JP2003097744A - Directional control device for airflow - Google Patents

Directional control device for airflow

Info

Publication number
JP2003097744A
JP2003097744A JP2001288751A JP2001288751A JP2003097744A JP 2003097744 A JP2003097744 A JP 2003097744A JP 2001288751 A JP2001288751 A JP 2001288751A JP 2001288751 A JP2001288751 A JP 2001288751A JP 2003097744 A JP2003097744 A JP 2003097744A
Authority
JP
Japan
Prior art keywords
rotor
air
housing
flow path
switching device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001288751A
Other languages
Japanese (ja)
Inventor
Hiroyuki Takami
博之 高見
Isao Yoneda
勲 米田
Toshihiro Tamura
敏裕 田村
Yoshihiro Tanimoto
好広 谷本
Keiichi Fujimoto
恵一 藤本
Kozo Akamatsu
功三 赤松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2001288751A priority Critical patent/JP2003097744A/en
Priority to TW091118289A priority patent/TW533285B/en
Priority to KR10-2002-0048469A priority patent/KR100483441B1/en
Priority to CNB021304521A priority patent/CN1266403C/en
Publication of JP2003097744A publication Critical patent/JP2003097744A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE
    • B09B5/00Operations not covered by a single other subclass or by a single other group in this subclass
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

PROBLEM TO BE SOLVED: To provide a directional control device for air flow capable of controlling deformation due to contraction after forming and preventing air leak to other than an airflow outlet part to which air supply is expected. SOLUTION: This device is constituted of a rotor 71 having an airflow inlet part R0 in the rotation shaft direction and an airflow outlet part R1 communicated with the airflow inlet part R0 in the circumferential direction, a housing 72 rotatably containing the rotor 71 and having an airflow inlet part H0 in the rotation shaft direction and plural airflow outlet parts H1-H5 in the circumferential direction and a motor rotating/driving the rotor 71 such that the airflow outlet part R1 is communicated with any one of the airflow outlet parts of the housing 71. Outer peripheral side of the rotor contacting inner peripheral side of the housing 72 is formed with thin-walled.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本願発明は、例えば、流し台
のディスポーザからの生ごみ粉砕物を含んだ排水等を貯
留して浄化するための複数の槽を備えた水処理システム
等に用いられ、各槽における処理(曝気や沈澱促進)や
各槽間の移送(エアリフト)等に必要な空気の流路を切
り替える空気流路切替装置に関するものである。
TECHNICAL FIELD The present invention is used, for example, in a water treatment system having a plurality of tanks for storing and purifying wastewater containing crushed food waste from a disposer of a sink, and the like. The present invention relates to an air flow path switching device that switches a flow path of air required for processing (aeration and precipitation promotion) in a tank and transfer (air lift) between tanks.

【0002】[0002]

【従来の技術】本願出願人による出願の特開2000−
588号公報(C02F 3/12)に開示された水処
理システムにおいては、空気供給手段(ブロワ等、以下
ブロワ)に、そこから送られてくる空気が流入する1つ
の空気流入口に対して切替制御可能な複数の空気流出口
を有する空気流路切替手段を接続して、空気を各槽に供
給し、ブロワを1台で済ませられる構成としていた。
2. Description of the Related Art Japanese Patent Application Laid-Open No. 2000-
In the water treatment system disclosed in Japanese Patent No. 588 (C02F 3/12), the air supply means (blower, etc., hereinafter, blower) is switched to one air inflow port into which air sent from the air supply means flows. An air flow path switching means having a plurality of controllable air outlets is connected to supply air to each tank and a single blower is sufficient.

【0003】例えば、図6は、ディスポーザからの排水
を浄化して下水道に放流する水処理システムの一例を示
すシステム構成図であり、1台のブロワからの空気を6
つの流路に切替えて使用するものである。なお、実線で
示す配管は液体(固液混合液)の流れを示し、破線で示
す配管は空気の流れを示している。
For example, FIG. 6 is a system configuration diagram showing an example of a water treatment system for purifying wastewater from a disposer and discharging it to sewer.
It is used by switching to one flow path. The pipe shown by the solid line shows the flow of liquid (solid-liquid mixed liquid), and the pipe shown by the broken line shows the flow of air.

【0004】この水処理システムでは、図示しないディ
スポーザからの生ごみ粉砕物を含んだ排水を流量調整槽
10に一旦貯留して、その沈殿物をエアリフト管11で
固液分離装置20に投入して固体分と液体分に分離し、
液体分は流量調整槽10に戻し、固体分はコンポスト化
(堆肥化)装置30に投入して微生物による有機物分解
処理により堆肥化するようになっている。また、流量調
整槽10の上澄みはエアリフト管12で曝気槽40に移
送して曝気処理により有機物成分を微生物により分解処
理する。そして、この曝気槽40の上澄みを上部で連通
した沈殿分離槽50に自然流下させて汚泥を沈殿させ、
その上澄みが下水道に放流され、沈殿した汚泥はエアリ
フト管51で初段の流量調整槽10に返送するようにし
ている。
In this water treatment system, waste water containing crushed food waste from a disposer (not shown) is temporarily stored in the flow rate adjusting tank 10, and the precipitate is introduced into the solid-liquid separation device 20 by the air lift pipe 11. Separated into solid and liquid,
The liquid content is returned to the flow rate adjusting tank 10, and the solid content is put into a composting (composting) device 30 and composted by a decomposition treatment of organic substances by microorganisms. Further, the supernatant of the flow rate adjusting tank 10 is transferred to the aeration tank 40 by the air lift pipe 12 and decomposes organic components by microorganisms by aeration processing. Then, the supernatant of the aeration tank 40 is allowed to naturally flow down to the precipitation separation tank 50 communicating at the top to precipitate sludge,
The supernatant is discharged to the sewer, and the sludge that has settled is returned to the first-stage flow rate adjusting tank 10 by the air lift pipe 51.

【0005】この水処理システムでは1台のブロワ60
を用い、このブロワ60からの空気を各流路に切替える
空気流路切替装置70を介して前記流量調整槽10、曝
気槽40、沈殿分離槽50に供給している。
In this water treatment system, one blower 60
The air from the blower 60 is supplied to the flow rate adjusting tank 10, the aeration tank 40, and the precipitation separation tank 50 via an air flow path switching device 70 that switches the air flow to each flow path.

【0006】また、空気流路切替装置70は、回転軸方
向に空気流入口R0を有し、この空気流入口R0と連通
する空気流出口R1を円周方向に有する回転子71と、
この回転子71を回転自在に収納して、その回転軸方向
に空気流入口H0を有し、円周方向に6つの空気流出口
H1〜H6を有するハウジング72と、回転子71の空
気流出口R1がハウジング72のいずれかの空気流出口
H1〜H6に連通するように回転駆動するモータ(図示
せず)とから構成されている。
Further, the air flow path switching device 70 has an air inlet R0 in the direction of the rotation axis, and a rotor 71 having an air outlet R1 in the circumferential direction which communicates with the air inlet R0.
This rotor 71 is rotatably accommodated, has an air inlet H0 in its rotation axis direction, and has a housing 72 having six air outlets H1 to H6 in the circumferential direction, and an air outlet of the rotor 71. R1 is composed of a motor (not shown) that is rotationally driven so as to communicate with any of the air outlets H1 to H6 of the housing 72.

【0007】上記空気流路切替装置70の各空気流出口
H1〜H6にはそれぞれ破線で示すエアパイプ81〜8
6が接続され、エアパイプ81の先端は曝気槽40の底
部に配管されて、散気管81aが接続され、エアパイプ
82の先端は流量調整槽10の上澄みをエアリフトする
エアリフト管12の下部に接続され、エアパイプ83の
先端は流量調整槽10の沈殿物をエアリフトするエアリ
フト管11の下部に接続され、エアパイプ84の先端は
沈殿分離槽50の沈殿物をエアリフトするエアリフト管
51の下部に接続され、エアパイプ85の先端は流量調
整槽10の下部に配管されて、散気管85aが接続さ
れ、エアパイプ86の先端は沈殿分離槽50の下部に配
管されて、散気管86aが接続されている。
Air pipes 81 to 8 indicated by broken lines are provided at the air outlets H1 to H6 of the air flow path switching device 70, respectively.
6 is connected, the tip of the air pipe 81 is connected to the bottom of the aeration tank 40, the air diffuser 81a is connected, the tip of the air pipe 82 is connected to the lower portion of the air lift pipe 12 for air-lifting the supernatant of the flow rate adjusting tank 10, The tip of the air pipe 83 is connected to the lower portion of the air lift pipe 11 for air-lifting the sediment of the flow rate adjusting tank 10, the tip of the air pipe 84 is connected to the lower portion of the air lift pipe 51 for air-lifting the sediment of the precipitation separation tank 50, and the air pipe 85. Of the air pipe 86 is connected to the lower portion of the flow rate adjusting tank 10 and is connected to the air diffuser pipe 85a. The tip of the air pipe 86 is connected to the lower portion of the precipitation separation tank 50 and is connected to the air diffuser pipe 86a.

【0008】上記各エアパイプ81〜86のうち散気管
81a,85a,86aが接続されたエアパイプ81,
85,86には、その途中に逆止弁90が取り付けられ
ている。
Of the air pipes 81 to 86, the air pipes 81a, 85a, 86a are connected to the air pipe 81,
A check valve 90 is attached to each of 85 and 86 in the middle thereof.

【0009】なお、図示は省略したが、この水処理シス
テム全体を制御するマイクロコンピュータ等からなる制
御部と、各種操作や異常等の状態表示のための操作表示
部が備えられており、前述したブロワ60や空気流路切
替装置70も上記制御部によって制御される。
Although not shown in the drawing, a control section including a microcomputer for controlling the entire water treatment system and an operation display section for displaying the status of various operations and abnormalities are provided. The blower 60 and the air flow path switching device 70 are also controlled by the control unit.

【0010】また、空気流路切替装置70としては、例
えば図7に示すような構成のものが本願出願人により既
に提案されている(特願2000−384686号)。
As the air flow path switching device 70, for example, a device having a structure shown in FIG. 7 has already been proposed by the applicant of the present application (Japanese Patent Application No. 2000-384686).

【0011】この空気流路切替装置70は、ハウジング
72の内面形状を略すり鉢形状に形成して、回転子71
をハウジング72の内面形状に対応した略こま形状に形
成したものである。すなわち、ハウジング72の略すり
鉢形状の内斜面72bが成す角度と、回転子71の略こ
ま形状の側斜面71bが成す角度が同じ角度になるよう
に形成されている。上記ハウジング72の内斜面72b
には、各空気流出口H1〜H5(図ではH2,H5のみ
を示す)に至る開口部が等間隔に形成され、回転子71
の側斜面71bに上記開口部に対応した空気流出口R1
が形成されている。ハウジング72の空気流入口H0
は、略すり鉢状の上部開口を覆うハウジング蓋72cに
設けられ、ハウジング72の略すり鉢状空間に回転子7
1が収納された後、蓋72cで覆う構造になっている。
In this air flow path switching device 70, the inner surface of a housing 72 is formed into a substantially mortar shape, and a rotor 71 is provided.
Is formed in a substantially frame shape corresponding to the inner surface shape of the housing 72. That is, the angle formed by the substantially mortar-shaped inner sloped surface 72b of the housing 72 and the angle formed by the substantially frame-shaped side sloped surface 71b of the rotor 71 are formed to be the same. Inner slope 72b of the housing 72
In the rotor 71, openings reaching the air outlets H1 to H5 (only H2 and H5 are shown in the figure) are formed at equal intervals.
On the side slope 71b of the air outlet R1 corresponding to the opening.
Are formed. Air inlet H0 of housing 72
Is provided in the housing lid 72c that covers the substantially mortar-shaped upper opening, and the rotor 7 is placed in the substantially mortar-shaped space of the housing 72.
After 1 is stored, it is structured to be covered with a lid 72c.

【0012】さらに、回転子71の回転軸71dがハウ
ジング72の底部に形成された貫通孔72dを緩く貫通
するようにそれぞれの径が設定されている。
Further, respective diameters of the rotor 71 are set so that the rotary shaft 71d of the rotor 71 loosely penetrates a through hole 72d formed in the bottom of the housing 72.

【0013】また、回転子71の回転軸71dとモータ
軸73aを、回転子71がモータ軸方向(スラスト方
向)に移動可能なユニバーサルジョイント構造にて接続
するために、モータ73には十字モータ軸73eが備え
られ、回転子71の回転軸71dには、上記十字モータ
軸73eが嵌合する十字溝71eが十字モータ軸73e
の高さより深く形成されており、十字モータ軸73eに
荷重がかからないようになっている。
Further, in order to connect the rotating shaft 71d of the rotor 71 and the motor shaft 73a with a universal joint structure in which the rotor 71 is movable in the motor shaft direction (thrust direction), the motor 73 has a cross motor shaft. 73e is provided, and the cross shaft 71d of the rotor 71 is provided with a cross groove 71e into which the cross motor shaft 73e is fitted.
Is formed deeper than the height of the cross motor shaft 73e so that no load is applied to the cross motor shaft 73e.

【0014】また、上記回転子71の回転軸71dに
は、位置決め用回転板75が取り付けられ、この位置決
め用回転板75の周縁には空気流出口H1〜H5に対応
した間隔で位置決め用孔(図示せず)が形成されてお
り、そのうちの1つの位置決め用孔は現在位置認識のた
め、他と識別可能なように形成されている。また、上記
位置決め用回転板75の周縁の上下に位置するように、
フォトセンサ76が取り付けられており、このフォトセ
ンサ76と上記位置決め用回転板75とにより、回転子
71の空気流出口R1をハウジング72の任意の空気流
出口H1〜H5に位置決めできるように構成されてい
る。
Further, a positioning rotary plate 75 is attached to the rotary shaft 71d of the rotor 71, and positioning holes (positioning holes are provided at the periphery of the positioning rotary plate 75 at intervals corresponding to the air outlets H1 to H5). (Not shown) is formed, and one of the positioning holes is formed so as to be distinguishable from the other for recognizing the current position. In addition, so as to be positioned above and below the peripheral edge of the positioning rotary plate 75,
A photo sensor 76 is attached, and the photo sensor 76 and the positioning rotary plate 75 are configured so that the air outlet R1 of the rotor 71 can be positioned at any of the air outlets H1 to H5 of the housing 72. ing.

【0015】上記空気流路切替装置70は、ハウジング
蓋72cの空気流入口H0に前述したブロワ60からの
空気を受け入れ、回転子71を経て回転子71により選
択されたハウジング72の空気流出口のいずれかに排出
される構成になっている。その際、回転子71に空気圧
がかかり、回転子71が下方へ押されることによって回
転子71の側斜面71bがハウジング72の内斜面72
bに圧接され、空気漏れが発生しないようになってい
る。
The air flow path switching device 70 receives the air from the blower 60 at the air inlet H0 of the housing lid 72c, passes through the rotor 71, and then the air outlet of the housing 72 selected by the rotor 71. It is configured to be discharged to either. At this time, air pressure is applied to the rotor 71, and the rotor 71 is pushed downward, so that the side sloped surface 71 b of the rotor 71 becomes the inner sloped surface 72 of the housing 72.
It is pressed against b to prevent air leakage.

【0016】ところで、ブロワ60から送気される空気
は、ブロワ60の発熱が加わるので、加熱された空気が
ブロワ60から空気流路切替装置70に送気されてく
る。ここで、ブロワ60が取り込んでくる空気に水分が
多量に含まれている場合(例えばブロワ60が空気を水
処理装置の外部から取り込む構成の場合は雨天時の多湿
な外気、また水処理装置の内部から取り込む構成の場合
は装置内部の各槽などから発生する水蒸気等)、ブロワ
60からの空気は高温多湿となる。
The air blown from the blower 60 is heated by the blower 60, so that the heated air is blown from the blower 60 to the air flow path switching device 70. Here, when the air taken in by the blower 60 contains a large amount of water (for example, in the case where the blower 60 takes in the air from the outside of the water treatment device, it is humid outside in rainy weather, and In the case of a configuration in which the air is taken in from the inside, water vapor generated from each tank inside the apparatus) and air from the blower 60 become hot and humid.

【0017】この高温多湿空気が常温の空気流路切替装
置70に流入すると、その温度差から、回転子71とハ
ウジング蓋72cの隙間や、回転子71の側斜面71b
とハウジング72の内斜面72bの間等で結露水が発生
し、その水滴wが流下して直下の電気部品であるフォト
センサ76やモータ73等に付着すると、空気流路切替
装置70の動作不良や故障が生じるばかりか、水の表面
張力効果により回転子71がハウジング72に密着して
空気流路の切り替えが行えない場合もある。
When this hot and humid air flows into the air flow path switching device 70 at room temperature, the temperature difference causes the gap between the rotor 71 and the housing lid 72c and the side sloped surface 71b of the rotor 71.
If dew condensation water is generated between the inner sloped surface 72b of the housing 72 and the like, and the water droplet w flows down and adheres to the photosensor 76, the motor 73, etc., which are electrical components directly below, the malfunction of the air flow path switching device 70 will occur. In addition to failure, the rotor 71 may be in close contact with the housing 72 due to the surface tension effect of water, and the air passage may not be switched.

【0018】また、上記の構成では、ブロワ60と空気
流路切替装置70を直接接続しているため、ブロワ60
の発する騒音(低周波の振動音も含む)が空気流路切替
装置70を経由して、各配管に伝搬し、水処理装置全体
の騒音の原因になっていた。この騒音を防ぐため、各配
管毎に防音対策を施すと、防音対策のための部品点数が
増加し、設置スペースが大きくなって水処理装置が大型
化し、コストも増大する。
Further, in the above structure, since the blower 60 and the air flow path switching device 70 are directly connected, the blower 60
The noise (including low-frequency vibration sound) generated by the above-mentioned noise propagates to each pipe via the air flow path switching device 70, and causes the noise of the entire water treatment device. In order to prevent this noise, if soundproof measures are taken for each pipe, the number of parts for soundproof measures increases, the installation space becomes large, the water treatment device becomes large, and the cost also increases.

【0019】そこで、本願出願人は、上述したような不
具合を解消するための結露対策や防音対策が施された図
8に示すようなものを新たに提案している(特願200
1−85127号)
Therefore, the applicant of the present application has newly proposed a device as shown in FIG. 8 which is provided with measures against dew condensation and soundproofing in order to solve the above-mentioned problems (Japanese Patent Application No. 200-200).
1-85127)

【0020】ここでは、先ず空気流路切替装置70の電
気部品であるモータ73やフォトセンサ76等を回転子
71及びハウジング72より上方に配置する構成とし
た。すなわち、前記図7に示した空気流路切替装置70
の上下が逆になるように配置構成したものである。この
ように構成しても、前記図6に示したブロワ60が運転
されて送気が始まると、送気の空気圧により回転子71
は重力に逆らって上方へ浮上し、その結果ハウジング7
2の内斜面72bに回転子71の側斜面71bが圧接し
て空気漏れは発生しない。
Here, first, the motor 73, the photosensor 76, etc., which are electric parts of the air flow switching device 70, are arranged above the rotor 71 and the housing 72. That is, the air flow path switching device 70 shown in FIG.
The arrangement is such that the top and bottom of the figure are reversed. Even with this configuration, when the blower 60 shown in FIG. 6 is operated and air supply starts, the rotor 71 is rotated by the air pressure of the air supply.
Levitates upwards against gravity, resulting in housing 7
The side sloped surface 71b of the rotor 71 is pressed against the inner sloped surface 72b of No. 2 to prevent air leakage.

【0021】そして、ブロワ60と空気流路切替装置7
0の間に、熱交換機能と共に消音機能を併せ持つ容積の
大きな円筒状の熱交換室100を設け、その底面101
が空気流路切替装置70の電気部品室78の上壁面と一
体となるように構成した。この熱交換室100内には、
ブロワ60からの空気の流入口102と排出口103の
間に、流入空気との接触面積が大きくなるように交互に
連通する如く配置された熱交換板104が形成されてい
る。
The blower 60 and the air flow path switching device 7
Between 0, a large-capacity cylindrical heat exchange chamber 100 having both a heat exchange function and a sound deadening function is provided, and its bottom surface 101
Is integrated with the upper wall surface of the electric component chamber 78 of the air flow path switching device 70. In this heat exchange chamber 100,
Between the inlet 102 and the outlet 103 of the air from the blower 60, a heat exchange plate 104 is formed so as to be alternately communicated so that the contact area with the inflow air becomes large.

【0022】上記熱交換室100の底面101は排出口
103に向けて下降する傾斜面になっており、熱交換板
104も開放端側を排出口103方向に傾斜させること
により、結露した水を集めて、排出口103から下方に
延ばされた配管110を介して貯留部120へ導くよう
になっている。また、貯留部120には水抜きバルブ1
30が設けてあり、水処理装置のいずれかの槽に排水で
きるように構成されている。上記配管110は、途中か
ら水平方向に分岐して、空気流路切替装置70のハウジ
ング蓋72cに形成された空気流入口H0に接続されて
いる。
The bottom surface 101 of the heat exchange chamber 100 is an inclined surface that descends toward the discharge port 103, and the heat exchange plate 104 also has its open end side inclined toward the discharge port 103 so that condensed water can be removed. It collects and guides to the storage part 120 through the piping 110 extended downward from the discharge port 103. In addition, the water drain valve 1 is provided in the storage section 120.
30 is provided and is configured to be drained to any tank of the water treatment device. The pipe 110 branches horizontally from the middle and is connected to an air inlet H0 formed in a housing lid 72c of the air flow switching device 70.

【0023】上記構成において、ブロワ60から送気さ
れた空気は熱交換室100を通過し、その後、空気流路
切替装置70の空気流入口H0へ送られ、回転子71を
経て回転子71により選択されたハウジング72の空気
流出口のいずれか(図では空気流出口H5)に排出され
る。
In the above structure, the air blown from the blower 60 passes through the heat exchange chamber 100, is then sent to the air inlet H0 of the air flow path switching device 70, passes through the rotor 71, and then passes through the rotor 71. The air is discharged to one of the air outlets of the selected housing 72 (in the figure, the air outlet H5).

【0024】このような構成にしておくと、結露しやす
い条件,例えば冬場で水処理装置が屋外設置されている
ような場合、熱交換室100及び空気流路切替装置70
が設置されている周囲温度が低いと、ブロワ60から送
られてきた高温多湿空気は、熱交換室100を通過する
間に、温度が下げられて常温多湿空気となる際に余分な
水分が結露し、熱交換室100の傾斜した底面101に
より貯留部120に集められる。
With such a structure, under conditions where dew condensation is likely to occur, for example, when the water treatment device is installed outdoors in winter, the heat exchange chamber 100 and the air flow path switching device 70.
When the ambient temperature in which is installed is low, the hot and humid air sent from the blower 60 is cooled while passing through the heat exchange chamber 100, and excess moisture is condensed when it becomes room temperature and humid air. Then, it is collected in the storage part 120 by the inclined bottom surface 101 of the heat exchange chamber 100.

【0025】また、空気流路切替装置70の電気部品室
78は、熱交換室100と壁一枚を挟んで隣り合ってい
るため、熱交換室100から熱が直接伝わって暖められ
る。この結果、ブロワ60からの空気の温度は、熱交換
室100を通る間に低下して、空気流路切替装置70に
入る頃の空気は、空気流路切替装置70、その電気部品
室78、しいてはモータ73やフォトセンサ76とほと
んど同じ温度になり、その結果、空気流路切替装置70
内部には結露が発生しない。
Further, since the electric component chamber 78 of the air flow switching device 70 is adjacent to the heat exchange chamber 100 with one wall in between, the heat is directly transmitted from the heat exchange chamber 100 to be warmed. As a result, the temperature of the air from the blower 60 decreases while passing through the heat exchange chamber 100, and the air around the time of entering the air flow path switching device 70 is the air flow path switching device 70, its electrical component chamber 78, Eventually, the temperature becomes almost the same as that of the motor 73 and the photo sensor 76, and as a result, the air flow path switching device 70
No condensation occurs inside.

【0026】更に、何らかの原因(空気流路切替装置7
0が十分に暖まっていない等)で結露水が空気流路切替
装置70のハウジング72内に生じたとしても、その上
側にある電気部品室78には至らずに、図8(c)に示
すように水滴wは空気流路切替装置70の空気流入口H
0側に戻されて、やはり貯留部120へ送られる。
Further, some cause (air flow path switching device 7
Even if dew condensation water occurs in the housing 72 of the air flow path switching device 70 due to the fact that 0 is not sufficiently warmed, etc., it does not reach the electric component chamber 78 on the upper side thereof and is shown in FIG. Thus, the water droplet w is the air inlet H of the air flow path switching device 70.
It is returned to the 0 side and is also sent to the storage section 120.

【0027】この貯留部120には、溜まった水を定期
的に排水するための手動の水抜きバルブ130が設けて
あり、このバルブ130を開くと水処理装置内のいずれ
かの槽に排水することができるので、結露水が外部に排
出されるのを防ぐことができる。
The storage section 120 is provided with a manual drain valve 130 for periodically discharging the accumulated water. When the valve 130 is opened, the water is drained to any tank in the water treatment device. Therefore, it is possible to prevent the condensed water from being discharged to the outside.

【0028】なお、このバルブ130は、各槽へ送気す
る時間と重ならないようにした上、自動で動作するもの
を使用して、ブロワ60が停止している時に定期的に開
放・排水して、水処理系の制御に影響を与えないように
自動化することも考えられる。
The valve 130 should be set so that it does not overlap with the time for supplying air to each tank, and it should be operated automatically so that it can be opened and drained periodically when the blower 60 is stopped. Therefore, it is possible to automate so as not to affect the control of the water treatment system.

【0029】更に、上記熱交換室100は、ブロワ60
の騒音(低周波の振動音を含む)を消音するマフラー効
果を併せ持つ構造に形成されているので、空気流路切替
装置70に入る前に消音でき、その結果、空気流路切替
装置70から延びる各配管毎に防音装置を付ける必要が
なくなるため、防音対策の簡略化が図れ、部品の必要設
置スペースが小さくなって水処理装置の小型化が図れ、
さらにはコストダウン効果も得られる。
Further, the heat exchange chamber 100 is provided with a blower 60.
Since it is formed in a structure that also has a muffler effect to muffle the noise (including low-frequency vibration noise), it can be muffled before entering the air flow path switching device 70, and as a result, extends from the air flow path switching device 70. Since it is not necessary to attach a soundproofing device to each pipe, soundproofing measures can be simplified, the required installation space for parts can be reduced, and the water treatment device can be downsized.
Furthermore, a cost reduction effect can be obtained.

【0030】[0030]

【発明が解決しようとする課題】ところで、上述したよ
うな回転子71を切削加工により製作する場合は問題な
いが、量産化等のため金型を用いて樹脂で成形すると、
成形時に加熱された樹脂が常温に戻る際に収縮して、図
9(a)に示すように、本来あるべき形状である2点鎖
線の形状とはならず、所謂ひけを生じて側斜面71b等
が窪んだ形状に変形してしまう。この回転子71をハウ
ジング72に組み込むと、図9(b)に示すように、回
転子71の側斜面71bとハウジング72の内斜面72
bとの間に隙間が生じてしまうので、ハウジング72の
空気流入口H0から入った送気の一部が点線の矢印で示
したルート等へ流れるため、送気したい空気流出口(図
ではH5)以外への空気漏れが発生してしまう。
There is no problem when the rotor 71 as described above is manufactured by cutting, but if it is molded with resin using a mold for mass production, etc.,
The resin heated at the time of molding contracts when the temperature returns to room temperature, and as shown in FIG. 9 (a), it does not have the original shape of the chain double-dashed line, and a so-called sink mark is generated to form the side slope 71b. Etc. will be transformed into a hollow shape. When this rotor 71 is incorporated into the housing 72, as shown in FIG. 9B, the side sloped surface 71 b of the rotor 71 and the inner sloped surface 72 of the housing 72.
Since a gap is created between the air outlet b and part b, a part of the air supplied from the air inlet H0 of the housing 72 flows to the route indicated by the dotted arrow, etc. Air leakage to other than will occur.

【0031】そこで、本願発明はこのような課題を解決
するためになされたものであり、成形後の収縮による変
形を抑えて、送気したい空気流出部以外への空気漏れを
防ぐことができる空気流路切替装置を提供することを目
的とするものである。
Therefore, the present invention has been made in order to solve such a problem, and it is possible to suppress deformation due to contraction after molding and prevent air leakage to a portion other than the air outflow portion to be fed. An object is to provide a flow path switching device.

【0032】[0032]

【課題を解決するための手段】上記のような目的を達成
するために、本願発明は、回転軸方向に空気流入部を有
し、この空気流入部と連通する空気流出部を円周方向に
有する回転子と、この回転子を回転自在に収納して、そ
の回転軸方向に空気流入部を有し、円周方向に複数の空
気流出部を有するハウジングと、前記回転子をその空気
流出部が前記ハウジングのいずれかの空気流出部に連通
するように回転駆動するモータとから成り、前記ハウジ
ングの内周側と接する前記回転子の外周側を肉薄に成形
したことを特徴とするものである。
In order to achieve the above-mentioned object, the present invention has an air inflow portion in the rotation axis direction, and an air outflow portion communicating with this air inflow portion in the circumferential direction. A rotor having the rotor, a housing rotatably accommodating the rotor, having an air inflow portion in the rotation axis direction and having a plurality of air outflow portions in the circumferential direction, and the rotor having the air outflow portion. Is a motor that is rotationally driven so as to communicate with any of the air outflow portions of the housing, and the outer peripheral side of the rotor that is in contact with the inner peripheral side of the housing is thinly formed. .

【0033】具体的には、前記回転子を略傘形状に成形
し、前記ハウジングの内面形状を前記回転子の外面形状
に対応させたことを特徴とするものである。
Specifically, the rotor is formed in a substantially umbrella shape, and the inner surface shape of the housing corresponds to the outer surface shape of the rotor.

【0034】さらに、前記回転子の側斜面の成す角度を
前記ハウジングの内斜面の成す角度より大きく設定した
ことを特徴とするものである。
Further, the angle formed by the side slope of the rotor is set larger than the angle formed by the inner slope of the housing.

【0035】加えて、前記回転子の側斜面の肉厚を大径
部ほど薄くなるように設定したことを特徴とするもので
ある。
In addition, it is characterized in that the thickness of the side slope of the rotor is set to be smaller in the larger diameter portion.

【0036】また、前記回転子を柔軟な材料で成形した
ことを特徴とするものである。
The rotor is formed of a flexible material.

【0037】また、前記ハウジングの内周側を肉薄に成
形したことを特徴とするものである。
Further, the invention is characterized in that the inner peripheral side of the housing is formed thin.

【0038】[0038]

【発明の実施の形態】以下、本願発明の実施形態を図面
を参照して詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

【0039】図1,図2は、本願発明の一実施形態の要
部を示す構成図で、前述してきた図と同一符号は同一又
は相当部分を示している。
FIG. 1 and FIG. 2 are configuration diagrams showing a main part of an embodiment of the present invention, and the same reference numerals as those in the above-mentioned drawings indicate the same or corresponding parts.

【0040】本実施形態においては、空気流路切替装置
70の回転子71を略傘形状とすることで、回転子71
の肉厚t1を薄くしたものである。また、そのために、
従来の回転子71の空気流入口R0であり、かつ従来の
回転子71の回転軸として設けられていた管形状の部分
を無くし、それに代わるものとして、傘形状の天面から
下方に突出する略Y字状リブ71gを設け、この略Y字
状リブ71gにおける図2(c)に2点鎖線で示す外接
円cの直径dが従来の管形状部分の外径と同様になるよ
うに設定したものである。
In the present embodiment, the rotor 71 of the air flow switching device 70 is formed into a substantially umbrella shape so that the rotor 71
The wall thickness t1 is reduced. Also for that,
The tube-shaped portion that is the air inlet R0 of the conventional rotor 71 and is provided as the rotary shaft of the conventional rotor 71 is eliminated, and as an alternative thereto, a substantially downward projection from the umbrella-shaped top surface is provided. A Y-shaped rib 71g is provided, and the diameter d of the circumscribing circle c shown by the two-dot chain line in FIG. 2C in the substantially Y-shaped rib 71g is set to be the same as the outer diameter of the conventional tubular portion. It is a thing.

【0041】すなわち、前述した成形後の収縮によるひ
けは肉厚が厚いところに発生する。そこで、回転子71
を図2(a)〜(c)に示すような略傘形状に成形する
と、回転子71の肉厚t1が薄くなるため、回転子71
の側斜面71bには成形後の収縮によるひけが生じな
い。
That is, the above-described shrinkage due to shrinkage after molding occurs where the wall thickness is large. Therefore, the rotor 71
2A to 2C are formed into a substantially umbrella shape, the thickness t1 of the rotor 71 becomes thin, so that the rotor 71
There is no sink mark on the side slope 71b due to shrinkage after molding.

【0042】なお、従来の管形状部分を残すため、図3
に示すように、管形状の空気流入口R0から空気流出口
R1に至る連通路部分を除く側斜面71bを肉薄に成形
することも考えられるが、このように成形すると、空気
流出口R1の上側部分71h等を肉抜きすることができ
ないので、空気流出口R1が形成される側の側斜面71
bが本来あるべき形状である2点鎖線の形状とはならな
いため、送気したい空気流出口以外への空気漏れを十分
に防ぐことができない。
Since the conventional tube-shaped portion is left, FIG.
As shown in FIG. 7, it is conceivable that the side sloped surface 71b excluding the communication passage portion extending from the tube-shaped air inlet R0 to the air outlet R1 is formed thin, but when formed in this way, the upper side of the air outlet R1 is formed. Since the portion 71h and the like cannot be thinned, the side slope 71 on the side where the air outlet R1 is formed
Since b does not have the shape of the chain double-dashed line which should be the original shape, it is not possible to sufficiently prevent air leakage to other than the air outflow port to which air is to be supplied.

【0043】そこで、本実施形態の図2(a)〜(c)
に示したように成形すると、図1のように組み立てたと
きは、図1(c)に示すように、ハウジング蓋72cの
空気流入口H0を通して略Y字状リブ71gが見え、リ
ブ71g以外の領域である網掛け部が回転子71の空気
流入口R0として機能する。また、回転子71の下部側
は、略Y字状リブ71gの先端部がハウジング蓋7cの
空気流入口H0上部に形成された軸受部72gに回転自
在に位置決めされる。
Therefore, FIGS. 2A to 2C of the present embodiment.
When assembled as shown in FIG. 1, when assembled as shown in FIG. 1, as shown in FIG. 1C, the substantially Y-shaped rib 71g can be seen through the air inlet H0 of the housing lid 72c, and other than the rib 71g. The shaded area, which is a region, functions as the air inlet R0 of the rotor 71. Further, the lower end side of the rotor 71 is rotatably positioned by a bearing portion 72g formed at an upper end of the air inlet H0 of the housing lid 7c with a tip portion of the substantially Y-shaped rib 71g.

【0044】図1に示すように組み立てられた空気流路
切替装置70には、前述したブロワ60から送気された
空気がハウジング蓋72cに形成された空気流入口H0
から入り、回転子71の空気流入口R0として機能する
略Y字状リブ71gのリブ間を通過し、回転子71の側
斜面71bとハウジング72の内斜面72bが空気圧に
より圧接しているので、空気漏れもなく、回転子71の
空気流出口R1が一致するハウジング72の空気流出口
のいずれか(ここではH5)から排出される。
In the air flow path switching device 70 assembled as shown in FIG. 1, the air blown from the blower 60 described above is formed in the housing lid 72c at the air inlet H0.
Since it passes through between the ribs of the substantially Y-shaped rib 71g that functions as the air inlet R0 of the rotor 71 and the side slope 71b of the rotor 71 and the inner slope 72b of the housing 72 are pressed by air pressure, There is no air leakage, and the air is discharged from any one (here, H5) of the air outlets of the housing 72 with which the air outlet R1 of the rotor 71 coincides.

【0045】なお、本実施形態では、図1に示すハウジ
ング72側も、上述の回転子71のひけと同様の理由
で、肉厚が薄くなるように成形している。後述するよう
に、回転子71をエラストマー(合成ゴムなど)のよう
な柔軟な材料で成形すれば、ハウジング71側は従来の
ままでも対応することができるが、本実施形態のように
ハウジング72側も肉厚が薄くなるように成形すること
により、回転子71の成形材料に係わらず、空気漏れを
確実に防ぐことができる。
In the present embodiment, the housing 72 side shown in FIG. 1 is also formed to be thin for the same reason as the sink of the rotor 71 described above. As will be described later, if the rotor 71 is made of a flexible material such as an elastomer (synthetic rubber or the like), the housing 71 side can be used as it is, but the housing 72 side can be used as in the present embodiment. Also, by molding so that the wall thickness becomes thin, air leakage can be reliably prevented regardless of the molding material of the rotor 71.

【0046】また、前述したモータ73の駆動軸にユニ
バーサルジョイント構造にて接続される回転子71の上
部側の回転軸71dは、ひけが発生しても空気漏れの問
題は発生しないが、長方形の嵌合溝71iが鼓状に変形
するので、これを防ぐため嵌合溝71iの周囲に肉抜き
部71jを形成している。
The rotating shaft 71d on the upper side of the rotor 71, which is connected to the drive shaft of the motor 73 by a universal joint structure, has a rectangular shape although the problem of air leakage does not occur even if sink marks occur. Since the fitting groove 71i deforms like a drum, a lightening portion 71j is formed around the fitting groove 71i to prevent this.

【0047】図4,図5は、本願発明の他の実施形態を
示す要部構成図であり、前記実施形態と同一符号は同一
又は相当部分を示している。
FIGS. 4 and 5 are main-part configuration diagrams showing another embodiment of the present invention, and the same reference numerals as those in the above-mentioned embodiment denote the same or corresponding portions.

【0048】本実施形態においては、図4(a),
(b)に示すように、回転子71の側斜面71bの成す
角度βがハウジング72の内斜面72bの成す角度αよ
り大きくなるように成形し、さらに回転子71の側斜面
71bは大径部(下方)へ向かうほどその肉厚t2を薄
くして変形し易くし、また、小径部(付け根部)の肉厚
t3も空気圧で変形可能な薄さに成形しておく。
In this embodiment, as shown in FIG.
As shown in (b), the side slope 71b of the rotor 71 is formed so that the angle β formed by the side slope 71b is larger than the angle α formed by the inner slope 72b of the housing 72, and the side slope 71b of the rotor 71 has a large diameter portion. The wall thickness t2 is made thinner toward the lower side to facilitate deformation, and the wall thickness t3 of the small diameter portion (root portion) is also formed to be thin so that it can be deformed by air pressure.

【0049】これらが図5(a)に示すように組み立て
られると、回転子71の成形材料が固いもの(例えばプ
ラスチック等のプラストマー)でも、ハウジング72の
空気流入口H0から空気が送られると、空気圧で図5
(b)に示すように回転子71が変形して、その側斜面
71bがハウジング72の内斜面72bに圧接する。
When these are assembled as shown in FIG. 5A, even if the molding material of the rotor 71 is hard (for example, plastomer such as plastic), when air is sent from the air inlet H0 of the housing 72, Figure 5 by air pressure
As shown in (b), the rotor 71 is deformed, and the side sloped surface 71b is pressed against the inner sloped surface 72b of the housing 72.

【0050】すなわち、送気されないときは、図5
(a)に示すように回転子71の側斜面71bの大径部
がハウジング72の内斜面72bに接しており、その他
の部分は離れている。送気されると、まず接触している
最も肉薄の大径部から変形し、回転子71の上昇に伴っ
て徐々に小径部に向かって変形する箇所が移動し、最終
的には最小径部まで変形が進んで、図5(b)に示すよ
うになり、回転子71の側斜面71bがハウジング71
の内斜面72bに弾性的かつスムーズに密着する。これ
により、送気したい空気流出口以外への空気漏れをより
確実に防ぐことができる。
That is, when no air is sent,
As shown in (a), the large-diameter portion of the side slant surface 71b of the rotor 71 is in contact with the inner slant surface 72b of the housing 72, and the other portions are separated. When air is fed, first, the thinnest large-diameter portion in contact is deformed, and as the rotor 71 rises, the portion gradually deformed toward the smaller-diameter portion moves, and finally, the minimum-diameter portion. The deformation progresses to the state shown in FIG. 5B, and the side sloped surface 71b of the rotor 71 is changed to the housing 71.
Elastically and smoothly adheres to the inner slope 72b. As a result, it is possible to more surely prevent air leakage to other than the air outlet to be supplied.

【0051】そして、送気が終わると、回転子71の自
重や側斜面71bの弾性により、図5(b)から図5
(a)の状態に戻されるので、回転子71の側斜面71
bがハウジング71の内斜面72bに密着した状態のま
まで、空気流路切替のため回転駆動されることによって
図示しないモータに過負荷がかかるのを防ぐことができ
る。
Then, when the air supply is completed, the weight of the rotor 71 and the elasticity of the side sloped surface 71b cause a change from FIG. 5 (b) to FIG.
Since it is returned to the state of (a), the side slope 71 of the rotor 71 is
It is possible to prevent the motor (not shown) from being overloaded by being rotationally driven to switch the air passage while b is in close contact with the inner sloped surface 72b of the housing 71.

【0052】ところで、上述の各実施形態で述べた作用
は、回転子71をエラストマー(合成ゴムなど)のよう
な柔軟な材料を用いて、空気圧で変形し易いように成形
すれば更に起こり易くなって、密閉度が向上することか
ら、空気流路切替装置の空気漏れ防止性能が更に向上す
る。
By the way, the action described in each of the above-described embodiments is more likely to occur if the rotor 71 is made of a flexible material such as an elastomer (synthetic rubber) so as to be easily deformed by air pressure. As a result, the airtightness is improved, and thus the air leakage prevention performance of the air flow path switching device is further improved.

【0053】[0053]

【発明の効果】以上のように本願発明によれば、回転軸
方向に空気流入部を有し、この空気流入部と連通する空
気流出部を円周方向に有する回転子と、この回転子を回
転自在に収納して、その回転軸方向に空気流入部を有
し、円周方向に複数の空気流出部を有するハウジング
と、前記回転子をその空気流出部が前記ハウジングのい
ずれかの空気流出部に連通するように回転駆動するモー
タとから成り、前記ハウジングの内周側と接する前記回
転子の外周側を肉薄に成形したことにより、回転子の成
形後の収縮による変形を抑えて、送気したい空気流出部
以外への空気漏れを防ぐことができる。
As described above, according to the present invention, a rotor having an air inflow portion in the rotation axis direction and an air outflow portion in the circumferential direction which communicates with the air inflow portion, and the rotor. A housing that is rotatably housed, has an air inflow portion in the direction of its rotation axis, and has a plurality of air outflow portions in the circumferential direction; and an air outflow portion of the rotor whose air outflow portion is one of the housings. A rotor that is driven to rotate so as to communicate with the housing, and the outer peripheral side of the rotor that is in contact with the inner peripheral side of the housing is thinly molded, so that deformation due to contraction of the rotor after molding is suppressed, and It is possible to prevent air leaks to areas other than the air outflow portion to be worried about.

【0054】具体的には、前記回転子を略傘形状に成形
し、前記ハウジングの内面形状を回転子の外面形状に対
応させることにより、実現できる。
Specifically, it can be realized by forming the rotor into a substantially umbrella shape and matching the inner surface shape of the housing with the outer surface shape of the rotor.

【0055】さらに、前記回転子の側斜面の成す角度を
前記ハウジングの内斜面の成す角度より大きく設定する
ことにより、送気時には、空気圧によって回転子の側斜
面が変形してハウジングの内斜面に弾性的に密着するの
で、送気したい空気流出口以外への空気漏れをより確実
に防ぐことができる。
Further, by setting the angle formed by the side slope of the rotor larger than the angle formed by the inner slope of the housing, the side slope of the rotor is deformed by air pressure during air supply, and the inner slope of the housing is formed. Since they are elastically adhered to each other, it is possible to more reliably prevent air leakage to other than the air outflow port to which air is desired to be sent.

【0056】加えて、前記回転子の側斜面の肉厚を大径
部ほど薄くなるように設定することにより、送気される
と、まず最も肉薄の大径部から変形し、徐々に小径部に
向かって変形する箇所が移動するので、回転子の側斜面
がハウジングの内斜面にスムーズに密着する。
In addition, by setting the wall thickness of the side slope of the rotor so that it becomes thinner at the larger diameter portion, when air is fed, first, the thinnest large diameter portion is deformed and then gradually reduced. Since the part that deforms toward the side moves, the side slope of the rotor smoothly comes into close contact with the inner slope of the housing.

【0057】また、前記回転子を柔軟な材料で成形する
ことにより、空気圧で変形し易くなって密閉度が向上す
ることから、空気流路切替装置の空気漏れ防止性能が更
に向上する。
Further, by molding the rotor with a soft material, it is easily deformed by air pressure and the degree of sealing is improved, so that the air leakage prevention performance of the air flow path switching device is further improved.

【0058】また、前記ハウジングの内周側を肉薄に成
形したことにより、ハウジング側の成形後の収縮による
変形も抑えることができるので、回転子の成形材料に係
わらず、空気漏れを確実に防ぐことができる。
Further, since the inner peripheral side of the housing is thinly formed, deformation of the housing due to shrinkage after molding can be suppressed, so that air leakage is surely prevented regardless of the molding material of the rotor. be able to.

【図面の簡単な説明】[Brief description of drawings]

【図1】本願発明の一実施形態の要部構成図で、(a)
は上面図、(b)は縦断面図、(c)は(b)の矢示Y
方向から見た要部を示す図。
FIG. 1 is a main part configuration diagram of an embodiment of the present invention, in which FIG.
Is a top view, (b) is a longitudinal sectional view, (c) is an arrow Y of (b).
The figure which shows the principal part seen from the direction.

【図2】上記実施形態の回転子単体を示す図で、(a)
は上面図、(b)は縦断面図、(c)は底面図。
FIG. 2 is a diagram showing a single rotor of the above embodiment, (a)
Is a top view, (b) is a vertical sectional view, and (c) is a bottom view.

【図3】従来の回転子における空気流入口と回転軸を成
す管形状部分を残して側斜面を肉薄に形成した回転子の
縦断面図。
FIG. 3 is a vertical cross-sectional view of a rotor in which a side slope is formed thin while leaving a tube-shaped portion that forms an air inlet and a rotation axis in a conventional rotor.

【図4】本願発明の他の実施形態を示す要部構成図で、
(a)はハウジング単体の縦断面図、(b)は回転子単
体の縦断面図
FIG. 4 is a main part configuration diagram showing another embodiment of the present invention,
(A) is a vertical sectional view of the housing alone, (b) is a vertical sectional view of the rotor alone

【図5】上記図4に示したハウジングと回転子の組み立
て後の縦断面図で、(a)は送気されない時の状態を示
し、(b)は送気された時の状態を示している。
5 is a vertical cross-sectional view after assembling the housing and the rotor shown in FIG. 4, where (a) shows a state when air is not fed, and (b) shows a state when air is fed. There is.

【図6】本願発明による空気流路切替装置が適用される
水処理システムの一例を示す図で、(a)はシステム構
成図、(b)はその空気流路切替装置の従来例を示す横
断面図。
FIG. 6 is a diagram showing an example of a water treatment system to which the air flow path switching device according to the present invention is applied, in which (a) is a system configuration diagram and (b) is a cross section showing a conventional example of the air flow path switching device. Face view.

【図7】上記のような水処理システムに用いられる空気
流路切替装置の一例を示す縦断面図。
FIG. 7 is a vertical cross-sectional view showing an example of an air flow path switching device used in the water treatment system as described above.

【図8】同じく、結露対策等が施された空気流路切替装
置の一例を示す図で、(a)は上面図、(b)は(a)
のA−A断面図、(c)は何らかの原因で結露が発生し
た場合を説明するための縦断面図。
8A and 8B are views showing an example of an air flow path switching device that is similarly provided with measures against dew condensation, where FIG. 8A is a top view and FIG. 8B is FIG.
6A is a vertical cross-sectional view for explaining a case where dew condensation occurs for some reason.

【図9】従来例の課題を説明するための図で、(a)は
成形後の収縮によるひけが生じた回転子単体の縦断面
図、(b)は上記回転子を組み込んだ空気流路切替装置
の縦断面図。
9A and 9B are views for explaining the problems of the conventional example, in which FIG. 9A is a vertical cross-sectional view of a single rotor having shrinkage due to shrinkage after molding, and FIG. 9B is an air flow path incorporating the rotor. The longitudinal cross-sectional view of a switching device.

【符号の説明】[Explanation of symbols]

10 流量調整槽 20 固液分離装置 30 コンポスト化装置 40 曝気槽 50 沈殿分離槽 60 ブロワ 70 空気流路切替装置 71 回転子 71b 側斜面 71g 略Y字状リブ 72 ハウジング 72b 内斜面 72c ハウジング蓋 72g 軸受部 R0,H0 空気流入口 R1,H1〜H6 空気流出口 73 モータ 75 位置決め用回転板 76 フォトセンサ 10 Flow rate adjustment tank 20 Solid-liquid separator 30 Composting device 40 aeration tank 50 sedimentation tank 60 blower 70 Air flow path switching device 71 rotor 71b side slope 71g Rib that is almost Y-shaped 72 housing 72b inner slope 72c housing lid 72g bearing R0, H0 air inlet R1, H1 to H6 air outlet 73 motor 75 Positioning rotary plate 76 photo sensor

───────────────────────────────────────────────────── フロントページの続き (72)発明者 田村 敏裕 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 谷本 好広 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 藤本 恵一 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 赤松 功三 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 Fターム(参考) 3H067 AA12 AA22 AA38 CC02 CC25 CC38 DD03 DD12 DD32 EA05 EA24 FF17 GG03 GG27    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Toshihiro Tamura             2-5-3 Keihan Hondori, Moriguchi City, Osaka Prefecture             Within Yo Denki Co., Ltd. (72) Inventor Yoshihiro Tanimoto             2-5-3 Keihan Hondori, Moriguchi City, Osaka Prefecture             Within Yo Denki Co., Ltd. (72) Inventor Keiichi Fujimoto             2-5-3 Keihan Hondori, Moriguchi City, Osaka Prefecture             Within Yo Denki Co., Ltd. (72) Inventor Kozo Akamatsu             2-5-3 Keihan Hondori, Moriguchi City, Osaka Prefecture             Within Yo Denki Co., Ltd. F term (reference) 3H067 AA12 AA22 AA38 CC02 CC25                       CC38 DD03 DD12 DD32 EA05                       EA24 FF17 GG03 GG27

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 回転軸方向に空気流入部を有し、この空
気流入部と連通する空気流出部を円周方向に有する回転
子と、この回転子を回転自在に収納して、その回転軸方
向に空気流入部を有し、円周方向に複数の空気流出部を
有するハウジングと、前記回転子をその空気流出部が前
記ハウジングのいずれかの空気流出部に連通するように
回転駆動するモータとから成り、 前記ハウジングの内周側と接する前記回転子の外周側を
肉薄に成形したことを特徴とする空気流路切替装置。
1. A rotor having an air inflow portion in the rotation axis direction and an air outflow portion in the circumferential direction which communicates with the air inflow portion, and a rotor rotatably accommodating the rotor. With a plurality of air outlets in the circumferential direction, and a motor for rotating the rotor so that the air outlets of the rotor communicate with any of the air outlets of the housing. And an outer peripheral side of the rotor, which is in contact with an inner peripheral side of the housing, is thinly formed.
【請求項2】 前記回転子を略傘形状に成形し、前記ハ
ウジングの内面形状を前記回転子の外面形状に対応させ
たことを特徴とする請求項1記載の空気流路切替装置。
2. The air flow path switching device according to claim 1, wherein the rotor is formed into a substantially umbrella shape, and an inner surface shape of the housing is made to correspond to an outer surface shape of the rotor.
【請求項3】 前記回転子の側斜面の成す角度を前記ハ
ウジングの内斜面の成す角度より大きく設定したことを
特徴とする請求項2記載の空気流路切替装置。
3. The air flow path switching device according to claim 2, wherein the angle formed by the side slope of the rotor is set to be larger than the angle formed by the inner slope of the housing.
【請求項4】 前記回転子の側斜面の肉厚を大径部ほど
薄くなるように設定したことを特徴とする請求項3記載
の空気流路切替装置。
4. The air flow path switching device according to claim 3, wherein the wall thickness of the side slope of the rotor is set to be smaller in the larger diameter portion.
【請求項5】 前記回転子を柔軟な材料で成形したこと
を特徴とする請求項1ないし請求項4のいずれかに記載
の空気流路切替装置。
5. The air flow path switching device according to claim 1, wherein the rotor is made of a flexible material.
【請求項6】 前記ハウジングの内周側を肉薄に成形し
たことを特徴とする請求項1ないし請求項5のいずれか
に記載の空気流路切替装置。
6. The air flow path switching device according to claim 1, wherein the inner peripheral side of the housing is formed thin.
JP2001288751A 2001-09-21 2001-09-21 Directional control device for airflow Pending JP2003097744A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2001288751A JP2003097744A (en) 2001-09-21 2001-09-21 Directional control device for airflow
TW091118289A TW533285B (en) 2001-09-21 2002-08-14 Directional control device for airflow
KR10-2002-0048469A KR100483441B1 (en) 2001-09-21 2002-08-16 air path switching apparatus
CNB021304521A CN1266403C (en) 2001-09-21 2002-08-20 Air pipe switching device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001288751A JP2003097744A (en) 2001-09-21 2001-09-21 Directional control device for airflow

Publications (1)

Publication Number Publication Date
JP2003097744A true JP2003097744A (en) 2003-04-03

Family

ID=19111344

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001288751A Pending JP2003097744A (en) 2001-09-21 2001-09-21 Directional control device for airflow

Country Status (4)

Country Link
JP (1) JP2003097744A (en)
KR (1) KR100483441B1 (en)
CN (1) CN1266403C (en)
TW (1) TW533285B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7402507B2 (en) 2019-06-04 2023-12-21 学校法人 中央大学 air distribution device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006096092A (en) * 2004-09-28 2006-04-13 Denso Corp Air passage switchover device
CN104133385B (en) * 2014-06-30 2016-08-24 广州市傲派自动化设备有限公司 A kind of wind-force feed system pipeline switching positioner and method
CN109458479A (en) * 2018-11-01 2019-03-12 杭州聚光环保科技有限公司 Multi-channel direction selecting valve

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0741990B2 (en) * 1992-09-14 1995-05-10 豊菱産業株式会社 Switching valve for powder and granular material transportation
JP2000000588A (en) * 1998-06-15 2000-01-07 Sanyo Electric Co Ltd Water treatment system
JP2001058174A (en) * 1999-08-23 2001-03-06 Sanyo Electric Co Ltd Garbage treatment system
JP2002081556A (en) * 2000-06-23 2002-03-22 Sanyo Electric Co Ltd Air passage changeover device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7402507B2 (en) 2019-06-04 2023-12-21 学校法人 中央大学 air distribution device

Also Published As

Publication number Publication date
CN1410694A (en) 2003-04-16
KR20030025798A (en) 2003-03-29
KR100483441B1 (en) 2005-04-15
TW533285B (en) 2003-05-21
CN1266403C (en) 2006-07-26

Similar Documents

Publication Publication Date Title
JP2003097744A (en) Directional control device for airflow
CA2450304C (en) Check valve floor drain
JP2003240135A (en) Air channel switching device
JP2003240136A (en) Air channel switching device
JP3968878B2 (en) Air conditioner for vehicles
KR200351993Y1 (en) Device for blocking reverse flow of sewage
JP2002118925A (en) Waterproof controller
JP3490413B2 (en) Vertical and horizontal pipe ventilation system
KR200450861Y1 (en) Flange type shutter
JP2002273146A (en) Water treatment system
EP1629159B1 (en) Odour extraction system with fluid tank valve
KR20090115299A (en) Packing type shutter
KR20060031083A (en) Air conditioner for vehicle
JP4070556B2 (en) Air flow path switching device and water treatment system having the same
JPH057890A (en) Aerator provided with air suction adjusting mechanism
CN100469296C (en) Blowoff for environmental protection toilet
JPH07252874A (en) Ventilating device
KR100398285B1 (en) Washing device built in a roof of vehicles
JP6163127B2 (en) Mist generator
WO2003052303A1 (en) A fluid release system
JP2869696B2 (en) Air intake device for vacuum sewage collection system
KR200230665Y1 (en) Smell Prevention Device for Drainage
US7156378B2 (en) Air seal enclosure for an aerator
JPS6127604Y2 (en)
JP2006102579A (en) Parlor waste water treatment system