JP2003094063A - Electrodialysis method - Google Patents

Electrodialysis method

Info

Publication number
JP2003094063A
JP2003094063A JP2001290375A JP2001290375A JP2003094063A JP 2003094063 A JP2003094063 A JP 2003094063A JP 2001290375 A JP2001290375 A JP 2001290375A JP 2001290375 A JP2001290375 A JP 2001290375A JP 2003094063 A JP2003094063 A JP 2003094063A
Authority
JP
Japan
Prior art keywords
electrodialysis
water
ion
conductivity
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001290375A
Other languages
Japanese (ja)
Inventor
Shigeo Hotokegawa
繁雄 佛川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PARTNER KK
Original Assignee
PARTNER KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PARTNER KK filed Critical PARTNER KK
Priority to JP2001290375A priority Critical patent/JP2003094063A/en
Publication of JP2003094063A publication Critical patent/JP2003094063A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a technology of electrodialysis capable of efficiently obtaining harmless fresh water. SOLUTION: In the electrodialysis method uses a plurality of electrodialytic chamber sets comprising a group of ion exchange membranes having a selective ion permeability, wherein for at least either of a group of electrodialytic chambers comprising ion (electrolyte) enriching sections or a group of electrodialytic chambers comprising ion (electrolyte) removing sections, current efficiency can be improved by allowing a current to flow in a serial direction to the plurality of electrolytic chamber sets having solution passage structures disposed in cascade so as to allow the conductivity (electric conductivity) of each electrolytic chamber comprising the group of electrolytic chambers to change step by step, thereby the harmless fresh water can be efficiently obtained. Furthermore, high-conductivity and harmless fresh water can be efficiently obtained by supplying low-conductivity water containing a water pollutant of high BOD, or the like, to the electrolytic chambers on the ion (electrolyte) enriching section sides and by supplying the high-conductivity water not containing water pollutants such as the sea water to the electrolytic chambers on the ion (electrolyte) removing section sides.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は主として廃水の処理
あるいは利用の分野へ応用するに適した電気透析方法の
技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a technique of electrodialysis method suitable for application to the field of wastewater treatment or utilization.

【0002】[0002]

【従来の技術】イオン交換膜を分離隔壁とした2液間に
通電してイオンの移動を行うところの電気透析方法は、
これまで水処理分野に適用された例は少なく、製塩以外
には見るべき用途が無かった。その寄って来たるところ
は、低濃度塩水の電気抵抗値の増大に起因する。すなわ
ち、処理水の最終到達水質(塩濃度)が、他の方法に比
較して不十分なうらみが有った。 技術的に言えば、こ
れまでの電気透析方法においては電気抵抗値の異なる塩
水がパラレル(並列状)に配置され、電流は主として電
気抵抗値の小さい高塩濃度部分に通電され、処理水であ
る低塩濃度水の塩除去率を上げることが困難であった。
2. Description of the Related Art An electrodialysis method in which ions are moved by passing an electric current between two liquids using an ion exchange membrane as a partition wall,
Up to now, it has been rarely applied to the water treatment field, and there was no other application to see except for salt production. The place where it comes near is due to an increase in the electric resistance value of low-concentration salt water. That is, the final water quality (salt concentration) of the treated water was insufficient compared with other methods. Technically speaking, in the conventional electrodialysis methods, salt water having different electric resistance values are arranged in parallel, and the electric current is mainly supplied to a high salt concentration portion having a small electric resistance value and is treated water. It was difficult to increase the salt removal rate of low salt water.

【0003】[0003]

【発明が解決しようとする課題】本発明の主として解決
しようとしている課題のひとつは、再度使用に耐える低
汚染淡水(低塩水)を効率良く安価に得ることであり、
もうひとつの課題は(時には他の水処理技術と組み合わ
せて)効率良く汚染水を除害しようとするものである。
One of the main problems to be solved by the present invention is to efficiently and inexpensively obtain low-polluted fresh water (low salt water) that can be reused.
Another challenge is to efficiently remove contaminated water (sometimes in combination with other water treatment technologies).

【0004】[0004]

【課題を解決するための手段】本発明者は、電気伝導度
すなわち電解質濃度の異なる導電水を電気透析するにあ
たり、各(電解質濃度)導電度の水をシリース(直列
状)に配置して通電することにより、低電解質濃度水に
も多量の電流が通電されて電解質除去率が向上し上記問
題を解決できることを見いだし、本発明を成すに至っ
た。
Means for Solving the Problems In electrodialyzing conductive water having different electric conductivity, that is, electrolyte concentration, the present inventor arranges water of each (electrolyte concentration) conductivity in series (in series) to conduct electricity. By doing so, it was found that a large amount of current is applied to low electrolyte concentration water, the electrolyte removal rate is improved, and the above problems can be solved, and the present invention has been accomplished.

【0005】本願の請求項1の発明は、選択的イオン透
過性を有するイオン交換膜群により構成される電気透析
室の複数組を有し、かつ通電によるイオン移動により、
イオン交換膜をはさんで隣接する電気透析室間にイオン
(電解質)の濃度差を生ぜしめる所謂電気透析方法にお
いて、イオン(電解質)濃縮部を構成する電気透析室群
またはイオン(電解質)除去部を構成する電気透析室群
の少なくとも一方が、該電気透析室群を構成する各電気
透析室の導電度(電気伝導度)が段階的に変化する様に
カスケード状に配列した通液構造を持つ該複数組の電気
透析室に対し、直列方向に通電することを特徴とする電
気透析方法である。
The invention of claim 1 of the present application has a plurality of sets of electrodialysis chambers constituted by a group of ion-exchange membranes having selective ion permeability, and by ion transfer by energization,
In a so-called electrodialysis method that causes a difference in ion (electrolyte) concentration between adjacent electrodialysis chambers across an ion exchange membrane, an electrodialysis chamber group or an ion (electrolyte) removal unit that constitutes an ion (electrolyte) concentration unit At least one of the electrodialysis room groups constituting the electrodialysis room group has a liquid passage structure arranged in cascade so that the electric conductivity (electrical conductivity) of each electrodialysis room constituting the electrodialysis room group changes stepwise. The electrodialysis method is characterized by energizing the plurality of sets of electrodialysis chambers in a serial direction.

【0006】本願の請求項2の発明は、イオン交換膜を
用いた電気透析を行うにあたり、イオン(電解質)濃縮
部側の電気透析室には非イオン性の水質汚濁物質を含む
低導電度水を給水し、イオン(電解質)除去部側の電気
透析室には非イオン性水質汚濁物質を含まぬ高導電度水
を給水すること特徴とする請求項1に記載の電気透析方
法である。
According to the invention of claim 2 of the present application, in performing electrodialysis using an ion exchange membrane, a low conductivity water containing a nonionic water pollutant is contained in the electrodialysis chamber on the ion (electrolyte) concentrating section side. 2. The electrodialysis method according to claim 1, wherein the electrodialysis chamber on the side of the ion (electrolyte) removing unit is supplied with high-conductivity water containing no nonionic water pollutant.

【0007】本願の請求項3の発明は、前記、非イオン
性の水質汚濁物質を含む低導電度水が廃水類であり、非
イオン性水質汚濁物質を含まぬ高導電度水が海水である
ことを特徴とする請求項2に記載の電気透析方法であ
る。
In the invention of claim 3 of the present application, the low-conductivity water containing the nonionic water pollutant is wastewater, and the high-conductivity water containing no nonionic water pollutant is seawater. The electrodialysis method according to claim 2, wherein:

【0008】本願の請求項4の発明は、前記、非イオン
性の水質汚濁物質を含む低導電度水が下水の処理水であ
り、非イオン性水質汚濁物質を含まぬ高導電度水が海水
であることを特徴とする請求項2に記載の電気透析方法
である。
In the invention of claim 4 of the present application, the low conductivity water containing the nonionic water pollutant is treated water of the sewage, and the high conductivity water containing no nonionic water pollutant is seawater. The electrodialysis method according to claim 2, wherein

【0009】本願の請求項5の発明は、イオン交換膜を
用いた電気透析を行うにあたり、微生物に対する毒性を
有する水質汚濁物質と微生物分解可能な水質汚濁物質を
共に含有する廃水と無毒な水との間でイオン移動を行う
ことにより、微生物分解可能な水質汚濁物質と微生物に
対する毒性を有する水質汚濁物質を分離した後に、個別
に廃水処理操作を行うことを特徴とする請求項1に記載
の電気透析方法である。
According to the invention of claim 5 of the present application, in performing electrodialysis using an ion exchange membrane, waste water containing both a water pollutant that is toxic to microorganisms and a water pollutant that can be decomposed by microorganisms and non-toxic water are used. The wastewater treatment operation is performed individually after separating the water pollutants that are microbially degradable and the water pollutants that are toxic to microorganisms by performing ion transfer between the two. It is a dialysis method.

【0010】本願の請求項6の発明は、イオン交換膜を
用いた電気透析を行うにあたり、少なくとも一つの電気
透析室内液中にイオン交換樹脂を存在させることを特徴
とする請求項1に記載の電気透析方法である。
The invention according to claim 6 of the present application is characterized in that, when performing electrodialysis using an ion exchange membrane, an ion exchange resin is present in at least one electrodialysis chamber liquid. It is an electrodialysis method.

【0011】本願の請求項7の発明は、電気透析室内液
中に存在させるイオン交換樹脂が両性イオン交換樹脂で
あることを特徴とする請求項1に記載の電気透析方法で
ある。
The invention of claim 7 of the present application is the electrodialysis method according to claim 1, characterized in that the ion exchange resin present in the electrodialysis chamber liquid is an amphoteric ion exchange resin.

【0012】[0012]

【発明の実施の形態】本発明の特徴の第一は、導電度の
異なる各電気透析室に対し直列方向に通電することであ
り、本限定により各電気透析室を通過する電流量は同一
と成り、各室の電位勾配は電気抵抗(導電度の逆数)に
比例する。そして、電解質の除去を必要とする被処理水
を、高濃度側から低濃度側へとカスケード状にイオン除
去部を通過させていくことにより、最終透析室通過後の
処理水中のイオン(電解質)は効率良く除去される。た
だし、全部の透析室を直列配置とすることは(特に高電
解質濃度の場合)電流効率が悪く、1直列配置の透析室
通過時の電解質濃度の低下率(流出水の電解質濃度/流
入水の電解質濃度)が20〜30%程度に留め、3〜4
段の電気透析を行うことにより所望の電解質濃度とする
方法が現実的である。直列配置の各電気透析室の膜面積
は同一である必要は無く、イオン濃度が低い部分では通
電面積(膜面積)を増加させる方が好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION The first feature of the present invention is to energize each electrodialysis chamber having different conductivity in a serial direction. Due to this limitation, the amount of current passing through each electrodialysis chamber is the same. And the potential gradient in each chamber is proportional to the electrical resistance (reciprocal of conductivity). Then, the water to be treated that requires the removal of the electrolyte is passed through the ion removal section in a cascade form from the high concentration side to the low concentration side, so that the ions (electrolyte) in the treated water after passing through the final dialysis chamber Are efficiently removed. However, arranging all the dialysis chambers in series has a poor current efficiency (especially in the case of high electrolyte concentration), and the rate of decrease in the electrolyte concentration when passing through one dialysis chamber (electrolyte concentration of outflow water / inflow water) Electrolyte concentration) is kept at about 20-30%, 3-4
A practical method is to achieve a desired electrolyte concentration by carrying out staged electrodialysis. The membrane areas of the electrodialysis chambers arranged in series do not have to be the same, and it is preferable to increase the energization area (membrane area) in the portion where the ion concentration is low.

【0013】アニオン交換膜とカチオン交換膜の対を有
する電気透析膜をスパイラル状に成形し、該スパイラル
の中心部と外周部との間に通電することは特に好ましい
装置形状である。 前述の如く、電解質の除去を必要と
する被処理水を、高濃度側から低濃度側へとカスケード
状にイオン除去部を通過させるには、各透析部分がスパ
イラル状に連続している構造が最も望ましい。現在 一
般的に使用されているイオン交換膜は架橋ポリスチレン
の誘導体であり柔軟性が無いことから平板状で使用され
ているが、他の材質(可撓性のイオン交換樹脂)を用い
ることや事前成形等によりスパイラル状に成形すること
は困難なことではない。 スパイラルはイオン(電解
質)濃縮部とイオン(電解質)除去部を併せ持つダブル
スパイラル構造である。 電解質の除去を必要とする高
塩濃度水は中心部から外周部に向かって流れ、低塩濃度
水部分の方が通電断面積が増大することが望ましい。
It is a particularly preferable apparatus shape to form an electrodialysis membrane having a pair of anion exchange membrane and cation exchange membrane into a spiral shape, and to supply electricity between the center portion and the outer peripheral portion of the spiral. As described above, in order to allow the water to be treated, which requires the removal of the electrolyte, to pass through the ion removing section in a cascade form from the high concentration side to the low concentration side, a structure in which each dialysis portion is spirally continuous is required. Most desirable. The ion exchange membranes that are currently generally used are in the form of flat plates because they are derivatives of cross-linked polystyrene and are not flexible, but other materials (flexible ion exchange resin) or It is not difficult to form a spiral shape by molding or the like. The spiral has a double spiral structure that has both an ion (electrolyte) concentration part and an ion (electrolyte) removal part. It is desirable that the high-salt-concentration water that requires removal of the electrolyte flows from the central portion toward the outer peripheral portion, and that the low-salt-concentration water portion has a larger current cross-sectional area.

【0014】2液間のイオン移動が濃縮操作を必要とす
るものではなければ、高塩濃度水から低塩濃度水へイオ
ンを移動させることは交流を通電しても可能ではある
が、最終脱塩濃度の点から通電電流は(イオン濃縮ので
きる)直流であることが望ましい。 またイオンの捕集
効率を高める為に電解質除去用透析室の内部(液中)に
イオン交換樹脂を配置することも本発明の実施態様のひ
とつである。 この液中イオン交換樹脂の形状は粒状に
限定される物ではなく、通液抵抗を減らしながら液の混
合状態を改善する様にネット状とすることも望ましい。
同一分子内にアニオン性基とカチオン性基を併せ持つ
両性イオン交換樹脂(例えば2−アクリルアミド−2−
メチルプロパンスルホン酸とジメチルアミノプロピルア
クリルアミドとの架橋性共重合物等)は、イオン捕集に
特に適している。
If the ion transfer between the two liquids does not require a concentration operation, it is possible to transfer the ions from the high salt concentration water to the low salt concentration water even if an alternating current is applied, but the final desorption is performed. From the viewpoint of salt concentration, it is desirable that the energizing current be direct current (capable of ion concentration). It is also an embodiment of the present invention to dispose an ion exchange resin inside (in the liquid) of the dialysis chamber for electrolyte removal in order to enhance the efficiency of collecting ions. The shape of the ion-exchange resin in the liquid is not limited to a granular shape, and it is also preferable that the ion-exchange resin in the liquid has a net shape so as to improve the mixed state of the liquid while reducing the liquid passage resistance.
An amphoteric ion exchange resin having both an anionic group and a cationic group in the same molecule (for example, 2-acrylamido-2-
Crosslinkable copolymers of methylpropanesulfonic acid and dimethylaminopropylacrylamide, etc.) are particularly suitable for ion collection.

【0015】本発明は、廃水を用いて有用な淡水を得る
ことを主たる目的とする。かかる目的を達成するには、
各種汚染物質を分離し、無害な水あるいは処理しやすい
性状の水を得ることが有益である。海水は塩(すなわち
電解質)を含む以外は清澄な水であり、脱塩により容易
に飲料水・農業用水等の有益な水に変化する。 人の生
活から発生する廃水は主として有機物(非電解質)を含
有し、塩の含有量は少ない場合が多い。下水処理場にお
いて行われる処理は、一次処理として単純沈降,二次処
理として生物処理が採用されているが、二次処理を行っ
た場合であっても、未だ用水には不適な水質であり海や
河川等の公共水域に放流されている。これら、用水とし
て使用できぬ非電解質含有廃水類を海域に放流する前に
海水との間で電解質の授受を行い、海水中の電解質を該
廃水類へと移動させても海域の汚染にはつながらない。
一方脱塩された海水は汚染物質を含まぬ淡水へと生ま
れ変わり用水として使用可能と成る。電気透析による脱
塩の程度が、農業用水や飲料水として不十分な場合、逆
浸透膜法等を併用する事により所望の水質を得ることも
できる。海水中の電解質を低導電度水へと移動させる本
方法は、海水のみの電気透析により脱塩を行うよりもエ
ネルギー効率が良いことは明らかである。
The main object of the present invention is to obtain useful fresh water by using waste water. To achieve this goal,
It is beneficial to separate various pollutants and obtain harmless water or water that is easily treated. Seawater is clear water except that it contains salt (that is, electrolyte), and can be easily converted into useful water such as drinking water and agricultural water by desalting. Waste water generated from human life mainly contains organic substances (non-electrolytes), and often has a low salt content. As for the treatment performed at the sewage treatment plant, simple sedimentation is used as the primary treatment and biological treatment is used as the secondary treatment. However, even when the secondary treatment is performed, the water quality is still unsuitable for water use and It has been released into public waters such as rivers and rivers. Even if these non-electrolyte-containing wastewaters that cannot be used as water are discharged into the sea before they are discharged, and the electrolyte in the seawater is transferred to the wastewater, it does not lead to pollution of the sea. .
On the other hand, desalinated seawater is reborn as fresh water without pollutants and can be used as water. When the degree of desalting by electrodialysis is insufficient as agricultural water or drinking water, a desired water quality can be obtained by using the reverse osmosis membrane method together. It is clear that this method of transferring electrolytes in seawater to low conductivity water is more energy efficient than desalting by electrodialysis of seawater alone.

【0016】本発明の第五の限定は、微生物に対する毒
性を有する水質汚濁物質と微生物分解可能な水質汚濁物
質を共に含有する廃水に電気透析を行い、両水質汚濁物
質を分離した後に、個別に廃水処理操作を行うことを特
徴とする。例えば硝酸は各種工業用途に用いられ廃水と
して排出されているが、硝酸イオンは窒素源として富栄
養化物質規制の対象と成る。 硝酸イオンは生物脱窒法
により容易に還元除去できるが、工業用途に用いられた
状態では微生物処理に対する有害物質を含んでいるのが
常である。 例えばステンレスやアルミの表面処理に用
いられた場合は多価金属イオンを含有し、そのままでは
生物処理が出来ない。 製塩用のカチオン交換膜はマグ
ネシウム等の多価金属イオンを通過させないことは公知
であり、かかるカチオン交換膜を利用して多価金属イオ
ン含有硝酸を前述の電気透析にかければ、硝酸は無害な
低導電度水へと移行し生物脱窒可能と成る。 また多価
金属イオンを除去した硝酸は濃度調整により該工場にお
いて再利用することも可能と成る。 硝酸以外の酸にお
いても、かかる方法により再利用を図ることができる。
また、化学反応を伴う工場廃水(例えば半導体製造廃
水)には多量の塩と難分解性有機物を共に含む例が多
い。 かかる廃水は電気透析により脱塩した後に、難分
解性有機物の蒸発濃縮を行い、最終的に焼却処理するこ
とが望ましい。脱塩操作を行わない場合は多量の灰分を
発生し処理困難とされている。
The fifth limitation of the present invention is to subject the wastewater containing both the water pollutant having toxicity to microorganisms and the water pollutant capable of microbial decomposition to electrodialysis to separate both water pollutants, and then to separate them. It is characterized by performing a wastewater treatment operation. For example, nitric acid is used for various industrial purposes and is discharged as wastewater, but nitrate ions are subject to eutrophication regulation as a nitrogen source. Nitrate ions can be easily reduced and removed by a biological denitrification method, but when used in industrial applications, they usually contain harmful substances for microbial treatment. For example, when it is used for surface treatment of stainless steel or aluminum, it contains polyvalent metal ions and cannot be biologically treated as it is. It is known that cation exchange membranes for salt production do not pass polyvalent metal ions such as magnesium, and if polyvalent metal ion-containing nitric acid is applied to the above electrodialysis using such cation exchange membranes, nitric acid is harmless. It becomes a low conductivity water and becomes biologically denitrifying. Further, nitric acid from which polyvalent metal ions have been removed can be reused in the factory by adjusting the concentration. Even acids other than nitric acid can be reused by this method.
Further, in many cases, industrial wastewater (for example, semiconductor manufacturing wastewater) involving a chemical reaction contains a large amount of both salts and persistent organic substances. It is desirable that such wastewater be desalted by electrodialysis, then evaporate and concentrate the hardly decomposable organic matter, and finally be incinerated. If desalting is not performed, a large amount of ash is generated and it is considered difficult to process.

【0017】[0017]

【作用】本発明の基本原理は、電気透析を行うにあた
り、導電度の異なる水を直列に配して通電することによ
り、各室に流れる電流値は一定であり、言い換えれば高
導電度水の電位勾配は低く、低導電度水の電位勾配は高
く成る様に自動的に調節される。 水の流れも多段直列
であることから一定電流に対するイオン移動量は段数に
比例して増大し、細い電線を使用しても高電力消費が可
能と成る。
The basic principle of the present invention is that when electrodialysis is performed, water having different conductivity is arranged in series and energized so that the current value flowing in each chamber is constant, in other words, high conductivity water is supplied. The potential gradient is low and the potential gradient of low conductivity water is automatically adjusted to be high. Since the water flow is also multi-stage in series, the amount of ion movement for a constant current increases in proportion to the number of stages, and high power consumption is possible even if a thin electric wire is used.

【0018】[0018]

【実施例】次に実施例によって、本発明を具体的に説明
するが、本発明はその要旨を超えない限り、以下の実施
例に制約されるものではない。
EXAMPLES Next, the present invention will be described in detail with reference to Examples, but the present invention is not limited to the following Examples unless it exceeds the gist.

【0019】(実施例−1)アニオン交換膜とカチオン
交換膜を交互に配置して透析室を構成し、通液可能と成
る様に1透析室おき(電解質除去部は隣の電解質除去部
に、電解質濃縮部は隣の電解質濃縮部)に直列連結した
多段透析室対から成る電気透析装置を用いてステンレス
の酸洗工程から発生する硝酸廃液の電気透析を行った。
該廃液を前記装置の電解質除去部側に通液し、電解質
濃縮部側に重金属を含まぬ硝酸移行水を該廃液と向流状
に通液してイオン交換膜の選択的透過性を利用して重金
属を含まぬ精製硝酸を得た結果を以下に示す。 1.イオン交換膜の樹脂組成の種類:ポリスチレン系 2.イオン交換膜のサイズ :幅5cm×長さ40cm 3.透析室対の段数 :256段 4.透析電流 :約 27アンペア 5.透析電圧 :約 200ボルト直流 6.廃液中の硝酸イオン濃度 :15重量% 7.廃液中の重金属イオン濃度 :3重量% 8.硝酸移行水 :水道水 上記の条件にて電気透析を実施し、24時間にて17重
量%硝酸2m3 を得、再利用に供した。
(Example 1) Anion exchange membranes and cation exchange membranes are alternately arranged to form a dialysis chamber, and every other dialysis chamber is arranged so that liquid can be passed (electrolyte removing section is located next to electrolyte removing section). , The electrolyte concentrating section was connected to the adjacent electrolyte concentrating section) in series, and an electrodialyzer consisting of a pair of multistage dialysis chambers was used to electrodialyze the nitric acid waste liquid generated from the pickling step of stainless steel.
The waste liquid is passed through the electrolyte removal portion side of the device, and the nitric acid transfer water containing no heavy metal is passed through the electrolyte concentration portion side countercurrently with the waste liquid to utilize the selective permeability of the ion exchange membrane. The result of obtaining purified nitric acid containing no heavy metal is shown below. 1. Type of resin composition of ion exchange membrane: polystyrene type 2. Size of ion exchange membrane: width 5 cm x length 40 cm 3. Number of stages in dialysis room: 256 stages 4. Dialysis current: about 27 amps 5. Dialysis voltage: About 200 V DC 6. Nitrate ion concentration in waste liquid: 15% by weight 7. Heavy metal ion concentration in the waste liquid: 3% by weight 8. Nitric acid-transferred water: Tap water Electrodialysis was carried out under the above conditions to obtain 2 m3 of 17 wt% nitric acid in 24 hours, which was then reused.

【0020】(実施例−2)実施例−1に使用した硝酸
廃液を水道水にて100倍に希釈し、メタノールを添加
しPHをコントロールしながら硝酸還元菌にて脱窒処理
を行ったところ、重金属イオンの為か、処理できなかっ
た。一方、実施例−1の電気透析にて得られた硝酸を水
道水にて100倍に希釈し、メタノールを添加しPHを
コントロールしながら硝酸還元菌にて脱窒処理を行った
ところ、生物処理が阻害されることなく、硝酸は順調に
窒素ガスに還元された。
(Example-2) The nitric acid waste liquid used in Example-1 was diluted 100 times with tap water, and denitrification treatment was carried out with nitric acid reducing bacteria while adding methanol and controlling PH. However, it could not be processed because of heavy metal ions. On the other hand, nitric acid obtained by the electrodialysis of Example-1 was diluted 100 times with tap water, and denitrification treatment was performed with nitrate-reducing bacteria while adding methanol and controlling PH. Nitric acid was successfully reduced to nitrogen gas without being disturbed.

【0021】(実施例−3)アニオン交換膜とカチオン
交換膜を交互に配置して透析室を構成し、通液可能と成
る様に1透析室おき(電解質除去部は隣の電解質除去部
に、電解質濃縮部は隣の電解質濃縮部)に直列連結した
多段透析室対から成る電気透析装置を用いて、都市下水
の三次(活性汚泥処理後に硫酸バンドによる凝集)処理
水(水質;溶存強熱残分濃度:約 450ppm,アン
モニウムイオン濃度:約 25ppm,SS:3ppm
以下)を電解質除去部側流量10に対し電解質濃縮部側
流量1の割合と成る様、下記条件にて向流状に通液し、
イオン移動を行った。 1.イオン交換膜の樹脂組成の種類:ポリスチレン系 2.イオン交換膜のサイズ :幅25cm×長さ40cm 3.透析室対の段数 :64段 4.イオン交換樹脂充填 :電解質除去部出口側3室に両性樹脂 5.透析電流 :約 27アンペア 6.透析電圧 :約 200ボルト直流 7.電解質除去部流出水窒素含有量:1〜2ppm 8.電解質濃縮部流出水窒素含有量:180〜200ppm 得られた電解質濃縮部流出水に水酸化カルシウムを加え
てアンモニアストリッピングを行い、都市下水中の大部
分の窒素分を効率良く除去出来た。
(Embodiment 3) Anion exchange membranes and cation exchange membranes are alternately arranged to form a dialysis chamber, and every other dialysis chamber is provided so that liquid can be passed through (the electrolyte removing portion is placed in the adjacent electrolyte removing portion). , Electrolyte concentrating part is an electrodialyzer consisting of a multi-stage dialysis chamber pair connected in series to the adjacent electrolyte concentrating part), and treated water (water quality; dissolved ignition) Residual concentration: about 450 ppm, ammonium ion concentration: about 25 ppm, SS: 3 ppm
The following) is flowed countercurrently under the following conditions so that the flow rate of the electrolyte removal section side is 10 and the flow rate of the electrolyte concentration section side is 1
Ion transfer was performed. 1. Type of resin composition of ion exchange membrane: polystyrene type 2. Size of ion exchange membrane: width 25 cm x length 40 cm 3. Number of stages in dialysis room: 64 stages 4. Ion-exchange resin filling: Amphoteric resin in 3 chambers on the outlet side of the electrolyte removal unit. Dialysis current: about 27 amps 6. Dialysis voltage: About 200 V DC 7. Nitrogen content in electrolyte removal part outflow water: 1-2 ppm 8. Nitrogen content in electrolyte concentrate outflow water: 180 to 200 ppm Calcium hydroxide was added to the obtained electrolyte enrichment part outflow water to perform ammonia stripping, and most of the nitrogen content in the municipal wastewater could be efficiently removed.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 選択的イオン透過性を有するイオン交換
膜群により構成される電気透析室の複数組を有し、かつ
通電によるイオン移動により、イオン交換膜をはさんで
隣接する電気透析室間にイオン(電解質)の濃度差を生
ぜしめる所謂電気透析方法において、イオン(電解質)
濃縮部を構成する電気透析室群またはイオン(電解質)
除去部を構成する電気透析室群の少なくとも一方が、該
電気透析室群を構成する各電気透析室の導電度(電気伝
導度)が段階的に変化する様にカスケード状に配列した
通液構造を持つ該複数組の電気透析室に対し、直列方向
に通電することを特徴とする電気透析方法。
1. An electrodialysis chamber having a plurality of sets of electrodialysis chambers composed of a group of ion exchange membranes having selective ion permeability, and between the electrodialysis chambers that are adjacent to each other across the ion exchange membrane due to ion transfer by energization. In the so-called electrodialysis method that causes a difference in the concentration of ions (electrolytes),
Electrodialysis room group or ions (electrolytes) that make up the concentration unit
A liquid passage structure in which at least one of the electrodialysis chamber groups forming the removal unit is arranged in a cascade so that the electric conductivity (electric conductivity) of each electrodialysis chamber forming the electrodialysis room group changes stepwise. An electric dialysis method, wherein electricity is applied in series to the plurality of electrodialysis chambers having
【請求項2】 イオン交換膜を用いた電気透析を行うに
あたり、イオン(電解質)濃縮部側の電気透析室には非
イオン性の水質汚濁物質を含む低導電度水を給水し、イ
オン(電解質)除去部側の電気透析室には非イオン性水
質汚濁物質を含まぬ高導電度水を給水すること特徴とす
る請求項1に記載の電気透析方法。
2. When performing electrodialysis using an ion exchange membrane, low conductivity water containing a non-ionic water pollutant is supplied to the electrodialysis chamber on the side of the ion (electrolyte) concentrating section, and the ion (electrolyte) The electrodialysis method according to claim 1, wherein high electroconductivity water containing no nonionic water pollutant is supplied to the electrodialysis chamber on the side of the removing unit.
【請求項3】 前記、非イオン性の水質汚濁物質を含む
低導電度水が廃水類であり、非イオン性水質汚濁物質を
含まぬ高導電度水が海水であることを特徴とする請求項
2に記載の電気透析方法。
3. The low-conductivity water containing nonionic water pollutants is wastewater, and the high-conductivity water containing no nonionic water pollutants is seawater. The electrodialysis method according to 2.
【請求項4】 前記、非イオン性の水質汚濁物質を含む
低導電度水が下水の処理水であり、非イオン性水質汚濁
物質を含まぬ高導電度水が海水であることを特徴とする
請求項2に記載の電気透析方法。
4. The low-conductivity water containing non-ionic water pollutants is treated water, and the high-conductivity water containing no non-ionic water pollutants is seawater. The electrodialysis method according to claim 2.
【請求項5】 イオン交換膜を用いた電気透析を行うに
あたり、微生物に対する毒性を有する水質汚濁物質と微
生物分解可能な水質汚濁物質を共に含有する廃水と無毒
な水との間でイオン移動を行うことにより、微生物分解
可能な水質汚濁物質と微生物に対する毒性を有する水質
汚濁物質を分離した後に、個別に廃水処理操作を行うこ
とを特徴とする請求項1に記載の電気透析方法。
5. When performing electrodialysis using an ion exchange membrane, ion transfer is performed between waste water containing both water pollutants that are toxic to microorganisms and water pollutants that can be decomposed by microorganisms and non-toxic water. The electrodialysis method according to claim 1, wherein the wastewater treatment operation is performed individually after separating the water pollutants that can be decomposed by microorganisms and the water pollutants that are toxic to microorganisms.
【請求項6】 イオン交換膜を用いた電気透析を行うに
あたり、少なくとも一つの電気透析室内液中にイオン交
換樹脂を存在させることを特徴とする請求項1に記載の
電気透析方法。
6. The electrodialysis method according to claim 1, wherein at the time of performing electrodialysis using an ion exchange membrane, an ion exchange resin is present in at least one electrodialysis chamber liquid.
【請求項7】 電気透析室内液中に存在させるイオン交
換樹脂が両性イオン交換樹脂であることを特徴とする請
求項1に記載の電気透析方法。
7. The electrodialysis method according to claim 1, wherein the ion exchange resin present in the electrodialysis indoor liquid is an amphoteric ion exchange resin.
JP2001290375A 2001-09-25 2001-09-25 Electrodialysis method Pending JP2003094063A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001290375A JP2003094063A (en) 2001-09-25 2001-09-25 Electrodialysis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001290375A JP2003094063A (en) 2001-09-25 2001-09-25 Electrodialysis method

Publications (1)

Publication Number Publication Date
JP2003094063A true JP2003094063A (en) 2003-04-02

Family

ID=19112688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001290375A Pending JP2003094063A (en) 2001-09-25 2001-09-25 Electrodialysis method

Country Status (1)

Country Link
JP (1) JP2003094063A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9782720B2 (en) 2012-03-09 2017-10-10 Mitsubishi Heavy Industries, Ltd. Degradant concentration measurement device and acidic gas removal device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9782720B2 (en) 2012-03-09 2017-10-10 Mitsubishi Heavy Industries, Ltd. Degradant concentration measurement device and acidic gas removal device

Similar Documents

Publication Publication Date Title
Ensano et al. Control of emerging contaminants by the combination of electrochemical processes and membrane bioreactors
CN103288309B (en) Coal gasification wastewater zero-emission treatment method, and application thereof
US7264732B2 (en) Continuous ammonium removal systems
Urtiaga Electrochemical technologies combined with membrane filtration
Bodzek et al. Membrane techniques in the removal of inorganic anionic micropollutants from water environment–state of the art
US20090321251A1 (en) Electrochemical system and method for the treatment of water and wastewater
CN104016528B (en) For the electrodialytic membranes integrated pollution control method of Coal Chemical Industry brine waste desalination
CN113003846B (en) Zero-emission treatment process and system for sewage with high salt content and high COD (chemical oxygen demand)
JP7391366B2 (en) Contaminated water purification method and device for removing phosphate ions and nitrate ions
GB2249307A (en) Process for purifying water by means of a combination of electrodialysis and reverse osmosis
CN107857438B (en) Zero-emission process for wastewater treatment of chemical enterprises and parks
Gurreri et al. Electrodialysis for wastewater treatment—Part I: Fundamentals and municipal effluents
CN101781048B (en) Low ammonia nitrogen waste water treatment and recycling method
CN216998076U (en) Industrial wastewater treatment system
CN211226806U (en) Zero release processing system of cosmetics waste water
CN212924710U (en) Industrial wastewater zero discharge treatment system
CN113003845B (en) Zero-emission treatment process and system for sewage with high sulfate content and high COD (chemical oxygen demand)
CN105293787B (en) A kind of cold rolling alkalescence waste discharge advanced treatment recycling technique system and method
JP2003094063A (en) Electrodialysis method
CN210367111U (en) Arsenic system is removed to degree of depth that thoughtlessly congeals
CN203668181U (en) Sewage treatment equipment
Miquel et al. A newly developed process for nitrate removal from drinking water
Koyuncu et al. Evaluation of the low pressure RO and NF membranes for an alternative tyreatment of Buyukcekmece Lake
JP2020108889A (en) Apparatus, system and method for removing total dissolved solids from fluid
JP3463421B2 (en) Water treatment method