JP2003100287A - Method for manufacturing positive electrode or negative electrode and battery made using the same - Google Patents
Method for manufacturing positive electrode or negative electrode and battery made using the sameInfo
- Publication number
- JP2003100287A JP2003100287A JP2001292405A JP2001292405A JP2003100287A JP 2003100287 A JP2003100287 A JP 2003100287A JP 2001292405 A JP2001292405 A JP 2001292405A JP 2001292405 A JP2001292405 A JP 2001292405A JP 2003100287 A JP2003100287 A JP 2003100287A
- Authority
- JP
- Japan
- Prior art keywords
- negative electrode
- positive electrode
- active material
- current collector
- electrode active
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Cell Electrode Carriers And Collectors (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は電解質層を介して正
極体と負極体とを有する電池に係り、特に正極体または
負極体の製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a battery having a positive electrode body and a negative electrode body with an electrolyte layer in between, and more particularly to a method for manufacturing a positive electrode body or a negative electrode body.
【0002】[0002]
【従来の技術】図2は電極体、具体的には正極体と負極
体とを積層している積層型電池の概略図である。この積
層型電池は一般に複数の電極体を多層に積層される。し
かし図2は理解し易いように1層のみの例を図示してい
る。この電池は固体電解質3を介して正極体2と負極体
4とを積層したものである。例えばこの正極体2は正極
集電体21面に正極活物質22を設けている。そして正
極体2は正極集電体21に接続された正極リード5を介
して電池缶8の正極端子に接続されている。次に負極体
4は負極集電体41面に負極活物質42を設けている。
そして負極体4は負極集電体41に接続された負極リー
ド6を介して電池缶8の負極端子に接続されている。こ
のような技術を使用した電池は特開平8−148141
号公報に記載されている。2. Description of the Related Art FIG. 2 is a schematic view of a laminated battery in which an electrode body, specifically, a positive electrode body and a negative electrode body are laminated. In this laminated battery, a plurality of electrode bodies are generally laminated in multiple layers. However, FIG. 2 illustrates an example of only one layer for easy understanding. This battery is one in which a positive electrode body 2 and a negative electrode body 4 are laminated with a solid electrolyte 3 interposed therebetween. For example, the positive electrode body 2 has the positive electrode active material 22 provided on the surface of the positive electrode current collector 21. The positive electrode body 2 is connected to the positive electrode terminal of the battery can 8 via the positive electrode lead 5 connected to the positive electrode current collector 21. Next, in the negative electrode body 4, the negative electrode active material 42 is provided on the surface of the negative electrode current collector 41.
The negative electrode body 4 is connected to the negative electrode terminal of the battery can 8 via the negative electrode lead 6 connected to the negative electrode current collector 41. A battery using such a technique is disclosed in Japanese Patent Laid-Open No. 8-148141.
It is described in Japanese Patent Publication No.
【0003】[0003]
【発明が解決しようとする課題】これら電池は更に大き
な電池容量が望まれている。しかし電池の型格によって
サイズ、形が限られている。このため電池容量を増大さ
せる方法としては活物質の分量を増大させ、増大させた
活物質の分量だけを電池容量に寄与しない集電体の厚み
を減少させる方法がある。These batteries are required to have a larger battery capacity. However, the size and shape are limited depending on the battery type. Therefore, as a method of increasing the battery capacity, there is a method of increasing the amount of the active material and reducing the thickness of the current collector that does not contribute only to the increased amount of the active material.
【0004】しかし集電体の厚みを減少させると、集電
体の機械強度が不足し製造工程での取り扱いが困難にな
る。更に活物質前駆体に含まれる溶媒が酸性であるため
に集電体に活物質を塗布すると集電体表面を腐食する。
従って内部抵抗を増大するという問題がある。However, when the thickness of the current collector is reduced, the mechanical strength of the current collector is insufficient and it becomes difficult to handle in the manufacturing process. Furthermore, since the solvent contained in the active material precursor is acidic, when the active material is applied to the current collector, the surface of the current collector is corroded.
Therefore, there is a problem of increasing the internal resistance.
【0005】本発明の目的は集電体の厚みを減少させて
も、取り扱いを困難としない機械強度を保ち、且つ電池
容量を増大させた電池を得ようとするものである。さら
に活物質内の溶媒による集電体の腐食を防止して電池の
内部抵抗の増大を防止しようとするものである。An object of the present invention is to obtain a battery in which the thickness of the current collector is reduced, the mechanical strength is maintained so that handling is not difficult, and the battery capacity is increased. Further, it is intended to prevent the internal resistance of the battery from increasing by preventing the current collector from being corroded by the solvent in the active material.
【0006】[0006]
【課題を解決するための手段】上記目的を達成するため
に、請求項1に記載の発明は薄膜集電体の表面に後の工
程で除去可能な高分子補強膜を形成した状態で所定の正
極活物質または負極活物質を形成し、該活物質の焼成時
に前記高分子補強膜を消失させることを特徴とする正極
体または負極体の製造方法である。従って集電体の厚み
を減少させることができ、且つ取り扱いを困難としない
機械強度を保ち、且つ電池容量を増大させた電池を得る
ことができる。更に集電体表面の腐食を防止できるため
電池の内部抵抗の増大を防止できる。In order to achieve the above object, the invention according to claim 1 provides a thin film current collector with a predetermined polymer reinforced film which is removable in a subsequent step. A method for producing a positive electrode body or a negative electrode body, which comprises forming a positive electrode active material or a negative electrode active material and causing the polymer reinforcing film to disappear when the active material is baked. Therefore, it is possible to obtain a battery in which the thickness of the current collector can be reduced, the mechanical strength that does not make the handling difficult is maintained, and the battery capacity is increased. Furthermore, since the corrosion of the surface of the current collector can be prevented, the internal resistance of the battery can be prevented from increasing.
【0007】続いて、請求項2に記載の発明は集電体の
片面又は両面に補強部材を形成して集電補強体を作成す
る工程と、該集電補強体の片面又は両面に正極活物質又
は正極活物質前駆体を形成して正極部材を作成する工
程、または該集電補強体の片面又は両面に負極活物質又
は負極活物質前駆体を形成して負極部材を作成する工程
と、前記正極部材または前記負極部材を焼成して正極体
または負極体を作成する工程とを有することを特徴とす
る正極体または負極体の製造方法である。結果として、
集電体の厚みを減少させることができ、且つ取り扱いを
困難としない機械強度を保ち、且つ電池容量を増大させ
た電池を得ることができる。更に集電体表面の腐食を防
止できるため電池の内部抵抗の増大を防止できる。Next, in the invention as set forth in claim 2, a step of forming a reinforcing member on one side or both sides of the current collector to prepare a current collecting reinforcement, and a positive electrode active material on one side or both sides of the current collecting reinforcement. A step of forming a positive electrode member by forming a substance or a positive electrode active material precursor, or a step of forming a negative electrode member by forming a negative electrode active material or a negative electrode active material precursor on one surface or both surfaces of the current collector reinforcement, And a step of firing the positive electrode member or the negative electrode member to prepare a positive electrode body or a negative electrode body. as a result,
It is possible to obtain a battery in which the thickness of the current collector can be reduced, the mechanical strength that does not make handling difficult is maintained, and the battery capacity is increased. Furthermore, since the corrosion of the surface of the current collector can be prevented, the internal resistance of the battery can be prevented from increasing.
【0008】次に請求項3に記載の発明は請求項1記載
の補強部材が高分子化合物のポリエーテル、ポリエステ
ル、アクリル樹脂、エポキシ樹脂、スチレン樹脂の少な
くとも1種類から成る正極体または負極体の製造方法で
ある。従って、集電体の厚みを減少させることができ、
且つ取り扱いを困難としない機械強度を保ち、且つ電池
容量を増大させた電池を得ることができる。Next, in the invention according to claim 3, the reinforcing member according to claim 1 is a positive electrode body or a negative electrode body made of at least one kind of polyether, polyester, acrylic resin, epoxy resin and styrene resin which are high molecular compounds. It is a manufacturing method. Therefore, the thickness of the current collector can be reduced,
Further, it is possible to obtain a battery having increased mechanical capacity and maintaining mechanical strength that does not make handling difficult.
【0009】更に請求項4に記載の発明は請求項1、
2、3記載の正極体、負極体の少なくとも1つを有する
電池である。結果として、電池容量を増大させた電池を
得ることができる。Further, the invention according to claim 4 is the invention according to claim 1,
A battery having at least one of the positive electrode body and the negative electrode body described in 2 and 3. As a result, a battery with increased battery capacity can be obtained.
【0010】[0010]
【発明の実施の形態】<実施例1>図1は本発明に係る
電極体の製造方法を説明する断面図である。この電極体
とは正極体または負極体のことである。
(1)最初に正極集電体21を準備する。この正極集電
体21は縦幅約5cm、横幅約8cm、厚み約2 μm の
薄膜状のアルミニウム材である。この正極集電体21の
片面に、高分子化合物のポリエーテル、具体的にはポリ
エチレンオキサイド(Mw=1,000,000)の2wt% アセトニト
リル溶液を塗布し、80度Cでアセトニトリル溶媒を自然
乾燥させる。従って集電体上にポリエチレンオキサイド
が固着される。結果として正極集電体21面に補強部材
7を形成されるために機械強度を確保できる。従って正
極集電体21の取り扱いが容易になる。
(2)次に、正極集電体21の補強部材7上にゾルゲル
法によってLiCoO2の正極活物質前駆体22を形成した。
この正極活物質前駆体22の形成の詳細は溶媒のイソプ
ロパノール100 重量部、活物質材料のリチウムイソプロ
ポキシド10重量部、活物質材料の炭酸コバルト10重量
部、触媒の酢酸20重量部、水50重量部、分散安定剤のポ
リビニルピロリドン30重量部とを1 時間混合攪拌して正
極活物質前駆体の溶液を作製し、続いて正極活物質前駆
体22の溶液を補強部材7上に塗布した。BEST MODE FOR CARRYING OUT THE INVENTION <Embodiment 1> FIG. 1 is a sectional view for explaining a method for manufacturing an electrode body according to the present invention. The electrode body is a positive electrode body or a negative electrode body. (1) First, the positive electrode current collector 21 is prepared. The positive electrode current collector 21 is a thin film aluminum material having a length of about 5 cm, a width of about 8 cm, and a thickness of about 2 μm. On one surface of this positive electrode current collector 21, a polyether of a polymer compound, specifically, a 2 wt% acetonitrile solution of polyethylene oxide (Mw = 1,000,000) is applied, and the acetonitrile solvent is naturally dried at 80 ° C. Therefore, polyethylene oxide is fixed on the current collector. As a result, since the reinforcing member 7 is formed on the surface of the positive electrode current collector 21, mechanical strength can be secured. Therefore, handling of the positive electrode current collector 21 becomes easy. (2) Next, the positive electrode active material precursor 22 of LiCoO 2 was formed on the reinforcing member 7 of the positive electrode current collector 21 by the sol-gel method.
The details of the formation of the positive electrode active material precursor 22 are as follows: 100 parts by weight of isopropanol as a solvent, 10 parts by weight of lithium isopropoxide as an active material, 10 parts by weight of cobalt carbonate as an active material, 20 parts by weight of acetic acid as a catalyst, and 50 parts of water. By weight, 30 parts by weight of polyvinylpyrrolidone as a dispersion stabilizer were mixed and stirred for 1 hour to prepare a solution of the positive electrode active material precursor, and subsequently, the solution of the positive electrode active material precursor 22 was applied onto the reinforcing member 7.
【0011】従って正極集電体21面に補強部材7を介
して酸性の正極活物質前駆体22を設けるため正極集電
体21表面の腐食を防止できる。Therefore, since the acidic positive electrode active material precursor 22 is provided on the surface of the positive electrode current collector 21 through the reinforcing member 7, corrosion of the surface of the positive electrode current collector 21 can be prevented.
【0012】このようなゾルゲル法以外としては次のよ
うな方法がある。例えば、正極活物質粉末と結着剤と溶
媒とを混合した正極活物質22を正極集電体21の補強
部材7の上に塗布する方法である。
(3)続いて、600 度Cの空気雰囲気中で正極活物質前
駆体22または正極活物質22を塗布された正極集電体
21を10分間焼成を行い正極部材2を作製した。従って
補強部材7であるポリエチレンオキサイドは燃焼気化さ
れた。ポリエチレンオキサイドが燃焼気化されたために
集電体と活物質との間の導電抵抗が無くなり良好な電気
的導通が確保される。そして正極活物質前駆体22また
は正極活物質22内の溶媒も燃焼気化されるために正極
活物質22が正極集電体21表面に形成されても正極集
電体21表面の腐食を防止できる。
(4)上記塗布処理と焼成処理を順次繰り返して正極活
物質22は10μm の膜厚に形成された。Other than the sol-gel method, there are the following methods. For example, it is a method of applying the positive electrode active material 22 in which the positive electrode active material powder, the binder, and the solvent are mixed onto the reinforcing member 7 of the positive electrode current collector 21. (3) Subsequently, the positive electrode active material precursor 22 or the positive electrode current collector 21 coated with the positive electrode active material 22 was baked in an air atmosphere at 600 ° C. for 10 minutes to manufacture the positive electrode member 2. Therefore, the polyethylene oxide, which is the reinforcing member 7, was burned and vaporized. Since the polyethylene oxide is burned and vaporized, the conductive resistance between the current collector and the active material is eliminated, and good electrical continuity is secured. Further, since the positive electrode active material precursor 22 or the solvent in the positive electrode active material 22 is also combusted and vaporized, even if the positive electrode active material 22 is formed on the surface of the positive electrode current collector 21, corrosion of the surface of the positive electrode current collector 21 can be prevented. (4) The positive electrode active material 22 was formed to a film thickness of 10 μm by repeating the above coating process and baking process in sequence.
【0013】続いて図2を参照して積層型電池の製造方
法を説明する。
(5)上記のようにして準備した正極体2上にLi2O-SiO
2-P2O5の固体電解質3をゾルゲル法によって作製した。
固体電解質3の詳細は次のとおりである。溶媒のエタノ
ール77重量部、電解質材料のリチウムエトキシド10重量
部、電解質材料のテトラエトキシシラン40重量部、電解
質材料の亜リン酸トリエチル20重量部、分散安定剤の
ポリビニルピロリドン25重量部、触媒の酢酸40重量部の
組成比で1時間混合して作成した。
(6)次に、この固体電解質3を正極体2上に塗布して
600 度Cで焼成した。
(7)続いて、この塗布処理と焼成処理を繰り返し、固
体電解質3が厚み1 μに形成された。Next, a method of manufacturing a laminated battery will be described with reference to FIG. (5) Li2O-SiO on the cathode body 2 prepared as described above
The solid electrolyte 3 of 2-P2O5 was prepared by the sol-gel method.
Details of the solid electrolyte 3 are as follows. 77 parts by weight of ethanol as a solvent, 10 parts by weight of lithium ethoxide as an electrolyte material, 40 parts by weight of tetraethoxysilane as an electrolyte material, 20 parts by weight of triethyl phosphite as an electrolyte material, 25 parts by weight of polyvinylpyrrolidone as a dispersion stabilizer, and as a catalyst. It was prepared by mixing at a composition ratio of 40 parts by weight of acetic acid for 1 hour. (6) Next, the solid electrolyte 3 is coated on the positive electrode body 2.
It was baked at 600 ° C. (7) Subsequently, the coating treatment and the firing treatment were repeated to form the solid electrolyte 3 with a thickness of 1 μm.
【0014】続いて負極体4の製造方法を説明する。
(8)まず負極集電体41を準備する。この負極集電体
41は縦幅約5cm、横幅約8cm、厚み約2 μm の薄
膜状の銅材である。そして上述した正極と同様な手順に
て補強部材7を設けた負極集電体41を作製した。従っ
て負極集電体41の取り扱いが容易になる。更に酸性の
活物質による負極集電体41表面の腐食を防止できる。Next, a method of manufacturing the negative electrode body 4 will be described. (8) First, the negative electrode current collector 41 is prepared. The negative electrode current collector 41 is a thin film copper material having a vertical width of about 5 cm, a horizontal width of about 8 cm, and a thickness of about 2 μm. Then, the negative electrode current collector 41 provided with the reinforcing member 7 was manufactured in the same procedure as that of the positive electrode described above. Therefore, the negative electrode current collector 41 can be easily handled. Further, it is possible to prevent corrosion of the surface of the negative electrode current collector 41 due to the acidic active material.
【0015】次に、負極集電体41の補強部材7上にゾ
ルゲル法によってLi4Ti5O12 の負極活物質前駆体42を
形成した。この負極活物質前駆体42の形成の詳細は溶
媒のエタノール77重量部、負極材料のリチウムエトキシ
ド10重量部、負極材料のチタン(IV) テトラエトキシド
40重量部、分散安定剤のポリビニルピロリドン25重量
部、触媒の酢酸40重量部および水40重量部の組成比で1
時間混合して、負極活物質前駆体の溶液を作製した。続
いて負極活物質前駆体の溶液を補強部材7上に塗布し
た。このようなゾルゲル法以外としては次のような方法
が有る。例えば、負極活物質粉末と結着剤と溶媒とを混
合した負極活物質42を負極集電体41の補強部材7の
上に塗布する方法である。Next, a Li4Ti5O12 negative electrode active material precursor 42 was formed on the reinforcing member 7 of the negative electrode current collector 41 by the sol-gel method. The details of the formation of the negative electrode active material precursor 42 are as follows: 77 parts by weight of ethanol as a solvent, 10 parts by weight of lithium ethoxide as a negative electrode material, and titanium (IV) tetraethoxide as a negative electrode material.
40 parts by weight, 25 parts by weight of polyvinylpyrrolidone as a dispersion stabilizer, 40 parts by weight of acetic acid as a catalyst and 40 parts by weight of water as a composition ratio 1
After mixing for a time, a solution of the negative electrode active material precursor was prepared. Subsequently, a solution of the negative electrode active material precursor was applied onto the reinforcing member 7. Other than the sol-gel method, there are the following methods. For example, it is a method of applying the negative electrode active material 42, which is a mixture of the negative electrode active material powder, the binder, and the solvent, onto the reinforcing member 7 of the negative electrode current collector 41.
【0016】従って負極集電体41面に補強部材7を介
して酸性の負極活物質前駆体42または負極活物質42
を設けるため負極集電体41表面の腐食を防止できる。Therefore, the acidic negative electrode active material precursor 42 or the negative electrode active material 42 is provided on the surface of the negative electrode current collector 41 through the reinforcing member 7.
Since the above is provided, it is possible to prevent corrosion of the surface of the negative electrode current collector 41.
【0017】次に、600 度Cの空気雰囲気中で負極活物
質前駆体42または負極活物質42を形成された負極集
電体41を10分間焼成を行い負極部材4を作製した。従
って補強部材7であるポリエチレンオキサイドは燃焼気
化された。結果として負極集電体41と負極活物質42
との間の導電抵抗が無くなり良好な電気的導通が確保さ
れる。そして負極活物質前駆体42または負極活物質4
2内の溶媒も燃焼気化されるために負極活物質42が負
極集電体41表面に形成されても負極集電体41表面の
腐食を防止できる。
(9)上述した正極体2と負極体4とを固体電解質3を
介して積層する。そして正極体2は正極集電体21に接
続された正極リード5を介して電池缶8の正極端子に接
続する。次に負極体4は負極集電体41に接続された負
極リード6を介して電池缶の負極端子に接続する。最後
に電池缶8を封印する。
<実施例2>実施例2が実施例1と異なる点は補強部材
7をアクリル樹脂に変えた点である。その他は実施例1
と同様に電池を作製した。
<比較例>比較例が実施例1と異なる点は本発明に係る
補強部材7を使用しないで正極部材と負極部材とを作成
した点である。そして各集電体の詳細は正極集電体が厚
み20μm のアルミ材の集電体であり、負極集電体が厚み
10μm の銅材の集電体である。これら以外の固体電解質
3、負極活物質42、正極活物質22は実施例1 と同様
の製造方法にて電池を作製した。つまり従来技術と同様
である。
<評価試験>上記実施例1、実施例2、比較例の電池の
体積エネルギー密度を表1 に示す。Next, the negative electrode active material precursor 42 or the negative electrode current collector 41 on which the negative electrode active material 42 was formed was baked for 10 minutes in an air atmosphere at 600 ° C. to prepare the negative electrode member 4. Therefore, the polyethylene oxide, which is the reinforcing member 7, was burned and vaporized. As a result, the negative electrode current collector 41 and the negative electrode active material 42
Conductive resistance between and is eliminated, and good electrical continuity is secured. And the negative electrode active material precursor 42 or the negative electrode active material 4
Since the solvent in 2 is also vaporized by combustion, even if the negative electrode active material 42 is formed on the surface of the negative electrode current collector 41, corrosion of the surface of the negative electrode current collector 41 can be prevented. (9) The positive electrode body 2 and the negative electrode body 4 described above are laminated via the solid electrolyte 3. Then, the positive electrode body 2 is connected to the positive electrode terminal of the battery can 8 via the positive electrode lead 5 connected to the positive electrode current collector 21. Next, the negative electrode body 4 is connected to the negative electrode terminal of the battery can via the negative electrode lead 6 connected to the negative electrode current collector 41. Finally, the battery can 8 is sealed. <Example 2> Example 2 is different from Example 1 in that the reinforcing member 7 is replaced with an acrylic resin. Others are Example 1
A battery was prepared in the same manner as in. <Comparative Example> The comparative example is different from Example 1 in that the positive electrode member and the negative electrode member were prepared without using the reinforcing member 7 according to the present invention. For details of each current collector, the positive electrode current collector is an aluminum current collector with a thickness of 20 μm, and the negative electrode current collector is
This is a 10 μm copper current collector. A solid electrolyte 3, a negative electrode active material 42 and a positive electrode active material 22 other than these were manufactured by the same manufacturing method as in Example 1. That is, it is the same as the conventional technique. <Evaluation Test> Table 1 shows the volume energy densities of the batteries of Examples 1 and 2 and Comparative Example.
【0018】[0018]
【表1】 [Table 1]
【0019】表1を参照すると集電体の厚みを薄型化
し、活物質の量を増加したために実施例1の電池の体積
エネルギー密度は比較例の1.2倍になり、実施例2の
電池の体積エネルギー密度は比較例の1.15倍になっ
た。結果として、体積エネルギー密度が大変改善されて
いる。且つ補強部材7を介して活物質を塗布し、次にこ
の補強部材7を燃焼気化したために集電体が酸に侵され
ることが無くなった。従って実施例1の内部抵抗は比較
例の0.9倍になり、実施例2の内部抵抗は比較例の
0.94倍になった。従って内部抵抗が大変改善されて
いる。Referring to Table 1, the volume energy density of the battery of Example 1 was 1.2 times that of the comparative example because the thickness of the current collector was reduced and the amount of the active material was increased. Has a volume energy density of 1.15 times that of the comparative example. As a result, the volumetric energy density is greatly improved. Moreover, since the active material was applied through the reinforcing member 7 and then the reinforcing member 7 was combusted and vaporized, the current collector was not affected by the acid. Therefore, the internal resistance of Example 1 was 0.9 times that of the comparative example, and the internal resistance of Example 2 was 0.94 times that of the comparative example. Therefore, the internal resistance is greatly improved.
【0020】上記実施例のポリエーテルの代替えにはポ
リエステル、アクリル樹脂、エポキシ樹脂、スチレン樹
脂等の高分子化合物の内から少なくとも1種類を使用で
きる。As the substitute for the polyether of the above embodiment, at least one kind of polymer compounds such as polyester, acrylic resin, epoxy resin and styrene resin can be used.
【0021】つまりポリエーテルの具体的な物としては
ポリプロピレンオキサイド、ポリエチレンオキサイド−
ポリプロピレンオキサイド共重合体の内から少なくとも
1種類を使用できる。次にポリエステルとしては例えば
ポリエチレンテレフタレートである。更にアクリル樹脂
としては具体的にはポリメチルメタアクリレートであ
る。続いてエポキシ樹脂としてはビスフェノールAであ
る。次にスチレン樹脂としてはポリスチレンである。That is, specific examples of the polyether include polypropylene oxide and polyethylene oxide.
At least one kind of polypropylene oxide copolymer can be used. Next, the polyester is, for example, polyethylene terephthalate. Further, the acrylic resin is specifically polymethylmethacrylate. Subsequently, the epoxy resin is bisphenol A. Next, the styrene resin is polystyrene.
【0022】更に上記実施例の正極活物質のLiCoO2の代
用にはV2O5、LiMn2O4 、LiNiO2、Nb2O5 あるいはこれら
の置換体等の内から少なくとも1種類を使用できる。つ
まりアルカリ金属イオン吸蔵放出可能な材料であれば良
い。Further, at least one of V2O5, LiMn2O4, LiNiO2, Nb2O5, and substitution products thereof can be used as a substitute for LiCoO2 of the positive electrode active material of the above-mentioned embodiment. That is, any material that can store and release alkali metal ions may be used.
【0023】次に上記実施例の負極活物質のLi4Ti5O12
の代用としては、アルカリ金属イオンの吸蔵放出可能な
炭素化合物、例えば天然黒鉛、人造黒鉛、コークス、メ
ソフェーズ小球体、PAN系などの炭素繊維等の内から
少なくとも1種類を使用できる。つまりアルカリ金属イ
オンの吸蔵放出が可能な材料であれば良い。Next, the negative electrode active material of the above embodiment, Li4Ti5O12
As a substitute for the above, at least one kind of carbon compounds capable of occluding and releasing alkali metal ions, for example, natural graphite, artificial graphite, coke, mesophase spherules, PAN-based carbon fibers and the like can be used. That is, any material that can store and release alkali metal ions may be used.
【0024】続いて上記実施例の固体電解質のLi2O-SiO
2-P2O5の代用としては、Li4Ti2(PO4)4等の遷移金属酸化
物、Li2O-SiO2 、SiO2-Li3BO3 等の酸化物ガラス、Li2S
-Li4SiS2等の硫化物ガラスなどの内から少なくとも1種
類を使用できる。つまりアルカリイオン伝導性を有する
材料であれば良い。Subsequently, the solid electrolyte Li 2 O-SiO 2 of the above-mentioned embodiment was used.
As an alternative to 2-P2O5, transition metal oxides such as Li4Ti2 (PO4) 4, oxide glasses such as Li2O-SiO2 and SiO2-Li3BO3, Li2S
-At least one kind of sulfide glass such as Li4SiS2 can be used. That is, any material having alkali ion conductivity may be used.
【0025】[0025]
【発明の効果】以上説明したとおり、本発明の電池によ
れば集電体の厚みを減少させても、取り扱いを容易とす
る機械強度を有し、且つ電池容量を増大させた電池を得
ることができる。さらに活物質内の溶媒による集電体表
面の腐食を防止して電池の内部抵抗の増大を防止でき
る。As described above, according to the battery of the present invention, it is possible to obtain a battery having a mechanical strength that facilitates handling and an increased battery capacity even when the thickness of the current collector is reduced. You can Further, it is possible to prevent corrosion of the surface of the current collector due to the solvent in the active material and prevent an increase in internal resistance of the battery.
【図1】 本発明に係る電極体の製造方法を説明する断
面図FIG. 1 is a cross-sectional view illustrating a method of manufacturing an electrode body according to the present invention.
【図2】 正極体と負極体とを積層している積層型電池
の概略図である。FIG. 2 is a schematic view of a laminated battery in which a positive electrode body and a negative electrode body are laminated.
1 電池、 2 正極体、 21 正極集電体、 22 正極活物質、 3 固体電解質、 4 負極体、 41 負極集電体、 42 負極活物質、 5 正極リード、 6 負極リード、 7 補強部材、 8 電池缶、 1 battery, 2 cathode body, 21 positive electrode current collector, 22 positive electrode active material, 3 solid electrolyte, 4 negative electrode body, 41 Negative electrode current collector, 42 negative electrode active material, 5 positive electrode lead, 6 negative lead, 7 reinforcement members, 8 battery cans,
───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5H017 AA03 AS00 CC01 DD06 EE00 EE05 5H029 AJ01 AJ03 AJ06 AJ14 AK03 AL03 AM12 BJ04 BJ12 BJ13 CJ02 CJ12 CJ22 DJ07 EJ01 EJ12 5H050 AA08 AA12 AA14 AA19 BA15 CA08 CB03 DA07 DA08 FA02 FA18 GA02 GA12 GA22 ─────────────────────────────────────────────────── ─── Continued front page F-term (reference) 5H017 AA03 AS00 CC01 DD06 EE00 EE05 5H029 AJ01 AJ03 AJ06 AJ14 AK03 AL03 AM12 BJ04 BJ12 BJ13 CJ02 CJ12 CJ22 DJ07 EJ01 EJ12 5H050 AA08 AA12 AA14 AA19 BA15 CA08 CB03 DA07 DA08 FA02 FA18 GA02 GA12 GA22
Claims (4)
な高分子補強膜を形成した状態で所定の正極活物質、正
極活物質前駆体、負極活物質または負極活物質前駆体を
形成し、 該活物質の焼成時に前記高分子補強膜を消失させること
を特徴とする正極体または負極体の製造方法。1. A predetermined positive electrode active material, a positive electrode active material precursor, a negative electrode active material or a negative electrode active material precursor is formed on a surface of a thin film current collector with a polymer reinforcing film that can be removed in a subsequent step. A method for producing a positive electrode body or a negative electrode body, which comprises forming and eliminating the polymer reinforcing film during firing of the active material.
して集電補強体を作成する工程と、 該集電補強体の片面又は両面に正極活物質又は正極活物
質前駆体を形成して正極部材を作成する工程、または該
集電補強体の片面又は両面に負極活物質又は負極活物質
前駆体を形成して負極部材を作成する工程と、 前記正極部材または前記負極部材を焼成して正極体また
は負極体を作成する工程と、を有することを特徴とする
正極体または負極体の製造方法。2. A step of forming a reinforcing member on one side or both sides of a current collector to form a current collecting reinforcement, and forming a positive electrode active material or a positive electrode active material precursor on one side or both sides of the current collecting reinforcement. To form a positive electrode member, or to form a negative electrode member by forming a negative electrode active material or a negative electrode active material precursor on one surface or both surfaces of the current collector reinforcement, and firing the positive electrode member or the negative electrode member And a step of producing a positive electrode body or a negative electrode body, the method for producing a positive electrode body or a negative electrode body.
のポリエーテル、ポリエステル、アクリル樹脂、エポキ
シ樹脂、スチレン樹脂の少なくとも1種類から成ること
を特徴とする正極体または負極体の製造方法。3. A method for producing a positive electrode body or a negative electrode body, wherein the reinforcing member according to claim 1 is made of at least one kind of polymer compound polyether, polyester, acrylic resin, epoxy resin and styrene resin.
の少なくとも1つを有する電池。4. A battery comprising at least one of the positive electrode body and the negative electrode body according to claim 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001292405A JP2003100287A (en) | 2001-09-25 | 2001-09-25 | Method for manufacturing positive electrode or negative electrode and battery made using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001292405A JP2003100287A (en) | 2001-09-25 | 2001-09-25 | Method for manufacturing positive electrode or negative electrode and battery made using the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2003100287A true JP2003100287A (en) | 2003-04-04 |
Family
ID=19114376
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001292405A Withdrawn JP2003100287A (en) | 2001-09-25 | 2001-09-25 | Method for manufacturing positive electrode or negative electrode and battery made using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2003100287A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008251219A (en) * | 2007-03-29 | 2008-10-16 | Tdk Corp | All-solid lithium ion secondary battery and its manufacturing method |
JP2009181879A (en) * | 2008-01-31 | 2009-08-13 | Toyota Motor Corp | Positive electrode and method of manufacturing the same |
JP2013073707A (en) * | 2011-09-27 | 2013-04-22 | Toyota Motor Corp | Method for manufacturing electrode mixture material, and method for manufacturing electrode body |
CN114613945A (en) * | 2022-04-02 | 2022-06-10 | 北京师范大学 | Preparation method of lithium ion battery anode |
-
2001
- 2001-09-25 JP JP2001292405A patent/JP2003100287A/en not_active Withdrawn
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008251219A (en) * | 2007-03-29 | 2008-10-16 | Tdk Corp | All-solid lithium ion secondary battery and its manufacturing method |
JP2009181879A (en) * | 2008-01-31 | 2009-08-13 | Toyota Motor Corp | Positive electrode and method of manufacturing the same |
JP2013073707A (en) * | 2011-09-27 | 2013-04-22 | Toyota Motor Corp | Method for manufacturing electrode mixture material, and method for manufacturing electrode body |
CN114613945A (en) * | 2022-04-02 | 2022-06-10 | 北京师范大学 | Preparation method of lithium ion battery anode |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5219387B2 (en) | Nonaqueous electrolyte secondary battery | |
CN109546096B (en) | Positive electrode material and lithium secondary battery using the same | |
JP6524610B2 (en) | Positive electrode active material for non-aqueous secondary battery and method for producing the same | |
KR20200007325A (en) | Lithium Secondary Battery Comprising Liquid Inorganic Electrolyte | |
JP2009245917A (en) | Positive electrode active material for nonaqueous electrolyte secondary battery, method for manufacturing same, and positive electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery | |
EP2793299A1 (en) | Electrode for an electrochemical device, and electrochemical device having same | |
KR20200030852A (en) | Multi layer electrode and lithum secondary battery including the same | |
CN112242505B (en) | Nonaqueous electrolyte secondary battery | |
CN112054193A (en) | Positive electrode material for secondary battery and secondary battery using the same | |
CN110890525A (en) | Positive active material for lithium secondary battery and lithium secondary battery including the same | |
CN112242508B (en) | Nonaqueous electrolyte secondary battery | |
KR20210156023A (en) | All solid state battery having electrolyte layer comprising impregnated pattern | |
CN107528043A (en) | Battery | |
CN114520337A (en) | Negative electrode for all-solid-state battery, method for producing same, and all-solid-state battery | |
JP2013246900A (en) | Secondary battery | |
JP5088856B2 (en) | Electrode for lithium secondary battery and lithium secondary battery | |
JP7184685B2 (en) | secondary battery | |
CN112242509B (en) | Nonaqueous electrolyte secondary battery | |
JP3501113B2 (en) | Non-aqueous secondary battery and method of manufacturing the same | |
JP2001039705A (en) | Carbon material, electrode and nonaqueous electrolyte secondary battery | |
JP2023505048A (en) | Manufacturing method of positive electrode material for secondary battery | |
CN111201638A (en) | Electrode plate, electricity storage element, and method for manufacturing electrode plate | |
CN110911736B (en) | Solid electrolyte, preparation method thereof and solid lithium battery | |
JP2003100287A (en) | Method for manufacturing positive electrode or negative electrode and battery made using the same | |
KR20210050348A (en) | Method for preparing a negative electrode material, the negative electrode material, a negative electrode comprising the negative electrode material, and a secondary battery comprising the negative electrode |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20080724 |
|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20081202 |