物およびフッ素化合物の混合は、通常の方法でよく、
乾式で混合するか、あるいは均一な混合物を与え易い液
体媒体を用いる湿式法が例示できる。
The mixing of dimanganese trioxide, a lithium compound, a zinc compound and a fluorine compound in the method for producing a substituted lithium manganate of the present invention may be carried out by a conventional method.
Examples thereof include a wet method in which mixing is performed by a dry method or a liquid medium in which a uniform mixture is easily provided.

【0016】(Li1-wZnw8a[Mn2-xLix16dO4-yF
y(0.02≦w≦0.1、0≦x≦0.1、0.01
≦y≦0.2)が生成するには、酸素が必要である。し
かし、加熱雰囲気としては空気雰囲気でよく、十分空気
を供給してやれば良い。空気供給量が、反応理論量に満
たない場合には、酸素欠損の大きいものができる。
(Li 1-w Zn w ) 8a [Mn 2-x Li x ] 16d O 4-y F
y (0.02 ≦ w ≦ 0.1, 0 ≦ x ≦ 0.1, 0.01
≦ y ≦ 0.2) requires oxygen. However, the heating atmosphere may be an air atmosphere, as long as air is sufficiently supplied. When the supply amount of air is less than the reaction theoretical amount, a large oxygen deficiency can be produced.

【0017】本発明の置換マンガン酸リチウムの製造方
法において、三酸化二マンガン、リチウム化合物、亜鉛
化合物およびフッ素化合物を混合後の熱処理温度は60
0〜900℃であり、700〜850℃が好ましい。熱
処理温度が600℃よりも低いと、未反応の三酸化二マ
ンガンが残り、得られた置換マンガン酸リチウムを用い
た二次電池は、初期容量およびサイクル特性が低い。一
方、熱処理温度が900℃より高いと、生成したスピネ
ルから脱酸素反応が起こり、初期容量およびサイクル特
性が低下する。
In the method for producing substituted lithium manganate of the present invention, the heat treatment temperature after mixing dimanganese trioxide, lithium compound, zinc compound and fluorine compound is 60.
The temperature is 0 to 900 ° C, preferably 700 to 850 ° C. If the heat treatment temperature is lower than 600 ° C., unreacted dimanganese trioxide remains, and the secondary battery using the obtained substituted lithium manganate has low initial capacity and cycle characteristics. On the other hand, when the heat treatment temperature is higher than 900 ° C., a deoxygenation reaction occurs from the generated spinel, and the initial capacity and cycle characteristics are reduced.

【0018】本発明の置換マンガン酸リチウムの製造方
法において、徐冷する過程の降温速度は、少なくとも3
00℃まで、10℃/分以下、好ましくは1.0℃/分
以下の速度で降温させる。
In the method for producing a substituted lithium manganate of the present invention, the rate of temperature decrease during the slow cooling step is at least 3
The temperature is lowered to 00 ° C at a rate of 10 ° C / min or less, preferably 1.0 ° C / min or less.

【0019】[0019]

【実施例】以下に実施例及び比較例により、本発明をさ
らに具体的に説明する。
The present invention will be described more specifically with reference to the following examples and comparative examples.

【0020】<実施例1>BET比表面積49.0(m2
g)、細孔容積0.086(ml/g)、細孔径20〜
80nmの細孔容積量0.0262(ml/g)を有す
るEMDを600℃で3時間、空気雰囲気下で熱処理を
行い、Mn2O3に誘導した。
Example 1 BET specific surface area 49.0 (m 2 /
g), pore volume 0.086 (ml / g), pore diameter 20 to
EMD having an 80 nm pore volume of 0.0262 (ml / g) was heat-treated at 600 ° C. for 3 hours in an air atmosphere to induce Mn 2 O 3 .

【0021】なお、EMDのBET比表面積は、窒素の吸着法
で求めた。また、該の細孔容積は、窒素の吸着・離脱法
より、BJH( Barrett, Joyner, Hallender )法より算
出した。また、該の細孔径20〜80nmの細孔容積量
は、窒素の吸着・離脱法より、BJH法より算出した。な
お、装置としては、コウルター(COULTERTMSA3100
plus)を用いた。
The BET specific surface area of EMD was determined by a nitrogen adsorption method. The pore volume was calculated by the BJH (Barrett, Joyner, Hallender) method by the nitrogen adsorption / desorption method. The volume of pores having a pore diameter of 20 to 80 nm was calculated by the BJH method by the nitrogen adsorption / desorption method. In addition, as a device, Coulter (COULTER TM SA3100
plus).

【0022】該Mn2O3、炭酸リチウム、酸化亜鉛および
フッ化リチウムを、マンガン、リチウム、亜鉛およびフ
ッ素との原子比が1.954:0.997:0.04
9:0.049となるように秤量した。秤量後、ボール
ミルでよく混合した。得られた混合物を電気炉中で、7
70℃で10時間、空気雰囲気中で加熱した後、300
℃まで1.0℃/minで降下させた後自然放冷して、
(Li0.951Zn0.049)[Mn1. 954Li0.046]O3.951F0.049組成
式で表される置換マンガン酸リチウムを製造した。
The Mn 2 O 3 , lithium carbonate, zinc oxide and lithium fluoride have an atomic ratio of manganese, lithium, zinc and fluorine of 1.954: 0.997: 0.04.
9: 0.049. After weighing, they were mixed well by a ball mill. The resulting mixture is placed in an electric furnace at 7
After heating in air atmosphere at 70 ° C. for 10 hours, 300
After cooling down to 1.0 ° C / min at 1.0 ° C / min,
(Li 0.951 Zn 0.049) [Mn 1. 954 Li 0.046] were produced substituted lithium manganese oxide represented by O 3.951 F 0.049 composition formula.

【0023】電池の製作:該(Li0.951Zn0.049)[Mn
1.954Li0.046]O3.951F0.049 20mgとバインダー
(テフロン:アセチレンブラック=1:2) 12mg
を秤量し、乳鉢でよく摺りつぶし、SUS304 100Mesh
φ16mmの集電体の上に伸ばした後、2ton/cm2
圧力でプレス成形して正極を作製した。コイン型セル内
に、ポリプロピレン製のフィルムからなるセパレターを
挟んで、一方に上記正極、他方にLi箔(負極)を配置
し、これに非水電解液を加えてケースを密封した。非水
電解液としては、エチレンカーボネートとジメチルカー
ボネートとの1:2(容量比)混合液に、LiPF6を1モル
/lとなるように溶解したものを用いた。
Production of battery: (Li 0.951 Zn 0.049 ) [Mn
1.954 Li 0.046 ] O 3.951 F 0.049 20 mg and binder (Teflon: acetylene black = 1: 2) 12 mg
Weigh and crush well with mortar, SUS304 100Mesh
After being spread on a φ16 mm current collector, a positive electrode was prepared by press molding at a pressure of 2 ton / cm 2 . In a coin-shaped cell, a separator made of a polypropylene film was sandwiched, the above positive electrode was placed on one side, and a Li foil (negative electrode) was placed on the other side, and a non-aqueous electrolyte was added thereto, and the case was sealed. As the non-aqueous electrolyte, a solution obtained by dissolving LiPF 6 at a concentration of 1 mol / l in a 1: 2 (volume ratio) mixture of ethylene carbonate and dimethyl carbonate was used.

【0024】初期放電容量および充放電サイクル特性;
上記で製作した電池につき、初期放電容量および充放電
サイクル特性を高温(60℃)で測定した。充放電サイ
クル試験は、3.0Vから4.2V(4.2Vから定電
圧充電)の範囲で、0.8mAで定電流定電圧充電する
ことにより行い、1サイクル目に対して、50サイクル
目の容量である。結果は、表―1に示した。
Initial discharge capacity and charge / discharge cycle characteristics;
The initial discharge capacity and charge / discharge cycle characteristics of the battery prepared above were measured at a high temperature (60 ° C.). The charge / discharge cycle test was performed by charging the battery with a constant current and a constant voltage of 0.8 mA in a range of 3.0 V to 4.2 V (charging at a constant voltage from 4.2 V). Is the capacity. The results are shown in Table 1.

【0025】<実施例2>BET比表面積49.0(m2
g)、細孔容積0.086(ml/g)、細孔径20〜
80nmの細孔容積量0.0262(ml/g)を有す
るEMDを600℃で3時間、空気雰囲気下で熱処理を
行い、Mn2O3に誘導した。該Mn2O3、炭酸リチウム、酸化
亜鉛およびフッ化リチウムを、マンガン、リチウム、亜
鉛およびフッ素との原子比が1.954:0.997:
0.049:0.025となるように秤量した。秤量
後、ボールミルでよく混合した。得られた混合物を電気
炉中で、770℃で10時間、空気雰囲気中で加熱した
後、300℃まで1.0℃/minで降下させた後自然
放冷して、(Li0.951Zn0.049)[Mn1.954Li0.046]O3.975
F0.025組成式で表される置換マンガン酸リチウムを製造
した。該(Li0.951Zn0.04 9)[Mn1.954Li0.046]O3.975F
0.025を用いて、実施例1に準拠して電池を作製し、6
0℃で充放電測定を行った。結果は表―1に示した。
<Example 2> BET specific surface area 49.0 (m 2 /
g), pore volume 0.086 (ml / g), pore diameter 20 to
EMD having an 80 nm pore volume of 0.0262 (ml / g) was heat-treated at 600 ° C. for 3 hours in an air atmosphere to induce Mn 2 O 3 . The atomic ratio of Mn 2 O 3 , lithium carbonate, zinc oxide and lithium fluoride to manganese, lithium, zinc and fluorine is 1.954: 0.997:
It weighed so that it might be set to 0.049: 0.025. After weighing, they were mixed well by a ball mill. The obtained mixture was heated in an electric furnace at 770 ° C. for 10 hours in an air atmosphere, then dropped to 300 ° C. at 1.0 ° C./min, and allowed to cool naturally to obtain (Li 0.951 Zn 0.049 ) [Mn 1.954 Li 0.046 ] O 3.975
A substituted lithium manganate represented by a composition formula of F 0.025 was produced. The (Li 0.951 Zn 0.04 9) [ Mn 1.954 Li 0.046] O 3.975 F
Using 0.025 , a battery was prepared in accordance with Example 1, and 6
The charge / discharge measurement was performed at 0 ° C. The results are shown in Table 1.

【0026】<比較例1>BET比表面積49.0(m2
g)、細孔容積0.086(ml/g)、細孔径20〜
80nmの細孔容積量0.0262(ml/g)を有す
るEMDを600℃で3時間、空気雰囲気下で熱処理を
行い、Mn2O3に誘導した。該Mn2O3、炭酸リチウムおよび
酸化亜鉛を、マンガン、リチウムおよび亜鉛との原子比
が1.954:0.997:0.049となるように秤
量した。秤量後、ボールミルでよく混合した。得られた
混合物を電気炉中で、770℃で10時間、空気雰囲気
中で加熱した後、300℃まで1.0℃/minで降下
させた後自然放冷して、(Li0 .951Zn0.049)[Mn1.954Li
0.046]O4組成式で表される置換マンガン酸リチウムを
製造した。該(Li0.951Zn0.049)[Mn1.954Li0.046]O4
用いて、実施例1に準拠して、電池を作製し、60℃で
充放電測定を行った。結果は表―1に示した。
Comparative Example 1 BET specific surface area 49.0 (m 2 /
g), pore volume 0.086 (ml / g), pore diameter 20 to
EMD having an 80 nm pore volume of 0.0262 (ml / g) was heat-treated at 600 ° C. for 3 hours in an air atmosphere to induce Mn 2 O 3 . The Mn 2 O 3 , lithium carbonate and zinc oxide were weighed so that the atomic ratio of manganese, lithium and zinc was 1.954: 0.997: 0.049. After weighing, they were mixed well by a ball mill. The resulting mixture in an electric furnace, 10 hours at 770 ° C., was heated in an air atmosphere, and spontaneous cooling after being lowered at 1.0 ° C. / min up to 300 ℃, (Li 0 .951 Zn 0.049 ) [Mn 1.954 Li
0.046 ] O 4 The substituted lithium manganate represented by the composition formula was produced. Using (Li 0.951 Zn 0.049 ) [Mn 1.954 Li 0.046 ] O 4 , a battery was fabricated according to Example 1, and charge / discharge measurement was performed at 60 ° C. The results are shown in Table 1.

【0027】<比較例2>BET比表面積49.0(m2
g)、細孔容積0.086(ml/g)、細孔径20〜
80nmの細孔容積量0.0262(ml/g)を有す
るEMDを600℃で3時間、空気雰囲気下で熱処理を
行い、Mn2O3に誘導した。該Mn2O3、炭酸リチウムおよび
フッ化リチウムを、マンガン、リチウムおよびフッ素と
の原子比が1.923:1.076:0.096となる
ように秤量した。秤量後、ボールミルでよく混合した。
得られた混合物を電気炉中で、770℃で10時間、空
気雰囲気中で加熱した後、300℃まで1.0℃/mi
nで降下させた後自然放冷して、(Li)[Mn1.923L
i0.076]O3.904F0.096の組成式で表される置換マンガン
酸リチウムを製造した。該(Li)[Mn1.923Li0.076]O
3.904F0.096を用いて、実施例1に準拠して、電池を作
製し、60℃で充放電測定を行った。結果は表―1に示
した。
Comparative Example 2 BET specific surface area 49.0 (m 2 /
g), pore volume 0.086 (ml / g), pore diameter 20 to
EMD having an 80 nm pore volume of 0.0262 (ml / g) was heat-treated at 600 ° C. for 3 hours in an air atmosphere to induce Mn 2 O 3 . The Mn 2 O 3 , lithium carbonate and lithium fluoride were weighed such that the atomic ratio with manganese, lithium and fluorine was 1.923: 1.076: 0.096. After weighing, they were mixed well by a ball mill.
The resulting mixture was heated in an electric furnace at 770 ° C. for 10 hours in an air atmosphere, and then to 300 ° C. at 1.0 ° C./mi.
n, let it cool naturally, and let it cool down (Li) [Mn 1.923 L
i 0.076] were produced substituted lithium manganese oxide represented by a composition formula of O 3.904 F 0.096. The (Li) [Mn 1.923 Li 0.076 ] O
A battery was prepared using 3.904 F 0.096 in accordance with Example 1, and charge / discharge measurement was performed at 60 ° C. The results are shown in Table 1.

【0028】[0028]

【表1】 [Table 1]

【0029】表−1によると、Zn、Fの単独系よりも、Z
nとの複合した、Zn-F系においてサイクル特性が改善さ
れたことがわかる。
[0029] According to Table 1, ZZ is higher than that of Zn and F alone.
It can be seen that the cycle characteristics were improved in the Zn-F system combined with n.

【発明の効果】本発明に係わる組成式の置換マンガン酸
リチウムを有機電解液二次電池用正極材料として用いた
有機電解液二次電池は、高温時において充放電サイクル
特性に優れている。
The organic electrolyte secondary battery using the substituted lithium manganate of the composition formula according to the present invention as a cathode material for an organic electrolyte secondary battery has excellent charge / discharge cycle characteristics at high temperatures.

フロントページの続き Fターム(参考) 4G048 AA04 AA06 AB01 AB05 AC06 AE05 AE06 5H003 AA04 BA01 BB05 BC01 BC06 BD01 5H014 AA01 BB01 BB06 EE10 HH00 HH08 5H029 AJ05 AK03 AL06 AM03 AM04 AM05 AM07 CJ02 CJ08 CJ28 HJ02 HJ14 Continued on the front page F-term (reference) 4G048 AA04 AA06 AB01 AB05 AC06 AE05 AE06 5H003 AA04 BA01 BB05 BC01 BC06 BD01 5H014 AA01 BB01 BB06 EE10 HH00 HH08 5H029 AJ05 AK03 AL06 AM03 AM04 AM05 AM07 CJ02 CJJ CJ02 CJ08

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 組成式(Li1-wZnw8a[Mn2-xLix16dO
4-yFy(0.02≦w≦0.1、0≦x≦0.1、0.
01≦y≦0.2)で表される置換マンガン酸リチウ
ム。
1. Composition formula (Li 1-w Zn w ) 8a [Mn 2-x Li x ] 16d O
4-y F y (0.02 ≦ w ≦ 0.1, 0 ≦ x ≦ 0.1, 0.
01 ≦ y ≦ 0.2) substituted lithium manganate.
【請求項2】 マンガン酸化物を550〜750℃で熱
処理して得られた三酸化二マンガン、リチウム化合物、
亜鉛化合物およびフッ素化合物を混合後、600〜90
0℃の空気雰囲気下で加熱処理後、次いで10℃/分以
下の降温速度で300℃まで徐冷する過程を経て製造さ
れた請求項1に記載された置換マンガン酸リチウム。
2. Dimanganese trioxide, a lithium compound, obtained by heat-treating a manganese oxide at 550 to 750 ° C.
After mixing the zinc compound and the fluorine compound, 600 to 90
2. The substituted lithium manganate according to claim 1, wherein the substituted lithium manganate is produced through a process of performing a heat treatment in an air atmosphere at 0 ° C., and then gradually cooling to 300 ° C. at a temperature lowering rate of 10 ° C./min or less.
【請求項3】 請求項2において、加熱処理後、徐冷す
る過程の降温速度を1℃/分以下とすることにより製造
された請求項2に記載された置換マンガン酸リチウム。
3. The substituted lithium manganate according to claim 2, wherein the temperature is lowered at a rate of 1 ° C./min or less in the step of gradually cooling after the heat treatment.
【請求項4】 マンガン酸化物を550〜750℃で熱
処理して得られた三酸化二マンガン、リチウム化合物、
亜鉛化合物およびフッ素化合物を混合後、600〜90
0℃の空気雰囲気下で加熱処理し、次いで10℃/分以
下の降温速度で300℃まで徐冷する過程ことによる請
求項1に記載された置換マンガン酸リチウムの製造方
法。
4. Manganese oxide, manganese trioxide obtained by heat treatment at 550 to 750 ° C., a lithium compound,
After mixing the zinc compound and the fluorine compound, 600 to 90
The method for producing a substituted lithium manganate according to claim 1, wherein a heat treatment is carried out in an air atmosphere at 0 ° C, and then the temperature is gradually lowered to 300 ° C at a temperature lowering rate of 10 ° C / min or less.
【請求項5】 請求項4記載の製造方法において加熱処
理後、徐冷する過程の降温速度を1℃/分以下とする請
求項4記載の置換マンガン酸リチウムの製造方法。
5. The method for producing a substituted lithium manganate according to claim 4, wherein the temperature decreasing rate in the step of gradually cooling after the heat treatment in the production method according to claim 4 is 1 ° C./min or less.
【請求項6】 リチウム、リチウム合金またはリチウム
イオンを吸蔵・放出しうる炭素材料を負極活物質とし、
有機溶媒とリチウム塩電解質の混合液を電解液として用
いた有機電解液二次電池において、該電池用の正極活物
質として、請求項1〜請求項3のいずれか1項記載の置
換マンガン酸リチウムを含んだ有機電解液二次電池用正
極材料。
6. A negative electrode active material comprising a carbon material capable of occluding and releasing lithium, a lithium alloy or lithium ions,
4. A substituted lithium manganate according to any one of claims 1 to 3, as a positive electrode active material for an organic electrolyte secondary battery using a mixed solution of an organic solvent and a lithium salt electrolyte as an electrolyte. A positive electrode material for an organic electrolyte secondary battery containing:
【請求項7】 請求項6記載の有機電解液二次電池用正
極材料からなる有機電解液二次電池。
7. An organic electrolyte secondary battery comprising the positive electrode material for an organic electrolyte secondary battery according to claim 6.
JP11122043A 1999-04-28 1999-04-28 Substituted lithium manganate, its production, positive pole material for organic electrolyte secondary battery and metalorganic electrolyte secondary battery Pending JP2000313621A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11122043A JP2000313621A (en) 1999-04-28 1999-04-28 Substituted lithium manganate, its production, positive pole material for organic electrolyte secondary battery and metalorganic electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11122043A JP2000313621A (en) 1999-04-28 1999-04-28 Substituted lithium manganate, its production, positive pole material for organic electrolyte secondary battery and metalorganic electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JP2000313621A true JP2000313621A (en) 2000-11-14

Family

ID=14826202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11122043A Pending JP2000313621A (en) 1999-04-28 1999-04-28 Substituted lithium manganate, its production, positive pole material for organic electrolyte secondary battery and metalorganic electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2000313621A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117776268A (en) * 2023-12-27 2024-03-29 台州闪能科技有限公司 Preparation method of high-capacity long-life lithium manganate positive electrode material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117776268A (en) * 2023-12-27 2024-03-29 台州闪能科技有限公司 Preparation method of high-capacity long-life lithium manganate positive electrode material

Similar Documents

Publication Publication Date Title
JP4894969B1 (en) Nickel-manganese composite hydroxide particles and production method thereof, positive electrode active material for non-aqueous electrolyte secondary battery and production method thereof, and non-aqueous electrolyte secondary battery
EP2937917B1 (en) Positive electrode material for lithium secondary batteries
EP1450423B1 (en) Active material for positive electrode in non-aqueous electrolyte secondary battery
JP4856847B2 (en) Positive electrode active material for secondary battery and method for producing the same
KR101056463B1 (en) Lithium Metal Oxide Materials, Synthesis Methods and Uses
JP5257272B2 (en) Positive electrode material for lithium secondary battery, secondary battery using the same, and method for producing positive electrode material for lithium secondary battery
Han et al. Synthesis and electrochemical properties of lithium cobalt oxides prepared by molten-salt synthesis using the eutectic mixture of LiCl–Li2CO3
JP3982658B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the positive electrode active material
EP2544276A1 (en) Positive electrode active material for lithium-ion batteries, positive electrode for lithium-ion batteries, and lithium-ion battery
EP1497876A1 (en) Complex lithium metal oxides with enhanced cycle life and safety and a process for preparation thereof
JP6986879B2 (en) Positive electrode active material particle powder for non-aqueous electrolyte secondary battery and its manufacturing method, and non-aqueous electrolyte secondary battery
WO2005081338A1 (en) Positive active electrode material with improved cycling stability
JP2004006277A (en) Positive electrode material for lithium secondary batteries, rechargeable battery therewith and manufacturing process thereof
KR101418060B1 (en) Preparation method of a positive active for a lithium secondary battery
US7575831B2 (en) Co-precipitation method for the preparation of Li1+xNi1-yCoyO2-based cathode materials
JP2002279987A (en) Material of positive electrode for lithium secondary battery, and the lithium secondary battery using the material
Manev et al. Rechargeable lithium battery with spinel-related λ-MnO2 III. Scaling-up problems associated with LiMn2O4 synthesis
JP2000323122A (en) Positive electrode active material for non-aqueous electrolyte secondary battery and manufacture thereof
Liang et al. One-step, low-temperature route for the preparation of spinel LiMn2O4 as a cathode material for rechargeable lithium batteries
JP3976249B2 (en) Positive electrode material for lithium secondary battery and method for producing the same
KR20050047291A (en) Cathode material for lithium secondary battery and method for preparing the same
Alcántara et al. New NixMg6− xMnO8 mixed oxides as active materials for the negative electrode of lithium-ion cells
JP2013004401A (en) Positive electrode active material for nonaqueous secondary battery, method for manufacturing the same, and nonaqueous secondary battery
JP2000313621A (en) Substituted lithium manganate, its production, positive pole material for organic electrolyte secondary battery and metalorganic electrolyte secondary battery
JP4774661B2 (en) Lithium transition metal composite oxide, positive electrode material for lithium secondary battery, positive electrode for lithium secondary battery and lithium secondary battery, and method for producing lithium transition metal composite oxide