JP2003095058A - Occupant protecting device for vehicle - Google Patents

Occupant protecting device for vehicle

Info

Publication number
JP2003095058A
JP2003095058A JP2001288746A JP2001288746A JP2003095058A JP 2003095058 A JP2003095058 A JP 2003095058A JP 2001288746 A JP2001288746 A JP 2001288746A JP 2001288746 A JP2001288746 A JP 2001288746A JP 2003095058 A JP2003095058 A JP 2003095058A
Authority
JP
Japan
Prior art keywords
vehicle
occupant protection
threshold value
inter
distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001288746A
Other languages
Japanese (ja)
Inventor
Kyoichi Abe
恭一 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP2001288746A priority Critical patent/JP2003095058A/en
Publication of JP2003095058A publication Critical patent/JP2003095058A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Automotive Seat Belt Assembly (AREA)
  • Air Bags (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an occupant protecting device for vehicle capable of properly protecting the vehic occupants by setting the optimal operation threshold value of the protection means for occupants. SOLUTION: The occupant protecting device 10 for vehicle is provided with a occupant protection means 70 for protecting occupants and an impact detection means 50 for detecting the magnitude of impact working on an own vehicle, and activates the occupant protection means when the magnitude of the impact detected by the impact detection means 50 exceeds a prescribed threshold value. The device 10 is further provided with a following distance detection means 60 for detecting the following distance between the own vehicle and a precedent car traveling in front of the own vehicle in the protecting device for occupants, a relative velocity direction means 20 for detecting the relative velocity between the own vehicle and the preceding vehicle, a vehicle state deciding means 30 for deciding the possibility of collision of the own vehicle with the preceding vehicle based on the relative velocity obtained by the following distance obtained by the following distance detection means 60 and the relative velocity obtained by relative velocity detection means 20, and a threshold value changing means 40 for changing the threshold value that activates the occupant protecting means 70 corresponding to the decided results of the vehicle state deciding means 30.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、車両用乗員保護装
置に関する。詳しくは、乗員保護手段の作動閾値を最適
に設定し、乗員を適切に保護できるように改良したもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vehicle occupant protection device. More specifically, the operating threshold of the occupant protection means is optimally set, and the occupant is appropriately protected.

【0002】[0002]

【従来の技術】従来、エアバッグ装置は加速度センサに
より車両に作用する加速度を常に計測すると共に、図5
に示すように、車両衝突に伴い車両に作用する加速度が
所定の閾値を超えた場合に、エアバックを展開する仕組
みとなっている。
2. Description of the Related Art Conventionally, an air bag device always measures an acceleration acting on a vehicle by an acceleration sensor, and FIG.
As shown in, when the acceleration applied to the vehicle due to the vehicle collision exceeds a predetermined threshold value, the airbag is deployed.

【0003】しかし、上記加速度センサにノイズが加わ
る可能性があるためエアバッグを展開させる閾値は比較
的高めに設定する必要がある。一方、上記閾値が高すぎ
ると車両が衝突した場合でもエアバッグが展開しない恐
れがあり、乗員の保護が適切に行われない可能性がある
といった問題があった。
However, noise may be added to the acceleration sensor, so that the threshold value for deploying the airbag needs to be set relatively high. On the other hand, if the threshold value is too high, the airbag may not be deployed even if the vehicle collides, and there is a problem that the occupant may not be properly protected.

【0004】そこで、エアバッグ装置により乗員の保護
を適切に行わせるために、車間距離警報手段と乗員保護
手段であるエアバッグとを連結し、車間距離警報手段か
らエアバックに先行車両との衝突の危険を示す信号が出
力された際には、エアバックの起爆信号の送出時期その
ものを早めて展開動作を早める技術がある(特開平9−
132111号公報)。
Therefore, in order to properly protect the occupant by the airbag device, the inter-vehicle distance warning means and the airbag as the occupant protection means are connected, and the inter-vehicle distance warning means collides with the preceding vehicle on the airbag. When a signal indicating the danger of being output is output, there is a technique for accelerating the deployment operation by advancing the timing of sending the airbag detonation signal itself (JP-A-9-
132111).

【0005】[0005]

【発明が解決しようとする課題】しかし、上記公報に記
載の技術のように衝突の危険を検知したときにエアバッ
グの展開動作を早めただけでは、エアバッグの展開閾値
が高ければ該エアバッグの展開動作自体が始まらない可
能性があるため、乗員の保護が適切に行われない虞があ
るといった問題があった。
However, if the deployment threshold of the airbag is high if the deployment operation of the airbag is accelerated only when the danger of collision is detected as in the technique described in the above publication, the airbag is not likely to be deployed. There is a possibility that the occupant may not be properly protected because the unfolding operation itself may not start.

【0006】[0006]

【課題を解決するための手段】上記課題を解決する本発
明の請求項1に係る車両用乗員保護装置は、乗員の保護
を行う乗員保護手段と、自車両に作用する衝撃の大きさ
を検出する衝撃検出手段と、前記衝撃検出手段による衝
撃の大きさが所定の閾値以上となったときに、前記乗員
保護手段を作動させる車両用乗員保護装置において、自
車両と同自車両の前方を走行する先行車両との車間距離
を検出する車間距離検出手段と、自車両と先行車両との
相対速度を検知する相対速度検知手段と、前記車間距離
検出手段による前記車間距離及び前記相対速度検知手段
による前記相対速度に基づいて、自車両と先行車両とが
衝突する可能性を判断する車両状態判断手段と、前記車
両状態判断手段の判断結果に応じて前記乗員保護手段を
作動させる前記閾値を変更する閾値変更手段とを備えた
ことを特徴とする。
A vehicle occupant protection system according to claim 1 of the present invention which solves the above problems, detects an occupant protection means for protecting an occupant and the magnitude of an impact acting on the host vehicle. And a vehicle occupant protection device for activating the occupant protection means when the magnitude of the impact by the impact detection means exceeds a predetermined threshold value. An inter-vehicle distance detecting means for detecting an inter-vehicle distance to the preceding vehicle, a relative speed detecting means for detecting a relative speed between the own vehicle and the preceding vehicle, and the inter-vehicle distance and the relative speed detecting means by the inter-vehicle distance detecting means. Based on the relative speed, a vehicle state judging means for judging the possibility of collision between the own vehicle and the preceding vehicle, and the threshold for operating the occupant protecting means according to the judgment result of the vehicle state judging means. Characterized by comprising a threshold value changing means for changing.

【0007】上記課題を解決する本発明の請求項2に係
る車両用乗員保護装置は、乗員の保護を行う乗員保護手
段と、自車両に作用する衝撃の大きさを検出する衝撃検
出手段と、前記衝撃検出手段による衝撃の大きさが所定
の閾値以上となったときに、前記乗員保護手段を作動さ
せる車両用乗員保護装置において、自車両と同自車両の
前方を走行する先行車両との車間距離を検出する車間距
離検出手段と、前記車間距離検出手段による前記車間距
離に基づいて、自車両と先行車両とが衝突する可能性を
判断する車両状態判断手段と、前記車両状態判断手段の
判断結果に応じて前記乗員保護手段を作動させる前記閾
値を変更する閾値変更手段とを備えたことを特徴とす
る。
An occupant protection device for a vehicle according to a second aspect of the present invention which solves the above problem is an occupant protection means for protecting an occupant, and an impact detection means for detecting the magnitude of an impact acting on the host vehicle. In the vehicle occupant protection device for activating the occupant protection means when the magnitude of the impact by the impact detection means becomes equal to or greater than a predetermined threshold value, a distance between the vehicle and a preceding vehicle traveling in front of the vehicle. An inter-vehicle distance detecting means for detecting a distance, a vehicle state determining means for determining a possibility of collision between the own vehicle and a preceding vehicle based on the inter-vehicle distance by the inter-vehicle distance detecting means, and a determination by the vehicle state determining means. Threshold value changing means for changing the threshold value for operating the occupant protection means according to a result.

【0008】上記課題を解決する本発明の請求項3に係
る車両用乗員保護装置は、請求項1又は2において、前
記衝撃検出手段は、自車両に作用する加速度を検出する
と共に、前記車両用乗員保護装置は、前記加速度の絶対
値が所定の閾値以上となったときに、乗員保護手段を作
動させることを特徴とする。
A vehicle occupant protection system according to a third aspect of the present invention for solving the above-mentioned problems is the vehicle occupant protection system according to the first or second aspect, wherein the impact detection means detects the acceleration acting on the host vehicle and The occupant protection device activates the occupant protection means when the absolute value of the acceleration exceeds a predetermined threshold value.

【0009】上記課題を解決する本発明の請求項4に係
る車両用乗員保護装置は、請求項1,2又は3におい
て、前記閾値変更手段は、前記車両状態判断手段により
自車両が先行車両に衝突する可能性が高いと判断された
ときに、前記乗員保護手段を作動させる前記閾値を低く
することを特徴とする。
A vehicle occupant protection system according to a fourth aspect of the present invention which solves the above-mentioned problems is the vehicle occupant protection system according to the first, second or third aspect, wherein the threshold value changing means causes the vehicle state judging means to set the own vehicle to the preceding vehicle. When it is determined that there is a high possibility of collision, the threshold value for operating the occupant protection means is lowered.

【0010】上記課題を解決する本発明の請求項5に係
る車両用乗員保護装置は、請求項1,2,3又は4にお
いて、前記車両状態判断手段は、前記車間距離検出手段
による前記車間距離と前記相対速度検知手段による相対
速度とにより前記自車両が前記先行車両に衝突するまで
の時間を算出する衝突時間算出手段を有し、前記衝突時
間算出手段に基づいて自車両と先行車両とが衝突する可
能性を判断することを特徴とする。
A vehicle occupant protection system according to a fifth aspect of the present invention which solves the above-mentioned problems is the vehicle occupant protection system according to the first, second, third or fourth aspect, wherein the vehicle state determination means is the inter-vehicle distance detected by the inter-vehicle distance detection means. And a relative speed detected by the relative speed detection means, the vehicle has a collision time calculating means for calculating a time until the own vehicle collides with the preceding vehicle, and the own vehicle and the preceding vehicle are based on the collision time calculating means. Characterized by determining the possibility of collision.

【0011】[0011]

【発明の実施の形態】以下、本発明について、図面に示
す実施形態を参照して説明する。 〔第1の実施形態〕本発明の第1の実施形態に係る車両
用乗員保護装置のブロック図を図1に示す。図1に示す
ように、この実施形態に係る車両用乗員保護装置は、電
子制御装置(ECU)であるエアバッグ展開指令部1
0、相対速度演算部20(相対速度検知手段)、車両状
態判断部30(車両状態判断手段)及び閾値変更部40
(閾値変更手段)を備えるものである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the embodiments shown in the drawings. [First Embodiment] FIG. 1 is a block diagram of a vehicle occupant protection system according to a first embodiment of the present invention. As shown in FIG. 1, the vehicle occupant protection system according to this embodiment is an airbag deployment command unit 1 that is an electronic control unit (ECU).
0, the relative speed calculation unit 20 (relative speed detection unit), the vehicle state determination unit 30 (vehicle state determination unit), and the threshold value change unit 40.
(Threshold changing means).

【0012】即ち、エアバッグ展開指令部10には、自
車両に作用する加速度を検出する加速度センサ50(衝
撃検知手段)が接続され、加速度センサ50により検出
された加速度の絶対値が所定の閾値以上となったとき、
エアバッグ展開指令部10からエアバッグ70(乗員保
護手段)を作動させる信号を出力する。ここに言う「加
速度」としては、負の加速度である減速度も含む。尚、
加速度センサ50に代えて、車両に作用する衝撃の大き
さを検出する衝撃検出手段を設けても良く、その場合
は、検出された衝撃が所定の閾値以上となったときにエ
アバッグ70を作動させるようにしても良い。
That is, the airbag deployment command unit 10 is connected to an acceleration sensor 50 (impact detection means) for detecting the acceleration acting on the vehicle, and the absolute value of the acceleration detected by the acceleration sensor 50 is a predetermined threshold value. When the above is reached,
A signal for operating the airbag 70 (passenger protection means) is output from the airbag deployment command unit 10. The “acceleration” mentioned here includes deceleration that is a negative acceleration. still,
Instead of the acceleration sensor 50, a shock detecting means for detecting the magnitude of the shock acting on the vehicle may be provided. In that case, the airbag 70 is activated when the detected shock becomes equal to or more than a predetermined threshold value. It may be allowed to.

【0013】エアバッグ70は、衝突時において展開し
て乗員に作用する衝撃を緩和する装置であり、運転席の
ハンドルに組み込まれるものや、助手席側に設置される
ものに限らず、いわゆるサイドエアバッグと呼ばれるも
のも含む。更に、衝突時に乗員の保護を行う乗員保護手
段であれば、エアバッグ70に代えて、衝突時にシート
ベルトの弛みを巻き取るシートベルト装置、いわゆるシ
ートベルトプリテンショナーを用いることができる。
The airbag 70 is a device that is deployed at the time of a collision to reduce the impact that acts on the occupant. The airbag 70 is not limited to the one incorporated in the steering wheel of the driver's seat or the one installed on the passenger seat side, but a so-called side. It also includes what is called an airbag. Further, as long as it is an occupant protection means that protects an occupant in the event of a collision, a so-called seat belt pretensioner that winds up the slack of the seat belt in the event of a collision can be used instead of the airbag 70.

【0014】閾値変更部40は、車両状態判断部30の
判断結果に応じて、エアバッグ展開指令部10に設定す
るエアバッグ展開閾値を後述するようにGrigid,G
nomalの何れかに変更する。相対速度演算部20、車両
状態判断部30には、それぞれ自車両と同自車両の前方
を走行する先行車両との車間距離を検出するレーザーレ
ーダ60(車間距離検出手段)が接続されている。レー
ザーレーダ60としては、アダプティブクルーズコント
ロール(AdaptiveCruise controll: ACC)に用いら
れるレーザーレーダを援用することができる。
[0014] threshold changing unit 40, according to the judgment result of the vehicle state determination unit 30, G rigid as described below the airbag deployment threshold is set to an air bag deployment command unit 10, G
Change to one of nomal . A laser radar 60 (inter-vehicle distance detecting means) that detects an inter-vehicle distance between the own vehicle and a preceding vehicle traveling in front of the own vehicle is connected to the relative speed calculation unit 20 and the vehicle state determination unit 30. As the laser radar 60, a laser radar used for adaptive cruise control (ACC) can be used.

【0015】相対速度演算部20は、レーザーレーダ6
0により検出された車間距離の時間変化から相対速度を
演算する。車両状態判断部30は、レーザーレーダ60
により検出された車間距離及び相対速度演算部20によ
り演算された相対速度に基づいて、自車両と先行車両と
が衝突する可能性を判断する。例えば、先行車の急減速
又は自車両の急加速により、レーザーレーダ60により
検出された車間距離が一定値以下となったとき、或い
は、相対速度演算部20により演算された相対速度が一
定値以上となったとき、更には、これらの組み合わせに
基づいて、衝突可能性を判断する。
The relative velocity calculation unit 20 includes a laser radar 6
The relative speed is calculated from the time change of the inter-vehicle distance detected by 0. The vehicle state determination unit 30 includes a laser radar 60.
The possibility of collision between the host vehicle and the preceding vehicle is determined based on the inter-vehicle distance detected by and the relative speed calculated by the relative speed calculator 20. For example, when the inter-vehicle distance detected by the laser radar 60 becomes a certain value or less due to the sudden deceleration of the preceding vehicle or the sudden acceleration of the host vehicle, or the relative speed calculated by the relative speed calculating unit 20 is a certain value or more. Then, the possibility of collision is determined based on these combinations.

【0016】尚、レーザーレーダ60により検出された
車間距離と相対速度演算部20により演算された相対速
度とにより、自車両が先行車両に衝突するまでの衝突時
間T cを算出する衝突時間算出手段を車両状態判断部3
0に設けても良い。このような衝突時間算出手段を設け
れば、後述する図3に示すフローチャートに示すよう
に、衝突時間Tcに基づいて衝突可能性を的確に判断す
ることができる。
It should be noted that detected by the laser radar 60
Inter-vehicle distance and relative speed calculated by the relative speed calculator 20
Depending on the degree of collision, when your vehicle collides with the preceding vehicle
Interval T cCollision time calculation means for calculating
It may be set to 0. Providing such collision time calculation means
Then, as shown in the flowchart shown in FIG. 3 described later.
And the collision time TcAccurately judge the possibility of collision based on
You can

【0017】そして、車両状態判断部30により、衝突
可能性が高いと判断されたときには、閾値変更部40
は、閾値Gnomalから閾値Grigidへと、閾値を低く設定
する一方、車両状態判断部30により、衝突可能性が低
いと判断されたときには、閾値変更部40は、閾値G
rigidから閾値Gnomalへと、閾値を高く設定する。尚、
レーザーレーダ60に代えてミリ波レーダを用いること
により、車間距離と相対速度を同時に検出することも可
能である。即ち、ミリ波レーダは、ミリ波送信から受信
までの時間に基づいて自車両と自車両の前方を走行する
先行車両との車間距離を検出する車間距離検出手段とし
て機能すると共に、ミリ波送信時の波形の周波数と先行
車両に反射した後の受信時の波形の周波数との違いか
ら、自車両と先行車両との相対速度を直接的に検知する
相対速度検知手段としても機能するため、ミリ波レーダ
を用いれば、相対速度演算部20を省略でき、コスト低
減に寄与する。
When the vehicle state judging section 30 judges that the possibility of collision is high, the threshold changing section 40
Reduces the threshold value from the threshold value G nomal to the threshold value G rigid , and when the vehicle state determination unit 30 determines that the possibility of collision is low, the threshold value change unit 40 sets the threshold value G rigid .
The threshold is set high from rigid to the threshold G nomal . still,
By using a millimeter wave radar instead of the laser radar 60, it is possible to detect the inter-vehicle distance and the relative speed at the same time. That is, the millimeter-wave radar functions as an inter-vehicle distance detecting means for detecting the inter-vehicle distance between the host vehicle and a preceding vehicle traveling in front of the host vehicle based on the time from the millimeter-wave transmission to the reception, and at the time of millimeter-wave transmission. From the difference between the frequency of the waveform of and the frequency of the waveform at the time of reception after being reflected by the preceding vehicle, it also functions as a relative speed detection means that directly detects the relative speed between the own vehicle and the preceding vehicle. If a radar is used, the relative speed calculation unit 20 can be omitted, which contributes to cost reduction.

【0018】上述した車両用乗員保護装置において、エ
アバッグ展開閾値の自動変更を行うフローチャートを図
3に示す。先ず、レーザーレーダ若しくはミリ波レーダ
により先行車を検出し、先行車両と自車両との車間距離
及びそれらの相対速度Vcを検出する(ステップS
1)。次に、上記車間距離から相対速度Vcを除算する
ことにより、先行車に衝突すると推定される衝突時間T
cを算出する(ステップS2)。
FIG. 3 shows a flowchart for automatically changing the airbag deployment threshold in the vehicle occupant protection system described above. First, the preceding vehicle is detected by the laser radar or the millimeter wave radar, and the inter-vehicle distance between the preceding vehicle and the host vehicle and their relative speeds V c are detected (step S).
1). Next, by dividing the relative speed V c from the inter-vehicle distance, the collision time T estimated to collide with the preceding vehicle.
c is calculated (step S2).

【0019】引き続き、下式(1)(2)に示すよう
に、衝突時間Tcがある閾値T0より小さく、且つ、相対
速度Vcがある閾値V0より大きい場合には、衝突可能性
が高く、危険性が大きいと判断する(ステップS3)。 Tc<T0 …(1) かつ Vc>V0 …(2)
Subsequently, as shown in the following equations (1) and (2), when the collision time T c is smaller than a certain threshold value T 0 and the relative velocity V c is larger than a certain threshold value V 0 , the possibility of collision is high. Is high and the risk is high (step S3). T c <T 0 (1) and V c > V 0 (2)

【0020】つまり、式(1)に示すように、先行車に
対して自車両が間もなく衝突しそうであり、かつ、式
(2)に示すように、先行車よりも自車両の速度の方が
相当速いときに衝突可能性が高く、危険性が大きいと判
断される。ステップS3により、衝突可能性が高いと判
断されたときは、エアバッグ展開閾値をGrigidとし
(ステップS4)、また、衝突可能性が高くないと判断
されたときはエアバッグ展開閾値を上記Grigidよりも
大きいGnomalとする(ステップS5)。
That is, as shown in the equation (1), the own vehicle is likely to collide with the preceding vehicle soon, and as shown in the equation (2), the speed of the own vehicle is higher than that of the preceding vehicle. When it is fairly fast, there is a high possibility of collision and it is judged that the danger is high. If it is determined in step S3 that the possibility of collision is high, the airbag deployment threshold is set to G rigid (step S4), and if it is determined that the possibility of collision is not high, the airbag deployment threshold is set to G above. G nomal larger than rigid is set (step S5).

【0021】従って、自車両と先行車両との衝突する可
能性が高い場合に、図4に示すようにエアバッグ70を
展開させる閾値を低くするため、エアバッグ70が展開
しないという可能性を低くできる。また、自車両と先行
車両との衝突する可能性が低い場合、言い換えると、一
般走行時に、図4に示すようにエアバッグ70を展開さ
せる閾値を高くするため、エアバッグ70が誤って展開
するという不具合の可能性を低くできる。
Therefore, when there is a high possibility of collision between the host vehicle and the preceding vehicle, the threshold value for deploying the airbag 70 is lowered as shown in FIG. 4, so the possibility that the airbag 70 will not deploy is reduced. it can. Further, when the possibility of collision between the host vehicle and the preceding vehicle is low, in other words, the threshold value for deploying the airbag 70 as shown in FIG. 4 is increased during normal traveling, so the airbag 70 is deployed by mistake. The possibility of such a defect can be reduced.

【0022】特に、加速度センサ50にノイズが含まれ
る場合でも、一般走行時に、比較的高い閾値Gnomal
用いることから、エアバッグ70が誤って展開する可能
性を低くすることができる。このように、閾値変更部4
0によりエアバッグ70を作動させるための最適な閾値
が車両の状態に応じて設定され、乗員の保護が適切に行
われることになる。
In particular, even when the acceleration sensor 50 contains noise, since the comparatively high threshold value G nomal is used during general traveling, the possibility of the airbag 70 being inflated by mistake can be reduced. In this way, the threshold changing unit 4
When 0, the optimum threshold value for operating the airbag 70 is set according to the state of the vehicle, and the occupant is appropriately protected.

【0023】尚、本実施形態では、二種類の閾値G
rigid,Gnomalを切り換えて用いているが、衝突可能性
に応じて、閾値を多段階に設定してもよく、更に、リニ
アに設定しても良い。例えば、図6に示すように、横軸
に先行車に衝突するまでの時間を取り、縦軸に閾値を取
ったマップを作成し、衝突時間が短くなるほど、エアバ
ッグ展開閾値が低くなるように該閾値をリニアに変更し
ても良く、この場合、上記閾値をきめ細かに設定するこ
とができる。また、本実施形態例では、衝突時間Tc
び相対速度Vcに基づいて車両の衝突可能性を判断した
が、当然ながら、自車両と先行車両の車間距離及び相対
速度により判断しても良い。
In this embodiment, two kinds of threshold values G are used.
Although rigid and G normal are switched and used, the threshold may be set in multiple stages or linearly depending on the possibility of collision. For example, as shown in FIG. 6, a map is created in which the horizontal axis indicates the time until a collision with a preceding vehicle and the vertical axis indicates the threshold value. The shorter the collision time, the lower the airbag deployment threshold value. The threshold value may be changed linearly, and in this case, the threshold value can be finely set. Further, in the present embodiment, the possibility of collision of the vehicle is judged based on the collision time T c and the relative speed V c , but naturally, it may be judged based on the inter-vehicle distance and the relative speed between the own vehicle and the preceding vehicle. .

【0024】〔第2の実施形態〕本発明の第2の実施形
態に係る車両用乗員保護装置のブロック図を図2に示
す。この実施形態に係る車両速度制御装置は、図1に示
す車両速度制御装置において、相対速度演算部20を省
略したものである。
[Second Embodiment] FIG. 2 is a block diagram of a vehicle occupant protection system according to a second embodiment of the present invention. The vehicle speed control device according to this embodiment is the vehicle speed control device shown in FIG. 1 in which the relative speed calculation unit 20 is omitted.

【0025】従って、レーザーレーダ60により、自車
両と同自車両の前方を走行する先行車両との車間距離が
検出されると、その車間距離のみに基づいて、車両状態
判断部30は、自車両と先行車両とが衝突する可能性を
判断することとなる。このように、相対速度演算部20
を省略することによるコスト低減を図れる他、車両状態
判断部30は自車両と先行車両とが衝突する可能性を即
座に判断することができ、応答時間の短縮にも寄与する
ものである。尚、上記第1、第2実施形態例の構成に加
えて、自車両が衝突する可能性が高いと判断された場合
には、エアバッグの展開動作を早める構成としても良
い。
Therefore, when the inter-vehicle distance between the host vehicle and the preceding vehicle traveling in front of the host vehicle is detected by the laser radar 60, the vehicle state judging section 30 determines the inter-vehicle distance based on only the inter-vehicle distance. And the preceding vehicle will collide with each other. In this way, the relative speed calculation unit 20
In addition to the cost reduction by omitting, the vehicle state determination unit 30 can immediately determine the possibility of collision between the host vehicle and the preceding vehicle, which contributes to shortening the response time. In addition to the configurations of the first and second embodiments described above, the configuration may be such that the deployment operation of the airbag is accelerated when it is determined that there is a high possibility of collision of the host vehicle.

【0026】[0026]

【発明の効果】以上、詳細に説明したように、本発明に
よれば、自車両と先行車両との衝突する可能性が高まっ
た場合に乗員保護手段を作動させる閾値を低くすると共
に、自車両と先行車両との衝突する可能性が低くなった
場合に乗員保護手段を作動させる閾値を高くすることに
より、最適な乗員保護手段の作動閾値が設定され、乗員
の保護が適切に行われる。また、自車両に作用する加速
度を検出すれば、車両に作用する衝撃をより的確に検出
することができる。更に、通常は前記閾値を比較的高め
に設定することにより乗員保護手段の誤作動を防止でき
ると共に、車両衝突の可能性が高いときには前記閾値が
低く変更され、乗員の保護が適切に行われる。特に、先
行車に衝突すると推定される衝突時間を利用すれば、車
両状態の判断がより的確に行われる。
As described above in detail, according to the present invention, the threshold value for operating the occupant protection means is lowered when the possibility of collision between the host vehicle and the preceding vehicle is increased, and the host vehicle is also activated. By increasing the threshold value for activating the occupant protection means when the possibility that the vehicle and the preceding vehicle collide is reduced, the optimum operation threshold value for the occupant protection means is set, and the occupant is appropriately protected. Further, if the acceleration acting on the host vehicle is detected, the impact acting on the vehicle can be detected more accurately. Further, normally, by setting the threshold value relatively high, it is possible to prevent malfunction of the occupant protection means, and when the possibility of a vehicle collision is high, the threshold value is changed to a low value to appropriately protect the occupant. In particular, if the collision time estimated to collide with the preceding vehicle is used, the vehicle state can be determined more accurately.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施形態に係る車両用乗員保護
装置を示すブロック図である。
FIG. 1 is a block diagram showing a vehicle occupant protection system according to a first exemplary embodiment of the present invention.

【図2】本発明の第2の実施形態に係る車両用乗員保護
装置を示すブロック図である。
FIG. 2 is a block diagram showing a vehicle occupant protection device according to a second embodiment of the present invention.

【図3】本発明の第1の実施形態に係る車両用乗員保護
装置によるエアバッグ展開閾値の自動変更を行うフロー
チャートである。
FIG. 3 is a flowchart for automatically changing the airbag deployment threshold value by the vehicle occupant protection system according to the first embodiment of the present invention.

【図4】本発明の第1の実施形態に係る車両用乗員保護
装置における加速度とその閾値との関係を示すグラフで
ある。
FIG. 4 is a graph showing a relationship between acceleration and its threshold value in the vehicle occupant protection system according to the first embodiment of the present invention.

【図5】従来の車両用乗員保護装置における加速度とそ
の閾値との関係を示すグラフである。
FIG. 5 is a graph showing the relationship between acceleration and its threshold value in a conventional vehicle occupant protection system.

【図6】本発明の衝突時間とエアバッグ展開閾値との関
係を示すグラフである。
FIG. 6 is a graph showing the relationship between the collision time and the airbag deployment threshold value of the present invention.

【符号の説明】[Explanation of symbols]

10 エアバッグ展開司令部 20 相対速度演算部 30 車両状態判断部 40 閾値変更部 50 加速度センサ 60 レーザレーダ 70 エアバッグ 10 Airbag Deployment Command 20 Relative speed calculator 30 Vehicle status determination unit 40 Threshold change unit 50 acceleration sensor 60 laser radar 70 airbags

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 乗員の保護を行う乗員保護手段と、自車
両に作用する衝撃の大きさを検出する衝撃検出手段と、
前記衝撃検出手段による衝撃の大きさが所定の閾値以上
となったときに、前記乗員保護手段を作動させる車両用
乗員保護装置において、自車両と同自車両の前方を走行
する先行車両との車間距離を検出する車間距離検出手段
と、自車両と先行車両との相対速度を検知する相対速度
検知手段と、前記車間距離検出手段による前記車間距離
及び前記相対速度検知手段による前記相対速度に基づい
て、自車両と先行車両とが衝突する可能性を判断する車
両状態判断手段と、前記車両状態判断手段の判断結果に
応じて前記乗員保護手段を作動させる前記閾値を変更す
る閾値変更手段とを備えたことを特徴とする車両用乗員
保護装置。
1. An occupant protection means for protecting an occupant, and an impact detection means for detecting the magnitude of an impact acting on the host vehicle,
In the vehicle occupant protection device for activating the occupant protection means when the magnitude of the impact by the impact detection means becomes equal to or greater than a predetermined threshold value, a distance between the vehicle and a preceding vehicle traveling in front of the vehicle. Based on the inter-vehicle distance detecting means for detecting the distance, the relative speed detecting means for detecting the relative speed between the own vehicle and the preceding vehicle, the inter-vehicle distance by the inter-vehicle distance detecting means and the relative speed by the relative speed detecting means. A vehicle state determining means for determining a possibility of collision between the own vehicle and a preceding vehicle, and a threshold changing means for changing the threshold for operating the occupant protection means according to a determination result of the vehicle state determining means. A vehicle occupant protection device characterized by the above.
【請求項2】 乗員の保護を行う乗員保護手段と、自車
両に作用する衝撃の大きさを検出する衝撃検出手段と、
前記衝撃検出手段による衝撃の大きさが所定の閾値以上
となったときに、前記乗員保護手段を作動させる車両用
乗員保護装置において、自車両と同自車両の前方を走行
する先行車両との車間距離を検出する車間距離検出手段
と、前記車間距離検出手段による前記車間距離に基づい
て、自車両と先行車両とが衝突する可能性を判断する車
両状態判断手段と、前記車両状態判断手段の判断結果に
応じて前記乗員保護手段を作動させる前記閾値を変更す
る閾値変更手段とを備えたことを特徴とする車両用乗員
保護装置。
2. An occupant protection means for protecting an occupant, and an impact detection means for detecting the magnitude of an impact acting on the host vehicle.
In the vehicle occupant protection device for activating the occupant protection means when the magnitude of the impact by the impact detection means becomes equal to or greater than a predetermined threshold value, a distance between the vehicle and a preceding vehicle traveling in front of the vehicle. An inter-vehicle distance detecting means for detecting a distance, a vehicle state determining means for determining a possibility of collision between the own vehicle and a preceding vehicle based on the inter-vehicle distance by the inter-vehicle distance detecting means, and a determination by the vehicle state determining means. An occupant protection device for a vehicle, comprising: a threshold changing unit that changes the threshold for operating the occupant protecting unit according to a result.
【請求項3】 前記衝撃検出手段は、自車両に作用する
加速度を検出すると共に、前記車両用乗員保護装置は、
前記加速度の絶対値が所定の閾値以上となったときに、
乗員保護手段を作動させることを特徴とする請求項1又
は2記載の車両用乗員保護装置。
3. The impact detection means detects an acceleration acting on the host vehicle, and the vehicle occupant protection device includes:
When the absolute value of the acceleration exceeds a predetermined threshold value,
The vehicle occupant protection device according to claim 1 or 2, wherein the occupant protection means is activated.
【請求項4】 前記閾値変更手段は、前記車両状態判断
手段により自車両が先行車両に衝突する可能性が高いと
判断されたときに、前記乗員保護手段を作動させる前記
閾値を低くすることを特徴とする請求項1,2又は3記
載の車両用乗員保護装置。
4. The threshold value changing means lowers the threshold value for operating the occupant protection means when the vehicle state judging means judges that the own vehicle is highly likely to collide with a preceding vehicle. The vehicle occupant protection device according to claim 1, 2, or 3.
【請求項5】 前記車両状態判断手段は、前記車間距離
検出手段による前記車間距離と前記相対速度検知手段に
よる相対速度とにより前記自車両が前記先行車両に衝突
するまでの時間を算出する衝突時間算出手段を有し、前
記衝突時間算出手段に基づいて自車両と先行車両とが衝
突する可能性を判断することを特徴とする請求項1,
2,3又は4記載の車両用乗員保護装置。
5. The collision time, wherein the vehicle state determination means calculates a time until the host vehicle collides with the preceding vehicle based on the inter-vehicle distance detected by the inter-vehicle distance detection means and the relative speed detected by the relative speed detection means. 2. A calculation means is provided, and the possibility of collision between the own vehicle and the preceding vehicle is determined based on the collision time calculation means.
The vehicle occupant protection device according to 2, 3, or 4.
JP2001288746A 2001-09-21 2001-09-21 Occupant protecting device for vehicle Withdrawn JP2003095058A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001288746A JP2003095058A (en) 2001-09-21 2001-09-21 Occupant protecting device for vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001288746A JP2003095058A (en) 2001-09-21 2001-09-21 Occupant protecting device for vehicle

Publications (1)

Publication Number Publication Date
JP2003095058A true JP2003095058A (en) 2003-04-03

Family

ID=19111341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001288746A Withdrawn JP2003095058A (en) 2001-09-21 2001-09-21 Occupant protecting device for vehicle

Country Status (1)

Country Link
JP (1) JP2003095058A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004306820A (en) * 2003-04-08 2004-11-04 Toyota Motor Corp Seat belt tension control device of vehicle
JP2007511743A (en) * 2003-05-23 2007-05-10 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Device for determining relative speed between a vehicle and a collision target
JP2013015116A (en) * 2011-07-06 2013-01-24 Mazda Motor Corp Vehicle control system
US20150165997A1 (en) * 2013-12-12 2015-06-18 Volvo Car Corporation Safety system and method for operating a safety system of a vehicle
JP2018154171A (en) * 2017-03-16 2018-10-04 トヨタ自動車株式会社 Collision detection apparatus
US11338751B2 (en) 2017-01-25 2022-05-24 Toyota Jidosha Kabushiki Kaisha Occupant protection device for vehicle and occupant protection method for vehicle
US12060021B2 (en) 2019-03-07 2024-08-13 Denso Corporation Driving control device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004306820A (en) * 2003-04-08 2004-11-04 Toyota Motor Corp Seat belt tension control device of vehicle
JP2007511743A (en) * 2003-05-23 2007-05-10 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Device for determining relative speed between a vehicle and a collision target
JP2013015116A (en) * 2011-07-06 2013-01-24 Mazda Motor Corp Vehicle control system
US20150165997A1 (en) * 2013-12-12 2015-06-18 Volvo Car Corporation Safety system and method for operating a safety system of a vehicle
US9802565B2 (en) * 2013-12-12 2017-10-31 Volvo Car Corporation Safety system and method for operating a safety system of a vehicle
US11338751B2 (en) 2017-01-25 2022-05-24 Toyota Jidosha Kabushiki Kaisha Occupant protection device for vehicle and occupant protection method for vehicle
JP2018154171A (en) * 2017-03-16 2018-10-04 トヨタ自動車株式会社 Collision detection apparatus
US12060021B2 (en) 2019-03-07 2024-08-13 Denso Corporation Driving control device

Similar Documents

Publication Publication Date Title
EP2151359B1 (en) Collision determination system for vehicle
KR102021023B1 (en) Occupant protection device for vehicle and occupant protection method for vehicle
JP2011037308A (en) Vehicular occupant protection system
US20060069483A1 (en) Collision determining apparatus for a vehicle
EP1026052B1 (en) Activating control of a vehicle passenger restraint system
JP2003182509A (en) Occupant protecting system
EP1754634B1 (en) Activation control apparatus for occupant protection apparatus
KR20150062531A (en) Apparatus for protecting a passenger of an autombile
JP2008514496A (en) Drive control method for occupant protection means and drive control device for occupant protection means
US20080172158A1 (en) Air-bag deployment system
JP3632619B2 (en) Occupant protection device starter
KR100581044B1 (en) Occupant restraint system
JPH10287203A (en) Control device of occupant protecting device
JP2003095058A (en) Occupant protecting device for vehicle
US20040026151A1 (en) System for activating passenger-protecting device mounted on automotive vehicle
JP3452014B2 (en) Activation control device for occupant protection device
KR102368598B1 (en) System and method for vehicle airbag control
KR101430190B1 (en) Automobile and control method thereof
KR101627502B1 (en) Passenger protection device of automobile
JP3452012B2 (en) Activation control device for occupant protection device
JP3452013B2 (en) Activation control device for occupant protection device
US20200276956A1 (en) Force limiter control system
KR100892817B1 (en) Method for controlling air-bag by using tire pressure monitoring system
KR100437245B1 (en) A Frontal Airbag System of Vehicle and Control Method thereof
JP2006192968A (en) Starting control device of occupant protector

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20081202