JP2003094175A - Heating device for method for friction stir welding - Google Patents

Heating device for method for friction stir welding

Info

Publication number
JP2003094175A
JP2003094175A JP2001286381A JP2001286381A JP2003094175A JP 2003094175 A JP2003094175 A JP 2003094175A JP 2001286381 A JP2001286381 A JP 2001286381A JP 2001286381 A JP2001286381 A JP 2001286381A JP 2003094175 A JP2003094175 A JP 2003094175A
Authority
JP
Japan
Prior art keywords
probe
temperature
induction heating
heating
joined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001286381A
Other languages
Japanese (ja)
Other versions
JP4235874B2 (en
JP2003094175A5 (en
Inventor
Takeshi Okamoto
健 岡本
Yasuhiro Koga
靖弘 古賀
Shinji Okumura
信治 奥村
Takahide Hirayama
卓秀 平山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP2001286381A priority Critical patent/JP4235874B2/en
Publication of JP2003094175A publication Critical patent/JP2003094175A/en
Publication of JP2003094175A5 publication Critical patent/JP2003094175A5/ja
Application granted granted Critical
Publication of JP4235874B2 publication Critical patent/JP4235874B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a heating device for friction stir welding capable of shortening a time before starting of the friction stir welding, improving the controllability of a heating range and a heating temperature, and preventing cracks in a welding part regardless of the quality of a material. SOLUTION: The heating device for the method for friction stir welding is provided with induction heating sources 4 and 8 which are provided in forward and rearward directions of a probe 62 moving on a welding part 13 and move with the probe 62, a power source 12 for supplying electric power to the induction heating sources 4 and 8, and a temperature setting means 40 for setting the temperature of the welding part 13. A clearance is provided between the induction heating sources 4 and 8 and materials 1 and 2 to be welded. The induction heating sources 4 and 8 are heated at a set temperature set by the temperature setting means by the power source 12 when welded, and the welding part 13 in the forward and rearward in the moving direction of the prove 62 is heated by the induction heating sources 4 and 8.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は摩擦撹拌接合法の
加熱装置に関する。
TECHNICAL FIELD The present invention relates to a heating apparatus for a friction stir welding method.

【0002】[0002]

【従来の技術】従来、摩擦撹拌接合における接合を促進
させる加熱装置として、円筒形のツールをその中心軸円
周方向に回転させながら被接合材接合線に沿って圧着、
移動させ、その際にツールと母材間に生ずる摩擦熱の発
生を促すためにレーザやガス炎を利用したものがある
(たとえば、特許第2712838号、特許第3081808号)。 第1の従来例として、レーザ光を用いた加熱装置につい
て述べる。図7は、この従来の摩擦撹拌装置の加熱装置
構成を示す模式図である。図において、1、2は、同一
平面内において幅方向の一端面を突合わせ状態に配置さ
れたアルミニウム等の金属からなる2枚の板状被接合部
材であり、この突合わせ部を接合部13とするものであ
る。3は接合装置であり、径大の円柱状回転子60の端
部軸線上に径小のピン状プローブ62が突出して一体に
設けられたものであり、回転子60を高速回転させるこ
とによりプローブ62を高速回転させるものである。な
お、プローブ62及び回転子60は、被接合部材1、2
よりも硬質でかつ接合時に発生する摩擦熱に耐えうる耐
熱材料によって形成されている。63は加熱装置であっ
て、CO2レーザやYAGレーザ等の各種レーザ光64
を熱源として両被接合部材1、2を加熱するものであ
る。この加熱装置63は、レーザ光64を出すレーザ発
振器(図示せず)と、該発振器から出たレーザ光を集光
したり、加熱すべき箇所にレーザ光64の照準を合わせ
たりする光学系(図示せず)とを備えている。そして、
レーザ光64が照射される略円筒状のレーザノズル部6
5は、プローブ62の移動方向前方の近傍部位に配置さ
れると共に、プローブ62の動きに連動し、接合部13
におけるレーザ照射位置が常にプローブ62の移動方向
前方に位置する。レーザ光64の照射幅は、回転子60
先端の平坦状ショルダ61の径と略同一寸法に設定され
ており、接合部13のうちプローブ62近傍の部分だけ
を加熱して、この部分及びその周辺の温度を上昇させ
る。上記の摩擦撹拌接合法の加熱装置の動作について説
明する。加熱装置63のレーザ発振器を作動させてノズ
ル部65からレーザ光64を照射させると共に、接合装
置の回転子60を回転させてこれと一体回転するプロー
ブ62を接合部13又はその近傍に接触させる。そし
て、その摩擦熱により接触部分を軟化可塑化させ、更に
プローブ62を押し付けてプローブ62を被接合部材
1、2の厚さ方向内部に挿入していく。プローブ62の
挿入状態で、回転子60のショルダ61を被接合部材
1、2の表面に圧着させる。ショルダ61の当接によ
り、接合開始時あるいは接合途中の軟化部分の素材の飛
散を防止し得て均一な接合状態を実現し得ると共に、被
接合部材1、2とショルダ61との摺動による摩擦熱を
生ぜじめて、プローブ62との接触部あるいはその近傍
の軟化を促進し、さらに被接合部材1、2表面の凹凸形
成を防止する。プローブ62の挿入後、接合部13に沿
って回転子60を移動させる。すると、これに連動して
加熱装置63のノズル部65が接合部13に沿って移動
し、これに伴いレーザ照射位置も移動する。プローブ6
2及び回転子60の回転により、プローブ62との接触
部分周辺において、被接合部材1、2が摩擦熱によって
軟化し且つ撹拌される。そして、プローブ62の移動に
よって、軟化撹拌部分がプローブ62の進行圧力を受け
てプローブ62の通過溝を埋めるようにプローブ62の
進行方向後方へと回り込む態様で塑性流動したのち、摩
擦熱を急速に失って急冷固化される。図9に示した加熱
装置63を用いた摩擦撹拌接合では、レーザ光64の照
射によって接合部が加熱され、プローブ62及びショル
ダ61との接触部を迅速に軟化させ、プローブ62によ
る接合を容易とすることを狙いとしている。第2の従来
例としてガス炎を用いた加熱装置について述べる。図8
は、加熱装置にガス炎を用いた摩擦撹拌接合法を示す模
式図である。酸素アセチレン、酸素プロパン、酸素天然
ガス等の各種ガス炎70を熱源として両被接合部材1、
2を加熱するものである。この加熱装置72も同様に、
ガス炎70が噴射される略円筒状のガスノズル部71
は、プローブ62の移動方向前方の近傍部位に配置され
ると共に、プローブ62の動きと連動するものとなさ
れ、接合部13におけるガス炎70噴射位置が常に接合
装置の移動方向前方に位置するものとなされている。ま
た、ガス炎70の噴射幅は、被接合部材1、2の表面に
ぶつかってその先端部が広がった状態になったときに回
転子60のショルダ61の径と略同一寸法になるように
設定されており、接合部13のうちプローブ近傍の部分
だけを加熱して、この部分及びその周辺の温度を上昇さ
せるものとなされている。上記の摩擦撹拌接合法の加熱
装置の動作について説明する。加熱装置72のガスノズ
ル部71からガス炎70を噴射させると共に、接合装置
3の回転子60を回転させてこれと一体回転するプロー
ブ62を接合部13に挿入し、プローブ挿入状態のまま
突合せ部に沿ってプローブ62を被接合部材1、2に対
し相対的に移動させることにより被接合部材1、2が接
合される。図8に示した加熱装置72を用いた摩擦撹拌
接合では、ガス炎70の熱によって接合部が加熱され、
プローブ62及びショルダ61との接触部を迅速に軟化
させ、プローブ62による接合を容易とすることを狙い
としている。このように、従来の摩擦擦撹拌接合では施
工を行う際に、摩擦熱のみでは被接合部材に対する昇温
速度が遅いため、補助熱源としてレーザ光64あるいは
ガス炎70を用いている。
2. Description of the Related Art Conventionally, as a heating device for promoting welding in friction stir welding, a cylindrical tool is rotated in the circumferential direction of its central axis and crimped along the joining line of the materials to be joined,
There is one that uses a laser or a gas flame to move the material and promote the generation of frictional heat generated between the tool and the base material at that time (for example, Japanese Patent Nos. 2712838 and 3081808). As a first conventional example, a heating device using laser light will be described. FIG. 7 is a schematic diagram showing a heating device configuration of this conventional friction stirrer. In the figure, reference numerals 1 and 2 denote two plate-shaped members to be joined made of a metal such as aluminum and arranged in a state where one end faces in the width direction are abutted on the same plane. It is what Reference numeral 3 denotes a joining device, in which a small-diameter pin-shaped probe 62 is integrally provided so as to project on the end axis of a large-diameter cylindrical rotor 60, and the probe is obtained by rotating the rotor 60 at a high speed. 62 is rotated at a high speed. The probe 62 and the rotor 60 are connected to the members to be joined 1, 2
It is made of a heat-resistant material that is harder and can withstand the frictional heat generated during joining. 63 is a heating device, and various laser lights such as CO 2 laser and YAG laser 64
Both the members to be joined 1 and 2 are heated with the heat source as the heat source. The heating device 63 is a laser oscillator (not shown) that emits a laser beam 64, and an optical system that focuses the laser beam emitted from the oscillator and focuses the laser beam 64 on a portion to be heated ( (Not shown). And
A substantially cylindrical laser nozzle portion 6 that is irradiated with the laser light 64.
5 is arranged in the vicinity of the front of the moving direction of the probe 62, and is interlocked with the movement of the probe 62.
The laser irradiation position at is always located in front of the moving direction of the probe 62. The irradiation width of the laser light 64 is the rotor 60.
The diameter is set to be substantially the same as the diameter of the flat shoulder 61 at the tip, and only the portion of the joint 13 near the probe 62 is heated to raise the temperature of this portion and its surroundings. The operation of the heating device of the friction stir welding method will be described. The laser oscillator of the heating device 63 is operated to irradiate the laser light 64 from the nozzle portion 65, and the rotor 60 of the joining device is rotated to bring the probe 62 integrally rotated therewith into contact with the joining portion 13 or its vicinity. Then, the contact portion is softened and plasticized by the frictional heat, and the probe 62 is further pressed to insert the probe 62 into the members 1 and 2 in the thickness direction. With the probe 62 inserted, the shoulder 61 of the rotor 60 is pressed onto the surfaces of the members 1, 2 to be joined. Due to the contact of the shoulder 61, it is possible to prevent the material of the softened portion from scattering at the start of joining or during joining, and to realize a uniform joined state, and at the same time, to prevent friction caused by sliding between the joined members 1 and 2 and the shoulder 61. The heat is generated to accelerate the softening of the contact portion with the probe 62 or the vicinity thereof, and further prevent the formation of irregularities on the surfaces of the members 1 and 2 to be joined. After inserting the probe 62, the rotor 60 is moved along the joint 13. Then, in conjunction with this, the nozzle portion 65 of the heating device 63 moves along the joint portion 13, and the laser irradiation position also moves accordingly. Probe 6
By the rotation of the rotor 2 and the rotor 60, the members 1 and 2 to be welded are softened and agitated by frictional heat around the contact portion with the probe 62. Then, by the movement of the probe 62, the softening and stirring portion receives the advancing pressure of the probe 62 and plastically flows in such a manner as to go backward in the advancing direction of the probe 62 so as to fill the passage groove of the probe 62, and then the frictional heat is rapidly increased. Lost and rapidly solidified. In the friction stir welding using the heating device 63 shown in FIG. 9, the joint portion is heated by the irradiation of the laser beam 64, the contact portion between the probe 62 and the shoulder 61 is quickly softened, and the joint by the probe 62 is facilitated. The aim is to do. A heating device using a gas flame will be described as a second conventional example. Figure 8
FIG. 4 is a schematic view showing a friction stir welding method using a gas flame as a heating device. Both bonded members 1 using various gas flames 70 of oxygen acetylene, oxygen propane, oxygen natural gas, etc. as heat sources,
2 is to be heated. This heating device 72 is also the same as
A substantially cylindrical gas nozzle portion 71 from which the gas flame 70 is jetted
Is arranged in the vicinity of the front of the probe 62 in the moving direction, and is interlocked with the movement of the probe 62, and the injection position of the gas flame 70 at the joint 13 is always located in the front of the joining device in the moving direction. Has been done. Further, the injection width of the gas flame 70 is set to be approximately the same as the diameter of the shoulder 61 of the rotor 60 when the tip ends of the members 1 and 2 collide with the surfaces of the members 1 and 2 to be spread. That is, only the portion of the joint 13 near the probe is heated to raise the temperature of this portion and its surroundings. The operation of the heating device of the friction stir welding method will be described. A gas flame 70 is jetted from a gas nozzle portion 71 of a heating device 72, and a rotor 62 of the joining device 3 is rotated to insert a probe 62 that rotates integrally with the rotor 62 into the joining portion 13 and to the abutting portion in the probe inserted state. The members to be joined 1 and 2 are joined by moving the probe 62 relatively to the members to be joined 1 and 2. In friction stir welding using the heating device 72 shown in FIG. 8, the joint is heated by the heat of the gas flame 70,
The purpose is to quickly soften the contact portion between the probe 62 and the shoulder 61 and facilitate the joining by the probe 62. As described above, when the conventional friction friction stir welding is performed, the laser light 64 or the gas flame 70 is used as an auxiliary heat source because the frictional heat alone slows the temperature rising rate with respect to the members to be welded.

【0003】[0003]

【発明が解決しようとする課題】ところが、これら従来
の摩擦擦撹拌接合で補助熱源としてレーザ光64あるい
はガス炎70を用いる手法は、接合後の被接合部材の冷
却速度を制御する機構を持たないため、冷却時に被接合
部材の接合部に生ずる、被接合部材の内部応力による被
接合部材の接合部分の凝固割れの発生を回避することが
できなかった。また、レーザは熱源の照射半径が極めて
小さいため、接合線上に照射する際の位置ずれ誤差の裕
度が狭く、被接合部材の微小な変形等により接合線13
への焦点が定まらない場合、余熱温度にばらつきが出
る。また、ガス炎は被接合部材に対する熱源の照射半径
が大きいため、被接合部材の接合線13上に照射できる
位置ずれ誤差の裕度は広いが、投入熱量の管理が難し
く、加熱時にガス炎70は被接合部材の接合部以外の範
囲も加熱し軟化させる。摩擦撹拌接合では被接合部材を
溶融させず接合するため欠陥が少なく非接合部材の軟化
範囲も狭いために強度の低下が少ない長所がある。この
接合法の処理時間短縮を目的として予備加熱、処理後の
品質向上を目的として後加熱が検討されている。その加
熱法としてはレーザとガスバーナがある。摩擦撹拌接合
の長所を維持するために必要なことは、接合部の極近傍
のみを加熱できることと冷却速度の制御性があることで
ある。前者は被接合部材の軟化を防ぐためで、後者は接
合部前方の加熱時の急速加熱による処理時間短縮を目的
としている。接合部後方加熱冷却は熱処理(脆化の防
止、強度向上、歪取り)の目的で冷却条件を変える必要
がある。誘導加熱は一般に用いられており加熱冷却速度
の制御性が良くて材料の形状の影響がなく、簡単な装置
で使用できるという特徴がある。しかし、接合部だけの
加熱には不利で、また、アルミニウムのような非磁性で
導電率の高い材料には適用が難しい。そこで、本発明
は、摩擦撹拌接合を開始するまでの時間を短縮し、加熱
範囲及び加熱温度の制御性の向上、材質に拠らず、接合
部位の割れを防止できる摩擦撹拌接合の加熱装置を提供
することを目的とする。
However, the conventional method of using the laser beam 64 or the gas flame 70 as an auxiliary heat source in the friction friction stir welding does not have a mechanism for controlling the cooling rate of the joined members after joining. Therefore, it is not possible to avoid the occurrence of solidification cracking in the joint portion of the members to be joined due to the internal stress of the members to be joined, which occurs in the joint portion of the members to be joined during cooling. Further, since the irradiation radius of the heat source of the laser is extremely small, the margin of positional deviation error when irradiating on the bonding line is narrow, and the bonding line 13 is slightly deformed due to a slight deformation of the members to be bonded.
If the focus is not fixed, the residual heat temperature will vary. Further, since the gas flame has a large irradiation radius of the heat source with respect to the members to be welded, there is a wide margin of positional deviation error that can be irradiated onto the joining line 13 of the members to be joined, but it is difficult to control the amount of heat input, and the gas flame 70 during heating is heated. Heats and softens a range other than the joint part of the members to be joined. Friction stir welding has an advantage that the members to be joined are not melted and joined together, so that there are few defects and the softening range of the non-joined members is narrow, so that the reduction in strength is small. Preheating is being studied for the purpose of shortening the processing time of this bonding method, and postheating is being studied for the purpose of improving the quality after processing. Lasers and gas burners are used as the heating method. What is necessary to maintain the advantages of the friction stir welding is that only the vicinity of the joint can be heated and the cooling rate can be controlled. The former is intended to prevent softening of the members to be joined, and the latter is intended to shorten the treatment time by rapid heating at the time of heating in front of the joint. It is necessary to change the cooling conditions for the heating at the backside of the joint for the purpose of heat treatment (prevention of embrittlement, improvement of strength, strain relief). Induction heating is generally used, and it is characterized in that it has a good controllability of heating and cooling rates, is not affected by the shape of the material, and can be used with a simple device. However, it is disadvantageous to heat only the joint portion, and it is difficult to apply it to a non-magnetic material having high conductivity such as aluminum. Therefore, the present invention provides a heating device for friction stir welding that shortens the time until the start of friction stir welding, improves the controllability of the heating range and heating temperature, and prevents cracks in the welded portion regardless of the material. The purpose is to provide.

【0004】[0004]

【課題を解決するための手段】上記の課題を解決するた
め、本発明は、被接合部材の接触部の接触抵抗による誘
導加熱を用いて局部加熱を行うもので、詳しくはつぎの
構成によるものである。 (1) 請求項1記載の摩擦撹拌接合法の加熱装置は、前記
被接合部材1、2の接合部13又はその近傍に回転する
回転子60の先端から突出しているプローブ62を挿入
し、前記プローブ62との接触部を摩擦熱にて軟化させ
撹拌しながら、前記プローブ62を挿入状態で前記接合
部13に沿って相対的に移動させることにより前記被接
合部材1、2を接合する際、接合時に前記プローブ62
の移動方向の前方部分を加熱しながら移動する加熱熱源
を有する摩擦攪拌接合法の加熱装置において、前記加熱
熱源は前記接合部13上を移動する前記プローブ62の
前方および後方に前記プローブ62と同時に移動する誘
導加熱熱源4、8と、前記誘導加熱熱源4、8に電力を
供給する電源12と、前記接合部13の温度を設定する
温度設定手段40とを具備し、前記誘導加熱熱源4、8
と前記被接合部材1、2の間に空隙を設け、接合時にお
いて前記電源12により前記誘導加熱熱源4、8が前記
温度設定手段により設定された前記設定温度に加熱さ
れ、前記プローブ62の前記移動方向の前方部分の前記
接合部13を前記誘導加熱熱源4により加熱し、前記プ
ローブ62の前記移動方向の後方部分の前記接合部13
を前記誘導加熱熱源8により加熱する構成である。本摩
擦撹拌接合法の加熱装置によれば、移動方向前方の加熱
により被接合部材1、2が摩擦撹拌接合可能な状態に軟
化するため、加熱時間が短縮でき、加熱範囲及び加熱温
度の制御性が向上する。また、移動方向後方の加熱によ
り接合後の冷却時間を制御することで接合部位の割れを
防止することができる。 (2)請求項2記載の摩擦撹拌接合法の加熱装置は、前記
誘導加熱熱源4、8の前記移動方向と直角方向の幅は、
前記プローブ62の直径より大きくしたものである。請
求項2記載の摩擦撹拌接合法の加熱装置によれば、誘導
加熱熱源4、8の大きさをショルダ61と同一の幅とし
たので、プローブ62によって接合される接合部13の
みに加熱を限定できる。このため、接合部13以外が加
熱されることなく被接合部材1、2の熱影響を最小限に
押さえ、高品質な接合が可能となる。 (3)請求項3記載の摩擦撹拌接合法の加熱装置は、前記
プローブ62の移動方向の前方に非接触温度センサ6
を、後方に非接触温度センサ9をそれぞれ配置し、前記
非接触温度センサ6、9が計測した前記接合部13の温
度情報をフィードバック機構7、11にフィードバック
し、前記温度設定手段40により予め設定された設定温
度41になるように前記電源12に供給される電力を調
整するようにしたものである。請求項3記載の摩擦撹拌
接合法の加熱装置によれば、誘導加熱熱源4、8による
接合物の過剰加熱を防止し被接合材1、2の変形を防止
することができる。
In order to solve the above-mentioned problems, the present invention is one in which local heating is performed using induction heating due to the contact resistance of the contact portion of the members to be joined. is there. (1) The heating device of the friction stir welding method according to claim 1, wherein the probe 62 protruding from the tip of the rotating rotor 60 is inserted into the joint portion 13 of the members to be joined 1 or 2 or in the vicinity thereof, When joining the members 1 and 2 to be joined by moving the probe 62 relatively along the joining portion 13 in an inserted state while softening and stirring the contact portion with the probe 62 by friction heat, The probe 62 at the time of joining
In the heating device of the friction stir welding method having a heating heat source that moves while heating the front part in the moving direction, the heating heat source is provided at the front and rear of the probe 62 that moves on the joint portion 13 at the same time as the probe 62. The induction heating heat sources 4 and 8 that move, a power source 12 that supplies electric power to the induction heating heat sources 4 and 8, and a temperature setting unit 40 that sets the temperature of the joint 13 are provided. 8
A space is provided between the welding target members 1 and 2 and the induction heating heat sources 4 and 8 are heated by the power source 12 to the set temperature set by the temperature setting means at the time of joining, and the probe 62 The joint portion 13 at the front portion in the moving direction is heated by the induction heating heat source 4, and the joint portion 13 at the rear portion in the moving direction of the probe 62.
Is heated by the induction heating heat source 8. According to the heating apparatus of the friction stir welding method, since the members 1 and 2 to be welded are softened to the state capable of friction stir welding by heating in the forward direction of the moving direction, the heating time can be shortened, and the controllability of the heating range and heating temperature can be improved. Is improved. Further, by controlling the cooling time after joining by heating at the rear of the moving direction, cracking of the joining site can be prevented. (2) In the heating device of the friction stir welding method according to claim 2, the width of the induction heating heat sources 4, 8 in the direction perpendicular to the moving direction is
The diameter is larger than the diameter of the probe 62. According to the heating device of the friction stir welding method of claim 2, since the size of the induction heating heat sources 4 and 8 is the same width as the shoulder 61, heating is limited to only the joint portion 13 joined by the probe 62. it can. Therefore, the heat effect of the members to be joined 1 and 2 can be minimized without heating the parts other than the joining part 13, and high quality joining can be performed. (3) In the heating device of the friction stir welding method according to claim 3, the non-contact temperature sensor 6 is provided in front of the moving direction of the probe 62.
, The non-contact temperature sensors 9 are respectively arranged in the rear, the temperature information of the joint portion 13 measured by the non-contact temperature sensors 6, 9 is fed back to the feedback mechanisms 7, 11, and is preset by the temperature setting means 40. The electric power supplied to the power source 12 is adjusted so as to reach the set temperature 41. According to the heating device of the friction stir welding method of the third aspect, it is possible to prevent excessive heating of the welded material by the induction heating heat sources 4 and 8 and prevent deformation of the materials to be welded 1 and 2.

【0005】[0005]

【発明の実施の形態】以下、本発明の実施の形態を図に
基づいて説明する。 (第1の実施形態)本発明の第1の実施形態を図1〜図
3に示す。図1は、摩擦撹拌接合法の加熱装置を示す斜
視図、図2は図1における部分側面図、図3は加熱温度
設定パネルである。図において、3は加熱装置、4、8
は誘導加熱熱源、12は電源、40は加熱温度設定パネ
ル、41は設定温度表示、42は設定温度調整ボタンで
ある。その他の符号は、従来例で述べたものと同じであ
るため省略する。誘導加熱熱源4、8は、被接合部材
1、2の表面から少なくとも1mmの空隙をもって図示
しない保持治具に接合装置3とともに固定されている。
設定温度は100℃〜300℃の範囲とし、加熱温度設
定パネル40で設定される。つぎに、本装置の動作につ
いて述べる。図4は本発明の加熱装置を示すブロック図
である。被接合部材1、2の接合線13上に配置された
誘導加熱熱源4は温度設定手段40の設定温度調整ボタ
ン42で設定された設定温度41に応じて誘導加熱熱源
4を駆動する電源12に加熱量の増減信号を送り、電源
12は誘導加熱熱源4を駆動し、誘導加熱熱源4は電磁
気を照射し、接合線13近傍の被接合部材1、2を誘導
加熱し、設定温度41に近づける。特に接合部13は被
接合部材1、2の接触抵抗発熱により局部的な発熱点を
生ずる。誘導加熱熱源4によって加熱された被接合部材
1、2は回転しているプローブ62とショルダ61の接
合線13への圧着によりさらに摩擦熱を生じるが、被接
合部材1、2は設定温度41に到達しているためプロー
ブ62とショルダ61の摩擦熱がもたらす塑性流動状態
に短時間で達することが可能になり、摩擦撹拌接合が短
時間で完了する。接合が完了後、プローブ62の後方に
設置された誘導加熱熱源8は設定温度41に応じて誘導
加熱熱源8を駆動する電源12に加熱量の増減信号を送
り、電源12は誘導加熱熱源8を駆動し、誘導加熱熱源
8は電磁気を被接合部材1、2と接合部13に照射し、
被接合部材1、2と特に接合部13を誘導加熱する。摩
擦撹拌接合において被接合部材1、2が摩擦撹拌接合可
能な状態に軟化するための時間短縮および加熱範囲及び
制御の裕度を増加し、接合後の冷却時間を制御す
ることで接合部13の急冷による割れを防止することが
できる。 (第2の実施形態)本発明の第2の実施形態を図5に示
す。図5は、摩擦撹拌接合法の加熱装置の示す構成図で
ある。図において、6、9は非接触温度センサ、7はフ
ィードバック機構、8は誘導加熱熱源、11はフィード
バック機構である。プローブ62とショルダ61により
摩擦撹拌接合される直前の接合部13の温度を計測する
非接触温度センサ6、プローブ62とショルダ61によ
り摩擦撹拌接合された直後の接合部13の温度を計測す
る非接触温度センサ9、各非接触式温度センサ6、9か
らのフィードバック情報を処理する図6に示すフィード
バック機構7、11を具備し、非接触温度センサ6はプ
ローブ62の移動方向前方、非接触温度センサ9はプロ
ーブ62の移動方向後方に配置し、接合時において誘導
加熱熱源4、8は、非接触温度センサ6、9が計測した
接合部13の温度をもとに電源12に内蔵された温度設
定手段40により予め設定された設定温度41になるよ
うにフィードバック機構7、11により誘導加熱熱源
4、8へ電源12により供給される電力を制御し、被接
合部材1、2と接合部13への加熱量を調整すること
で、プローブ62とショルダ61により摩擦撹拌接合さ
れる直前の接合部13の温度およびプローブ62とショ
ルダ61により摩擦撹拌接合された直後の接合部13の
温度を非接触温度センサ6、9により計測し、非接触温
度センサ6、9からの温度情報をフィードバック機構
7、11によりフィードバック制御し、設定温度41に
加熱量を調整する。本実施例により、誘導加熱熱源4、
8による接合物の過剰加熱を防止し被接合材1、2の変
形を防止することができる。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. (First Embodiment) FIGS. 1 to 3 show a first embodiment of the present invention. 1 is a perspective view showing a heating device of the friction stir welding method, FIG. 2 is a partial side view of FIG. 1, and FIG. 3 is a heating temperature setting panel. In the figure, 3 is a heating device, 4 and 8
Is an induction heating heat source, 12 is a power source, 40 is a heating temperature setting panel, 41 is a set temperature display, and 42 is a set temperature adjustment button. The other reference numerals are the same as those described in the conventional example, and are omitted. The induction heating heat sources 4 and 8 are fixed together with the joining device 3 to a holding jig (not shown) with a gap of at least 1 mm from the surfaces of the members to be joined 1 and 2.
The set temperature is in the range of 100 ° C. to 300 ° C. and is set by the heating temperature setting panel 40. Next, the operation of this device will be described. FIG. 4 is a block diagram showing the heating device of the present invention. The induction heating heat source 4 arranged on the joining line 13 of the members to be joined 1 and 2 serves as a power source 12 for driving the induction heating heat source 4 according to the set temperature 41 set by the set temperature adjustment button 42 of the temperature setting means 40. The power supply 12 drives the induction heating heat source 4, the induction heating heat source 4 irradiates electromagnetic waves, and the members to be welded 1 and 2 near the joining line 13 are induction-heated to approach the set temperature 41. . In particular, the joint portion 13 produces a local heat generation point due to the heat generated by the contact resistance of the members to be joined 1 and 2. The members to be joined 1 and 2 heated by the induction heating heat source 4 generate more frictional heat due to the pressure bonding of the rotating probe 62 and the shoulder 61 to the joining line 13, but the members to be joined 1 and 2 reach the set temperature 41. Since it has reached, the plastic flow state caused by the friction heat of the probe 62 and the shoulder 61 can be reached in a short time, and the friction stir welding is completed in a short time. After the joining is completed, the induction heating heat source 8 installed behind the probe 62 sends a heating amount increase / decrease signal to the power supply 12 that drives the induction heating heat source 8 according to the set temperature 41, and the power supply 12 turns the induction heating heat source 8 on. When driven, the induction heating heat source 8 radiates electromagnetic waves to the members 1 and 2 and the joint portion 13,
Induction heating is performed on the members to be joined 1, 2 and especially on the joining portion 13. In friction stir welding, the time and heating range for softening the members to be welded 1 and 2 into a state capable of friction stir welding and
By increasing the control margin and controlling the cooling time after joining, it is possible to prevent cracking of the joining portion 13 due to rapid cooling. (Second Embodiment) FIG. 5 shows a second embodiment of the present invention. FIG. 5: is a block diagram which shows the heating apparatus of a friction stir welding method. In the figure, 6 and 9 are non-contact temperature sensors, 7 is a feedback mechanism, 8 is an induction heating heat source, and 11 is a feedback mechanism. A non-contact temperature sensor 6 that measures the temperature of the joint 13 immediately before friction stir welding by the probe 62 and the shoulder 61, and a non-contact temperature sensor that measures the temperature of the joint 13 immediately after friction stir welding by the probe 62 and the shoulder 61. The temperature sensor 9 and the feedback mechanisms 7 and 11 shown in FIG. 6 for processing feedback information from the non-contact temperature sensors 6 and 9 are provided. 9 is disposed behind the probe 62 in the moving direction, and the induction heating heat sources 4 and 8 are set in the power source 12 based on the temperature of the joint portion 13 measured by the non-contact temperature sensors 6 and 9 during joining. The electric power supplied from the power source 12 to the induction heating heat sources 4 and 8 by the feedback mechanisms 7 and 11 so as to reach the preset temperature 41 set by the means 40. By controlling and adjusting the heating amount to the members to be welded 1 and 2 and the joint portion 13, the temperature of the joint portion 13 immediately before the friction stir welding by the probe 62 and the shoulder 61 and the friction stirring by the probe 62 and the shoulder 61. The temperature of the joint portion 13 immediately after being joined is measured by the non-contact temperature sensors 6 and 9, and the temperature information from the non-contact temperature sensors 6 and 9 is feedback-controlled by the feedback mechanisms 7 and 11, so that the set temperature 41 is heated. Adjust. According to this embodiment, the induction heating heat source 4,
It is possible to prevent excessive heating of the article to be joined by 8 and to prevent deformation of the materials to be joined 1 and 2.

【0006】[0006]

【発明の効果】以上述べたように、本発明の摩擦撹拌接
合法の加熱装置によれば、つぎの効果がある。 (1)接合部上を移動するプローブの前後に同時に移動
する誘導加熱熱源と、接合部の温度を設定する温度設定
手段とを具備し、誘導加熱熱源と被接合部材の間に空隙
を設け、接合時において電源により誘導加熱熱源が温度
設定手段により設定された設定温度に加熱され、プロー
ブの移動方向の前方部分の接合部を誘導加熱熱源により
加熱し、プローブの移動方向の後方部分の接合部を誘導
加熱熱源により加熱する構成にしたので、移動方向前方
の加熱により被接合部材が摩擦撹拌接合可能な状態に軟
化するため、加熱時間の短縮と加熱範囲及び の制御の裕
度を増加させた。また、移動方向後方の加熱により接合
後の冷却時間を制御することで接合部位の割れを防止す
ることができる。 (2)誘導加熱熱源の移動方向と直角方向の幅は、プロー
ブの直径より大きくしたので、プローブによって接合さ
れる接合部のみに加熱を限定できる。このため、接合部
以外が加熱されることなく被接合部材の熱影響を最小限
に押さえ、高品質な接合が可能となる。 (3)プローブの移動方向の前方に非接触温度センサを、
後方に非接触温度センサをそれぞれ配置し、非接触温度
センサが計測した接合部の温度情報をフィードバック機
構にフィードバックし、温度設定手段により予め設定さ
れた設定温度になるように電源に供給される電力を調整
するようにしたので、誘導加熱熱源による接合物の過剰
加熱を防止し被接合材の変形を防止することができる。
As described above, the friction stir welding of the present invention is performed.
The legal heating device has the following effects. (1) Simultaneous movement before and after the probe moving on the joint
Induction heating heat source and temperature setting to set the temperature of the joint
And a space between the induction heating heat source and the member to be joined.
Is provided, and the induction heating heat source is heated by the power supply during joining.
It is heated to the set temperature set by the setting means,
The induction heating heat source is used to
Heats and induces a junction in the rear part of the probe travel direction
Since it is heated by a heating source, it moves forward
By heating the
To shorten the heating time and the heating range and Control of
Increased. Also, it is joined by heating at the rear of the moving direction.
Prevents cracking of the joint by controlling the cooling time afterwards
You can (2) The width of the induction heating heat source in the direction perpendicular to the moving direction is
Since it is larger than the diameter of the
Heating can be limited to only the joints that are exposed. Because of this, the joint
Minimize the heat effect on the parts to be joined without heating other than
It enables high quality joining. (3) A non-contact temperature sensor in front of the moving direction of the probe,
Non-contact temperature sensors are installed at the rear to provide non-contact temperature
Feedback device for temperature information of the joint measured by the sensor
The temperature is fed back and preset by the temperature setting means.
Adjusts the power supplied to the power supply to reach the set temperature
As a result, the excess of the jointed material due to the induction heating heat source
It is possible to prevent heating and prevent deformation of the materials to be joined.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施形態における摩擦撹拌接合
の加熱方法の構成を示す模式図
FIG. 1 is a schematic diagram showing a configuration of a heating method for friction stir welding according to a first embodiment of the present invention.

【図2】図1における被接合部材の分側面図FIG. 2 is a side view of the members to be joined in FIG.

【図3】図1における加熱温度設定パネルの正面図本発
明の実施の形態におけるの誘導加熱源の位置関係を示す
模式図
FIG. 3 is a front view of a heating temperature setting panel in FIG. 1, which is a schematic diagram showing a positional relationship of induction heating sources in an embodiment of the present invention.

【図4】本発明の実施の形態を示すブロック図実施の形
態における摩擦撹拌接合の加熱方法の構成を示す加熱方
法の構成を示す模式図
FIG. 4 is a block diagram showing an embodiment of the present invention. A schematic diagram showing a structure of a heating method showing a structure of a heating method of friction stir welding in the embodiment.

【図5】本発明の第2の実施形態の加熱温度設定パネル
の模式図
FIG. 5 is a schematic diagram of a heating temperature setting panel according to a second embodiment of the present invention.

【図6】本発明の第2の実施形態を示すブロック図FIG. 6 is a block diagram showing a second embodiment of the present invention.

【図7】従来の摩擦撹拌接合法の加熱装置を示す模式図FIG. 7 is a schematic diagram showing a conventional heating apparatus for friction stir welding.

【図8】従来の他の摩擦撹拌接合法の加熱装置を示す模
式図
FIG. 8 is a schematic diagram showing another conventional heating device for friction stir welding.

【符号の説明】[Explanation of symbols]

1、2:被接合部材 3 :接合装置 4 :誘導加熱熱源 6、9:非接触温度センサ 7 :フィードバック機構 8 :誘導加熱熱源 11:フィードバック機構 12:電源 40:加熱温度設定パネル 41:設定温度表示 42:設定温度調整ボタン 60:回転子 61:ショルダ 62:プローブ 63、72:加熱装置 64:レーザ光 65:レーザノズル部 70:ガス炎 71:ガスノズル部 1, 2: Member to be joined 3: Joining device 4: Induction heating heat source 6, 9: Non-contact temperature sensor 7: Feedback mechanism 8: Induction heating heat source 11: Feedback mechanism 12: Power supply 40: Heating temperature setting panel 41: Set temperature display 42: Set temperature adjustment button 60: rotor 61: Shoulder 62: probe 63, 72: heating device 64: Laser light 65: Laser nozzle part 70: Gas flame 71: Gas nozzle part

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成13年9月28日(2001.9.2
8)
[Submission date] September 28, 2001 (2001.9.2)
8)

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0005[Name of item to be corrected] 0005

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0005】[0005]

【発明の実施の形態】以下、本発明の実施の形態を図に
基づいて説明する。 (第1の実施形態)本発明の第1の実施形態を図1〜図
3に示す。図1は、摩擦撹拌接合法の加熱装置を示す斜
視図、図2は図1における部分側面図、図3は加熱温度
設定パネルである。図において、3は加熱装置、4、8
は誘導加熱熱源、12は電源、40は加熱温度設定パネ
ル、41は設定温度表示、42は設定温度調整ボタンで
ある。その他の符号は、従来例で述べたものと同じであ
るため省略する。誘導加熱熱源4、8は、被接合部材
1、2の表面から少なくとも1mmの空隙をもって図示
しない保持治具に接合装置3とともに固定されている。
設定温度は100℃〜300℃の範囲とし、加熱温度設
定パネル40で設定される。つぎに、本装置の動作につ
いて述べる。図4は本発明の加熱装置を示すブロック図
である。被接合部材1、2の接合線13上に配置された
誘導加熱熱源4は温度設定手段40の設定温度調整ボタ
ン42で設定された設定温度41に応じて誘導加熱熱源
4を駆動する電源12に加熱量の増減信号を送り、電源
12は誘導加熱熱源4を駆動し、誘導加熱熱源4は電磁
気を照射し、接合線13近傍の被接合部材1、2を誘導
加熱し、設定温度41に近づける。特に接合部13は被
接合部材1、2の接触抵抗発熱により局部的な発熱点を
生ずる。誘導加熱熱源4によって加熱された被接合部材
1、2は回転しているプローブ62とショルダ61の接
合線13への圧着によりさらに摩擦熱を生じるが、被接
合部材1、2は設定温度41に到達しているためプロー
ブ62とショルダ61の摩擦熱がもたらす塑性流動状態
に短時間で達することが可能になり、摩擦撹拌接合が短
時間で完了する。接合が完了後、プローブ62の後方に
設置された誘導加熱熱源8は設定温度41に応じて誘導
加熱熱源8を駆動する電源12に加熱量の増減信号を送
り、電源12は誘導加熱熱源8を駆動し、誘導加熱熱源
8は電磁気を被接合部材1、2と接合部13に照射し、
被接合部材1、2と特に接合部13を誘導加熱する。摩
擦撹拌接合において被接合部材1、2が摩擦撹拌接合可
能な状態に軟化するための時間短縮および加熱範囲及び
加熱温度の制御の裕度を増加し、接合後の冷却時間を制
御することで接合部13の急冷による割れを防止するこ
とができる。 (第2の実施形態)本発明の第2の実施形態を図5に示
す。図5は、摩擦撹拌接合法の加熱装置の示す構成図で
ある。図において、6、9は非接触温度センサ、7はフ
ィードバック機構、8は誘導加熱熱源、11はフィード
バック機構である。プローブ62とショルダ61により
摩擦撹拌接合される直前の接合部13の温度を計測する
非接触温度センサ6、プローブ62とショルダ61によ
り摩擦撹拌接合された直後の接合部13の温度を計測す
る非接触温度センサ9、各非接触式温度センサ6、9か
らのフィードバック情報を処理する図6に示すフィード
バック機構7、11を具備し、非接触温度センサ6はプ
ローブ62の移動方向前方、非接触温度センサ9はプロ
ーブ62の移動方向後方に配置し、接合時において誘導
加熱熱源4、8は、非接触温度センサ6、9が計測した
接合部13の温度をもとに電源12に内蔵された温度設
定手段40により予め設定された設定温度41になるよ
うにフィードバック機構7、11により誘導加熱熱源
4、8へ電源12により供給される電力を制御し、被接
合部材1、2と接合部13への加熱量を調整すること
で、プローブ62とショルダ61により摩擦撹拌接合さ
れる直前の接合部13の温度およびプローブ62とショ
ルダ61により摩擦撹拌接合された直後の接合部13の
温度を非接触温度センサ6、9により計測し、非接触温
度センサ6、9からの温度情報をフィードバック機構
7、11によりフィードバック制御し、設定温度41に
加熱量を調整する。本実施例により、誘導加熱熱源4、
8による接合物の過剰加熱を防止し被接合材1、2の変
形を防止することができる。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. (First Embodiment) FIGS. 1 to 3 show a first embodiment of the present invention. 1 is a perspective view showing a heating device of the friction stir welding method, FIG. 2 is a partial side view of FIG. 1, and FIG. 3 is a heating temperature setting panel. In the figure, 3 is a heating device, 4 and 8
Is an induction heating heat source, 12 is a power source, 40 is a heating temperature setting panel, 41 is a set temperature display, and 42 is a set temperature adjustment button. The other reference numerals are the same as those described in the conventional example, and are omitted. The induction heating heat sources 4 and 8 are fixed together with the joining device 3 to a holding jig (not shown) with a gap of at least 1 mm from the surfaces of the members to be joined 1 and 2.
The set temperature is in the range of 100 ° C. to 300 ° C. and is set by the heating temperature setting panel 40. Next, the operation of this device will be described. FIG. 4 is a block diagram showing the heating device of the present invention. The induction heating heat source 4 arranged on the joining line 13 of the members to be joined 1 and 2 serves as a power source 12 for driving the induction heating heat source 4 according to the set temperature 41 set by the set temperature adjustment button 42 of the temperature setting means 40. The power supply 12 drives the induction heating heat source 4, the induction heating heat source 4 irradiates electromagnetic waves, and the members to be welded 1 and 2 near the joining line 13 are induction-heated to approach the set temperature 41. . In particular, the joint portion 13 produces a local heat generation point due to the heat generated by the contact resistance of the members to be joined 1 and 2. The members to be joined 1 and 2 heated by the induction heating heat source 4 generate more frictional heat due to the pressure bonding of the rotating probe 62 and the shoulder 61 to the joining line 13, but the members to be joined 1 and 2 reach the set temperature 41. Since it has reached, the plastic flow state caused by the friction heat of the probe 62 and the shoulder 61 can be reached in a short time, and the friction stir welding is completed in a short time. After the joining is completed, the induction heating heat source 8 installed behind the probe 62 sends a heating amount increase / decrease signal to the power supply 12 that drives the induction heating heat source 8 according to the set temperature 41, and the power supply 12 turns the induction heating heat source 8 on. When driven, the induction heating heat source 8 radiates electromagnetic waves to the members 1 and 2 and the joint portion 13,
Induction heating is performed on the members to be joined 1, 2 and especially on the joining portion 13. In friction stir welding, the time and heating range for softening the members to be welded 1 and 2 into a state capable of friction stir welding and
By increasing the control latitude of the heating temperature and controlling the cooling time after joining, it is possible to prevent cracking of the joining portion 13 due to rapid cooling. (Second Embodiment) FIG. 5 shows a second embodiment of the present invention. FIG. 5: is a block diagram which shows the heating apparatus of a friction stir welding method. In the figure, 6 and 9 are non-contact temperature sensors, 7 is a feedback mechanism, 8 is an induction heating heat source, and 11 is a feedback mechanism. A non-contact temperature sensor 6 that measures the temperature of the joint 13 immediately before friction stir welding by the probe 62 and the shoulder 61, and a non-contact temperature sensor that measures the temperature of the joint 13 immediately after friction stir welding by the probe 62 and the shoulder 61. The temperature sensor 9 and the feedback mechanisms 7 and 11 shown in FIG. 6 for processing feedback information from the non-contact temperature sensors 6 and 9 are provided. 9 is disposed behind the probe 62 in the moving direction, and the induction heating heat sources 4 and 8 are set in the power source 12 based on the temperature of the joint portion 13 measured by the non-contact temperature sensors 6 and 9 during joining. The electric power supplied from the power source 12 to the induction heating heat sources 4 and 8 by the feedback mechanisms 7 and 11 so as to reach the preset temperature 41 set by the means 40. By controlling and adjusting the heating amount to the members to be welded 1 and 2 and the joint portion 13, the temperature of the joint portion 13 immediately before the friction stir welding by the probe 62 and the shoulder 61 and the friction stirring by the probe 62 and the shoulder 61. The temperature of the joint portion 13 immediately after being joined is measured by the non-contact temperature sensors 6 and 9, and the temperature information from the non-contact temperature sensors 6 and 9 is feedback-controlled by the feedback mechanisms 7 and 11, so that the set temperature 41 is heated. Adjust. According to this embodiment, the induction heating heat source 4,
It is possible to prevent excessive heating of the article to be joined by 8 and to prevent deformation of the materials to be joined 1 and 2.

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0006[Correction target item name] 0006

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0006】[0006]

【発明の効果】以上述べたように、本発明の摩擦撹拌接
合法の加熱装置によれば、つぎの効果がある。 (1)接合部上を移動するプローブの前後に同時に移動
する誘導加熱熱源と、接合部の温度を設定する温度設定
手段とを具備し、誘導加熱熱源と被接合部材の間に空隙
を設け、接合時において電源により誘導加熱熱源が温度
設定手段により設定された設定温度に加熱され、プロー
ブの移動方向の前方部分の接合部を誘導加熱熱源により
加熱し、プローブの移動方向の後方部分の接合部を誘導
加熱熱源により加熱する構成にしたので、移動方向前方
の加熱により被接合部材が摩擦撹拌接合可能な状態に軟
化するため、加熱時間の短縮と加熱範囲及び加熱温度の
制御の裕度を増加させた。また、移動方向後方の加熱に
より接合後の冷却時間を制御することで接合部位の割れ
を防止することができる。 (2)誘導加熱熱源の移動方向と直角方向の幅は、プロー
ブの直径より大きくしたので、プローブによって接合さ
れる接合部のみに加熱を限定できる。このため、接合部
以外が加熱されることなく被接合部材の熱影響を最小限
に押さえ、高品質な接合が可能となる。 (3)プローブの移動方向の前方に非接触温度センサを、
後方に非接触温度センサをそれぞれ配置し、非接触温度
センサが計測した接合部の温度情報をフィードバック機
構にフィードバックし、温度設定手段により予め設定さ
れた設定温度になるように電源に供給される電力を調整
するようにしたので、誘導加熱熱源による接合物の過剰
加熱を防止し被接合材の変形を防止することができる。
As described above, the heating device of the friction stir welding method of the present invention has the following effects. (1) An induction heating heat source that moves simultaneously before and after the probe that moves on the joint, and a temperature setting unit that sets the temperature of the joint are provided, and a gap is provided between the induction heating heat source and the member to be joined, At the time of joining, the induction heating heat source is heated by the power source to the set temperature set by the temperature setting means, and the joining portion at the front portion in the moving direction of the probe is heated by the induction heating heat source, and the joining portion at the rear portion in the moving direction of the probe. Is heated by an induction heating heat source, the members to be welded are softened by the heating in the front in the moving direction so that the members can be friction stir welded, so that the heating time can be shortened and the heating range and heating temperature can be controlled. Increased margin. Further, by controlling the cooling time after joining by heating at the rear of the moving direction, cracking of the joining site can be prevented. (2) Since the width of the induction heating heat source in the direction perpendicular to the moving direction is larger than the diameter of the probe, heating can be limited only to the joint portion joined by the probe. Therefore, the heat effect of the members to be joined can be suppressed to the minimum without heating the portions other than the joined portion, and high quality joining can be performed. (3) A non-contact temperature sensor in front of the moving direction of the probe,
The non-contact temperature sensor is arranged in the rear, the temperature information of the joint portion measured by the non-contact temperature sensor is fed back to the feedback mechanism, and the electric power supplied to the power source is set to the preset temperature by the temperature setting means. Is adjusted, it is possible to prevent excessive heating of the bonded article by the induction heating heat source and prevent deformation of the materials to be bonded.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 平山 卓秀 福岡県北九州市八幡西区黒崎城石2番1号 株式会社安川電機内 Fターム(参考) 4E067 AA05 BG00 CA03 DC05 EC01   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Takuhide Hirayama             2-1, Kurosaki Shiroishi, Hachiman Nishi-ku, Kitakyushu City, Fukuoka Prefecture               Yasukawa Electric Co., Ltd. F-term (reference) 4E067 AA05 BG00 CA03 DC05 EC01

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 前記被接合部材1、2の接合部13又は
その近傍に回転する回転子60の先端から突出している
プローブ62を挿入し、前記プローブ62との接触部を
摩擦熱にて軟化させ撹拌しながら、前記プローブ62を
挿入状態で前記接合部13に沿って相対的に移動させる
ことにより前記被接合部材1、2を接合する際、接合時
に前記プローブ62の移動方向の前方部分を加熱しなが
ら移動する加熱熱源を有する摩擦攪拌接合法の加熱装置
において、 前記加熱熱源は前記接合部13上を移動する前記プロー
ブ62の前方および後方に前記プローブ62と同時に移
動する誘導加熱熱源4、8と、前記誘導加熱熱源4、8
に電力を供給する電源12と、前記接合部13の温度を
設定する温度設定手段40とを具備し、前記誘導加熱熱
源4、8と前記被接合部材1、2の間に空隙を設け、接
合時において前記電源12により前記誘導加熱熱源4、
8が前記温度設定手段により設定された前記設定温度に
加熱され、前記プローブ62の前記移動方向の前方部分
の前記接合部13を前記誘導加熱熱源4により加熱し、
前記プローブ62の前記移動方向の後方部分の前記接合
部13を前記誘導加熱熱源8により加熱することを特徴
とする摩擦撹拌接合法の加熱装置。
1. A probe 62 projecting from the tip of a rotating rotor 60 is inserted into the joint portion 13 of the members to be joined 1, 2 or in the vicinity thereof, and a contact portion with the probe 62 is softened by friction heat. When joining the members to be joined 1 and 2 by relatively moving the probe 62 along the joining portion 13 in an inserted state while stirring, the front portion in the moving direction of the probe 62 is joined at the time of joining. In a heating apparatus of a friction stir welding method having a heating heat source that moves while heating, the heating heat source moves at the same time as the probe 62 in front of and behind the probe 62 that moves on the joint portion 13, and an induction heating heat source 4, 8 and the induction heating heat sources 4, 8
A power supply 12 for supplying electric power to the above and a temperature setting means 40 for setting the temperature of the joint portion 13 are provided, and a gap is provided between the induction heating heat sources 4, 8 and the members 1, 2 to be joined. The induction heating heat source 4 by the power source 12
8 is heated to the set temperature set by the temperature setting means, and the joint portion 13 in the front portion of the probe 62 in the moving direction is heated by the induction heating heat source 4,
A heating apparatus for a friction stir welding method, wherein the joint portion 13 at a rear portion of the probe 62 in the moving direction is heated by the induction heating heat source 8.
【請求項2】 前記誘導加熱熱源4、8の前記移動方向
と直角方向の幅は、前記プローブ62の直径より大きい
ことを特徴とする請求項1記載の摩擦撹拌接合法の加熱
装置。
2. The heating apparatus according to claim 1, wherein a width of the induction heating heat sources 4, 8 in a direction perpendicular to the moving direction is larger than a diameter of the probe 62.
【請求項3】 前記プローブ62の移動方向の前方に非
接触温度センサ6を、後方に非接触温度センサ9をそれ
ぞれ配置し、前記非接触温度センサ6、9が計測した前
記接合部13の温度情報をフィードバック機構7、11
にフィードバックし、前記温度設定手段40により予め
設定された設定温度41になるように前記電源12に供
給される電力を調整することを特徴とする請求項1また
は2記載の摩擦撹拌接合法の加熱装置。
3. A non-contact temperature sensor 6 is arranged in front of the moving direction of the probe 62, and a non-contact temperature sensor 9 is arranged in the rear thereof, and the temperature of the joint portion 13 measured by the non-contact temperature sensors 6, 9 is measured. Information feedback mechanism 7, 11
3. The heating of the friction stir welding method according to claim 1, wherein the electric power supplied to the power source 12 is adjusted so as to reach a preset temperature 41 preset by the temperature setting means 40. apparatus.
JP2001286381A 2001-09-20 2001-09-20 Friction stir welding method heating device Expired - Fee Related JP4235874B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001286381A JP4235874B2 (en) 2001-09-20 2001-09-20 Friction stir welding method heating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001286381A JP4235874B2 (en) 2001-09-20 2001-09-20 Friction stir welding method heating device

Publications (3)

Publication Number Publication Date
JP2003094175A true JP2003094175A (en) 2003-04-02
JP2003094175A5 JP2003094175A5 (en) 2005-11-04
JP4235874B2 JP4235874B2 (en) 2009-03-11

Family

ID=19109375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001286381A Expired - Fee Related JP4235874B2 (en) 2001-09-20 2001-09-20 Friction stir welding method heating device

Country Status (1)

Country Link
JP (1) JP4235874B2 (en)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6780525B2 (en) * 2001-12-26 2004-08-24 The Boeing Company High strength friction stir welding
US6913186B2 (en) 2003-09-11 2005-07-05 The Boeing Company Apparatus and method for friction stir welding with a variable speed pin
EP1640103A1 (en) 2004-09-27 2006-03-29 Mitsubishi Heavy Industries, Ltd. Friction stir welding method and apparatus
US7078647B2 (en) 2004-10-21 2006-07-18 Wisconsin Alumni Research Foundation Arc-enhanced friction stir welding
US7121448B2 (en) * 2003-08-29 2006-10-17 General Electric Company Friction stir welding apparatus and associated thermal management systems and methods
CN101966621A (en) * 2010-11-04 2011-02-09 哈尔滨工业大学 Electric arc preheating repair welding method for stir friction plug
EP2338633A1 (en) * 2009-12-22 2011-06-29 Harms & Wende GmbH & Co. KG Friction welding method and friction stir welding device with increase of load at the end of welding
WO2015004794A1 (en) * 2013-07-12 2015-01-15 株式会社 日立製作所 Method for friction stir welding and device for friction stir welding
WO2015045299A1 (en) 2013-09-30 2015-04-02 Jfeスチール株式会社 Friction stir welding method for structural steel and manufacturing method for bonded joint for structural steel
KR101571120B1 (en) * 2009-12-31 2015-11-24 재단법인 포항산업과학연구원 Friction stir welding method and apparatus thereof
CN105579184A (en) * 2013-09-30 2016-05-11 杰富意钢铁株式会社 Friction stir welding method for steel sheets and method of manufacturing joint
CN105579183A (en) * 2013-09-30 2016-05-11 杰富意钢铁株式会社 Friction stir welding method for steel sheets and method of manufacturing joint
KR20170109030A (en) 2015-03-19 2017-09-27 제이에프이 스틸 가부시키가이샤 Friction stir welding apparatus for structural steel
WO2017169991A1 (en) 2016-03-31 2017-10-05 Jfeスチール株式会社 Method and device for friction stir bonding of structural steel
WO2017169992A1 (en) 2016-03-31 2017-10-05 Jfeスチール株式会社 Method and device for friction stir bonding of structural steel
JP6231236B1 (en) * 2017-03-30 2017-11-15 株式会社日立製作所 Friction stir welding apparatus, friction stir welding control apparatus, and friction stir welding method
CN107877016A (en) * 2017-12-11 2018-04-06 重集团天津重工有限公司 The sensing heating stirring friction composition welding method and device of steel docking
US10016837B2 (en) 2003-06-09 2018-07-10 Uacj Corporation Method of joining heat-treatable aluminum alloy members by friction stir welding
KR20190039743A (en) 2016-10-11 2019-04-15 제이에프이 스틸 가부시키가이샤 Method and apparatus for friction stir welding
KR20190039985A (en) 2016-10-11 2019-04-16 제이에프이 스틸 가부시키가이샤 Method and apparatus for friction stir welding
JP2019155394A (en) * 2018-03-12 2019-09-19 国立大学法人大阪大学 Friction agitation welding method and friction agitation welding device
CN111112824A (en) * 2020-01-13 2020-05-08 重庆科技学院 Heterogeneous metal friction stir welding method
CN111151865A (en) * 2020-01-13 2020-05-15 重庆科技学院 Heterogeneous metal friction stir welding system
CN111805106A (en) * 2020-08-07 2020-10-23 张洪涛 Stirring induction welding method and stirring head
CN112404693A (en) * 2020-11-09 2021-02-26 江苏科技大学 Friction stir welding bottom auxiliary heating device for light alloy plate
CN112917000A (en) * 2021-03-31 2021-06-08 西南交通大学 Friction stir welding system and method based on phase change temperature control

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6554029B2 (en) * 2015-11-24 2019-07-31 川崎重工業株式会社 Friction stir spot welding device and friction stir spot welding method
CN108637505A (en) * 2018-05-20 2018-10-12 北京工业大学 A kind of asymmetric argon tungsten-arc welding preheating-stirring friction composition welding method

Cited By (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6780525B2 (en) * 2001-12-26 2004-08-24 The Boeing Company High strength friction stir welding
US10016837B2 (en) 2003-06-09 2018-07-10 Uacj Corporation Method of joining heat-treatable aluminum alloy members by friction stir welding
US7121448B2 (en) * 2003-08-29 2006-10-17 General Electric Company Friction stir welding apparatus and associated thermal management systems and methods
US6913186B2 (en) 2003-09-11 2005-07-05 The Boeing Company Apparatus and method for friction stir welding with a variable speed pin
EP1640103A1 (en) 2004-09-27 2006-03-29 Mitsubishi Heavy Industries, Ltd. Friction stir welding method and apparatus
US7156277B2 (en) 2004-09-27 2007-01-02 Mitsubishi Heavy Industries, Ltd. Friction stir welding method and apparatus
US7078647B2 (en) 2004-10-21 2006-07-18 Wisconsin Alumni Research Foundation Arc-enhanced friction stir welding
EP2338633A1 (en) * 2009-12-22 2011-06-29 Harms & Wende GmbH & Co. KG Friction welding method and friction stir welding device with increase of load at the end of welding
WO2011076853A1 (en) * 2009-12-22 2011-06-30 Harms & Wende Gmbh & Co. Kg Friction welding process and friction stir spot welder with an increase in the force at the end of welding
KR101571120B1 (en) * 2009-12-31 2015-11-24 재단법인 포항산업과학연구원 Friction stir welding method and apparatus thereof
CN101966621A (en) * 2010-11-04 2011-02-09 哈尔滨工业大学 Electric arc preheating repair welding method for stir friction plug
WO2015004794A1 (en) * 2013-07-12 2015-01-15 株式会社 日立製作所 Method for friction stir welding and device for friction stir welding
KR101873126B1 (en) * 2013-09-30 2018-06-29 제이에프이 스틸 가부시키가이샤 Friction stir welding method for steel sheets and method of manufacturing joint
CN105579183B (en) * 2013-09-30 2018-10-26 杰富意钢铁株式会社 The friction stirring connecting method of steel plate and the manufacturing method of junction joint
KR20160054001A (en) * 2013-09-30 2016-05-13 제이에프이 스틸 가부시키가이샤 Friction stir welding method for steel sheets and method of manufacturing joint
JP5943142B2 (en) * 2013-09-30 2016-06-29 Jfeスチール株式会社 Friction stir welding method for structural steel and method for manufacturing a joint for structural steel
WO2015045299A1 (en) 2013-09-30 2015-04-02 Jfeスチール株式会社 Friction stir welding method for structural steel and manufacturing method for bonded joint for structural steel
KR102194358B1 (en) * 2013-09-30 2020-12-23 제이에프이 스틸 가부시키가이샤 Friction stir welding method for steel sheets and method of manufacturing joint
CN105579184A (en) * 2013-09-30 2016-05-11 杰富意钢铁株式会社 Friction stir welding method for steel sheets and method of manufacturing joint
CN105579183A (en) * 2013-09-30 2016-05-11 杰富意钢铁株式会社 Friction stir welding method for steel sheets and method of manufacturing joint
US9821407B2 (en) 2013-09-30 2017-11-21 Jfe Steel Corporation Friction stir welding method for structural steel and method of manufacturing joint for structural steel
US9833861B2 (en) 2013-09-30 2017-12-05 Jfe Steel Corporation Friction stir welding method for steel sheets and method of manufacturing joint
CN105579184B (en) * 2013-09-30 2018-09-04 杰富意钢铁株式会社 The friction stirring connecting method of steel plate and the manufacturing method of junction joint
KR20180044444A (en) * 2013-09-30 2018-05-02 제이에프이 스틸 가부시키가이샤 Friction stir welding method for steel sheets and method of manufacturing joint
US10766099B2 (en) 2015-03-19 2020-09-08 Jfe Steel Corporation Friction stir welding apparatus for structural steel
KR20170109030A (en) 2015-03-19 2017-09-27 제이에프이 스틸 가부시키가이샤 Friction stir welding apparatus for structural steel
KR20180119636A (en) 2016-03-31 2018-11-02 제이에프이 스틸 가부시키가이샤 Method and apparatus for friction stir welding of structural steel
US11241755B2 (en) 2016-03-31 2022-02-08 Jfe Steel Corporation Friction stir welding method and apparatus for structural steel
WO2017169991A1 (en) 2016-03-31 2017-10-05 Jfeスチール株式会社 Method and device for friction stir bonding of structural steel
KR20180119635A (en) 2016-03-31 2018-11-02 제이에프이 스틸 가부시키가이샤 Method and apparatus for friction stir welding of structural steel
WO2017169992A1 (en) 2016-03-31 2017-10-05 Jfeスチール株式会社 Method and device for friction stir bonding of structural steel
KR20190039743A (en) 2016-10-11 2019-04-15 제이에프이 스틸 가부시키가이샤 Method and apparatus for friction stir welding
KR20190039985A (en) 2016-10-11 2019-04-16 제이에프이 스틸 가부시키가이샤 Method and apparatus for friction stir welding
KR102182975B1 (en) * 2017-03-30 2020-11-25 가부시키가이샤 히타치 파워 솔루션즈 Friction stir welding device, friction stir welding controlling device, and friction stir welding method
JP6231236B1 (en) * 2017-03-30 2017-11-15 株式会社日立製作所 Friction stir welding apparatus, friction stir welding control apparatus, and friction stir welding method
CN108687439A (en) * 2017-03-30 2018-10-23 株式会社日立电力解决方案 Friction-stir engagement device and method and friction-stir connection control device
US10596657B2 (en) 2017-03-30 2020-03-24 Hitachi Power Solutions Co., Ltd. Friction stir welding apparatus, friction stir welding control device, and friction stir welding method
EP3398708A1 (en) * 2017-03-30 2018-11-07 Hitachi, Ltd. Friction stir welding apparatus, friction stir welding control device, and friction stir welding method
KR20180111589A (en) * 2017-03-30 2018-10-11 가부시키가이샤 히타치 파워 솔루션즈 Friction stir welding device, friction stir welding controlling device, and friction stir welding method
CN107877016B (en) * 2017-12-11 2020-04-14 一重集团天津重工有限公司 Steel butt-jointed induction heating-stirring friction composite welding method and device
CN107877016A (en) * 2017-12-11 2018-04-06 重集团天津重工有限公司 The sensing heating stirring friction composition welding method and device of steel docking
JP2019155394A (en) * 2018-03-12 2019-09-19 国立大学法人大阪大学 Friction agitation welding method and friction agitation welding device
CN111151865A (en) * 2020-01-13 2020-05-15 重庆科技学院 Heterogeneous metal friction stir welding system
CN111112824A (en) * 2020-01-13 2020-05-08 重庆科技学院 Heterogeneous metal friction stir welding method
CN111151865B (en) * 2020-01-13 2022-03-01 重庆科技学院 Heterogeneous metal friction stir welding system
CN111112824B (en) * 2020-01-13 2022-03-01 重庆科技学院 Heterogeneous metal friction stir welding method
CN111805106A (en) * 2020-08-07 2020-10-23 张洪涛 Stirring induction welding method and stirring head
CN112404693A (en) * 2020-11-09 2021-02-26 江苏科技大学 Friction stir welding bottom auxiliary heating device for light alloy plate
CN112917000A (en) * 2021-03-31 2021-06-08 西南交通大学 Friction stir welding system and method based on phase change temperature control

Also Published As

Publication number Publication date
JP4235874B2 (en) 2009-03-11

Similar Documents

Publication Publication Date Title
JP2003094175A (en) Heating device for method for friction stir welding
JP4509036B2 (en) Electromagnetic radiation assisted friction welding
US6521861B2 (en) Method and apparatus for increasing welding rate for high aspect ratio welds
JP3200387U (en) System using consumables with welding puddles
CN109475980B (en) Laser welding, cladding and/or additive manufacturing system and method of laser welding, cladding and/or additive manufacturing
JP3081808B2 (en) Friction stir welding
JP6407855B2 (en) Friction stir welding method for steel plate and method for manufacturing joint
US20120024828A1 (en) Method of hybrid welding and hybrid welding apparatus
EP2263823A1 (en) Composite welding method and composite welding apparatus
JP2008114290A (en) High temperature electron beam welding
JP4313714B2 (en) Friction stir welding apparatus and friction stir welding method
CN108687439B (en) Friction stir welding device and method, and friction stir welding control device
JP4235873B2 (en) Friction stir welding method heating device
JP4335819B2 (en) Metal processing method
JP4865830B2 (en) Metal surface modification method
JP2003225784A (en) Laser brazing method and its device
KR101309219B1 (en) Apparatus of friction stir spot welding using laser beam
KR20190008085A (en) Method and system of using a consumable and a heat source with a weld puddle
CN117733349A (en) Laser-assisted friction stir welding device and method
JPS58184085A (en) Laser welding method
JP2010234374A (en) Laser welding method and laser welding device
JPS58184084A (en) Laser welding method
JP2003033886A (en) Device and method for jointing
KR20090050531A (en) Laser brazing device and method thereof

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050912

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050912

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080514

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080710

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081120

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081203

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111226

Year of fee payment: 3

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080710

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121226

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131226

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141226

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees