JP2003096233A - Method for decomposing thermosetting resin and method for recycling the resin - Google Patents

Method for decomposing thermosetting resin and method for recycling the resin

Info

Publication number
JP2003096233A
JP2003096233A JP2001290154A JP2001290154A JP2003096233A JP 2003096233 A JP2003096233 A JP 2003096233A JP 2001290154 A JP2001290154 A JP 2001290154A JP 2001290154 A JP2001290154 A JP 2001290154A JP 2003096233 A JP2003096233 A JP 2003096233A
Authority
JP
Japan
Prior art keywords
thermosetting resin
resin
water
decomposition
phenol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001290154A
Other languages
Japanese (ja)
Inventor
Junya Goto
純也 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2001290154A priority Critical patent/JP2003096233A/en
Publication of JP2003096233A publication Critical patent/JP2003096233A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • C08J11/10Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation
    • C08J11/18Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with organic material
    • C08J11/22Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with organic material by treatment with organic oxygen-containing compounds
    • C08J11/24Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with organic material by treatment with organic oxygen-containing compounds containing hydroxyl groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • C08J11/10Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation
    • C08J11/14Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with steam or water
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2361/00Characterised by the use of condensation polymers of aldehydes or ketones; Derivatives of such polymers
    • C08J2361/04Condensation polymers of aldehydes or ketones with phenols only
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Abstract

PROBLEM TO BE SOLVED: To rapidly decompose a large quantity of thermosetting resins contained in wastes and reduce the quantity of a solvent consumed by chemical reactions in the decomposing process. SOLUTION: The decomposing process comprises (1) a solid-extracting process in which soluble components (extracts) are extracted by treating thermosetting resin products with water of supercritical or subcritical state and (2) a decomposing process in which components (residue) which are insoluble or slightly soluble in water of supercritical or subcritical state are dissolved in a solvent consisting of a mononuclear phenol compound or water/mononuclear phenol compound of supercritical or subcritical state to decompose them to low or middle molecule compounds consisting mainly of oligomers of molecular weight of 200 to 10,000. In addition, the mononuclear phenol compound used in the decomposing process is separated from the low-to-middle molecular weight compounds thus formed to re-use as the solvent in the decomposing process.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、工場などから大量
に廃棄されている産業廃棄物や一般廃棄物中に含まれ
る、熱硬化性樹脂を分解処理する際に、化学反応により
消費される溶媒(単核フェノール類化合物)の量を削減
する方法であり、更には、この方法により、得られた低
〜中分子量化合物を、熱硬化性樹脂の原料として再利用
するリサイクル方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solvent consumed by a chemical reaction when decomposing a thermosetting resin contained in a large amount of industrial waste or general waste discarded from factories and the like. It relates to a method for reducing the amount of (mononuclear phenolic compound), and further relates to a recycling method for reusing the low to medium molecular weight compound obtained by this method as a raw material for a thermosetting resin.

【0002】[0002]

【従来の技術】プラスチックの中でも熱硬化性樹脂は、
優れた電気絶縁性・耐熱性・機械的強度を示すため、電
気・電子部品、自動車部品等の材料として広く用いられ
ている。しかし、熱硬化性樹脂は、一旦硬化すると、熱
により軟化・融解せず、溶剤にも溶解しないため、その
硬化物をプラスチック原料として再生することは、技術
的に困難であった。
2. Description of the Related Art Among plastics, thermosetting resins are
Since it has excellent electrical insulation, heat resistance, and mechanical strength, it is widely used as a material for electrical and electronic parts, automobile parts, and so on. However, once the thermosetting resin is once hardened, it is not softened / melted by heat and is not dissolved in a solvent, so that it is technically difficult to regenerate the cured product as a plastic raw material.

【0003】近年、これらの課題を克服するための、超
臨界流体を用いて熱硬化性樹脂を分解処理する方法が検
討されている。例えば、超臨界状態あるいは亜臨界状態
の水を用いて、熱硬化性樹脂を加水分解し、有用化合物
を選択的に回収する方法が検討されている(特開平10
−24274号公報)。この方法を用いれば、エポキシ
樹脂の酸無水物硬化物や芳香族ジアミン硬化物のよう
に、構造中にエーテル結合、エステル結合、酸アミド結
合を有する熱硬化性樹脂を、酸触媒やアルカリ触媒を添
加することなく、400℃、37MPa、10分間程度
の条件で、完全にテトラヒドロフラン(THF)可溶ま
でに、分解することが可能である。しかし、エポキシ樹
脂でも、フェノールノボラック硬化物のように構造中に
メチレンを有する熱硬化性樹脂は、同じ400℃、37
MPa、10分間程度の条件での分解率は50wt%程
度と、あまり高い値ではない。また、フェノール樹脂硬
化物に至っては、超臨界水中でも非常に難分解性であ
り、400℃、37MPa、10分間の条件では、 T
HF可溶まで分解するのは20wt%程度である。
In recent years, in order to overcome these problems, a method of decomposing a thermosetting resin using a supercritical fluid has been investigated. For example, a method of hydrolyzing a thermosetting resin and selectively recovering a useful compound using water in a supercritical state or a subcritical state has been investigated (Japanese Patent Laid-Open No. 10-29138).
No. 24274). When this method is used, a thermosetting resin having an ether bond, an ester bond, or an acid amide bond in the structure, such as an acid anhydride cured product of an epoxy resin or an aromatic diamine cured product, is used as an acid catalyst or an alkali catalyst. Without adding, it can be completely decomposed under the conditions of 400 ° C., 37 MPa, and 10 minutes until it is completely soluble in tetrahydrofuran (THF). However, even with an epoxy resin, a thermosetting resin having methylene in its structure such as a cured product of phenol novolac has the same temperature of 400 ° C. and 37 ° C.
The decomposition rate under the condition of MPa for about 10 minutes is about 50 wt%, which is not a very high value. Further, a cured product of a phenol resin is extremely hard to decompose even in supercritical water, and under the conditions of 400 ° C., 37 MPa, and 10 minutes, T
About 20 wt% decomposes to HF solubility.

【0004】そこで、これらの超臨界水単独で、難分解
性な熱硬化性樹脂を分解処理およびリサイクルするため
には、超臨界又は亜臨界状態の、単核フェノール類化合
物又は水/単核フェノール類化合物の溶液中で、可溶化
処理する方法が検討されている(特開2001−151
933号公報)。この方法では、酸触媒やアルカリ触媒
などを加えることなく、10分間程度の短い反応時間で
熱硬化性樹脂が可溶化して、分子量200〜10,00
0のオリゴマー成分を回収できるとされている。
Therefore, in order to decompose and recycle the hardly decomposable thermosetting resin by using these supercritical water alone, a mononuclear phenol compound or water / mononuclear phenol in a supercritical or subcritical state is used. A method of solubilizing treatment in a solution of a similar compound has been studied (JP 2001-151A).
933 publication). In this method, the thermosetting resin is solubilized in a short reaction time of about 10 minutes without adding an acid catalyst or an alkali catalyst to give a molecular weight of 200 to 10,000.
It is said that 0 oligomer components can be recovered.

【0005】上記の方法では、単核フェノール類化合物
は溶媒としての他に、反応基質としても作用しているた
め、熱硬化性樹脂の可溶化反応のために消費される。こ
こで、熱硬化性樹脂が、木粉、紙、布などの有機質の天
然高分子又は合成高分子を含む複合材料である場合、単
核フェノール類化合物は、熱硬化性樹脂分の可溶化反応
のみならず、有機質の天然高分子又は合成高分子の可溶
化反応あるいは分解反応でも消費される。すなわち、熱
硬化性樹脂中に含まれる木粉、紙、布などの有機質の天
然高分子又は合成高分子の含有量が多い場合には、単核
フェノール類化合物は、むしろ天然高分子の化学反応た
めに多く消費されてしまい、その使用量が多くなるとい
う欠点がある。
In the above method, the mononuclear phenol compound acts as a reaction substrate as well as a solvent, and is consumed for the solubilization reaction of the thermosetting resin. Here, when the thermosetting resin is a composite material containing an organic natural polymer or synthetic polymer such as wood powder, paper, cloth, etc., the mononuclear phenol compound is a solubilization reaction of the thermosetting resin component. Not only is it consumed in the solubilization reaction or decomposition reaction of organic natural polymers or synthetic polymers. That is, when the content of organic natural polymers or synthetic polymers such as wood powder, paper, cloth, etc. contained in the thermosetting resin is high, the mononuclear phenolic compound is rather a chemical reaction of the natural polymer. As a result, it is consumed in large amounts, and the amount used is large.

【0006】このように、熱硬化性樹脂を短時間で効率
的に分解して、有用な低〜中分子化合物として回収、分
離、精製して再利用する技術は確立しつつあるが、実用
化のためには単核フェノール類化合物の消費量が多いと
言う課題があり、その消費量を削減するための工夫が必
要である。
As described above, a technique for efficiently decomposing a thermosetting resin in a short time, recovering, separating, purifying and reusing it as a useful low-to-medium molecular compound is being established. Therefore, there is a problem that the consumption of mononuclear phenolic compounds is large, and it is necessary to devise to reduce the consumption.

【0007】[0007]

【発明が解決しようとする課題】本発明は、このような
問題点を解決するため、種々の検討を行った結果なされ
たものである。その目的とするところは、主として、工
場などから排出される産業廃棄物や、一般廃棄物中に大
量に含まれていながら、これまでリサイクルが実現でき
ていない熱硬化性樹脂を、高速で大量に分解処理し、得
られた低〜中分子量化合物を分離・回収して、熱硬化性
樹脂の原料として再利用するリサイクル方法を提供する
ものであり、且つ、分解処理する際に、化学反応により
消費される溶媒(単核フェノール類化合物)の量を削減
する方法を提供することである。
The present invention has been made as a result of various studies in order to solve such problems. Its main purpose is to produce large amounts of thermosetting resin, which is contained in large amounts in industrial waste discharged from factories and general waste, but has not been recyclable up to now, at high speed. It provides a recycling method that decomposes and separates and recovers the obtained low to medium molecular weight compounds, and reuses it as a raw material for thermosetting resins, and consumes it by a chemical reaction during the decomposition process. It is an object of the present invention to provide a method for reducing the amount of a solvent (mononuclear phenolic compound) to be used.

【0008】[0008]

【課題を解決するための手段】本発明者らは、熱硬化性
樹脂製品(廃棄物)を超臨界状態又は亜臨界状態の水で
固体抽出処理をした後、抽残物を超臨界状態又は亜臨界
状態の、特定の溶液中で分解処理することにより、化学
反応により消費される溶媒(単核フェノール類化合物)
の量を削減しながら、熱硬化性樹脂の樹脂分を原料レベ
ルまでに分解できることを見いだし、さらに検討を重ね
て本発明を完成するに至った。
DISCLOSURE OF THE INVENTION The inventors of the present invention have conducted a solid extraction treatment of a thermosetting resin product (waste) with water in a supercritical state or a subcritical state. Solvent (mononuclear phenolic compound) consumed by chemical reaction by decomposition treatment in specific solution in subcritical state
It has been found that the resin content of the thermosetting resin can be decomposed to the raw material level while reducing the amount of the above, and further studies have been conducted to complete the present invention.

【0009】即ち、本発明は、(1)熱硬化性樹脂製品を
超臨界状態又は亜臨界状態の水で処理して、可溶成分
(抽質)を抽出・分離する固体抽出工程、および、(2)
超臨界状態又は亜臨界状態の水に不溶又は難溶な成分
(抽残物)を、超臨界又は亜臨界状態の、単核フェノー
ル類化合物又は水/単核フェノール類化合物を溶媒とし
て、可溶化処理することにより、分子量200〜10,
000のオリゴマーを主体とする低〜中分子量化合物ま
で分解する分解工程からなり、さらには、分解工程で用
いた単核フェノール類化合物を、生成した低〜中分子量
化合物から分離して、再び分解工程における溶媒として
利用することを特徴とする熱硬化性樹脂の分解処理方法
であり、また、熱硬化性樹脂を分解して得られた低〜中
分子量化合物を、熱硬化性樹脂の原料として再利用する
ことを特徴とする熱硬化性樹脂のリサイクル方法であ
る。
That is, the present invention provides (1) a solid extraction step in which a thermosetting resin product is treated with water in a supercritical state or a subcritical state to extract and separate soluble components (extractants), and (2)
Solubilization of insoluble or sparingly soluble components (extracts) in supercritical or subcritical water using supercritical or subcritical mononuclear phenol compounds or water / mononuclear phenol compounds as solvent By processing, the molecular weight of 200-10,
000 oligomers as a main component, which decomposes into low to medium molecular weight compounds, and further separates the mononuclear phenolic compound used in the decomposition step from the produced low to medium molecular weight compounds, and decomposes again. Is a method for decomposing a thermosetting resin, which is characterized in that it is used as a solvent in, and a low to medium molecular weight compound obtained by decomposing the thermosetting resin is reused as a raw material for the thermosetting resin. And a method for recycling a thermosetting resin.

【0010】[0010]

【発明の実施の形態】本発明の方法で分解される熱硬化
性樹脂は、それら単独では、硬化した樹脂、未硬化の樹
脂、樹脂を含有するワニス等であり、また、単独の熱硬
化性樹脂の他に、木粉等の有機質系や、シリカ微粒子、
ガラス繊維等の無機質系の充填材を含む成形材料もしく
は成型品、紙、布等の有機質系やガラス布のような無機
質系基材を用いた積層板、これに銅箔等の金属箔を張り
合わせた金属張り積層板、さらには、銅張り積層板など
を加工して得られるプリント回路板のような、熱硬化性
樹脂製品等をも含むものとする。
BEST MODE FOR CARRYING OUT THE INVENTION The thermosetting resin decomposed by the method of the present invention is, by itself, a cured resin, an uncured resin, a varnish containing a resin, or the like. In addition to resins, organic materials such as wood powder, silica fine particles,
A molding material or molded product containing an inorganic filler such as glass fiber, a laminate using an organic base material such as paper or cloth or an inorganic base material such as glass cloth, and a metal foil such as a copper foil laminated to this It also includes a metal-clad laminate, and a thermosetting resin product such as a printed circuit board obtained by processing a copper-clad laminate.

【0011】本発明は、これらの熱硬化性樹脂製品およ
びその廃棄物を含む、熱硬化性樹脂を超臨界状態又は亜
臨界状態の水で固体抽出処理をして、予め可溶成分(抽
質)を抽出・分離した後、不溶又は難溶な成分(抽残
物)を、超臨界又は亜臨界状態の、単核フェノール類化
合物又は水/単核フェノール類化合物を溶媒として、可
溶化処理することにより、化学反応により消費される溶
媒(単核フェノール類化合物)の量を削減することを本
旨とし、さらには、分解工程(可溶化処理)で用いた単
核フェノール類化合物を、生成した低〜中分子量化合物
から分離して、再び分解工程における溶媒として利用
し、あるいは、熱硬化性樹脂を分解して得られた低〜中
分子量化合物を、熱硬化性樹脂の原料として再利用しよ
うとするものである。
According to the present invention, a thermosetting resin containing these thermosetting resin products and wastes thereof is subjected to a solid extraction treatment with water in a supercritical state or a subcritical state to obtain a soluble component (extractant) in advance. ) Is extracted and separated, and the insoluble or sparingly soluble component (extract) is solubilized using a supercritical or subcritical mononuclear phenol compound or water / mononuclear phenol compound as a solvent. The aim is to reduce the amount of solvent (mononuclear phenolic compound) consumed by the chemical reaction, and further, to reduce the amount of mononuclear phenolic compound used in the decomposition step (solubilization treatment). ~ Separated from the medium-molecular weight compound and used again as a solvent in the decomposition step, or try to reuse the low-medium-molecular weight compound obtained by decomposing the thermosetting resin as a raw material of the thermosetting resin It is a thing.

【0012】熱硬化性樹脂の種類としては、特に限定さ
れるものではないが、本発明は、フェノール樹脂、エポ
キシ樹脂、ポリイミド樹脂、不飽和ポリエステル樹脂、
メラミン樹脂、ユリア樹脂等に対して好適に適用でき、
これらの内、フェノール樹脂、エポキシ樹脂、メラミン
樹脂、ユリア樹脂について、特に効果的に適応できる。
また、これらは、2種以上混在していても良い。
The type of thermosetting resin is not particularly limited, but in the present invention, a phenol resin, an epoxy resin, a polyimide resin, an unsaturated polyester resin,
Suitable for melamine resin, urea resin, etc.,
Of these, phenol resin, epoxy resin, melamine resin and urea resin can be applied particularly effectively.
Further, two or more of these may be mixed.

【0013】また、対象とする熱硬化性樹脂の大きさ
は、特に限定されるものではないが、可溶化反応がより
短時間で進行するように、あらかじめ0.1〜10mm
程度に粉砕することが好ましい。
The size of the thermosetting resin to be used is not particularly limited, but is 0.1-10 mm in advance so that the solubilization reaction proceeds in a shorter time.
It is preferable to grind to a degree.

【0014】本発明の固体抽出工程において、熱硬化性
樹脂に対して用いる超臨界状態又は亜臨界状態の水の使
用割合は、熱硬化性樹脂100重量部に対して、50〜
1,000重量部の範囲が好適であり、望ましくは10
0〜200重量部の範囲である。水の使用割合が上記の
範囲よりも少なくなると、熱硬化性樹脂から、超臨界あ
るいは亜臨界状態の水に可溶な有機物成分(抽質)を抽
出する効率が低下する。一方、上記の範囲よりも多くな
ると、格別の効果は得られず、水を加熱するために要す
る熱量が増加するため、熱エネルギー的に不利になる。
In the solid extraction step of the present invention, the proportion of water used in the supercritical state or subcritical state for the thermosetting resin is 50 to 100 parts by weight of the thermosetting resin.
The preferred range is 1,000 parts by weight, preferably 10 parts.
It is in the range of 0 to 200 parts by weight. If the proportion of water used is less than the above range, the efficiency of extracting the water-soluble organic component (extractant) in the supercritical or subcritical state from the thermosetting resin decreases. On the other hand, if the amount exceeds the above range, no particular effect is obtained and the amount of heat required to heat water increases, which is disadvantageous in terms of thermal energy.

【0015】固体抽出工程は高温高圧の条件下で実施さ
れる。温度が200〜500℃程度で、圧力が1〜45
Mpa程度の範囲で、温度および圧力を超臨界又は亜臨
界の条件に調製すれば良いが、望ましくは、温度が25
0〜400℃、圧力が2〜35MPa範囲で温度および
圧力を設定すれば良い。その処理時間は1〜60分の範
囲で調製できるが、通常は5〜30分で終了する。温度
が上記の範囲よりも高い場合、又は時間が上記の範囲よ
りも長い場合は、熱硬化性樹脂の重合反応や炭化反応が
進行して、より難分解性に変質してしまう。すなわち、
後段の分解工程における可溶化反応の効率が低下した
り、回収したオリゴマーの化学構造が変質するため熱硬
化性樹脂製品の化学原料としての再利用が困難になる。
The solid extraction step is carried out under conditions of high temperature and high pressure. Temperature is about 200-500 ° C, pressure is 1-45
The temperature and the pressure may be adjusted to supercritical or subcritical conditions within a range of about Mpa, but preferably the temperature is 25
The temperature and pressure may be set in the range of 0 to 400 ° C. and the pressure of 2 to 35 MPa. The treatment time can be adjusted in the range of 1 to 60 minutes, but it is usually completed in 5 to 30 minutes. If the temperature is higher than the above range, or if the time is longer than the above range, the polymerization reaction or carbonization reaction of the thermosetting resin proceeds, and the thermosetting resin becomes more difficult to decompose. That is,
Since the efficiency of the solubilization reaction in the subsequent decomposition step is reduced and the chemical structure of the recovered oligomer is altered, it becomes difficult to reuse the thermosetting resin product as a chemical raw material.

【0016】本発明の分解工程において用いる、単核体
フェノール類化合物は、フェノール、クレゾール、キシ
レノール、レゾルシン、アルキル置換フェノール等が好
ましく、これらからなる群より選ばれる1種又は2種以
上を用いることができる。コスト面および可溶化反応に
与える効果から、フェノールが、特に好ましい。
The mononuclear phenolic compound used in the decomposition step of the present invention is preferably phenol, cresol, xylenol, resorcin, alkyl-substituted phenol, etc., and one or more kinds selected from the group consisting of these are used. You can Phenol is particularly preferable in terms of cost and effect on the solubilization reaction.

【0017】分解工程において、水と単核フェノール類
化合物混合物を用いる場合の両者の割合は、単核フェノ
ール類化合物100重量部に対して、水の好ましい下限
値が1重量部で上限値が500重量部であり、更に好ま
しい下限値が5重量部で上限値が50重量部である。
In the decomposition step, when a mixture of water and a mononuclear phenol compound is used, the ratio of both is preferably 1 part by weight and 500 is an upper limit with respect to 100 parts by weight of the mononuclear phenol compound. Parts by weight, more preferably the lower limit value is 5 parts by weight and the upper limit value is 50 parts by weight.

【0018】熱硬化性樹脂に対して用いる水/単核フェ
ノール類化合物の使用割合は、熱硬化性樹脂100重量
部に対して、50〜2,000重量部の範囲が好適であ
り、望ましくは200〜400重量部の範囲である。水
/単核フェノール類化合物の使用割合が上記の範囲より
も少なくなると、熱硬化性樹脂の可溶化反応を円滑に進
行させるのが困難になる。一方、上記の範囲よりも多く
なると、格別の効果は得られず、溶媒を加熱するために
要する熱量が増加するため、熱エネルギー的に不利にな
る。
The proportion of water / mononuclear phenolic compound used for the thermosetting resin is preferably 50 to 2,000 parts by weight, and more preferably 100 parts by weight of the thermosetting resin. It is in the range of 200 to 400 parts by weight. If the ratio of water / mononuclear phenol compound used is less than the above range, it becomes difficult to smoothly proceed the solubilization reaction of the thermosetting resin. On the other hand, if the amount exceeds the above range, no particular effect can be obtained and the amount of heat required to heat the solvent increases, which is disadvantageous in terms of thermal energy.

【0019】また、分解工程は、高温高圧の条件下で実
施されるが、温度が200〜500℃程度、圧力が1〜
60MPa程度の範囲で、温度および圧力を超臨界又は
亜臨界の条件に調製すれば良いが、望ましくは、温度が
300〜450℃、圧力が2〜40MPa範囲で温度お
よび圧力を設定すれば良い。温度が上記の範囲よりも低
くなると、熱硬化性樹脂の可溶化反応速度が小さいた
め、短時間での処理が困難になる。一方、上記の温度範
囲よりも高くなると、熱分解などの副反応が併発して回
収したオリゴマーの化学構造が変化するため、熱硬化性
樹脂製品の化学原料としての再利用が困難になる。反応
時間は、1〜60分の範囲で調製できるが、通常は3〜
30分で分解処理が終了する。
The decomposition step is carried out under conditions of high temperature and high pressure, and the temperature is about 200 to 500 ° C. and the pressure is 1 to
The temperature and pressure may be adjusted to supercritical or subcritical conditions in the range of about 60 MPa, but it is preferable to set the temperature and pressure in the range of 300 to 450 ° C. and 2 to 40 MPa. When the temperature is lower than the above range, the solubilization reaction rate of the thermosetting resin is low, and thus it becomes difficult to perform the treatment in a short time. On the other hand, when the temperature is higher than the above temperature range, side reactions such as thermal decomposition occur concurrently and the chemical structure of the recovered oligomer changes, so that it becomes difficult to reuse the thermosetting resin product as a chemical raw material. The reaction time can be adjusted in the range of 1 to 60 minutes, but usually 3 to
The disassembly process ends in 30 minutes.

【0020】分解工程では、酸、アルカリ触媒等の反応
触媒を用いることもできるが、本発明の方法では、これ
らを含めた反応触媒を用いなくとも分解処理が可能であ
り、この場合、分解処理後の触媒分離操作が必要無くな
るのが利点となる。
In the decomposition step, a reaction catalyst such as an acid or alkali catalyst can be used, but in the method of the present invention, the decomposition treatment can be carried out without using a reaction catalyst containing them. The advantage is that the subsequent catalyst separation operation is not necessary.

【0021】また、分解工程に続いて、固形分を分離し
た後、液状分から蒸留や抽出などの方法により、水やフ
ェノール類を分離する。その残りが、分子量200〜1
0,000のオリゴマーを主体とする低〜中分子量化合
物であり、更に必要に応じて、精製を行う。
Following the decomposition step, after separating the solid content, water and phenols are separated from the liquid content by a method such as distillation or extraction. The rest is molecular weight 200-1
It is a low-to-medium molecular weight compound mainly composed of 000 oligomers, and further purified if necessary.

【0022】このようにして得られた、水や単核フェノ
ール類化合物を含むフェノール類は、必要に応じて、新
たに水や単核フェノール類化合物を加えることにより、
再び、分解工程における溶媒として利用することができ
る。前記の固体抽出工程で、抽出・分離される可溶成分
(抽質)は、木粉、紙、布などの天然高分子又は合成高
分子からなる群より選ばれる1種又は2種以上であり、
これらを予め抽出・分離したことで、分解工程における
単核フェノール類化合物の消費量が少なくなるが、さら
に、分解工程後に未反応の単核フェノール類化合物を回
収して、再利用することにより、単核フェノール類化合
物の必要量を、大幅に削減することができる。
The thus obtained phenols containing water and mononuclear phenolic compounds can be prepared by adding water or mononuclear phenolic compounds newly, if necessary.
Again, it can be used as a solvent in the decomposition step. The soluble component (extractable substance) extracted and separated in the solid extraction step is one or more selected from the group consisting of natural polymers or synthetic polymers such as wood flour, paper and cloth. ,
By extracting and separating these in advance, the consumption of the mononuclear phenolic compound in the decomposition step is reduced, but further, by collecting the unreacted mononuclear phenolic compound after the decomposition step and reusing it, The required amount of mononuclear phenolic compound can be significantly reduced.

【0023】一方、フェノール類を分離した後の、分子
量200〜10,000のオリゴマーを主体とする低〜
中分子量化合物は、熱硬化性樹脂の原料として再利用
(リサイクル)することができる。
On the other hand, after separation of phenols, low-molecular weight oligomers having a molecular weight of 200 to 10,000 are mainly used.
The medium molecular weight compound can be reused (recycled) as a raw material of the thermosetting resin.

【0024】熱硬化性樹脂から回収されるこの低〜中分
子量化合物は、通常、熱硬化性樹脂製品を製造する際に
用いられるプレポリマーと同程度の分子量であるため、
必要に応じて精製・改質を行うことにより、熱硬化性樹
脂製品の化学原料(プレポリマー)として再利用するこ
とができる。ここで、分子量200〜10,000のオ
リゴマーを主体とするとは、ここで示した分子量のオリ
ゴマーが50%以上含まれることを言うが、主体とする
前記オリゴマーの他に含まれるオリゴマーとして、分子
量10,000以上のオリゴマーも含まれる。また、分
子量200〜10,000のオリゴマーとしては、通常
の熱硬化性樹脂の場合は、原料モノマーの2〜100核
体程度である。
This low to medium molecular weight compound recovered from the thermosetting resin is usually of the same molecular weight as the prepolymer used in producing the thermosetting resin product,
It can be reused as a chemical raw material (prepolymer) for thermosetting resin products by performing purification and modification as necessary. Here, the term "mainly composed of an oligomer having a molecular weight of 200 to 10,000" means that an oligomer having the molecular weight shown here is contained in an amount of 50% or more. Over 1,000 oligomers are also included. Further, as an oligomer having a molecular weight of 200 to 10,000, in the case of a usual thermosetting resin, it is about 2 to 100 nuclei of a raw material monomer.

【0025】尚、本発明の固体抽出工程において抽出さ
れない、不溶または難溶な成分(抽残物)とは、炭素繊
維、カーボン微粒子などの有機質系の充填材、フェノー
ル樹脂、エポキシ樹脂、ポリイミド、不飽和ポリエステ
ル樹脂、メラミン樹脂、ユリア樹脂などの熱硬化性樹脂
の硬化物、シリカ微粒子、ガラス繊維などの無機質系の
充填材、金ワイヤー、銅箔などの金属類、あるいは。こ
れらの群より選ばれた1種又は2種以上である。これら
の中で、熱硬化性樹脂の硬化物は、本発明の分解工程に
おいて分解され、可溶化される。
The insoluble or sparingly soluble components (extracts) that are not extracted in the solid extraction step of the present invention include carbon fibers, organic fillers such as carbon fine particles, phenol resins, epoxy resins, polyimides, A cured product of thermosetting resin such as unsaturated polyester resin, melamine resin, urea resin, silica fine particles, inorganic filler such as glass fiber, metal such as gold wire, copper foil, or the like. One or more selected from these groups. Among these, the cured product of the thermosetting resin is decomposed and solubilized in the decomposition step of the present invention.

【0026】[0026]

【実施例】以下、実施例を挙げて本発明を詳細に説明す
るが、本発明は、これによって何ら限定されるものでは
ない。
The present invention will be described in detail below with reference to examples, but the present invention is not limited thereto.

【0027】[実施例1] フェノール樹脂成形材料の
分解 固体抽出工程を以下の操作で行った。小型回分式反応器
(内容積5cm3、Hastelloy C−276
製)に、粒径0.25−0.50mmに粉砕したフェノー
ル樹脂成形材料(樹脂:44wt%、有機質充填材:4
2wt%、無機質充填材:14wt%含有)1gと、水
3gを仕込み、内部をアルゴンで置換して封入した。反
応器を流動砂浴に投入して、急速に加熱して内温を25
0℃とすることで、反応器内圧を4MPaまで上昇さ
せ、高温高圧状態とした。250℃、4MPaで10分
間保った後、反応器をエアーガンで冷却して、常温常圧
に戻した。固体抽出操作の終了後、反応器内の生成物を
回収して、1.0μmのフィルターでろ過して、水可溶
分と水不溶分に分離した。その結果、水不溶分である抽
残物量は0.87gで、0.13gが水可溶分(抽質)と
して抽出された。
Example 1 A decomposition solid extraction step of a phenol resin molding material was carried out by the following operation. Small batch reactor (internal volume 5 cm 3 , Hastelloy C-276
Phenol resin molding material (resin: 44 wt%, organic filler: 4) crushed to a particle size of 0.25-0.50 mm
2 wt%, inorganic filler: 14 wt% contained) 1 g and water 3 g were charged, and the inside was replaced with argon and sealed. Put the reactor in a fluidized sand bath and heat rapidly to increase the internal temperature to 25
By setting the temperature to 0 ° C., the internal pressure of the reactor was increased to 4 MPa, and a high temperature and high pressure state was obtained. After maintaining at 250 ° C. and 4 MPa for 10 minutes, the reactor was cooled with an air gun and returned to normal temperature and normal pressure. After the solid extraction operation was completed, the product in the reactor was recovered and filtered with a 1.0 μm filter to separate into a water-soluble component and a water-insoluble component. As a result, the amount of raffinate, which is a water-insoluble matter, was 0.87 g, and 0.13 g was extracted as a water-soluble matter (filtrate).

【0028】続いて、分解工程を以下の操作で行った。
上記の小型回分式反応器に、上記の固体抽出工程後の抽
残物0.87g、水1.5g、フェノール1gを仕込み、
内部をアルゴンで置換して封入した。反応器を流動砂浴
に投入して、急速に加熱して内温を360℃とすること
で、反応器内圧を3MPaまで上昇させ、高温高圧状態
とした。360℃、6MPaで30分間保った後、反応
器をエアーガンで冷却して、常温常圧に戻した。分解反
応後の生成物は、水で溶解させたのち、1.0μmのフ
ィルターでろ過して、ろ液を水可溶分とした。ろ過した
後のフィルターに残った水不溶分は、テトラヒドロフラ
ン(以下、THFと略す)で溶解させたのち、1.0μ
mのフィルターでろ過し、ろ液をTHF可溶分とした。
フィルターに残ったTHF不溶分(残渣)を、100℃
で12時間乾燥させたのち秤量したところ0.15gで
あった。この残渣の大部分は、フェノール樹脂成形材料
に含有していた無機質充填材であった。
Subsequently, the decomposition step was carried out by the following operation.
The above small batch type reactor was charged with 0.87 g of the raffinate after the above solid extraction step, 1.5 g of water and 1 g of phenol,
The inside was replaced with argon and then sealed. The reactor was put into a fluidized sand bath and heated rapidly to bring the internal temperature to 360 ° C., whereby the internal pressure of the reactor was raised to 3 MPa, and a high temperature and high pressure state was obtained. After maintaining at 360 ° C. and 6 MPa for 30 minutes, the reactor was cooled with an air gun and returned to room temperature and normal pressure. The product after the decomposition reaction was dissolved in water and then filtered through a 1.0 μm filter to give a filtrate as a water-soluble component. The water-insoluble matter remaining on the filter after filtration was dissolved in tetrahydrofuran (hereinafter abbreviated as THF) and then 1.0 μm.
It was filtered with a filter of m, and the filtrate was used as a THF-soluble component.
The THF insoluble matter (residue) remaining on the filter is heated to 100 ° C.
It was dried for 12 hours and weighed to be 0.15 g. Most of this residue was the inorganic filler contained in the phenolic resin molding material.

【0029】上記の水可溶分をガスクロマトグラフィー
(検出器FID)(以下、GC−FIDと略す)により
分析を行ったところ、溶媒として加えたフェノールが反
応により消費された量は0.65gであった。また、T
HF可溶分を、ゲル・パーミエーション・クロマトグラ
フィー(以下、GPCと略す)により分析を行ったとこ
ろ、数平均分子量(以下、Mnと記す)740、重量平
均分子量(以下、Mwと記す)5,500のオリゴマー
が生成していることを確認した。
When the above water-soluble matter was analyzed by gas chromatography (detector FID) (hereinafter abbreviated as GC-FID), the amount of phenol added as a solvent consumed by the reaction was 0.65 g. Met. Also, T
The HF-soluble matter was analyzed by gel permeation chromatography (hereinafter abbreviated as GPC). As a result, a number average molecular weight (hereinafter referred to as Mn) 740, a weight average molecular weight (hereinafter referred to as Mw) 5 It was confirmed that 1,500 oligomers were produced.

【0030】[実施例2〜7] フェノール樹脂成形材
料の分解 実施例1において、固体抽出工程の温度、処理時間、ま
たは分解工程の温度、処理時間を、表1の通りに変更し
た以外は、実施例1と同様な操作で分解処理を行った。
分解処理結果を表1にまとめて示した。
[Examples 2 to 7] In Example 1 of decomposing a phenol resin molding material, except that the temperature and treatment time of the solid extraction step or the temperature and treatment time of the decomposition step were changed as shown in Table 1. The decomposition treatment was carried out in the same manner as in Example 1.
The results of the decomposition treatment are summarized in Table 1.

【0031】[0031]

【表1】 [Table 1]

【0032】[実施例8] フェノール樹脂成形材料の
分解 実施例6と同じ操作で固体抽出工程の処理を行い、抽残
物量0.69gおよびで水可溶分0.11gを得た。この
抽残物を実施例6と同じ操作で分解処理し、分解後に回
収した水可溶分を減圧蒸留することで、水/フェノール
混合溶液1.8g(水1.3g、フェノール0.5g)を
分離した。続いて、この水/フェノール混合溶液1.8
gに、新たに水0.2g、フェノール0.5gを加えて反
応溶媒とした他は、実施例6と同様な操作で分解工程の
処理を行った。分解処理結果を表1に示した。
Example 8 Decomposition of Phenolic Resin Molding Material The solid extraction step was carried out in the same manner as in Example 6 to obtain a raffinate amount of 0.69 g and a water-soluble component of 0.11 g. This raffinate was decomposed by the same operation as in Example 6, and the water-soluble matter recovered after the decomposition was distilled under reduced pressure to give 1.8 g of a water / phenol mixed solution (1.3 g of water, 0.5 g of phenol). Separated. Then, this water / phenol mixed solution 1.8
The decomposition step was performed in the same manner as in Example 6 except that 0.2 g of water and 0.5 g of phenol were newly added to g to use as a reaction solvent. The results of the decomposition treatment are shown in Table 1.

【0033】[比較例1] フェノール樹脂成形材料の
分解 実施例1と同じ小型回分式反応器および試料(フェノー
ル樹脂成形材料)を使用し、試料1g、水1.5g、フ
ェノール1gを反応器に仕込み、内部をアルゴンで置換
して封入した。反応器を流動砂浴に投入して、急速に加
熱して内温を360℃とすることで、反応器内圧を3M
Paまで上昇させ、高温高圧状態とした。360℃、3
MPaで30分間保って、分解反応を行った後、反応器
をエアーガンで冷却して、常温常圧に戻した。分解反応
後の生成物は、実施例1におけると同様に処理して、
0.15gのTHF不溶残渣を得た。この残渣の大部分
は、フェノール樹脂成形材料に含有していた無機質充填
材であった。
Comparative Example 1 Decomposition of Phenolic Resin Molding Material Using the same small batch reactor and sample (phenolic resin molding material) as in Example 1, 1 g of sample, 1.5 g of water, and 1 g of phenol were placed in the reactor. After charging, the inside was replaced with argon and then sealed. Put the reactor in a fluidized sand bath and heat it rapidly to bring the internal temperature to 360 ° C.
It was raised to Pa and brought into a high temperature and high pressure state. 360 ° C, 3
After holding for 30 minutes at MPa to carry out the decomposition reaction, the reactor was cooled with an air gun and returned to room temperature and atmospheric pressure. The product after the decomposition reaction was treated as in Example 1,
0.15 g of a THF insoluble residue was obtained. Most of this residue was the inorganic filler contained in the phenolic resin molding material.

【0034】上記の水可溶分をGC−FIDにより分析
を行ったところ、溶媒として加えたフェノールが反応に
より消費した量は0.77gであった。また、THF可
溶分をGPCにより分析を行ない、Mn740、Mw
5,700のオリゴマーが生成していることを確認し
た。
When the water-soluble matter was analyzed by GC-FID, the amount of phenol added as a solvent consumed by the reaction was 0.77 g. Further, the THF-soluble matter was analyzed by GPC, and Mn740, Mw
It was confirmed that 5,700 oligomers were produced.

【0035】[比較例2〜3] フェノール樹脂成形材
料の分解 比較例1において、温度、処理時間を変更した以外は、
比較例1と同様な操作で分解処理を行った。分解処理結
果を表1にまとめて示した。
[Comparative Examples 2 to 3] Decomposition of Phenolic Resin Molding Material In Comparative Example 1, except that the temperature and the treatment time were changed.
The decomposition treatment was performed by the same operation as in Comparative Example 1. The results of the decomposition treatment are summarized in Table 1.

【0036】[比較例4] フェノール樹脂成形材料の
分解 比較例2において、分解後に回収した水可溶分を減圧蒸
留することで、水/フェノール混合溶液1.8g(水1.
3g、フェノール0.2g)を分離した。これに新たに
水0.2g、フェノール0.8gを加えて、反応溶媒とし
た他は、比較例2と同様な操作を行い、分解処理を行っ
た。分解処理結果を表1に示した。
Comparative Example 4 Decomposition of Phenolic Resin Molding Material In Comparative Example 2, the water-soluble component recovered after decomposition was distilled under reduced pressure to obtain 1.8 g of a water / phenol mixed solution (water 1.
3 g, phenol 0.2 g) were separated. Decomposition treatment was carried out in the same manner as in Comparative Example 2 except that 0.2 g of water and 0.8 g of phenol were newly added to the mixture as a reaction solvent. The results of the decomposition treatment are shown in Table 1.

【0037】表1に示した分解処理結果から分かるよう
に、実施例1〜8に示した本発明の分解処理方法では、
比較例1〜4に示した分解処理方法と比較して、フェノ
ール消費量が明らかに少なかった。一方で、分解工程後
の残渣量や、分解生成物の分子量は同等の値であった。
As can be seen from the decomposition treatment results shown in Table 1, in the decomposition treatment method of the present invention shown in Examples 1 to 8,
Compared to the decomposition treatment methods shown in Comparative Examples 1 to 4, the consumption of phenol was obviously smaller. On the other hand, the amount of residue after the decomposition step and the molecular weight of the decomposition product were the same value.

【0038】[実施例9、10] 紙基材フェノール樹
脂積層板の分解 実施例1において、フェノール樹脂成形材料の代わり
に、紙基材フェノール樹脂積層板を用い、固体抽出工程
の温度、処理時間、および分解工程の温度、処理時間
を、表2に示すように変更した以外は、実施例1と同様
な操作で分解処理を行った。分解処理結果を表2にまと
めて示す。
[Examples 9 and 10] Decomposition of Paper-Based Phenolic Resin Laminated Board In Example 1, a paper-based phenolic resin laminated board was used in place of the phenol resin molding material, and the temperature and treatment time of the solid extraction step were used. The decomposition treatment was performed in the same manner as in Example 1 except that the temperature of the decomposition step and the treatment time were changed as shown in Table 2. The results of the decomposition treatment are summarized in Table 2.

【0039】[0039]

【表2】 [Table 2]

【0040】[比較例5、6] 紙基材フェノール樹脂
積層板の分解 比較1において、フェノール樹脂成形材料の代わりに、
紙基材フェノール樹脂積層板を用い、分解工程の温度、
処理時間を表2に示すように変更した以外は、比較例1
と同様な操作で分解処理を行った。分解処理結果を表2
に示す。
[Comparative Examples 5 and 6] In the decomposition comparison 1 of the paper-based phenol resin laminate, instead of the phenol resin molding material,
Using a paper-based phenolic resin laminate, the temperature of the decomposition process,
Comparative Example 1 except that the treatment time was changed as shown in Table 2
The decomposition process was performed by the same operation as. Table 2 shows the decomposition results
Shown in.

【0041】表2に示した分解処理結果からわかるよう
に、実施例9、10に示した本発明での分解処理方法で
は、比較例5、6に示した分解処理方法と比較して、フ
ェノール消費量が明らかに少なかった。一方で、分解工
程後の残渣量や、分解生成物の分子量は同等の値であっ
た。
As can be seen from the decomposition treatment results shown in Table 2, in the decomposition treatment method of the present invention shown in Examples 9 and 10, compared with the decomposition treatment methods shown in Comparative Examples 5 and 6, phenol was used. The consumption was obviously low. On the other hand, the amount of residue after the decomposition step and the molecular weight of the decomposition product were the same value.

【0042】[0042]

【発明の効果】本発明によれば、これまで産業廃棄物や
一般廃棄物などに大量に含まれていながら、リサイクル
が実現できていなかった熱硬化性樹脂を、超臨界あるい
は亜臨界状態の水で固体抽出処理をした後、その抽残物
を、超臨界又は亜臨界状態の、単核フェノール類化合物
又は水/単核フェノール類化合物混合物を反応溶媒とし
て、分解処理することにより、分子量200〜10,0
00のオリゴマーを主体とする低〜中分子量化合物ま
で、高速で大量に分解処理することができ、且つ、その
際に化学反応により消費される溶媒(単核フェノール類
化合物)の量を、削減することができる。また、回収さ
れた分子量200〜10,000のオリゴマーを主体と
する低〜中分子量化合物を、熱硬化性樹脂の原料として
再利用することができる。
According to the present invention, the thermosetting resin, which has been contained in a large amount in industrial wastes or general wastes but has not yet been recycled, is treated with water in a supercritical or subcritical state. After the solid extraction treatment with, the raffinate is decomposed using a mononuclear phenol compound or a water / mononuclear phenol compound mixture in a supercritical or subcritical state as a reaction solvent to give a molecular weight of 200 to 10,0
High-speed and large-scale decomposition of low to medium molecular weight compounds mainly composed of oligomers of 00 can be performed, and the amount of solvent (mononuclear phenolic compound) consumed by chemical reaction at that time can be reduced. be able to. Further, the low-to-medium molecular weight compound mainly composed of the recovered oligomer having a molecular weight of 200 to 10,000 can be reused as a raw material of the thermosetting resin.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) // C08L 61:04 C08L 61:04 61:20 61:20 63:00 63:00 67:06 67:06 75:00 75:00 79:00 79:00 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) // C08L 61:04 C08L 61:04 61:20 61:20 63:00 63:00 67:06 67: 06 75:00 75:00 79:00 79:00

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 (1)熱硬化性樹脂製品を超臨界状態又は
亜臨界状態の水で処理して、可溶成分(抽質)を抽出・
分離する固体抽出工程、および、(2)超臨界状態又は亜
臨界状態の水に不溶又は難溶な成分(抽残物)を、超臨
界又は亜臨界状態の、単核フェノール類化合物又は水/
単核フェノール類化合物を溶媒として、可溶化処理する
ことにより、分子量200〜10,000のオリゴマー
を主体とする低〜中分子量化合物まで分解する分解工
程、からなることを特徴とする熱硬化性樹脂の分解処理
方法。
1. A thermosetting resin product is treated with water in a supercritical state or a subcritical state to extract a soluble component (extractant).
A solid extraction step of separating, and (2) a supercritical or subcritical water-insoluble or sparingly soluble component (extract) to a supercritical or subcritical mononuclear phenolic compound or water /
A thermosetting resin comprising a decomposition step of decomposing into a low to medium molecular weight compound mainly composed of an oligomer having a molecular weight of 200 to 10,000 by solubilization treatment using a mononuclear phenol compound as a solvent. Disassembly treatment method.
【請求項2】 熱硬化性樹脂が、フェノール樹脂、エポ
キシ樹脂、ポリイミド、不飽和ポリエステル樹脂、メラ
ミン樹脂、ユリア樹脂よりなる群から選ばれた1種又は
2種以上であることを特徴とする、請求項1に記載の熱
硬化性樹脂の分解処理方法。
2. The thermosetting resin is one or more selected from the group consisting of phenol resin, epoxy resin, polyimide, unsaturated polyester resin, melamine resin and urea resin. The decomposition treatment method of the thermosetting resin according to claim 1.
【請求項3】 単核フェノール類化合物が、フェノー
ル、クレゾール、キシレノール、レゾルシン、アルキル
置換フェノールからなる群より選ばれた1種又は2種以
上であることを特徴とする、請求項1または請求項2に
記載の熱硬化性樹脂の分解処理方法。
3. The mononuclear phenol compound is one or more selected from the group consisting of phenol, cresol, xylenol, resorcin, and alkyl-substituted phenol, or claim 1 or claim 2. 2. The method for decomposing a thermosetting resin according to item 2.
【請求項4】 分解工程で用いた単核フェノール類化合
物を、生成した低〜中分子量化合物から分離して、再び
分解工程における溶媒として利用することを特徴とす
る、請求項1〜3のいずれかに記載の熱硬化性樹脂の分
解処理方法。
4. The mononuclear phenolic compound used in the decomposition step is separated from the produced low to medium molecular weight compound and reused as a solvent in the decomposition step. A method for decomposing a thermosetting resin as described in (1).
【請求項5】 請求項1〜4のいずれかに記載の分解処
理方法により、熱硬化性樹脂を分解して得られた低〜中
分子量化合物を、熱硬化性樹脂の原料として再利用する
ことを特徴とする熱硬化性樹脂のリサイクル方法。
5. A low-to-medium molecular weight compound obtained by decomposing a thermosetting resin by the decomposition treatment method according to any one of claims 1 to 4 is reused as a raw material for the thermosetting resin. A method for recycling a thermosetting resin, characterized by:
JP2001290154A 2001-09-21 2001-09-21 Method for decomposing thermosetting resin and method for recycling the resin Pending JP2003096233A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001290154A JP2003096233A (en) 2001-09-21 2001-09-21 Method for decomposing thermosetting resin and method for recycling the resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001290154A JP2003096233A (en) 2001-09-21 2001-09-21 Method for decomposing thermosetting resin and method for recycling the resin

Publications (1)

Publication Number Publication Date
JP2003096233A true JP2003096233A (en) 2003-04-03

Family

ID=19112530

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001290154A Pending JP2003096233A (en) 2001-09-21 2001-09-21 Method for decomposing thermosetting resin and method for recycling the resin

Country Status (1)

Country Link
JP (1) JP2003096233A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007032047A1 (en) * 2005-09-12 2007-03-22 Sumitomo Bakelite Co., Ltd. Process for producing regenerated resin, regenerated resin, processing recovered matter from resin composition, regenerated resin composition and method of regenerating resin composition
JP2010163620A (en) * 2004-05-26 2010-07-29 Panasonic Electric Works Co Ltd Decomposition-separation process for plastic
EP1731557A4 (en) * 2004-03-26 2012-12-26 Panasonic Corp Method of decomposing plastic
CN115181327A (en) * 2022-08-30 2022-10-14 湖北恒驰电子科技有限公司 Method for recycling waste multiphase flexible copper clad laminate by subcritical technology

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1731557A4 (en) * 2004-03-26 2012-12-26 Panasonic Corp Method of decomposing plastic
JP2010163620A (en) * 2004-05-26 2010-07-29 Panasonic Electric Works Co Ltd Decomposition-separation process for plastic
WO2007032047A1 (en) * 2005-09-12 2007-03-22 Sumitomo Bakelite Co., Ltd. Process for producing regenerated resin, regenerated resin, processing recovered matter from resin composition, regenerated resin composition and method of regenerating resin composition
US7851514B2 (en) 2005-09-12 2010-12-14 Sumitomo Bakelite Company, Ltd. Process for producing regenerated resin, regenerated resin, processing recovered matter from resin composition, regenerated resin composition and method of regenerating resin composition
JP5007671B2 (en) * 2005-09-12 2012-08-22 住友ベークライト株式会社 Manufacturing method of recycled resin
KR101226414B1 (en) 2005-09-12 2013-01-24 스미토모 베이클리트 컴퍼니 리미티드 Process for producing regenerated resin, regenerated resin, processing recovered matter from resin composition, regenerated resin composition and method of regenerating resin composition
CN115181327A (en) * 2022-08-30 2022-10-14 湖北恒驰电子科技有限公司 Method for recycling waste multiphase flexible copper clad laminate by subcritical technology

Similar Documents

Publication Publication Date Title
JP3544834B2 (en) Mixed waste treatment equipment
JPH1024274A (en) Method for decomposing and recycling thermosetting resin
JP3693869B2 (en) Method for decomposing and recycling thermosetting resin
JP2003096233A (en) Method for decomposing thermosetting resin and method for recycling the resin
EP1956042B1 (en) Process for producing regenerated resin, regenerated resin, processing recovered matter from resin composition, regenerated resin composition and method of regenerating resin composition
WO2010050442A1 (en) Method of regenerating thermoset epoxy resin and composition for regeneration of thermoset resin
US5306807A (en) Process for isolating polymer resins from solutions
JP4806758B2 (en) Decomposition and recovery method of thermosetting resin
EP0801662B1 (en) Process for recycling epoxy resin containing products
JP3888979B2 (en) Method for decomposing and recycling thermosetting resin
JP4090645B2 (en) Method for decomposing thermosetting resin
JP3922625B2 (en) Method for decomposing and recycling thermosetting resin
JP2005113096A (en) Method for solubilization-treating plastic material, method of recycling and plastic-forming material
JPH10287766A (en) Decomposing and recycling methods for thermosetting resin
CN117500650A (en) Method for recycling and upgrading reconstituted polycarbonate-based composite waste
JP2005126667A (en) Method for treating and recycling plastic, treated and recovered plastic material, and recycled plastic
JP2006160794A (en) Method for treating plastic, recycling method, treated and recovered material and recycled plastic
JP2002520196A (en) Method for decomposing composite material containing synthetic resin
JP2006124480A (en) Plastic regeneration method, regenerated product, recycling method, and recycled plastic
JP4806757B2 (en) Decomposition and recovery method of thermosetting resin
JP2005126669A (en) Method for recycling plastic, treated and recovered plastic, thermosetting resin-forming material and recycled plastic
JP2004115744A (en) Method for producing phenolic resin composite material
JP4792750B2 (en) Manufacturing method of recycled resin
JP2005281429A (en) Processing method of plastic, processed and recovered matter, recycling method and recycled plastic
CN116178649A (en) High-strength solvent-resistant plastic capable of being recycled in closed loop, preparation method and recycling method thereof