JP2003094208A - MEMBER CLAD WITH FILM OF TiAl COMPOUND, AND MANUFACTURING METHOD THEREFOR - Google Patents

MEMBER CLAD WITH FILM OF TiAl COMPOUND, AND MANUFACTURING METHOD THEREFOR

Info

Publication number
JP2003094208A
JP2003094208A JP2001295242A JP2001295242A JP2003094208A JP 2003094208 A JP2003094208 A JP 2003094208A JP 2001295242 A JP2001295242 A JP 2001295242A JP 2001295242 A JP2001295242 A JP 2001295242A JP 2003094208 A JP2003094208 A JP 2003094208A
Authority
JP
Japan
Prior art keywords
film
compound film
tial
atomic ratio
tial compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001295242A
Other languages
Japanese (ja)
Inventor
Mamoru Kobata
護 木幡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tungaloy Corp
Original Assignee
Toshiba Tungaloy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Tungaloy Co Ltd filed Critical Toshiba Tungaloy Co Ltd
Priority to JP2001295242A priority Critical patent/JP2003094208A/en
Publication of JP2003094208A publication Critical patent/JP2003094208A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a member clad with the film of a TiAl compound more excellent in cutting performance such as wear resistance or the like than a member clad with the film of a conventional TiAl compound since high efficiency in machining has been requested recently. SOLUTION: The film of the TiAl compound is used to clad by making the adjustments on increasing after decreasing the voltage of a base material impressed between a vacuum container and the base material successively and/or stepwise in the range of -20 to -300 V during a process for forming the film of the TiAl compound. The cutting performance, such as wear resistance and chipping resistance, is high in comparison with a conventional product since residual compressive stress and oxidation resistance are high in the member clad with the film of the TiAl compound made in this way and an excellent adherent cladding is used to clad.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明はTiAl化合物膜
を被覆した部材に関するものである.
TECHNICAL FIELD The present invention relates to a member coated with a TiAl compound film.

【0002】[0002]

【従来の技術】工具や耐摩耗部品の特性向上のため(T
i,Al)Nを金属材料あるいは超硬合金の上に形成し
た硬質膜被覆部材が広く用いられている。近年、被膜特
性および基材との密着性を向上させるため特開平3−1
88265号公報、特開平6−316756号公報、特
開平8−267306号公報が提案されている。
2. Description of the Related Art To improve the characteristics of tools and wear-resistant parts (T
A hard film coated member in which i, Al) N is formed on a metal material or a cemented carbide is widely used. In recent years, in order to improve the coating properties and the adhesion to a substrate, Japanese Patent Application Laid-Open No. 3-1
88265, JP-A-6-316756, and JP-A-8-267306 are proposed.

【0003】[0003]

【発明が解決しようとする課題】特開平3−18826
5号公報には母材の表面から被覆層表面に向かってTi
の炭化物、窒化物または炭窒化物からTiとAlの合金
Ti1-xAlx(0<x≦0.7)の炭化物、窒化物また
は炭窒化物まで変化した被覆層が提案されているが、被
覆層の残留圧縮応力が低いため耐欠損性や耐摩耗性が十
分に確保されない。特開平6−316756号公報には
TiAlN被膜においてAlの原子濃度が0.6以下で
あり、かつAl濃度の異なる3層以上のTiAlN被膜
からなる積層構造であり、上記TiAlN被膜により挟
まれたTiAlN中間被膜におけるAl濃度が上下のT
iAlN被膜より小さい層を含むことを特徴とする耐食
・耐摩耗性被膜が提案されているが、切削工具に用いた
場合、被膜が剥離しやすいため、十分な性能が得られな
い。特開平8−267306号公報には基材表面に被覆
されたTiAl化合物層はTiAl化合物層のTi/A
l原子比(以後Ti/Al比と表示する)が基材表面と
平行な方向に変化しておりかつエッジ部において最も高
くなっていることを特徴とする硬質層被覆切削工具が提
案されている。エッジ稜線と面方向にエッジ稜線より幅
2mmを超えた領域の被膜組成が異なるが、切削工具と
して用いた場合、温度が上がるエッジ稜線でTiAl化
合物層のTi/Al比が高いため被膜が酸化しやすいと
いう欠点があり、TiAl化合物層の表面にTiNを被
覆してもTiNの耐摩耗性が劣るため早期にTi/Al
比が高いTiAl化合物層が露出するためやはり酸化し
やすいという問題が残る。そこで本発明は密着性が高く
耐酸化性に優れ欠けにくいTiAl化合物膜被覆部材お
よびその製造方法の開発を目的とする。
[Patent Document 1] Japanese Patent Application Laid-Open No. 3-18826
No. 5 discloses that Ti is directed from the surface of the base material toward the surface of the coating layer.
Although a coating layer has been proposed which is changed from the above-mentioned carbide, nitride or carbonitride of Ti to Al alloy Ti 1-x Al x (0 <x ≤ 0.7), nitride or carbonitride. However, since the residual compressive stress of the coating layer is low, fracture resistance and abrasion resistance cannot be sufficiently secured. Japanese Unexamined Patent Publication No. 6-316756 discloses a TiAlN film having a laminated structure in which the atomic concentration of Al is 0.6 or less and three or more layers of TiAlN films having different Al concentrations are formed. The Al concentration in the intermediate coating is above and below T
A corrosion-resistant and wear-resistant coating characterized by including a layer smaller than the iAlN coating has been proposed, but when used in a cutting tool, the coating is easily peeled off, and thus sufficient performance cannot be obtained. In Japanese Patent Laid-Open No. 8-267306, the TiAl compound layer coated on the surface of the substrate is Ti / A of the TiAl compound layer.
A hard layer-coated cutting tool has been proposed which is characterized in that the l atomic ratio (hereinafter referred to as Ti / Al ratio) changes in a direction parallel to the surface of the base material and is highest at the edge portion. . Although the coating composition of the edge ridge is different from that of the edge ridge in the area exceeding 2 mm width from the edge ridge, when used as a cutting tool, the Ti / Al ratio of the TiAl compound layer is high at the edge ridge where the temperature rises and the coating is oxidized. However, even if the surface of the TiAl compound layer is coated with TiN, the wear resistance of TiN is inferior and Ti / Al
Since the TiAl compound layer having a high ratio is exposed, the problem remains that it is easily oxidized. Therefore, an object of the present invention is to develop a TiAl compound film-covered member having high adhesion and excellent oxidation resistance and hardly chipped, and a method for manufacturing the same.

【0004】[0004]

【課題を解決するための手段】発明者は、TiAl化合
物膜の強度や密着性を上げる手段を種々検討した結果、
TiAl化合物膜形成工程中に真空容器と基材間に印加
する基材電圧を−20V〜−300Vの範囲で連続的お
よび/または段階的に降下させたのち上昇させるという
調整を行ってTiAl化合物膜を被覆した部材が優れた
性質を示すことを見出した。
Means for Solving the Problems As a result of various studies on means for increasing the strength and adhesion of a TiAl compound film, the inventor has found that
The TiAl compound film is adjusted by continuously and / or stepwise decreasing and then increasing the substrate voltage applied between the vacuum container and the substrate during the TiAl compound film forming step. It was found that the member coated with shows excellent properties.

【0005】本発明のTiAl化合物膜被覆部材製造方
法の特徴はTiAl化合物膜被覆時の基材電圧を制御す
ることであり、本発明の製造条件で作製されたTiAl
化合物膜に含まれるTiとAlの比率の分布は特徴的で
ある。少なくとも一つのエッジ稜線を有する形状の基材
にTiAl化合物膜を形成するとTi/Al比が最大と
なる第1膜層と、第1膜層に対しTi/Al比が小さい
第2膜層が少なくとも2層の多層膜からなるTiAl化
合物膜がエッジ稜線の近接部に形成され、エッジ稜線の
近接部を除いたTiAl化合物膜表面の中心部における
Ti/Al比は一定であるTiAl化合物膜が形成され
る。切削工具として使用する場合、エッジ稜線の近接部
におけるTiAl化合物膜は、膜厚さ方向で該第1膜層
が該第2膜層で挟持された3層でなり、該第1膜層、該
第2膜層のTi/Al原子比をそれぞれA、Bと表した
ときに、0.90≦A≦2.00、および0.82≦B
≦1.50であるTiAl化合物膜被覆部材が好まし
い。
The feature of the method for producing a TiAl compound film-coated member of the present invention is to control the substrate voltage during coating of the TiAl compound film, and the TiAl produced under the production conditions of the present invention.
The distribution of the ratio of Ti and Al contained in the compound film is characteristic. At least a first film layer having a maximum Ti / Al ratio when a TiAl compound film is formed on a substrate having a shape having at least one edge ridge and a second film layer having a Ti / Al ratio smaller than that of the first film layer are formed. A TiAl compound film composed of a two-layered multilayer film is formed in the vicinity of the edge ridge, and a TiAl compound film having a constant Ti / Al ratio in the central portion of the surface of the TiAl compound film excluding the vicinity of the edge ridge is formed. It When used as a cutting tool, the TiAl compound film in the vicinity of the edge ridge is composed of three layers in which the first film layer is sandwiched by the second film layer in the film thickness direction. When the Ti / Al atomic ratio of the second film layer is expressed as A and B, 0.90 ≦ A ≦ 2.00 and 0.82 ≦ B
A TiAl compound film coated member with ≦ 1.50 is preferred.

【0006】[0006]

【発明の実施の態様】少なくとも一つのエッジ稜線を有
する形状は、例えばJIS規格B4104−1989、
該規格B4114−1993、該規格B4115−19
93、該規格B4116−1987、該規格B4117
―1991、該規格B4120―1985、該規格B4
121―1985、該規格B4122―1985、該規
格B4123―1985に示される工具、製缶工具、冷
間加工用金型、熱間加工用金型があげられる。
BEST MODE FOR CARRYING OUT THE INVENTION A shape having at least one edge ridge is, for example, JIS standard B4104-1989,
The standard B4114-1993, the standard B4115-19
93, the standard B4116-1987, the standard B4117
-1991, the standard B4120-1985, the standard B4
121-1985, the standard B4122-1985, and the tools shown in the standard B4123-1985, can manufacturing tools, cold working dies, and hot working dies.

【0007】TiAl化合物膜は物理蒸着法(以後PV
D法と表示する)で作製されるのが好ましいが、PVD
法の中でもアークイオンプレーティング方式を用いると
密着性に優れるので特に好ましい。本発明品を作製する
方法として、組成が異なるターゲットを2種類以上使用
してコーティングする方法とコーティング時に該真空
容器と該基材間の基材電圧を変える方法を例示でき
る。方法によって本発明品を作製する場合、組成が異
なる2種類以上のターゲットを用意しなければならず、
コーティング中にパラメーターを頻繁に変えるため工程
が複雑化し技術的に非常に難しい。方法によって本発
明品を作製する場合、最少限のターゲット、基本的には
1種類のターゲットを用いればよくコーティング中にパ
ラメーターを制御することで本発明品を得られるため、
工程が簡素化され好ましい。
The TiAl compound film is formed by physical vapor deposition (hereinafter PV
It is preferably made by the method D), but PVD
Among the methods, the arc ion plating method is particularly preferable because it has excellent adhesion. Examples of the method for producing the product of the present invention include a method of coating using two or more targets having different compositions and a method of changing the substrate voltage between the vacuum container and the substrate during coating. When producing the product of the present invention by the method, it is necessary to prepare two or more kinds of targets having different compositions,
Since the parameters are frequently changed during coating, the process is complicated and technically very difficult. When the product of the present invention is produced by the method, the product of the present invention can be obtained by controlling the parameters during coating by using a minimum number of targets, basically one type of target.
This is preferable because the process is simplified.

【0008】方法について詳しく述べると、PVD法
による被覆工程を、基材をガス雰囲気調整可能な真空容
器内に設置する第1工程と、真空容器内を真空排気のの
ち基材を加熱し基材表面をエッチングし真空容器内を被
膜形成するためのガス雰囲気とする第2工程と、被膜を
形成する際にプラズマ雰囲気中でイオンを高電圧の電源
で加速する第3工程に大別した場合、第3工程の中でT
iAl化合物膜を被覆する工程中に基材電圧を連続的お
よび/または段階的に降下させたのち上昇させる調整を
行うことによって本発明品が得られる。
The method will be described in detail. The first step is a PVD coating step in which the base material is placed in a vacuum container in which the gas atmosphere can be adjusted, and the base material is heated by evacuating the vacuum container and then heating the base material. When roughly divided into a second step of etching a surface into a gas atmosphere for forming a film in a vacuum container and a third step of accelerating ions with a high voltage power source in a plasma atmosphere when forming a film, T in the third step
The product of the present invention can be obtained by adjusting the substrate voltage to be continuously and / or stepwise lowered and then raised during the step of coating the iAl compound film.

【0009】基材電圧を高くした条件で作製した被膜は
基材電圧を低くした条件で作製した被膜よりも残留圧縮
応力が小さく、密着性向上には有利であるが、被覆温度
が低いため熱拡散が少なく実際には密着性が低い。一層
のTiAl化合物膜について膜厚さ方向におおよそ3分
割し、基材に近い部分を基材側、上下に挟まれた部分を
中間部分、表面に近い部分を表面側とした場合、TiA
l化合物膜の基材側を、基材電圧を低くした条件で被覆
すると、被覆温度が高いため熱拡散が生じ密着性向上に
有利であるが、強い残留圧縮応力により剥がれやすいの
で好ましくない。本発明のTiAl化合物膜被覆工程で
はTiAl化合物膜の基材側を被覆するとき基材電圧を
−20〜−40Vとして残留圧縮応力の小さい被膜が被
覆される。
The coating film produced under the condition that the substrate voltage is increased has a smaller residual compressive stress than the film produced under the condition that the substrate voltage is decreased, and is advantageous for improving the adhesiveness. There is little diffusion and in fact the adhesion is low. When the TiAl compound film of one layer is roughly divided into three parts in the thickness direction, the part close to the base material is the base material side, the part sandwiched vertically is the intermediate part, and the part close to the surface is the front surface side.
When the base material side of the l-compound film is coated under the condition that the base material voltage is low, the coating temperature is high, so that thermal diffusion occurs and it is advantageous for improving the adhesiveness, but it is not preferable because it is easily peeled off due to strong residual compressive stress. In the TiAl compound film coating step of the present invention, when the TiAl compound film is coated on the substrate side, the substrate voltage is set to −20 to −40 V and a film having a small residual compressive stress is coated.

【0010】次いでTiAl化合物膜の中間部分を被覆
する工程中、基材電圧を図1〜図4に例示したように−
20〜−40Vから−200〜−300Vまで連続的お
よび/または段階的に降下させる。基材電圧が低い条件
で作製した被膜は基材電圧が高い条件で作製した被膜よ
りも残留圧縮応力が高い。基材電圧を−20〜−40V
から急にまたは不連続的に−200〜−300Vに下げ
ると基材側と中間部分の間で剥離する可能性が高くな
る。これは中間部分の高い残留圧縮応力によるものと考
えられる。本発明のように基材電圧を−20〜−40V
から−200〜−300Vまで連続的および/または段
階的に降下させると、TiAl化合物膜の残留圧縮応力
が連続的および/または段階的に高くなるため基材側と
中間部分の間で剥離しにくくなる。高い残留圧縮応力を
持つTiAl化合物膜の中間部分は耐欠損性や耐摩耗性
に優れる。また基材電圧が低い条件で被膜を被覆すると
イオンの運動エネルギーが高くなるため、被覆温度が上
昇しイオン注入効果が増大する。TiAl化合物膜の中
間部分の被覆時に生じる高い温度とイオン注入効果はT
iAl化合物膜の基材側にも影響をおよぼし、温度の上
昇やイオン注入効果によってTiAl化合物膜の基材側
の密着性が高くなる。これはサーマルスパイク効果と呼
ばれる。
Then, during the step of coating the intermediate portion of the TiAl compound film, the substrate voltage is changed as shown in FIGS.
The voltage is continuously and / or stepwise lowered from 20 to -40V to -200 to -300V. The film produced under the condition of low substrate voltage has a higher residual compressive stress than the film produced under the condition of high substrate voltage. Substrate voltage is -20 to -40V
If the voltage is suddenly or discontinuously reduced to −200 to −300 V, the possibility of peeling between the base material side and the intermediate portion increases. This is considered to be due to the high residual compressive stress in the middle part. As in the present invention, the substrate voltage is -20 to -40V.
From −200 to −300 V continuously and / or stepwise, the residual compressive stress of the TiAl compound film increases continuously and / or stepwise, so that peeling between the base material side and the intermediate portion is difficult. Become. The middle portion of the TiAl compound film having a high residual compressive stress has excellent fracture resistance and wear resistance. Further, when the coating film is coated under the condition that the substrate voltage is low, the kinetic energy of ions increases, so that the coating temperature rises and the ion implantation effect increases. The high temperature and ion implantation effect that occur when coating the intermediate portion of the TiAl compound film is T
It also affects the base material side of the iAl compound film, and the adhesion on the base material side of the TiAl compound film is increased due to the temperature increase and the ion implantation effect. This is called the thermal spike effect.

【0011】基材電圧はTiAl化合物膜の組成にも影
響をおよぼす。基材電圧が高い条件で被覆したTiAl
化合物膜のTi/Al比は均一であるが、基材電圧が低
い条件でTiAl化合物膜を被覆した場合、面方向にエ
ッジ稜線から2mm超えた領域のTiAl化合物膜のT
i/Al比に比較して面方向にエッジ稜線から幅2mm
以内の領域のTiAl化合物膜のTi/Al比が高くな
る。これはエッジ効果と呼ばれる。TiAl化合物膜の
硬さと耐酸化性はTi/Al比が0.7付近のとき最も
高く、それよりもTiリッチまたはAlリッチになると
TiAl化合物膜の硬さと耐酸化性は低下する。本発明
のTiAl化合物膜のTi/Al比は0.7以上であ
り、Ti/Al比が高くなるとともに硬さと耐酸化性は
低下する。したがって、基材電圧を低くして被覆する
と、エッジ効果により面方向にエッジ稜線から幅2mm
以内の領域のTiAl化合物膜のTi/Al比が高くな
ることで硬さの低下が懸念されるが、実際は残留圧縮応
力が高くなるため、見かけ上の硬さが高くなり耐摩耗性
が向上する。耐欠損性についても残留圧縮応力が高くな
るため向上する。
The substrate voltage also affects the composition of the TiAl compound film. TiAl coated under conditions of high substrate voltage
Although the Ti / Al ratio of the compound film is uniform, when the TiAl compound film is coated under the condition that the base material voltage is low, the T of the TiAl compound film in the region 2 mm beyond the edge ridgeline in the surface direction is
2mm width from edge ridgeline in the surface direction compared to i / Al ratio
The Ti / Al ratio of the TiAl compound film in the region within becomes high. This is called the edge effect. The hardness and oxidation resistance of the TiAl compound film are highest when the Ti / Al ratio is around 0.7, and when it becomes Ti-rich or Al-rich than that, the hardness and oxidation resistance of the TiAl compound film decrease. The Ti / Al ratio of the TiAl compound film of the present invention is 0.7 or more, and as the Ti / Al ratio increases, hardness and oxidation resistance decrease. Therefore, if the substrate voltage is reduced to cover, the width of 2 mm from the edge ridgeline in the surface direction due to the edge effect.
There is a concern that the hardness may decrease due to the increase in the Ti / Al ratio of the TiAl compound film in the area within, but in reality, the residual compressive stress increases, so the apparent hardness increases and the wear resistance improves. . The fracture resistance also improves because the residual compressive stress increases.

【0012】次に基材電圧を−200〜−300Vから
−20〜―40Vまで上昇させる。TiAl化合物膜の
表面側は基材電圧を高くした条件で被覆する。エッジ効
果がほとんどなくなったTiAl化合物膜の表面側はT
i/Al比が均一となり面方向にエッジ稜線から幅2m
m以内の領域の耐酸化性が向上する。またTi/Al比
は均一であるため被膜表面の色調が均一になり使用コー
ナー識別が容易になる。
Next, the substrate voltage is increased from -200 to -300V to -20 to -40V. The surface side of the TiAl compound film is coated under the condition that the substrate voltage is increased. The surface side of the TiAl compound film where the edge effect has almost disappeared is T
i / Al ratio becomes uniform and width is 2m from edge ridge in the surface direction
Oxidation resistance of the region within m is improved. Further, since the Ti / Al ratio is uniform, the color tone of the surface of the coating becomes uniform and the corners used can be easily identified.

【0013】以上のような機能を持たせるためTiAl
化合物膜を被覆する工程中、基材電圧を連続的および/
または段階的に降下させたのち上昇させる。本発明品を
断面観察すると面方向にエッジ稜線から幅2mm以内の
領域のTiAl化合物膜の中間部分のTi/Al比が高
いことを確認できる。TiAl化合物膜が数μm程度の
厚さであれば光学顕微鏡観察により確認できる場合もあ
る。
In order to have the above functions, TiAl
During the process of coating the compound film, the substrate voltage is continuously and / or
Or gradually lower it and then raise it. By observing the cross section of the product of the present invention, it can be confirmed that the Ti / Al ratio of the intermediate portion of the TiAl compound film in the region within 2 mm width from the edge ridgeline in the surface direction is high. If the TiAl compound film has a thickness of about several μm, it may be confirmed by optical microscope observation.

【0014】基材電圧が−20V未満ではイオンの運動
エネルギーが低下するためTiAl化合物膜の密着性が
低下する。基材電圧が−300Vを超えるとTiAl化
合物膜の残留圧縮応力が高くなり過ぎチッピングを起こ
しやすくなる。そのため基材電圧の範囲を−20〜−3
00Vとした。アーク電圧は35〜45V、アーク電流
は130〜170A、窒素源としてはN2=160〜2
20SCCMが好ましい。金属原料ターゲットはTiタ
ーゲットとAlターゲットと分けて装着するよりもTi
とAlを同時に含むターゲットを装着することが好まし
く、前記ターゲットに含まれるTiとAlの原子比は
0.8<Ti/Al比<1.2が好ましい。
When the substrate voltage is less than -20 V, the kinetic energy of the ions decreases, and the adhesion of the TiAl compound film decreases. If the substrate voltage exceeds -300 V, the residual compressive stress of the TiAl compound film becomes too high and chipping easily occurs. Therefore, the range of substrate voltage is -20 to -3
It was set to 00V. The arc voltage is 35 to 45 V, the arc current is 130 to 170 A, and the nitrogen source is N 2 = 160 to 2
20 SCCM is preferred. The metal raw material target is better than the Ti target and the Al target separately mounted.
It is preferable to mount a target containing Al and Al at the same time, and the atomic ratio of Ti and Al contained in the target is preferably 0.8 <Ti / Al ratio <1.2.

【0015】前述のようにTiAl化合物膜のTi/A
l比は、被膜の硬さ、耐酸化性に影響をおよぼす。Ti
Al化合物膜の硬さと耐酸化性はTi/Al比が0.7
付近のとき最も高く、それよりもTiリッチまたはAl
リッチになるとTiAl化合物膜の硬さと耐酸化性は低
下する。Ti/Al比が2.00を超えると所望の硬さ
が得られず、Ti/Al比が0.82以下になると硬さ
の低い六方晶構造のTiAl化合物膜を生成する可能性
が高くなる。そのためTiAl化合物膜のTi/Al比
は0.82≦Ti/Al比≦2.00が好ましく、エッ
ジ稜線の近接部におけるTiAl化合物膜が、膜厚さ方
向で第1膜層が第2膜層で挟持された3層構造である場
合、エッジ効果によりTi/Al比が高い第1膜層は
0.90≦Ti/Al比≦2.00が好ましく、エッジ
効果が生じない第2膜層は0.82≦Ti/Al比≦
1.50が好ましい。
As described above, Ti / A of the TiAl compound film
The l ratio affects the hardness and oxidation resistance of the coating. Ti
The hardness and oxidation resistance of the Al compound film are such that the Ti / Al ratio is 0.7.
Highest near, Ti-rich or Al higher than that
When the TiAl compound film becomes rich, the hardness and oxidation resistance of the TiAl compound film decrease. If the Ti / Al ratio exceeds 2.00, the desired hardness cannot be obtained, and if the Ti / Al ratio is 0.82 or less, the possibility of forming a TiAl compound film having a low hardness and a hexagonal structure increases. . Therefore, the Ti / Al ratio of the TiAl compound film is preferably 0.82 ≦ Ti / Al ratio ≦ 2.00, and the TiAl compound film in the vicinity of the edge ridge line has the first film layer and the second film layer in the film thickness direction. In the case of a three-layer structure sandwiched by, the first film layer having a high Ti / Al ratio due to the edge effect is preferably 0.90 ≦ Ti / Al ratio ≦ 2.00, and the second film layer which does not cause the edge effect is 0.82 ≦ Ti / Al ratio ≦
1.50 is preferable.

【0016】TiAl化合物膜はTiとAlを含む窒化
物、炭化物、炭窒化物、炭酸化物、窒酸化物、炭酸窒化
物の少なくとも一種からなるTiAl化合物の膜である
が、その中でも(Tix,Aly)Nzで表され、xは金
属元素中のTiの原子比、yは金属元素中のAlの原子
比、zは、TiとAlの合計に対するNの原子比を表
し、それぞれがx+y=1、0.66≧x≧0.46、
0.54≧y≧0.34、1.05≧z≧0.7の関係
を満たすTiAl化合物膜が好ましい。Zが1.05を
超える場合、TiAl化合物膜が立方晶構造以外の構造
の被膜を含むため硬さが低下する。Zが0.7未満の場
合、TiAl化合物膜中に空孔が多くなるため硬さが低
下する。
The TiAl compound film is a TiAl compound film containing at least one of nitrides, carbides, carbonitrides, carbon oxides, oxynitrides and carbonitrides containing Ti and Al. Among them, (Ti x , Al y ) N z , x is the atomic ratio of Ti in the metallic element, y is the atomic ratio of Al in the metallic element, and z is the atomic ratio of N with respect to the total of Ti and Al, each of which is x + y. = 1, 0.66 ≧ x ≧ 0.46,
A TiAl compound film satisfying the relations of 0.54 ≧ y ≧ 0.34 and 1.05 ≧ z ≧ 0.7 is preferable. When Z exceeds 1.05, the TiAl compound film includes a coating film having a structure other than the cubic structure, so that the hardness decreases. When Z is less than 0.7, the number of holes in the TiAl compound film increases, so that the hardness decreases.

【0017】TiAl化合物膜としては(Tix,A
y)Nzに加えて第3の金属成分を含んだ(Tia,A
b,Mc)Ndもよい。具体的には(Tia,Alb
c)Ndで表され、MはZr、Hf、V、Nb、Ta、
Cr、Mo、W、Si、B、Mg、Fe、Sn、Mn、
Sc、Y、ランタン系希土類元素の中の少なくとも1種
を表し、aはTiとAlとMの合計に対するTiの原子
比、bはTiとAlとMの合計に対するAlの原子比、
cはTiとAlとMの合計に対するMの原子比、dはT
iとAlとMの合計に対するNの原子比を表し、それぞ
れがa+b+c=1、0.66≧a≧0.32、0.5
4≧b≧0.24、0.3≧c≧0、1.05≧d≧
0.7の関係にあるTiAl化合物膜も好ましい。その
中でもMがV、Nb、Ta、Cr、Mo、W、Y、Mn
の中の少なくとも1種である場合、耐摩耗性が良く特に
好ましい。なお第3の金属成分の原子比Cは0.3を超
えると(Tia,Alb,Mc)Nd被膜の結晶性が低下す
るため、0.3≧c≧0と定めた。
As the TiAl compound film, (Ti x , A
l y ) N z in addition to the third metal component (Ti a , A
Ib , Mc ) Nd is also good. Specifically, (Ti a , Al b ,
M c ) N d , where M is Zr, Hf, V, Nb, Ta,
Cr, Mo, W, Si, B, Mg, Fe, Sn, Mn,
Sc, Y, or at least one of lanthanum rare earth elements, where a is the atomic ratio of Ti to the total of Ti, Al and M, b is the atomic ratio of Al to the total of Ti, Al and M,
c is the atomic ratio of M to the total of Ti, Al and M, and d is T
The atomic ratio of N to the sum of i, Al and M is represented by a + b + c = 1, 0.66 ≧ a ≧ 0.32, 0.5.
4 ≧ b ≧ 0.24, 0.3 ≧ c ≧ 0, 1.05 ≧ d ≧
A TiAl compound film having a relationship of 0.7 is also preferable. Among them, M is V, Nb, Ta, Cr, Mo, W, Y, Mn
Among them, at least one is particularly preferable because it has good wear resistance. When the atomic ratio C of the third metal component exceeds 0.3, the crystallinity of the (Ti a , Al b , M c ) N d coating decreases, so it was determined that 0.3 ≧ c ≧ 0.

【0018】TiAl化合物膜を被覆する基材として
は、PVD法により被覆可能な基材であれば問題なく、
特に鉄系金属材料、非鉄系金属材料、超硬合金、サーメ
ット、セラミックス、または超高圧焼結体に被覆すると
耐摩耗性および耐酸化性が高くなり好ましい。その中で
も超硬合金、サーメットを基材に用いた場合、基材に靱
性、TiAl化合物膜に耐摩耗性および耐酸化性を持た
せることができるため、さらに好ましい。形状としては
少なくとも一つのエッジ稜線を有する基体であれば良
く、その中でもスローアウェイチップ、エンドミル、ド
リルなどの切削工具に本発明を適用すると効果が高く好
ましい。
As the base material for coating the TiAl compound film, there is no problem as long as it can be coated by the PVD method.
In particular, it is preferable to coat a ferrous metal material, a non-ferrous metal material, a cemented carbide, a cermet, a ceramics, or an ultra-high pressure sintered body because the abrasion resistance and the oxidation resistance are increased. Among them, the use of cemented carbide or cermet as the base material is more preferable because the base material can have toughness and the TiAl compound film can have abrasion resistance and oxidation resistance. Any shape may be used as long as it is a substrate having at least one edge ridge line, and among them, it is preferable to apply the present invention to a cutting tool such as a throw-away tip, an end mill, a drill or the like, because the effect is high.

【0019】本発明のTiAl化合物膜を基材に被覆す
る場合、直接被覆しても良いが、TiN、TiC、T
(C,N)、Ti(C,O)、Ti(N,O)、Ti
(C,N,O)などのTi化合物やTiなどの金属膜を
下層膜、本発明のTiAl化合物膜を上層膜としてもよ
い。また本発明のTiAl化合物膜を重ねて被覆し2層
以上の多層膜にしてもよい。また、外観色を改善するた
め本発明のTiAl化合物膜の表面にTiN、TiC、
T(C,N)、Ti(C,O)、Ti(N,O)、Ti
(C,N,O)などのTi化合物膜やTiなどの金属膜
を最外層膜として被覆してもよい。
When the substrate is coated with the TiAl compound film of the present invention, it may be directly coated, but TiN, TiC, T
(C, N), Ti (C, O), Ti (N, O), Ti
A Ti compound such as (C, N, O) or a metal film such as Ti may be used as the lower layer film, and the TiAl compound film of the present invention may be used as the upper layer film. Further, the TiAl compound film of the present invention may be laminated and covered to form a multilayer film of two or more layers. In addition, in order to improve the appearance color, TiN, TiC,
T (C, N), Ti (C, O), Ti (N, O), Ti
A Ti compound film such as (C, N, O) or a metal film such as Ti may be coated as the outermost layer film.

【0020】[0020]

【発明の実施の形態】DETAILED DESCRIPTION OF THE INVENTION

【実施試験1】基材としてK10相当のWC超硬合金で
ISO規格SNGA120408形状のスローアウェイ
チップを用意し、アルカリ洗剤を使用し表面を洗浄し
た。スローアウェイチップは真空炉内に設置し真空排気
を行った.真空炉内の圧力が1.33×10-2Pa以下
になったら表1に示すように設定温度500℃まで加熱
した.圧力が1.33×10-2Pa以下に戻ったことを
確認し、表1に示すエッチング、コーティングの条件を
設定してPVDコーティング処理した.
[Practice Test 1] A throwaway tip of ISO standard SNGA120408 shape was prepared using WC cemented carbide corresponding to K10 as a base material, and the surface was washed with an alkaline detergent. The throw-away tip was installed in a vacuum furnace and evacuated. When the pressure in the vacuum furnace became 1.33 × 10 -2 Pa or less, as shown in Table 1, heating was performed up to a set temperature of 500 ° C. After confirming that the pressure returned to 1.33 × 10 -2 Pa or less, the PVD coating treatment was performed by setting the etching and coating conditions shown in Table 1.

【0021】[0021]

【表1】 注1)蒸発源の陽極と陰極の間のアーク電圧 注2)基材と真空容器の間の基材電圧 注3)基材電圧を50分かけて−40Vから−300V
まで連続的に降下した。
[Table 1] Note 1) Arc voltage between anode and cathode of evaporation source Note 2) Substrate voltage between substrate and vacuum vessel Note 3) Substrate voltage from -40V to -300V over 50 minutes
Fell continuously until.

【0022】使用ターゲット欄のTiAlは(Ti,A
l)=50:50(原子比)のターゲットを示し、Ti
はTiターゲットを示した。作製した試料の膜厚とTi
/Al比を表2に示した。
TiAl in the target column used is (Ti, A
l) = 50: 50 (atomic ratio) of the target, Ti
Indicates a Ti target. Film thickness of manufactured sample and Ti
The / Al ratio is shown in Table 2.

【0023】[0023]

【表2】 [Table 2]

【0024】作製した実施例1〜2および比較例1〜3
に対してロックウェルダイヤモンド圧子を用いたスクラ
ッチ試験を行いエッジ稜線の近接部の被膜が剥離する臨
界荷重(スクラッチ強度)を測定した。また、被削材に
S48C(HB205〜223)を用い、切削速度:V
=150m/min、切り込み:d=1.5mm、送
り:f=0.3mm/rev.、水溶性切削油使用とい
う切削条件で旋盤による切削試験を20分間行った。表
3にスクラッチ強度と切削試験後の逃げ面摩耗量VB
記載した。表3に示されるように実施例1〜2は比較例
1〜3よりもスクラッチ強度が高く、逃げ面摩耗量VB
も小さい。このことから実施例1〜2は比較例1〜3よ
りも被膜と基材の密着性が高く、摩耗しにくいことが分
かる。
The produced Examples 1-2 and Comparative Examples 1-3
A scratch test was performed using a Rockwell diamond indenter to measure the critical load (scratch strength) at which the coating near the edge ridge peels off. Further, S48C (HB205 to 223) is used as the work material, and the cutting speed is V
= 150 m / min, incision: d = 1.5 mm, feed: f = 0.3 mm / rev. A cutting test with a lathe was performed for 20 minutes under the cutting conditions of using water-soluble cutting oil. Table 3 shows the scratch strength and the flank wear amount V B after the cutting test. As shown in Table 3, Examples 1 and 2 have higher scratch strength than Comparative Examples 1 to 3, and the flank wear amount V B
Is also small. From this, it can be seen that Examples 1 and 2 have higher adhesion between the coating film and the substrate than Comparative Examples 1 to 3 and are less likely to be worn.

【0025】[0025]

【表3】 [Table 3]

【0026】[0026]

【実施試験2】ターゲットにTiAlYを用い表4に示
す条件でコーティングした以外は実地試験1と同様に行
った。
[Practical test 2] The same test as in practical test 1 was conducted except that TiAlY was used as the target and coating was performed under the conditions shown in Table 4.

【0027】[0027]

【表4】 注1)蒸発源の陽極と陰極の間のアーク電圧 注2)基材と真空容器の間の基材電圧 注3)基材電圧を10分かけて−30Vから−200V
まで連続的に降下した。 注4)基材電圧を5分かけて−200Vから−30Vま
で連続的に上昇した。
[Table 4] Note 1) Arc voltage between anode and cathode of evaporation source Note 2) Substrate voltage between substrate and vacuum container Note 3) Substrate voltage from -30V to -200V over 10 minutes
Fell continuously until. Note 4) The substrate voltage was continuously increased from -200V to -30V over 5 minutes.

【0028】使用ターゲット欄のTiAlYは(Ti,
Al,Y)=45:45:10(原子比)のターゲット
を示し、TiはTiターゲットを示した。作製した試料
の膜厚とTi/Al比を表5に示した。なお、Yの原子
比はいずれの実施例、比較例でも基材電圧による顕著な
変化は見られなかった。例えば、実施例3の中間部分
(Ti,Al,Y)N膜を分析したところエッジ稜線の
近接部の金属成分原子比は(Ti,Al,Y)=50.
4:39.6:10、面方向にエッジ稜線から幅2mm
を超えた領域の金属成分原子比は(Ti,Al,Y)=
47.9:42.1:10であり、比較例4の中間部分
(Ti,Al,Y)N膜を分析したところエッジ稜線の
近接部の金属成分原子比は(Ti,Al,Y)=50.
4:39.6:10、面方向にエッジ稜線から幅2mm
を超えた領域の金属成分原子比は(Ti,Al,Y)=
47.9:42.1:10であった。
TiAlY in the target column used is (Ti,
Al, Y) = 45: 45: 10 (atomic ratio) of the target was shown, and Ti was the Ti target. Table 5 shows the film thickness and the Ti / Al ratio of the prepared sample. Note that the atomic ratio of Y was not significantly changed by the substrate voltage in any of the examples and comparative examples. For example, when the intermediate portion (Ti, Al, Y) N film of Example 3 is analyzed, the atomic ratio of metal components in the vicinity of the edge ridge is (Ti, Al, Y) = 50.
4: 39.6: 10, width 2mm from edge ridge in the surface direction
The atomic ratio of metal components in the region exceeding is (Ti, Al, Y) =
47.9: 42.1: 10, and when the intermediate portion (Ti, Al, Y) N film of Comparative Example 4 was analyzed, the metal component atomic ratio in the vicinity of the edge ridgeline was (Ti, Al, Y) = 50.
4: 39.6: 10, width 2mm from edge ridge in the surface direction
The atomic ratio of metal components in the region exceeding is (Ti, Al, Y) =
It was 47.9: 42.1: 10.

【0029】[0029]

【表5】 [Table 5]

【0030】実施例3と比較例4について実地試験1と
同様にスクラッチ強度測定と切削試験を行い、その結果
を表6に示した。
Scratch strength measurement and cutting test were performed on Example 3 and Comparative Example 4 in the same manner as in the field test 1, and the results are shown in Table 6.

【0031】[0031]

【表6】 [Table 6]

【0032】表6に示されるように実施例3,4は比較
例4,5よりもスクラッチ強度が高く、逃げ面摩耗量V
Bも小さい。このことから実施例3,4は比較例4,5
よりも被膜と基材の密着性が高く、耐摩耗性に優れてい
ることが分かる。
As shown in Table 6, Examples 3 and 4 have higher scratch strength than Comparative Examples 4 and 5, and the flank wear amount V
B is also small. Therefore, Examples 3 and 4 are Comparative Examples 4 and 5.
It can be seen that the adhesiveness between the coating film and the substrate is higher than that and the abrasion resistance is excellent.

【0033】[0033]

【実施試験3】ターゲットにTiAlMnCrを用い表
7に示す条件でコーティングした以外は実地試験1と同
様に行った。
[Practical test 3] The same test as in practical test 1 was conducted except that TiAlMnCr was used as the target and coating was performed under the conditions shown in Table 7.

【0034】[0034]

【表7】 注1)蒸発源の陽極と陰極の間のアーク電圧 注2)基材と真空容器の間の基材電圧 注3)基材電圧を−35Vから−70Vまで降下した後
−70Vで4分間保持し、−70Vから−100Vまで
降下した後−100Vで4分間保持し、−100Vから
−150Vまで降下した後−150Vで4分間保持し、
−150Vから−200Vまで降下した後−200Vで
4分間保持し、−200Vから−300Vまで降下した
後−300Vで4分間保持した。
[Table 7] Note 1) Arc voltage between anode and cathode of evaporation source Note 2) Substrate voltage between substrate and vacuum vessel Note 3) After lowering substrate voltage from -35V to -70V, hold at -70V for 4 minutes Then, after decreasing from -70V to -100V, it is kept at -100V for 4 minutes, and after decreasing from -100V to -150V, it is kept at -150V for 4 minutes,
After dropping from -150V to -200V, the temperature was kept at -200V for 4 minutes, and after dropping from -200V to -300V, held at -300V for 4 minutes.

【0035】使用ターゲット欄のTiAlMnCrは
(Ti,Al,Mn,Cr)=45:45:5:5(原
子比)のターゲットを示した。作製した試料の膜厚とT
i/Al比を表8に示した。なお、基材電圧の低下させ
るとエッジ稜線の近接部のMn原子比はTiと同様に増
加し、エッジ稜線の近接部のCr原子比はAlと同様に
減少した。例えば、実施例5についてエッジ稜線の近接
部の(Ti,Al,Mn,Cr)N膜を深さ方向に分析
したところ基材側の金属成分原子比は(Ti,Al,M
n,Cr)=46.1:43.9:4.2:5.8、中
間部分の金属成分原子比は(Ti,Al,Mn,Cr)
=51.1:38.9:4.6:5.4、表面側の金属
成分原子比は(Ti,Al,Mn,Cr)=46.1:
43.9:4.2:5.8であり、比較例6についてエ
ッジ稜線の近接部の(Ti,Al,Mn,Cr)N膜を
深さ方向に分析したところ金属成分原子比は(Ti,A
l,Mn,Cr)=46.5:43.5:4.2:5.
8であった。
TiAlMnCr in the used target column indicates a target of (Ti, Al, Mn, Cr) = 45: 45: 5: 5 (atomic ratio). Film thickness of prepared sample and T
The i / Al ratio is shown in Table 8. When the substrate voltage was lowered, the Mn atomic ratio in the vicinity of the edge ridgeline increased as in Ti, and the Cr atomic ratio in the vicinity of the edge ridge decreased as in Al. For example, when the (Ti, Al, Mn, Cr) N film near the edge ridge line in Example 5 is analyzed in the depth direction, the atomic ratio of metal components on the substrate side is (Ti, Al, M).
n, Cr) = 46.1: 43.9: 4.2: 5.8, the atomic ratio of metal components in the middle part is (Ti, Al, Mn, Cr)
= 51.1: 38.9: 4.6: 5.4, the atomic ratio of metal components on the surface side is (Ti, Al, Mn, Cr) = 46.1:
43.9: 4.2: 5.8, and when the (Ti, Al, Mn, Cr) N film in the vicinity of the edge ridge was analyzed in the depth direction for Comparative Example 6, the metal component atomic ratio was (Ti , A
1, Mn, Cr) = 46.5: 43.5: 4.2: 5.
It was 8.

【0036】[0036]

【表8】 [Table 8]

【0037】実施例5と比較例6について実地試験1と
同様にスクラッチ強度測定と切削試験を行い、その結果
を表9に示した。
Scratch strength measurement and cutting test were carried out for Example 5 and Comparative Example 6 in the same manner as in the field test 1, and the results are shown in Table 9.

【0038】[0038]

【表9】 [Table 9]

【0039】表9に示されるように実施例5は比較例6
よりもスクラッチ強度が高く、逃げ面摩耗量VBも小さ
い。このことから実施例5は比較例6よりも被膜と基材
の密着性が高く、摩耗しにくいことが分かる。
As shown in Table 9, Example 5 is Comparative Example 6
The scratch strength is higher and the flank wear amount V B is also smaller. From this, it can be seen that Example 5 has higher adhesion between the coating and the substrate than Comparative Example 6 and is less likely to be worn.

【0040】[0040]

【発明の効果】TiAl化合物膜被覆部材の耐摩耗性、
耐酸化性、密着性にTiAl化合物膜被覆条件の基材電
圧が影響をおよぼすという知見を得た。上述したように
TiAl化合物膜形成工程中に該真空容器と該基材間に
印加する基材電圧を−20V〜−300Vの範囲で連続
的および/または段階的に降下させたのち上昇させると
いう調整を行いTiAl化合物膜を被覆したTiAl化
合物膜被覆部材は従来のTiAl化合物膜被覆部材に比
べて切削性能に優れる。本発明を応用した切削工具は従
来の切削工具に比較して切削性能、特に耐摩耗性、耐酸
化性、密着性が向上するという効果を発揮するものであ
る。
The wear resistance of the TiAl compound film coated member,
It was found that the substrate voltage under the TiAl compound film coating condition affects the oxidation resistance and the adhesion. As described above, during the TiAl compound film forming step, the base material voltage applied between the vacuum container and the base material is continuously and / or stepwise lowered in the range of −20 V to −300 V and then adjusted. The TiAl compound film coated member coated with the TiAl compound film is excellent in cutting performance as compared with the conventional TiAl compound film coated member. The cutting tool to which the present invention is applied exhibits the effect of improving cutting performance, particularly wear resistance, oxidation resistance, and adhesion, as compared with conventional cutting tools.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1(Ti,Al)N被覆工程において連
続的に基材電圧を調整したことを示す基材電圧調整パタ
ーン図
FIG. 1 is a substrate voltage adjustment pattern diagram showing that the substrate voltage was continuously adjusted in the (Ti, Al) N coating step of Example 1.

【図2】実施例2(Ti,Al)N被覆工程において段
階的に基材電圧を調整したことを示す基材電圧調整パタ
ーン図
FIG. 2 is a substrate voltage adjustment pattern diagram showing that the substrate voltage is adjusted stepwise in the (Ti, Al) N coating step of Example 2;

【図3】実施例3(Ti,Al,Y)N被覆工程におい
て連続的に基材電圧を調整したことを示す基材電圧調整
パターン図
FIG. 3 is a substrate voltage adjustment pattern diagram showing that the substrate voltage is continuously adjusted in the (Ti, Al, Y) N coating process of Example 3;

【図4】実施例5(Ti,Al,Mn,Cr)N被覆工
程において段階的に基材電圧を調整したことを示す基材
電圧調整パターン図
FIG. 4 is a substrate voltage adjustment pattern diagram showing that the substrate voltage is adjusted stepwise in the coating process of Example 5 (Ti, Al, Mn, Cr) N.

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】少なくとも一つのエッジ稜線を有する形状
に形成された基材の表面に単層膜または多層膜の被膜が
被覆された被覆部材において、該被膜は、TiとAlを
含む窒化物,炭化物,炭窒化物,炭酸化物,窒酸化物,
炭窒酸化物の中の少なくとも1種からなるTiAl化合
物膜を含み、該エッジ稜線の近接部における該TiAl
化合物膜は、Ti/Al原子比が該TiAl化合物膜内
で最大となる第1膜層と、該第1膜層に対しTi/Al
原子比が小さい第2膜層とを含む少なくとも2層の多層
膜からなり、該エッジ稜線の近接部を除いた該TiAl
化合物膜表面の中心部におけるTiAl化合物膜は、T
i/Al原子比が一定である単層膜からなるTiAl化
合物膜被覆部材。
1. A covering member in which a surface of a base material formed in a shape having at least one edge ridge is covered with a film of a single layer film or a multilayer film, the film being a nitride containing Ti and Al, Carbide, carbonitride, carbon oxide, nitric oxide,
A TiAl compound film comprising at least one of carbonitride oxides, and the TiAl compound in the vicinity of the edge ridge.
The compound film has a Ti / Al atomic ratio that maximizes the Ti / Al atomic ratio in the TiAl compound film, and a Ti / Al ratio relative to the first film layer.
The TiAl formed of a multi-layered film of at least two layers including a second film layer having a small atomic ratio, and excluding the vicinity of the edge ridgeline.
The TiAl compound film at the center of the compound film surface is T
A TiAl compound film coating member consisting of a single-layer film having a constant i / Al atomic ratio.
【請求項2】前記第1膜層は、Ti/Al原子比が前記
基材の表面側から該TiAl化合物膜の内部に向かって
連続的および/または段階的に増加したのち最大とな
り、その後該TiAl化合物膜の表面側に向かって減少
する請求項1に記載のTiAl化合物膜被覆部材。
2. The Ti / Al atomic ratio of the first film layer becomes maximum after the Ti / Al atomic ratio continuously and / or stepwise increases from the surface side of the substrate toward the inside of the TiAl compound film, and then becomes maximum. The TiAl compound film coating member according to claim 1, wherein the TiAl compound film coating member decreases toward the front surface side.
【請求項3】前記エッジ稜線の近接部は、該エッジ稜線
から該TiAl化合物膜表面の中心部に向かって幅2m
m以内の領域である請求項1または2に記載のTiAl
化合物膜被覆部材。
3. A portion of the edge ridgeline adjacent to the edge ridgeline has a width of 2 m from the edge ridgeline toward the center of the surface of the TiAl compound film.
TiAl according to claim 1 or 2, which is a region within m.
Compound film coated member.
【請求項4】前記エッジ稜線の近接部におけるTiAl
化合物膜は、膜厚さ方向で前記第1膜層が前記第2膜層
で挟持された3層でなり、該第1膜層、該第2膜層のT
i/Al原子比をそれぞれA、Bと表したときに、0.
90≦A≦2.00、および0.82≦B≦1.50で
ある請求項3に記載のTiAl化合物膜被覆部材。
4. TiAl in the vicinity of the edge ridge
The compound film is composed of three layers in which the first film layer is sandwiched by the second film layers in the thickness direction, and the first film layer and the second film layer have T
When the i / Al atomic ratio is represented by A and B, respectively,
The TiAl compound film coated member according to claim 3, wherein 90 ≦ A ≦ 2.00 and 0.82 ≦ B ≦ 1.50.
【請求項5】前記TiAl化合物膜は(Tix,Aly
zで表され、xは金属元素中のTiの原子比、yは金
属元素中のAlの原子比、zは、TiとAlの合計に対
するNの原子比を表し、それぞれがx+y=1、0.6
6≧x≧0.46、0.54≧y≧0.34、1.05
≧z≧0.7の関係にある請求項1〜4のいずれか1項
に記載のTiAl化合物膜被覆部材。
5. The TiAl compound film is (Ti x , Al y )
Represented by N z , x is the atomic ratio of Ti in the metal element, y is the atomic ratio of Al in the metallic element, z is the atomic ratio of N relative to the total of Ti and Al, and x + y = 1, respectively. 0.6
6 ≧ x ≧ 0.46, 0.54 ≧ y ≧ 0.34, 1.05
The TiAl compound film coating member according to any one of claims 1 to 4, which has a relationship of ≧ z ≧ 0.7.
【請求項6】前記TiAl化合物膜は、(Tia,A
b,Mc)Ndで表され、MはZr、Hf、V、Nb、
Ta、Cr、Mo、W、Si、B、Mg、Fe、Sn、
Mn、Sc、Y、ランタン系希土類元素の中の少なくと
も1種を表し、aはTiとAlとMの合計に対するTi
の原子比、bはTiとAlとMの合計に対するAlの原
子比、cはTiとAlとMの合計に対するMの原子比、
dはTiとAlとMの合計に対するNの原子比を表し、
それぞれがa+b+c=1、0.66≧a≧0.32、
0.54≧b≧0.24、0.3≧c≧0、1.05≧
d≧0.7の関係にある請求項1〜4のいずれか1項に
記載のTiAl化合物膜被覆部材。
6. The TiAl compound film is formed of (Ti a , A
l b, is represented by M c) N d, M is Zr, Hf, V, Nb,
Ta, Cr, Mo, W, Si, B, Mg, Fe, Sn,
Mn, Sc, Y, or at least one of lanthanum rare earth elements is represented, and a is Ti with respect to the total of Ti, Al, and M.
Atomic ratio of b, Al atomic ratio of Al to the total of Ti, Al and M, c atomic ratio of M to the total of Ti, Al and M,
d represents the atomic ratio of N to the sum of Ti, Al and M,
A + b + c = 1, 0.66 ≧ a ≧ 0.32,
0.54 ≧ b ≧ 0.24, 0.3 ≧ c ≧ 0, 1.05 ≧
The TiAl compound film coating member according to any one of claims 1 to 4, wherein d ≧ 0.7.
【請求項7】前記TiAl化合物膜は、(Tia,A
b,Mc)Ndで表され、MはV、Nb、Ta、Cr、
Mo、W、Y、Mnの中の少なくとも1種を表し、aは
TiとAlとMの合計に対するTiの原子比、bはTi
とAlとMの合計に対するAlの原子比、cはTiとA
lとMの合計に対するMの原子比、dは、TiとAlと
Mの合計に対するNの原子比を表し、それぞれがa+b
+c=1、0.66≧a≧0.32、0.54≧b≧
0.24、0.3≧c≧0、1.05≧d≧0.7の関
係にある請求項6に記載のTiAl化合物膜被覆部材。
7. The TiAl compound film is formed of (Ti a , A
l b, is represented by M c) N d, M is V, Nb, Ta, Cr,
Represents at least one of Mo, W, Y and Mn, a is the atomic ratio of Ti to the total of Ti, Al and M, and b is Ti.
And the atomic ratio of Al to the sum of Al and M, c is Ti and A
The atomic ratio of M to the total of l and M, d is the atomic ratio of N to the total of Ti, Al and M, and each is a + b.
+ C = 1, 0.66 ≧ a ≧ 0.32, 0.54 ≧ b ≧
The TiAl compound film coating member according to claim 6, which has a relationship of 0.24, 0.3 ≧ c ≧ 0, and 1.05 ≧ d ≧ 0.7.
【請求項8】前記被膜は、Ti、Tiの炭化物、窒化
物、炭窒化物、炭酸化物、窒酸化物、炭窒酸化物の中の
少なくとも一種の下層膜を含み、該下層膜が前記基材と
前記TiAl化合物膜との間に介在されている請求項1
〜7のいずれか1項に記載のTiAl化合物膜被覆部
材。
8. The coating film includes an underlayer film of at least one of Ti, a carbide of Ti, a nitride, a carbonitride, a carbon oxide, a oxynitride, and a oxycarbonitride, and the underlayer film is the base film. A material is interposed between the material and the TiAl compound film.
The TiAl compound film coating member according to any one of items 1 to 7.
【請求項9】前記被膜は前記TiAl化合物膜の他に、
Ti、Tiの炭化物、窒化物、炭窒化物、炭酸化物、窒
酸化物、炭窒酸化物の中の少なくとも一種でなる最外層
を含み、該TiAl化合物膜の表面に該最外層が被覆さ
れている請求項1〜8のいずれか1項に記載のTiAl
化合物膜被覆部材。
9. The coating comprises, in addition to the TiAl compound film,
An outermost layer made of at least one of Ti, a carbide, a nitride, a carbonitride of Ti, a carbon oxide, a oxynitride, and a oxycarbonitride is included, and the outermost layer is coated on the surface of the TiAl compound film. TiAl according to any one of claims 1 to 8.
Compound film coated member.
【請求項10】前記基材が鉄系金属材料、非鉄系金属材
料、超硬合金、サーメット、セラミックス焼結体、また
は超高圧焼結体の少なくとも一種である請求項1〜9の
いずれか1項に記載のTiAl化合物膜被覆部材。
10. The substrate according to claim 1, wherein the base material is at least one of a ferrous metal material, a non-ferrous metal material, a cemented carbide, a cermet, a ceramics sintered body, and an ultrahigh pressure sintered body. A TiAl compound film-covered member according to item.
【請求項11】前記TiAl化合物膜被覆部材は、切削
工具である請求項10に記載のTiAl化合物膜被覆部
材。
11. The TiAl compound film coated member according to claim 10, wherein the TiAl compound film coated member is a cutting tool.
【請求項12】真空容器内に少なくとも一つのエッジ稜
線を有する基材を担持し、該基材表面に単層膜または多
層膜の被膜を被覆する工程において、少なくとも一工程
がTiAl化合物膜形成工程であり、該TiAl化合物
膜形成工程中に該真空容器と該基材間に印加する基材電
圧を−20V〜−300Vの範囲で連続的および/また
は段階的に降下させたのち上昇させるという調整を行う
TiAl化合物膜被覆部材を製造する方法。
12. A TiAl compound film forming step in a step of supporting a base material having at least one edge ridge in a vacuum container and coating the surface of the base material with a film of a single layer film or a multilayer film. In the TiAl compound film forming step, the substrate voltage applied between the vacuum container and the substrate is continuously and / or stepwise lowered in the range of −20 V to −300 V, and then increased. A method for producing a TiAl compound film-coated member, which comprises:
JP2001295242A 2001-09-27 2001-09-27 MEMBER CLAD WITH FILM OF TiAl COMPOUND, AND MANUFACTURING METHOD THEREFOR Withdrawn JP2003094208A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001295242A JP2003094208A (en) 2001-09-27 2001-09-27 MEMBER CLAD WITH FILM OF TiAl COMPOUND, AND MANUFACTURING METHOD THEREFOR

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001295242A JP2003094208A (en) 2001-09-27 2001-09-27 MEMBER CLAD WITH FILM OF TiAl COMPOUND, AND MANUFACTURING METHOD THEREFOR

Publications (1)

Publication Number Publication Date
JP2003094208A true JP2003094208A (en) 2003-04-03

Family

ID=19116709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001295242A Withdrawn JP2003094208A (en) 2001-09-27 2001-09-27 MEMBER CLAD WITH FILM OF TiAl COMPOUND, AND MANUFACTURING METHOD THEREFOR

Country Status (1)

Country Link
JP (1) JP2003094208A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011500959A (en) * 2007-10-10 2011-01-06 インテリジェント システム インク. Voltage variable thin film deposition method and apparatus
JP2011503364A (en) * 2007-11-20 2011-01-27 インテリジェント システム インク. Diffusion thin film deposition method and apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011500959A (en) * 2007-10-10 2011-01-06 インテリジェント システム インク. Voltage variable thin film deposition method and apparatus
JP2011503364A (en) * 2007-11-20 2011-01-27 インテリジェント システム インク. Diffusion thin film deposition method and apparatus

Similar Documents

Publication Publication Date Title
KR102268364B1 (en) Surface-coated cutting tool and manufacturing method thereof
EP2072636B1 (en) Method of making a coated cutting tool
EP1736565B1 (en) Method for depositing composite coatings for finishing of hardened steels
US5656383A (en) Coated member having excellent hardness and, adhesive properties
US8309236B2 (en) Protective alumina film and production method thereof
JP2003113463A (en) COATED MEMBER WITH TiAl ALLOY FILM AND MANUFACTURING METHOD THEREFOR
JP5084369B2 (en) Cutting tools
CN111511490A (en) Coated cutting tool
JP2012166321A (en) Surface coated cutting tool
JP3572728B2 (en) Hard layer coated cutting tool
EP3109341A1 (en) Hard coating film and method of forming same
Erkens New approaches to plasma enhanced sputtering of advanced hard coatings
JP5065758B2 (en) Coated cutting tool
CN114502774A (en) Coated cutting tool
JP5065757B2 (en) Coated cutting tool
JP2003094208A (en) MEMBER CLAD WITH FILM OF TiAl COMPOUND, AND MANUFACTURING METHOD THEREFOR
KR102200647B1 (en) A hard layer for cutting tools and manufacturing method for the same
JP3179645B2 (en) Wear resistant coating
KR102001877B1 (en) Method for Forming Coating Layers which are made of Distributed Amorphous and Nanocrystalline Alloy on a Cutting Tool
JP3130734B2 (en) Heat resistant coating
JP5315532B2 (en) Surface coated cutting tool
JP3358696B2 (en) High strength coating
JP2011161590A (en) Surface coated cutting tool
JPH0820871A (en) Wear resistant coating member
JP3337884B2 (en) Multilayer coating member

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20081202