JP2003097994A - Instrument for measuring flow rate of fluid - Google Patents

Instrument for measuring flow rate of fluid

Info

Publication number
JP2003097994A
JP2003097994A JP2001291784A JP2001291784A JP2003097994A JP 2003097994 A JP2003097994 A JP 2003097994A JP 2001291784 A JP2001291784 A JP 2001291784A JP 2001291784 A JP2001291784 A JP 2001291784A JP 2003097994 A JP2003097994 A JP 2003097994A
Authority
JP
Japan
Prior art keywords
flow rate
flow
flow path
fluid
rate measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001291784A
Other languages
Japanese (ja)
Inventor
Takayuki Yamaguchi
隆行 山口
Hiroyuki Iechi
洋之 家地
Hiroyuki Horiguchi
浩幸 堀口
Toshiyuki Miyaoka
利行 宮岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Elemex Corp
Ricoh Co Ltd
Original Assignee
Ricoh Elemex Corp
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Elemex Corp, Ricoh Co Ltd filed Critical Ricoh Elemex Corp
Priority to JP2001291784A priority Critical patent/JP2003097994A/en
Publication of JP2003097994A publication Critical patent/JP2003097994A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an instrument for measuring flow rate of fluid, which changes channels without installing a new drive means. SOLUTION: The instrument for measuring flow rate of fluid has a channel for inputting fluid, a means for isolating the flow of fluid, a first channel and a second channel being disposed on and after the means for isolating the flow of fluid, a means for opening/closing at least one of the first channel and the second channel, and one common drive means for driving the means for isolating the flow of fluid and the means for opening/closing at least one of the first channel and the second channel.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、都市ガスメータ
ー、LPGガスメーターなどに利用可能な流体流量計測
器に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fluid flow rate measuring device that can be used for city gas meters, LPG gas meters and the like.

【0002】[0002]

【従来技術】流体の流量計測方法として、フルイディッ
ク方式、超音波方式、フローセンサー方式等が知られて
いる。フルイディック方式は、例えば特開昭63−19
1920号公報に示されているが、この方式では流量計
測範囲はフルイディック素子の大きさによりほぼ決定さ
れ、最低値と最大値の比は50倍程度である。超音波方
式は、例えば特開平7−71987号公報に示されてい
るが、この方式では流量計測範囲は計測流路の断面積に
よりほぼ決定され、最低値と最大値の比は100倍程度
である。フローセンサー方式は、例えば特開昭58−7
2059号公報に示されているが、この方式では流量計
測範囲は計測流路の断面積によりほぼ決定され、最低値
と最大値の比は50倍程度である。
2. Description of the Related Art As a fluid flow rate measuring method, a fluidic method, an ultrasonic method, a flow sensor method and the like are known. The fluidic method is disclosed, for example, in JP-A-63-19.
As disclosed in Japanese Patent Publication No. 1920, the flow rate measurement range in this method is almost determined by the size of the fluidic element, and the ratio of the minimum value to the maximum value is about 50 times. The ultrasonic method is disclosed in, for example, Japanese Unexamined Patent Publication No. 7-71987, but in this method, the flow rate measurement range is almost determined by the cross-sectional area of the measurement flow path, and the ratio between the minimum value and the maximum value is about 100 times. is there. The flow sensor method is disclosed in, for example, JP-A-58-7.
As disclosed in Japanese Patent No. 2059, the flow rate measurement range is almost determined by the cross-sectional area of the measurement flow path in this method, and the ratio between the minimum value and the maximum value is about 50 times.

【0003】一方、流量計測器として要求される計測範
囲は上記範囲より広くなる場合があり、例えばLPG用
4号ガスメーターでは、3〜4000 l/hの計測範
囲が必要である。このような広範囲の計測を行うため、
大流量計測部と小流量計測部の2種を組み合わせた流量
計測器が考案されており、例えば特開平1−30892
1号公報には、大流量計測用としてフルイディック素子
を、小流量計測用としてフローセンサーを用いた都市ガ
ス用メーターが示されている。ところが、一般に小流量
計測部は小さく作る必要があるため、大流量計測部と小
流量計測部を直列に接続した場合、小流量計測部での圧
力低下により最大流量まで流せなくなるという不具合が
発生する場合があった。この問題を解決するため、例え
ば特開平9−101185号公報には、流路を小流量計
測用と大流量計測用に分割し、流量に応じて弁により流
路を選択する方法が示されているが、この方法では流路
を切り替えるために弁駆動手段を設置しなければなら
ず、コスト高になるという欠点がある。
On the other hand, the measurement range required as a flow rate measuring device may be wider than the above range. For example, the No. 4 gas meter for LPG requires a measurement range of 3 to 4000 l / h. To perform such a wide range of measurements,
A flow rate measuring device that combines two types of a large flow rate measuring unit and a small flow rate measuring unit has been devised, for example, JP-A-1-30892.
Japanese Patent No. 1 discloses a city gas meter using a fluidic element for measuring a large flow rate and a flow sensor for measuring a small flow rate. However, since it is generally necessary to make the small flow rate measurement unit small, when the large flow rate measurement unit and the small flow rate measurement unit are connected in series, there occurs a problem that the maximum flow rate cannot be reached due to the pressure drop in the small flow rate measurement unit. There were cases. To solve this problem, for example, Japanese Unexamined Patent Publication No. 9-101185 discloses a method in which a channel is divided into a small flow rate measurement and a large flow rate measurement, and a channel is selected by a valve according to the flow rate. However, this method has a drawback that the valve driving means must be installed in order to switch the flow paths, resulting in high cost.

【0004】また、例えば都市ガス用メーターにおいて
は、小流量時に圧力変動により流量を正確に計測できな
いという問題が発生する場合があり、この対策として例
えば特開平9−53962号公報に示されているように
圧力変動吸収装置を内蔵したものが提案されている。と
ころが、圧力変動吸収装置においても圧力低下により最
大流量まで流せなくなるという不具合が発生する場合が
あり、この場合にも、小流量計測用と大流量計測用に流
路を分割し、流量に応じて弁により流路を選択する方法
が採られている。
Further, for example, in a city gas meter, there may be a problem that the flow rate cannot be accurately measured due to pressure fluctuation when the flow rate is small, and as a countermeasure against this, for example, Japanese Unexamined Patent Publication No. 9-53962 discloses. As described above, a device having a pressure fluctuation absorbing device built therein has been proposed. However, even in the pressure fluctuation absorbing device, there may be a problem that the flow rate cannot be reached up to the maximum flow rate due to the pressure drop.In this case as well, the flow path is divided for small flow rate measurement and large flow rate measurement, and A method of selecting a flow path by a valve is adopted.

【0005】[0005]

【発明が解決しようとする課題】本発明は、上記従来技
術の欠点を改善するために為されたものであって、新た
な駆動手段を設置することなく流路を切り替える方式の
流体流量計測器を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in order to remedy the above-mentioned drawbacks of the prior art, and is a fluid flow rate measuring device of the type in which the flow paths are switched without installing new drive means. The purpose is to provide.

【0006】[0006]

【課題を解決するための手段】上記課題は、次の1)〜
17)の発明(以下、本発明1〜17という)によって
解決される。 1) 流体流入路と、流体の流れを遮断する手段と、該
流体の流れを遮断する手段以降において設置された第1
の流路及び第2の流路と、該第1の流路及び第2の流路
の少なくとも片方を開閉する手段とを有し、前記流体の
流れを遮断する手段と前記第1の流路及び第2の流路の
少なくとも片方を開閉する手段を駆動する共通の一つの
駆動手段を有することを特徴とする流体流量計測器。 2) 前記共通の一つの駆動手段がモーター弁であるこ
とを特徴とする1)記載の流体流量計測器。 3) 前記第1の流路に大流量計測手段を、第2の流路
に小流量計測手段を設けたことを特徴とする1)又は
2)記載の流体流量計測器。 4) 前記第2の流路を、小流量計測手段を経たのち大
流量計測手段の前方において前記第1の流路に合流する
ように設けたことを特徴とする3)記載の流体流量計測
器。 5) 前記第1の流路に小流量計測手段と大流量計測手
段を順次設置し、第2の流路に流体の圧力変動吸収装置
を設けたことを特徴とする1)又は2)記載の流体流量
計測器。 6) 前記第2の流路を、流体の圧力変動吸収装置を経
たのち小流量計測手段の前方において前記第1の流路に
合流するように設けたことを特徴とする5)記載の流体
流量計測器。 7) 前記第1の流路に大流量計測手段を設置し、第2
の流路に流体の圧力変動吸収装置と小流量計測手段とを
順次設けたことを特徴とする1)又は2)記載の流体流
量計測器。 8) 前記第2の流路を、小流量の計測手段を経たのち
大流量計測手段の前方において前記第1の流路に合流す
るように設けたことを特徴とする7)記載の流体流量計
測器。 9) 前記第1の流路の入り口を、前記第2の流路の入
り口よりも前記流体の流れを遮断する手段に近い位置に
設けたことを特徴とする1)〜8)の何れかに記載の流
体流量計測器。 10) 前記駆動手段から延伸された軸に直列に、前記
流体の流れを遮断する手段と前記第1の流路及び第2の
流路の少なくとも片方を開閉する手段を設けたことを特
徴とする1)〜9)の何れかに記載の流体流量計測器。 11) 前記駆動手段から延伸された軸に直列に、前記
流体の流れを遮断する手段を設け、前記第1の流路及び
第2の流路の少なくとも片方を開閉する手段を、前記軸
と梃を介して接続したことを特徴とする1)〜9)の何
れかに記載の流体流量計測器。 12) 前記駆動手段から延伸された軸に並列に、前記
流体の流れを遮断する手段と前記第1の流路及び第2の
流路の少なくとも片方を開閉する手段を設けたことを特
徴とする1)〜9)の何れかに記載の流体流量計測器。 13) 大流量計測時は前記第1の流路及び第2の流路
の両方を開とし、小流量計測時は前記第1の流路を閉・
第2の流路を開とすることを特徴とする3)〜12)の
何れかに記載の流体流量計測器。 14) 前記第1の流路に大流量計測手段を、第2の流
路に小流量計測手段を設け、大流量計測時は前記第1の
流路を開・第2の流路を閉とし、小流量計測時は前記第
1の流路を閉・第2の流路を開とするように設定し、前
記第2の流路を、小流量計測手段を経たのち大流量計測
手段の後方において前記第1の流路に合流するように設
けたことを特徴とする1)又は2)記載の流体流量計測
器。 15) 前記第1の流路に大流量計測手段を、第2の流
路に流体の圧力変動吸収装置と小流量計測手段とを順次
設け、大流量計測時は前記第1の流路を開・第2の流路
を閉とし、小流量計測時は前記第1の流路を閉・第2の
流路を開とするように設定し、前記第2の流路を、小流
量の計測手段を経たのち大流量計測手段の後方において
前記第1の流路に合流するように設けたことを特徴とす
る1)又は2)記載の流体流量計測器。 16) 前記大流量計測手段がフルイディック素子、超
音波方式、フローセンサーの何れかであることを特徴と
する3)〜15)の何れかに記載の流体流量計測器。 17) 前記小流量計測手段がフルイディック素子、超
音波方式、フローセンサーの何れかであることを特徴と
する3)〜16)の何れかに記載の流体流量計測器。
[Means for Solving the Problems] The above problems are solved in the following 1) to
It is solved by the invention of 17) (hereinafter referred to as the inventions 1 to 17). 1) A fluid inflow path, a means for interrupting the flow of fluid, and a first installed after the means for interrupting the flow of fluid
And a second flow path, and means for opening and closing at least one of the first flow path and the second flow path, and means for interrupting the flow of the fluid and the first flow path. And a common drive unit that drives a unit that opens and closes at least one of the second flow paths. 2) The fluid flow rate measuring device according to 1), wherein the one common driving means is a motor valve. 3) The fluid flow rate measuring device according to 1) or 2), wherein a large flow rate measuring means is provided in the first flow path and a small flow rate measuring means is provided in the second flow path. 4) The fluid flow rate measuring device according to 3), wherein the second flow path is provided so as to merge with the first flow path in front of the large flow rate measuring means after passing through the small flow rate measuring means. . 5) A small flow rate measuring means and a large flow rate measuring means are sequentially installed in the first flow path, and a fluid pressure fluctuation absorbing device is provided in the second flow path. Fluid flow meter. 6) The fluid flow rate according to 5), wherein the second flow path is provided so as to join the first flow path in front of the small flow rate measuring means after passing through the fluid pressure fluctuation absorbing device. Measuring instrument. 7) A large flow rate measuring means is installed in the first flow path,
2. The fluid flow rate measuring device according to 1) or 2), wherein a fluid pressure fluctuation absorbing device and a small flow rate measuring means are sequentially provided in the flow path. 8) The fluid flow rate measurement according to 7), wherein the second flow path is provided so as to merge with the first flow path in front of the large flow rate measurement means after passing through the small flow rate measurement means. vessel. 9) In any one of 1) to 8), wherein the inlet of the first channel is provided at a position closer to the means for blocking the flow of the fluid than the inlet of the second channel. The fluid flow meter described. 10) A means for interrupting the flow of the fluid and a means for opening and closing at least one of the first flow path and the second flow path are provided in series with a shaft extending from the driving means. The fluid flow rate measuring device according to any one of 1) to 9). 11) A means for cutting off the flow of the fluid is provided in series with a shaft extending from the driving means, and means for opening and closing at least one of the first flow path and the second flow path is provided with the shaft. The fluid flow rate measuring device according to any one of 1) to 9), characterized in that the fluid flow rate measuring device is connected via. 12) A means for interrupting the flow of the fluid and a means for opening and closing at least one of the first flow path and the second flow path are provided in parallel with the shaft extending from the driving means. The fluid flow rate measuring device according to any one of 1) to 9). 13) When measuring a large flow rate, both the first flow path and the second flow path are opened, and when measuring a small flow rate, the first flow path is closed.
The fluid flow rate measuring device according to any one of 3) to 12), wherein the second flow path is opened. 14) A large flow rate measuring means is provided in the first flow path and a small flow rate measuring means is provided in the second flow path, and when measuring the large flow rate, the first flow path is opened and the second flow path is closed. When the small flow rate is measured, the first flow path is set to be closed and the second flow path is opened, and the second flow path is passed through the small flow rate measurement means and then behind the large flow rate measurement means. 2. The fluid flow rate measuring device according to 1) or 2), wherein the fluid flow rate measuring device is provided so as to join the first flow path. 15) A large flow rate measuring means is provided in the first flow path, a fluid pressure fluctuation absorbing device and a small flow rate measuring means are sequentially installed in the second flow path, and the first flow path is opened during the large flow rate measurement. Setting the second flow path to be closed, and setting the first flow path to be closed and the second flow path to be open when measuring a small flow rate, and setting the second flow path to a small flow rate measurement. The fluid flow rate measuring device according to 1) or 2), wherein the fluid flow rate measuring device is provided so as to merge with the first flow path after the large flow rate measuring device. 16) The fluid flow rate measuring device according to any one of 3) to 15), wherein the large flow rate measuring means is any one of a fluidic element, an ultrasonic system, and a flow sensor. 17) The fluid flow rate measuring device according to any one of 3) to 16), wherein the small flow rate measuring means is any one of a fluidic element, an ultrasonic system, and a flow sensor.

【0007】以下、上記本発明について図面を参照しつ
つ詳しく説明する。図1〜図3は、本発明の第1実施例
(直列接続方式1)を示したものである。図1は、大流
量計測時の状態である。弁駆動方式はモーター弁を用い
ているが、電磁弁など他の方式でも良い。モーター弁で
駆動されるシャフト(軸)に、遮断弁と流路切り替え弁
が設置されており、流路切り替え弁とシャフトの間にバ
ネ等の弾性体を挿入し、ストロークの吸収を可能とした
構造である。大流量計測時は、遮断弁・流路切り替え弁
とも開となっており、第2の流路(小流量用流路B)と
第1の流路(大流量用流路A)共にガスが流れ、大流量
計測部手前で合流し、大流量計測部(図の例はフルイデ
ィック素子)で流量が計測される。図2は小流量計測時
の状態である。小流量計測時は、遮断弁開・流路切り替
え弁閉となっており、大流量用流路Aにはガスが流れ
ず、小流量用流路Bのみにガスが流れ、小流量計測部
(図の例はフローセンサー)で流量が計測される。図3
は遮断時の状態である。遮断時は、遮断弁が閉となって
おり、ガスが遮断される。小流量計測時と遮断時のシャ
フトのストローク分は、流路切り替え弁とシャフトの間
に挿入されたバネ等の弾性体で吸収される。このように
して、単一の駆動方式を用いて、流路切り替えと流体の
流れの遮断を両方達成できる。
Hereinafter, the present invention will be described in detail with reference to the drawings. 1 to 3 show a first embodiment (series connection method 1) of the present invention. FIG. 1 shows a state at the time of measuring a large flow rate. Although a motor valve is used as the valve drive system, another system such as a solenoid valve may be used. A cutoff valve and a flow path switching valve are installed on a shaft driven by a motor valve, and an elastic body such as a spring is inserted between the flow path switching valve and the shaft to enable stroke absorption. It is a structure. At the time of measuring a large flow rate, both the shutoff valve and the flow path switching valve are open, and gas is not supplied to both the second flow path (flow path B for small flow rate) and the first flow path (flow path A for large flow rate). The flow merges before the large flow rate measurement unit, and the flow rate is measured by the large flow rate measurement unit (fluidic element in the example in the figure). FIG. 2 shows a state when measuring a small flow rate. When measuring a small flow rate, the shutoff valve is open and the flow path switching valve is closed, so that gas does not flow in the large flow path A but only in the small flow path B. The flow rate is measured by the flow sensor in the example of the figure. Figure 3
Is the state at the time of interruption. When shutting off, the shutoff valve is closed to shut off the gas. The stroke of the shaft at the time of measuring the small flow rate and at the time of shutting off is absorbed by an elastic body such as a spring inserted between the flow path switching valve and the shaft. In this way, both flow path switching and fluid flow interruption can be achieved using a single drive scheme.

【0008】図4〜図6は、本発明の第2実施例(直列
接続方式2)を示したものであり、図4は大流量計測
時、図5は小流量計測時、図6は遮断時の状態を示す。
モーター弁で駆動されるシャフトに、遮断弁と流路切り
替え弁が設置されており、流路切り替え弁とシャフトの
間にバネ等の弾性体を挿入し、流路切り替え弁とシャフ
トの間にスライド部を設けストロークの吸収を可能とし
た構造である。また本実施例では、小流量用流路Bに圧
力変動吸収装置を設け、小流量用流路Bと大流量用流路
Aを流量計測部手前で合流させ、流量計測部(図の例は
小流量をフローセンサー、大流量をフルイディック素子
で計測)で流量を計測する。勿論、小流量用流路Bに圧
力変動吸収装置と小流量計測部を設けることも可能であ
る。
4 to 6 show a second embodiment (series connection method 2) of the present invention. FIG. 4 is for measuring a large flow rate, FIG. 5 is for measuring a small flow rate, and FIG. 6 is a cutoff. Indicates the state of time.
A shutoff valve and a flow path switching valve are installed on a shaft driven by a motor valve. An elastic body such as a spring is inserted between the flow path switching valve and the shaft and slides between the flow path switching valve and the shaft. It is a structure that allows the stroke to be absorbed by providing a portion. Further, in this embodiment, a pressure fluctuation absorbing device is provided in the small flow rate channel B, and the small flow rate channel B and the large flow rate channel A are merged in front of the flow rate measuring section, and the flow rate measuring section (in the example of the figure, The flow rate is measured with a flow sensor for a small flow rate and the fluidic element for a large flow rate. Of course, it is also possible to provide a pressure fluctuation absorbing device and a small flow rate measuring unit in the small flow rate channel B.

【0009】図7〜図9は、本発明の第3実施例(蝶番
方式)を示したものであり、図7は大流量計測時、図8
は小流量計測時、図9は遮断時の状態を示す。モーター
弁で駆動されるシャフトに、遮断弁が直列に、流路切り
替え弁が蝶番式に設置された例である。この方式は本発
明11の「軸と梃を介して接続する」に相当するもので
ある。図10〜図12は、本発明の第4実施例(スライ
ド方式1)を示したものであり、図10は大流量計測
時、図11は小流量計測時、図12は遮断時の状態を示
す。モーター弁で駆動されるシャフトに、遮断弁と流路
切り替え弁が直列に設置され、流路切り替え弁をスライ
ド式とした例である。図13〜図15は、本発明の第5
実施例(スライド弁クランク方式)を示したものであ
り、図13は大流量計測時、図14は小流量計測時、図
15は遮断時の状態を示す。モーター弁で駆動されるシ
ャフトに、遮断弁が直列に、スライド式流路切り替え弁
がクランク式に設置された例である。この方式も本発明
11の「軸と梃を介して接続する」に相当するものであ
る。
FIGS. 7 to 9 show a third embodiment (hinging method) of the present invention. FIG. 7 shows a large flow rate measurement, and FIG.
Shows a state when measuring a small flow rate, and FIG. 9 shows a state when shutting off. In this example, a shutoff valve is installed in series and a flow path switching valve is installed in a hinged manner on a shaft driven by a motor valve. This method corresponds to “connecting to the shaft through a lever” of the present invention 11. 10 to 12 show a fourth embodiment (sliding method 1) of the present invention. FIG. 10 shows a large flow rate measurement, FIG. 11 shows a small flow rate measurement, and FIG. Show. In this example, a shutoff valve and a flow path switching valve are installed in series on a shaft driven by a motor valve, and the flow path switching valve is a slide type. 13 to 15 show a fifth embodiment of the present invention.
FIG. 13 shows an embodiment (slide valve crank system), in which FIG. 13 shows a large flow rate measurement, FIG. 14 shows a small flow rate measurement, and FIG. 15 shows a shutoff state. This is an example in which a shutoff valve is installed in series and a slide type flow path switching valve is installed in a crank type on a shaft driven by a motor valve. This method also corresponds to “connecting with the shaft through the lever” of the present invention 11.

【0010】図16〜図18は、本発明の第6実施例
(回転弁クランク方式)を示したものであり、図16は
大流量計測時、図17は小流量計測時、図18は遮断時
の状態を示す。モーター弁で駆動されるシャフトに、遮
断弁が直列に、回転式流路切り替え弁がクランク式に設
置された例である。この方式も本発明11の「軸と梃を
介して接続する」に相当するものである。図19〜図2
1は、本発明の第7実施例(スライド方式2)を示した
ものであり、図19は大流量計測時、図20は小流量計
測時、図21は遮断時の状態を示す。モーター弁で駆動
されるシャフトに、遮断弁と流路切り替え弁が直列に設
置され、流路切り替え弁をスライド式とした例である。
前記図10〜図12に示した第4実施例(スライド方式
1)に比べ、第1の流路の入り口が遮断弁近くにあるた
めシャフトを短く出来るという特徴がある。図22〜図
24は本発明の第8実施例(並列接続方式)を示したも
のであり、図22は大流量計測時、図23は小流量計測
時、図24は遮断時の状態を示す。モーター弁で駆動さ
れるシャフトに、遮断弁と流路切り替え弁が並列に設置
された例である。
16 to 18 show a sixth embodiment (rotary valve crank system) of the present invention. FIG. 16 is for measuring a large flow rate, FIG. 17 is for measuring a small flow rate, and FIG. 18 is a cutoff. Indicates the state of time. This is an example in which a shutoff valve is installed in series and a rotary flow path switching valve is installed in a crank type on a shaft driven by a motor valve. This method also corresponds to “connecting with the shaft through the lever” of the present invention 11. 19 to 2
FIG. 1 shows a seventh embodiment (sliding method 2) of the present invention. FIG. 19 shows a large flow rate measurement, FIG. 20 shows a small flow rate measurement, and FIG. 21 shows a cutoff state. In this example, a shutoff valve and a flow path switching valve are installed in series on a shaft driven by a motor valve, and the flow path switching valve is a slide type.
Compared with the fourth embodiment (sliding method 1) shown in FIGS. 10 to 12, the shaft can be shortened because the inlet of the first flow path is near the shutoff valve. 22 to 24 show an eighth embodiment (parallel connection method) of the present invention. FIG. 22 shows a large flow rate measurement, FIG. 23 shows a small flow rate measurement, and FIG. . In this example, a shutoff valve and a flow path switching valve are installed in parallel on a shaft driven by a motor valve.

【0011】図25〜図27は、本発明の第9実施例
(流路切り替え弁2個方式)を示したものであり、図2
5は大流量計測時、図26は小流量計測時、図27は遮
断時の状態を示す。モーター弁で駆動されるシャフトに
遮断弁と2個の流路切り替え弁が直列に設置され、流路
切り替え弁をスライド式とした例である。大流量計測時
は、遮断弁・第1の流路(大流量用流路A)切り替え弁
とも開となっており、第2の流路(小流量用流路B)切
り替え弁は閉となっているので、大流量用流路Aにはガ
スが流れ、小流量用流路Bにはガスが流れない。従っ
て、大流量用流路Aと小流量用流路Bは独立に動作させ
られるため両方の流路は合流部に制限が無く、大流量用
流路Aと小流量用流路Bは、大流量計測部前で合流させ
ることも大流量計測部後で合流させることも可能であ
る。その結果、全体の配置設計に余裕を持たせることが
出来る。
25 to 27 show a ninth embodiment of the present invention (two flow path switching valve system).
5 shows a large flow rate measurement, FIG. 26 shows a small flow rate measurement, and FIG. 27 shows a cutoff state. In this example, a shutoff valve and two flow path switching valves are installed in series on a shaft driven by a motor valve, and the flow path switching valve is a slide type. When measuring a large flow rate, both the shutoff valve and the first flow path (flow path A for large flow rate) switching valve are open, and the second flow path (flow path B for small flow rate) switching valve is closed. Therefore, the gas flows in the large flow passage A and the gas does not flow in the small flow passage B. Therefore, since the large flow rate channel A and the small flow rate channel B can be operated independently, there is no limitation on the merging portion of both channels, and the large flow rate channel A and the small flow rate channel B are large. It is possible to join before the flow rate measuring unit or join after the large flow rate measuring unit. As a result, it is possible to give a margin to the overall layout design.

【0012】[0012]

【発明の効果】本発明1によれば、流体の流れを遮断す
る手段と流路を切り替える手段を共通の一つの駆動手段
を用いて駆動することにより、構造が単純になり、信頼
性向上及びコストダウンを図ることが出来る。本発明2
によれば、共通の一つの駆動手段としてモーター弁を用
いることにより、弁の開閉コントロールが容易になる。
本発明3によれば、第1の流路に大流量計測手段を、第
2の流路に小流量の計測手段を設けることにより、広い
範囲の流量を規定以下の圧力低下で計測することが可能
となる。本発明4によれば、第2の流路を、小流量の計
測手段を経た後、大流量計測手段の前方において前記第
1の流路に合流するように設けたことにより、第2の流
路を遮断することなく大流量を計測できる。本発明5に
よれば、第1の流路に小流量計測手段と大流量計測手段
を順次設置し、第2の流路に流体の圧力変動吸収装置を
設けることにより、低流量時の圧力変動の影響を受ける
ことなく正確な計測を行えると共に、広い範囲の流量を
規定以下の圧力低下で計測することが可能となる。本発
明6によれば、第2の流路を、流体の圧力変動吸収装置
を経た後、小流量計測手段の前方において前記第1の流
路に合流するように設けたことにより、小流量時の圧力
変動を吸収できると共に、第2の流路を遮断することな
く大流量を計測できる。本発明7によれば、第1の流路
に大流量計測手段を設置し、第2の流路に流体の圧力変
動吸収装置と小流量計測手段とを順次設けることによ
り、低流量時の圧力変動の影響を受けることなく正確な
計測を行えると共に、広い範囲の流量を規定以下の圧力
低下で計測することが可能となる。本発明8によれば、
第2の流路を、小流量の計測手段を経た後、大流量計測
手段の前方において前記第1の流路に合流するように設
けたことにより、第2の流路を遮断することなく大流量
を計測できる。本発明9によれば、第1の流路の入り口
を、前記第2の流路の入り口よりも前記流体の流れを遮
断する手段に近い位置に設けることにより、流体の流れ
を遮断する手段と流路切り替え手段を近い位置に設定で
き、構造を簡単にすることが出来る。本発明10によれ
ば、駆動手段から延伸された軸に直列に、前記流体の流
れを遮断する手段と前記第1の流路及び第2の流路の少
なくとも片方を開閉する手段を設けることにより、共通
の一つの駆動手段を用いて遮断と流路切り替えを行うこ
とが可能となる。本発明11によれば、駆動手段から延
伸された軸に直列に、前記流体の流れを遮断する手段を
設け、前記第1の流路及び第2の流路の少なくとも片方
を開閉する手段を、前記軸と梃を介して接続することに
より、共通の一つの駆動手段を用いて遮断と流路切り替
えを行うことが可能となる。本発明12によれば、駆動
手段から延伸された軸に並列に、前記流体の流れを遮断
する手段と前記第1の流路及び第2の流路の少なくとも
片方を開閉する手段を設けたことにより、共通の一つの
駆動手段を用いて遮断と流路切り替えを行うことが可能
となる。本発明13によれば、大流量計測時は前記第1
の流路及び第2の流路の両方を開とし、小流量計測時は
前記第1の流路を閉・第2の流路を開とすることによ
り、第1の流路及び第2の流路の合流点の制限を無く
し、設計の自由度を向上させることができる。本発明1
4によれば、前記第1の流路に大流量計測手段を、第2
の流路に小流量の計測手段を設け、大流量計測時は前記
第1の流路を開・第2の流路を閉とし、小流量計測時は
前記第1の流路を閉・第2の流路を開とし、前記第2の
流路を、小流量の計測手段を経た後、大流量計測手段の
後方において前記第1の流路に合流するように設けたこ
とにより、第1の流路及び第2の流路の合流点の制限を
無くし、設計の自由度を向上させることができる。本発
明15によれば、前記第1の流路に大流量計測手段を、
第2の流路に流体の圧力変動吸収装置と小流量計測手段
とを順次設け、大流量計測時は前記第1の流路を開・第
2の流路を閉とし、小流量計測時は前記第1の流路を閉
・第2の流路を開とし、前記第2の流路を、小流量の計
測手段を経た後、大流量計測手段の後方において前記第
1の流路に合流するように設けたことにより、第1の流
路及び第2の流路の合流点の制限を無くし、設計の自由
度を向上させることができる。本発明16によれば、前
記大流量計測手段がフルイディック素子、超音波方式、
又はフローセンサーであることにより大流量の正確な計
測が行える。本発明17によれば、前記小流量計測手段
がフローセンサー、フルイディック素子、又は超音波方
式であることにより小流量の正確な計測が行える。
According to the first aspect of the present invention, by driving the means for cutting off the flow of fluid and the means for switching the flow paths by using one common driving means, the structure is simplified and the reliability is improved. The cost can be reduced. Invention 2
According to this, by using a motor valve as one common driving means, opening / closing control of the valve becomes easy.
According to the third aspect of the present invention, by providing the large flow rate measuring means in the first flow path and the small flow rate measuring means in the second flow path, it is possible to measure a wide range of flow rate with a pressure drop below a specified value. It will be possible. According to the fourth aspect of the present invention, the second flow path is provided so as to join the first flow path in front of the large flow rate measurement means after passing through the small flow rate measurement means. High flow rate can be measured without blocking the passage. According to the fifth aspect of the invention, the small flow rate measuring means and the large flow rate measuring means are sequentially installed in the first flow path, and the fluid pressure fluctuation absorbing device is provided in the second flow path, whereby the pressure fluctuation at a low flow rate is obtained. It is possible to perform accurate measurement without being affected by, and to measure a wide range of flow rate with a pressure drop below a specified value. According to the sixth aspect of the present invention, the second flow path is provided so as to merge with the first flow path in front of the small flow rate measuring means after passing through the fluid pressure fluctuation absorbing device. The pressure fluctuation can be absorbed, and a large flow rate can be measured without blocking the second flow path. According to the seventh aspect of the present invention, the large flow rate measuring means is installed in the first flow path, and the fluid pressure fluctuation absorbing device and the small flow rate measuring means are sequentially provided in the second flow path, so that the pressure at the low flow rate is reduced. Accurate measurement can be performed without being affected by fluctuations, and a wide range of flow rates can be measured with a pressure drop below a specified value. According to the present invention 8,
Since the second flow path is provided so as to join the first flow path in front of the large flow rate measuring means after passing through the small flow rate measuring means, the second flow path can be made large without being blocked. Can measure the flow rate. According to the ninth aspect of the invention, the means for interrupting the flow of the fluid is provided by providing the inlet of the first flow path at a position closer to the means for interrupting the flow of the fluid than the entrance of the second flow path. The flow path switching means can be set at a close position, and the structure can be simplified. According to the tenth aspect of the present invention, by providing a means for interrupting the flow of the fluid and a means for opening and closing at least one of the first flow path and the second flow path in series with the shaft extending from the driving means. It is possible to perform blocking and flow path switching by using one common driving means. According to the present invention 11, means for cutting off the flow of the fluid is provided in series with the shaft extending from the driving means, and means for opening and closing at least one of the first flow path and the second flow path is provided. By connecting the shaft to the shaft through a lever, it is possible to cut off and switch the flow path by using one common driving means. According to the twelfth aspect of the present invention, a means for interrupting the flow of the fluid and a means for opening and closing at least one of the first flow path and the second flow path are provided in parallel with the shaft extending from the drive means. Thus, it becomes possible to perform the shutoff and the flow path switching by using one common driving means. According to the thirteenth aspect of the present invention, when measuring a large flow rate, the first
Both the first flow path and the second flow path are opened, and when the small flow rate is measured, the first flow path is closed and the second flow path is opened, so that the first flow path and the second flow path are opened. It is possible to improve the degree of freedom in design by eliminating the restriction on the confluence of the flow paths. Invention 1
According to 4, the large flow rate measuring means is provided in the first flow path, and the second flow rate measuring means is provided in the second flow path.
Is provided with a small flow rate measuring means, the first flow channel is opened and the second flow channel is closed during the large flow rate measurement, and the first flow channel is closed and the second flow channel is closed during the small flow rate measurement. The second flow path is opened, and the second flow path is provided so as to merge with the first flow path behind the large flow rate measurement means after passing through the small flow rate measurement means. It is possible to improve the degree of freedom in design by eliminating the restriction on the merging point of the flow channel and the second flow channel. According to the fifteenth aspect of the present invention, a large flow rate measuring means is provided in the first flow path.
A fluid pressure fluctuation absorbing device and a small flow rate measuring means are sequentially provided in the second flow path, the first flow path is opened and the second flow path is closed during the large flow rate measurement, and the small flow rate measurement is performed. The first flow path is closed, the second flow path is opened, and the second flow path merges with the first flow path after the small flow rate measuring means and then behind the large flow rate measuring means. By providing such a structure, it is possible to eliminate the restriction on the confluence of the first flow path and the second flow path, and improve the degree of freedom in design. According to the sixteenth aspect of the present invention, the large flow rate measuring means is a fluidic element, an ultrasonic system,
Alternatively, a flow sensor can accurately measure a large flow rate. According to the seventeenth aspect of the present invention, the small flow rate measuring means is a flow sensor, a fluidic element, or an ultrasonic system, so that the small flow rate can be accurately measured.

【図面の簡単な説明】[Brief description of drawings]

【図1】第1実施例(直列接続方式1)の大流量計測時
の状態を示す図。
FIG. 1 is a diagram showing a state when a large flow rate is measured in a first embodiment (series connection method 1).

【図2】第1実施例(直列接続方式1)の小流量計測時
の状態を示す図。
FIG. 2 is a diagram showing a state when measuring a small flow rate according to the first embodiment (series connection method 1).

【図3】第1実施例(直列接続方式1)の遮断時の状態
を示す図。
FIG. 3 is a diagram showing a state of the first embodiment (series connection method 1) during disconnection.

【図4】第2実施例(直列接続方式2)の大流量計測時
の状態を示す図。
FIG. 4 is a diagram showing a state of the second embodiment (series connection method 2) at the time of measuring a large flow rate.

【図5】第2実施例(直列接続方式2)の小流量計測時
の状態を示す図。
FIG. 5 is a diagram showing a state of the second embodiment (series connection method 2) at the time of measuring a small flow rate.

【図6】第2実施例(直列接続方式2)の遮断時の状態
を示す図。
FIG. 6 is a diagram showing a state of the second embodiment (series connection method 2) during disconnection.

【図7】第3実施例(蝶番方式)の大流量計測時の状態
を示す図。
FIG. 7 is a diagram showing a state at the time of measuring a large flow rate according to the third embodiment (hinge method).

【図8】第3実施例(蝶番方式)の小流量計測時の状態
を示す図。
FIG. 8 is a diagram showing a state when measuring a small flow rate according to a third embodiment (hinge method).

【図9】第3実施例(蝶番方式)の遮断時の状態を示す
図。
FIG. 9 is a diagram showing a state of the third embodiment (hinge method) at the time of interruption.

【図10】第4実施例(スライド方式1)の大流量計測
時の状態を示す図。
FIG. 10 is a diagram showing a state when measuring a large flow rate according to a fourth embodiment (sliding method 1).

【図11】第4実施例(スライド方式1)の小流量計測
時の状態を示す図。
FIG. 11 is a diagram showing a state when measuring a small flow rate according to the fourth embodiment (slide system 1).

【図12】第4実施例(スライド方式1)の遮断時の状
態を示す図。
FIG. 12 is a diagram showing a state of the fourth embodiment (slide system 1) at the time of interruption.

【図13】第5実施例(スライド式クランク方式)の大
流量計測時の状態を示す図。
FIG. 13 is a diagram showing a state when a large flow rate is being measured in the fifth embodiment (slide type crank system).

【図14】第5実施例(スライド式クランク方式)の小
流量計測時の状態を示す図。
FIG. 14 is a diagram showing a state at the time of measuring a small flow rate of the fifth embodiment (slide type crank system).

【図15】第5実施例(スライド式クランク方式)の遮
断時の状態を示す図。
FIG. 15 is a view showing a state of the fifth embodiment (slide type crank system) at the time of shutoff.

【図16】第6実施例(回転式クランク方式)の大流量
計測時の状態を示す図。
FIG. 16 is a diagram showing a state of a sixth embodiment (rotary crank type) at the time of measuring a large flow rate.

【図17】第6実施例(回転式クランク方式)の小流量
計測時の状態を示す図。
FIG. 17 is a diagram showing a state of a sixth embodiment (rotary crank type) at the time of measuring a small flow rate.

【図18】第6実施例(回転式クランク方式)の遮断時
の状態を示す図。
FIG. 18 is a diagram showing a state of the sixth embodiment (rotary crank type) at the time of interruption.

【図19】第7実施例(スライド方式2)の大流量計測
時の状態を示す図。
FIG. 19 is a diagram showing a state of the seventh embodiment (slide system 2) at the time of measuring a large flow rate.

【図20】第7実施例(スライド方式2)の小流量計測
時の状態を示す図。
FIG. 20 is a diagram showing a state at the time of measuring a small flow rate according to the seventh embodiment (slide system 2).

【図21】第7実施例(スライド方式2)の遮断時の状
態を示す図。
FIG. 21 is a diagram showing a state of the seventh embodiment (slide system 2) at the time of interruption.

【図22】第8実施例(並列接続方式)の大流量計測時
の状態を示す図。
FIG. 22 is a diagram showing a state when measuring a large flow rate according to the eighth embodiment (parallel connection method).

【図23】第8実施例(並列接続方式)の小流量計測時
の状態を示す図。
FIG. 23 is a diagram showing a state when measuring a small flow rate according to an eighth embodiment (parallel connection method).

【図24】第8実施例(並列接続方式)の遮断時の状態
を示す図。
FIG. 24 is a diagram showing a state of the eighth embodiment (parallel connection method) at the time of interruption.

【図25】第9実施例(流路切り替え弁2個方式)の大
流量計測時の状態を示す図。
FIG. 25 is a diagram showing a state at the time of large flow rate measurement of the ninth embodiment (two flow path switching valve system).

【図26】第9実施例(流路切り替え弁2個方式)の小
流量計測時の状態を示す図。
FIG. 26 is a diagram showing a state at the time of measuring a small flow rate according to the ninth embodiment (two flow path switching valve system).

【図27】第9実施例(流路切り替え弁2個方式)の遮
断時の状態を示す図。
FIG. 27 is a view showing a shut-off state of the ninth embodiment (two flow path switching valve system).

【符号の説明】[Explanation of symbols]

A 流路1(大流量流路) B 流路2(小流量流路) A channel 1 (large flow channel) B channel 2 (small flow channel)

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) G01F 3/22 G01F 3/22 B (72)発明者 家地 洋之 東京都大田区中馬込1丁目3番6号 株式 会社リコー内 (72)発明者 堀口 浩幸 東京都大田区中馬込1丁目3番6号 株式 会社リコー内 (72)発明者 宮岡 利行 愛知県名古屋市中区錦2丁目2番13号 リ コーエレメックス株式会社内 Fターム(参考) 2F030 CA03 CA10 CC13 CD13 CF05 CF20 2F035 DA14 EA04 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) G01F 3/22 G01F 3/22 B (72) Inventor Hiroyuki Ichiji 1-3-3 Nakamagome, Ota-ku, Tokyo No. 6 in Ricoh Company (72) Inventor Hiroyuki Horiguchi 1-3-3 Nakamagome, Ota-ku, Tokyo In-house Ricoh Company (72) Toshiyuki Miyaoka 2-2-1-13 Nishiki, Naka-ku, Nagoya-shi, Aichi F-term in Koelemex Corporation (reference) 2F030 CA03 CA10 CC13 CD13 CF05 CF20 2F035 DA14 EA04

Claims (17)

【特許請求の範囲】[Claims] 【請求項1】 流体流入路と、流体の流れを遮断する手
段と、該流体の流れを遮断する手段以降において設置さ
れた第1の流路及び第2の流路と、該第1の流路及び第
2の流路の少なくとも片方を開閉する手段とを有し、前
記流体の流れを遮断する手段と前記第1の流路及び第2
の流路の少なくとも片方を開閉する手段を駆動する共通
の一つの駆動手段を有することを特徴とする流体流量計
測器。
1. A fluid inflow path, means for interrupting the flow of fluid, first and second flow passages installed after the means for interrupting the flow of fluid, and the first flow passage. Means for opening and closing at least one of the passage and the second passage, and means for interrupting the flow of the fluid, the first passage and the second passage
A fluid flow rate measuring device having a common driving means for driving a means for opening and closing at least one of the flow paths.
【請求項2】 前記共通の一つの駆動手段がモーター弁
であることを特徴とする請求項1記載の流体流量計測
器。
2. The fluid flow rate measuring device according to claim 1, wherein the one common driving means is a motor valve.
【請求項3】 前記第1の流路に大流量計測手段を、第
2の流路に小流量計測手段を設けたことを特徴とする請
求項1又は2記載の流体流量計測器。
3. The fluid flow rate measuring device according to claim 1, wherein a large flow rate measuring means is provided in the first flow path, and a small flow rate measuring means is provided in the second flow path.
【請求項4】 前記第2の流路を、小流量計測手段を経
たのち大流量計測手段の前方において前記第1の流路に
合流するように設けたことを特徴とする請求項3記載の
流体流量計測器。
4. The second flow path according to claim 3, wherein the second flow path is provided so as to merge with the first flow path in front of the large flow rate measurement means after passing through the small flow rate measurement means. Fluid flow meter.
【請求項5】 前記第1の流路に小流量計測手段と大流
量計測手段を順次設置し、第2の流路に流体の圧力変動
吸収装置を設けたことを特徴とする請求項1又は2記載
の流体流量計測器。
5. The small flow rate measuring means and the large flow rate measuring means are sequentially installed in the first flow path, and a fluid pressure fluctuation absorbing device is provided in the second flow path. 2. The fluid flow rate measuring device according to 2.
【請求項6】 前記第2の流路を、流体の圧力変動吸収
装置を経たのち小流量計測手段の前方において前記第1
の流路に合流するように設けたことを特徴とする請求項
5記載の流体流量計測器。
6. The first flow path is provided in front of the small flow rate measuring means after passing through a fluid pressure fluctuation absorbing device.
The fluid flow rate measuring device according to claim 5, wherein the fluid flow rate measuring device is provided so as to merge with the flow path.
【請求項7】 前記第1の流路に大流量計測手段を設置
し、第2の流路に流体の圧力変動吸収装置と小流量計測
手段とを順次設けたことを特徴とする請求項1又は2記
載の流体流量計測器。
7. The large flow rate measuring means is installed in the first flow path, and the fluid pressure fluctuation absorbing device and the small flow rate measuring means are sequentially installed in the second flow path. Alternatively, the fluid flow rate measuring device according to item 2.
【請求項8】 前記第2の流路を、小流量の計測手段を
経たのち大流量計測手段の前方において前記第1の流路
に合流するように設けたことを特徴とする請求項7記載
の流体流量計測器。
8. The method according to claim 7, wherein the second flow path is provided so as to merge with the first flow path in front of the large flow rate measuring means after passing through the small flow rate measuring means. Fluid flow meter.
【請求項9】 前記第1の流路の入り口を、前記第2の
流路の入り口よりも前記流体の流れを遮断する手段に近
い位置に設けたことを特徴とする請求項1〜8の何れか
に記載の流体流量計測器。
9. The method according to claim 1, wherein the inlet of the first flow passage is provided at a position closer to the means for blocking the flow of the fluid than the inlet of the second flow passage. The fluid flow rate measuring device according to any one of claims.
【請求項10】 前記駆動手段から延伸された軸に直列
に、前記流体の流れを遮断する手段と前記第1の流路及
び第2の流路の少なくとも片方を開閉する手段を設けた
ことを特徴とする請求項1〜9の何れかに記載の流体流
量計測器。
10. A means for interrupting the flow of the fluid and a means for opening and closing at least one of the first flow path and the second flow path are provided in series with a shaft extending from the drive means. The fluid flow rate measuring device according to any one of claims 1 to 9, which is characterized.
【請求項11】 前記駆動手段から延伸された軸に直列
に、前記流体の流れを遮断する手段を設け、前記第1の
流路及び第2の流路の少なくとも片方を開閉する手段
を、前記軸と梃を介して接続したことを特徴とする請求
項1〜9の何れかに記載の流体流量計測器。
11. A means for cutting off the flow of the fluid is provided in series with a shaft extending from the driving means, and means for opening and closing at least one of the first flow path and the second flow path is provided. The fluid flow rate measuring device according to any one of claims 1 to 9, wherein the fluid flow rate measuring device is connected to the shaft through a lever.
【請求項12】 前記駆動手段から延伸された軸に並列
に、前記流体の流れを遮断する手段と前記第1の流路及
び第2の流路の少なくとも片方を開閉する手段を設けた
ことを特徴とする請求項1〜9の何れかに記載の流体流
量計測器。
12. A means for interrupting the flow of the fluid and a means for opening and closing at least one of the first flow path and the second flow path are provided in parallel with a shaft extending from the driving means. The fluid flow rate measuring device according to any one of claims 1 to 9, which is characterized.
【請求項13】 大流量計測時は前記第1の流路及び第
2の流路の両方を開とし、小流量計測時は前記第1の流
路を閉・第2の流路を開とすることを特徴とする請求項
3〜12の何れかに記載の流体流量計測器。
13. When measuring a large flow rate, both the first flow channel and the second flow channel are opened, and when measuring a small flow rate, the first flow channel is closed and the second flow channel is opened. The fluid flow rate measuring device according to any one of claims 3 to 12, wherein
【請求項14】 前記第1の流路に大流量計測手段を、
第2の流路に小流量計測手段を設け、大流量計測時は前
記第1の流路を開・第2の流路を閉とし、小流量計測時
は前記第1の流路を閉・第2の流路を開とするように設
定し、前記第2の流路を、小流量計測手段を経たのち大
流量計測手段の後方において前記第1の流路に合流する
ように設けたことを特徴とする請求項1又は2記載の流
体流量計測器。
14. A large flow rate measuring means is provided in the first flow path.
A small flow rate measuring means is provided in the second flow path, the first flow path is opened and the second flow path is closed when a large flow rate is measured, and the first flow path is closed when a small flow rate is measured. The second flow path is set to be opened, and the second flow path is provided so as to merge with the first flow path after passing through the small flow rate measuring means and then behind the large flow rate measuring means. The fluid flow rate measuring device according to claim 1 or 2.
【請求項15】 前記第1の流路に大流量計測手段を、
第2の流路に流体の圧力変動吸収装置と小流量計測手段
とを順次設け、大流量計測時は前記第1の流路を開・第
2の流路を閉とし、小流量計測時は前記第1の流路を閉
・第2の流路を開とするように設定し、前記第2の流路
を、小流量の計測手段を経たのち大流量計測手段の後方
において前記第1の流路に合流するように設けたことを
特徴とする請求項1又は2記載の流体流量計測器。
15. A large flow rate measuring means is provided in the first flow path.
A fluid pressure fluctuation absorbing device and a small flow rate measuring means are sequentially provided in the second flow path, the first flow path is opened and the second flow path is closed during the large flow rate measurement, and the small flow rate measurement is performed. The first flow path is set to be closed and the second flow path is opened, and the second flow path passes through the small flow rate measuring means and then behind the large flow rate measuring means. The fluid flow rate measuring device according to claim 1 or 2, wherein the fluid flow rate measuring device is provided so as to join the flow channel.
【請求項16】 前記大流量計測手段がフルイディック
素子、超音波方式、フローセンサーの何れかであること
を特徴とする請求項3〜15の何れかに記載の流体流量
計測器。
16. The fluid flow rate measuring device according to claim 3, wherein the large flow rate measuring means is any one of a fluidic element, an ultrasonic system, and a flow sensor.
【請求項17】 前記小流量計測手段がフルイディック
素子、超音波方式、フローセンサーの何れかであること
を特徴とする請求項3〜16の何れかに記載の流体流量
計測器。
17. The fluid flow rate measuring device according to claim 3, wherein the small flow rate measuring means is any one of a fluidic element, an ultrasonic system, and a flow sensor.
JP2001291784A 2001-09-25 2001-09-25 Instrument for measuring flow rate of fluid Pending JP2003097994A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001291784A JP2003097994A (en) 2001-09-25 2001-09-25 Instrument for measuring flow rate of fluid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001291784A JP2003097994A (en) 2001-09-25 2001-09-25 Instrument for measuring flow rate of fluid

Publications (1)

Publication Number Publication Date
JP2003097994A true JP2003097994A (en) 2003-04-03

Family

ID=19113873

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001291784A Pending JP2003097994A (en) 2001-09-25 2001-09-25 Instrument for measuring flow rate of fluid

Country Status (1)

Country Link
JP (1) JP2003097994A (en)

Similar Documents

Publication Publication Date Title
CN102853153B (en) Valve feature is diagnosed and leak detecting device
WO2012137489A1 (en) Ultrasonic flow rate measurement device
CN101470050B (en) Integrated measuring instrument
KR20030034068A (en) Automatic valve device
US8251081B2 (en) Device for metering fluids
JP2003097994A (en) Instrument for measuring flow rate of fluid
CN105864446A (en) Valve
JP5961815B2 (en) Water heater
JP2000241218A (en) Flow meter
JP2000258199A (en) Gas meter
JPH07269722A (en) Flow rate control valve
JPH08114480A (en) Gas meter
US7739914B1 (en) System and method for preloading a valve tester control assembly
CN216951758U (en) Flow controller
KR100794344B1 (en) Valve and system for supplying wet chemical comprising the same
JPH08303638A (en) Electronic expansion valve having opening/closing degree indicating function
JPS61236972A (en) Diverting device of flow path
JP4788037B2 (en) Gas meter
JP4251187B2 (en) Gas security device
JPH10221150A (en) Flowmeter
JP2003065824A (en) Gas meter, and electric component unit therefor
JPH08210894A (en) Gas meter
JPH08114479A (en) Gas meter
JPH08114481A (en) Gas meter
JPH0829214A (en) Flow rate measuring device