JP7391366B2 - Contaminated water purification method and device for removing phosphate ions and nitrate ions - Google Patents

Contaminated water purification method and device for removing phosphate ions and nitrate ions Download PDF

Info

Publication number
JP7391366B2
JP7391366B2 JP2019232456A JP2019232456A JP7391366B2 JP 7391366 B2 JP7391366 B2 JP 7391366B2 JP 2019232456 A JP2019232456 A JP 2019232456A JP 2019232456 A JP2019232456 A JP 2019232456A JP 7391366 B2 JP7391366 B2 JP 7391366B2
Authority
JP
Japan
Prior art keywords
tank
ions
iron
water
contaminated water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019232456A
Other languages
Japanese (ja)
Other versions
JP2021100744A (en
Inventor
裕司 高木
安希雄 本多
悠翔 木津
颯斗 松本
彩里 池田
聖玲星 相原
福史 小川
裕暉 三室
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shizuoka Institute of Science and Technology
Original Assignee
Shizuoka Institute of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shizuoka Institute of Science and Technology filed Critical Shizuoka Institute of Science and Technology
Priority to JP2019232456A priority Critical patent/JP7391366B2/en
Publication of JP2021100744A publication Critical patent/JP2021100744A/en
Application granted granted Critical
Publication of JP7391366B2 publication Critical patent/JP7391366B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Physical Water Treatments (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Description

特許法第30条第2項適用 開催日:令和元年6月25日 集会名:第21回日本水大賞 2019日本ストックホルム青少年水大賞 表彰式・受賞活動発表会 場 所:日本科学未来館(東京都江東区) 〔刊行物等〕 頒布日:令和元年6月25日 刊行物名:第21回日本水大賞 受賞活動集 掲載箇所:第86頁-第91頁Article 30, Paragraph 2 of the Patent Act applies Date: June 25, 2019 Name of meeting: 21st Japan Water Award 2019 Japan Stockholm Youth Water Award Award Ceremony/Award Activities Presentation Venue: Miraikan (Miraikan) (Koto-ku, Tokyo) [Publications] Date of publication: June 25, 2019 Name of publication: 21st Japan Water Award Award-Winning Activities Collection Location: Pages 86 to 91

本発明は、水中のリン酸イオンを鉄炭素電池の鉄製の負極から溶出させた鉄イオンによって沈殿させて除去および回収し、鉄炭素電池で得られた電力を用いて水の電気分解で水素を製造し、同時にこの水素を利用して水中の硝酸イオンを還元し除去する、富栄養化した湖沼等の汚染水の浄化方法とその除去装置に関するものである。 The present invention removes and recovers phosphate ions in water by precipitating them with iron ions eluted from the iron negative electrode of an iron-carbon battery, and generates hydrogen by electrolysis of water using the electric power obtained from the iron-carbon battery. The present invention relates to a method for purifying polluted water such as eutrophic lakes and marshes, and an apparatus for purifying contaminated water such as eutrophic lakes, which simultaneously reduces and removes nitrate ions in the water using hydrogen.

世界の多くの湖沼で水の深刻な富栄養化が起きている。アオコ現象が湖全体で見られる場合が多く、特に、途上国では生態系の破壊や人間の生活や健康への影響が深刻であり、安全な水の確保が困難になる場合もある。富栄養化の原因となる物質は、窒素やリン等の栄養塩であり、工場や家庭廃水、農業など、あらゆる人間生活の局面で排出されている。一方で、リンは枯渇資源として懸念されているが、回収し、再利用するシステムは確立していない。 Severe eutrophication of water is occurring in many lakes around the world. Blue-green algae phenomena are often seen throughout the lake, and in developing countries in particular, the destruction of ecosystems and the impact on human life and health are serious, and it can sometimes be difficult to secure safe water. Substances that cause eutrophication are nutrient salts such as nitrogen and phosphorus, which are emitted from all aspects of human life, including factories, domestic wastewater, and agriculture. On the other hand, although there is concern that phosphorus is a depletable resource, no system has been established to recover and reuse it.

湖沼等の閉鎖性水域で深刻な問題となっている富栄養化に対処するために、様々な排水の中からリンと窒素を除去処理する必要性が高まっており、これまでにいくつかの除去処理方法が提案されてきた。一般的にこれらの排水のpHは3~10程度である。リンおよび、窒素化合物のうちの硝酸、亜硝酸に代表される窒素酸化物に着目した場合、これらを除去するための従来の方法は、以下のように分類することができる。 In order to deal with eutrophication, which has become a serious problem in closed water bodies such as lakes, there is an increasing need to remove phosphorus and nitrogen from various types of wastewater. Treatment methods have been proposed. Generally, the pH of these wastewaters is about 3 to 10. When focusing on phosphorus and nitrogen oxides represented by nitric acid and nitrous acid among nitrogen compounds, conventional methods for removing these can be classified as follows.

(1) 水中のリンを除去する従来の方法
(1-A) 生物学的リン除去処理方法
生物学的リン除去処理方法として、微生物によるリンの過剰摂取機能を利用して、リンを菌体内部に取り込ませて、菌体を処理水から分離する方法がある(非特許文献1)。この方法では、微生物によるリンの過剰摂取反応が被処理水中のBOD値や反応槽内の嫌気度などに大きく影響を受けるため、安定した処理が難しいという問題がある。また、菌体に取り込めるリンの量には限界があるため、所定の微生物量でのリンの除去量には限界がある。更に、この微生物は、周囲の酸素濃度等の条件の変化によって取り込んだリンを再放出するので、微生物(汚泥)がリンを再放出しないような取り扱いが必要である。汚泥処理設備の処理能力等の条件によっては汚泥から再放出されたリンが処理水系にもどることがある(非特許文献2)。
(1) Conventional method for removing phosphorus from water
(1-A) Biological phosphorus removal treatment method As a biological phosphorus removal treatment method, the phosphorus over-uptake function of microorganisms is used to incorporate phosphorus into the bacterial cells, and the bacterial cells are separated from the treated water. There is a method to do so (Non-Patent Document 1). This method has the problem that stable treatment is difficult because the reaction of excessive phosphorus uptake by microorganisms is greatly affected by the BOD value in the water to be treated and the anaerobic degree in the reaction tank. Furthermore, since there is a limit to the amount of phosphorus that can be taken into the microbial cells, there is a limit to the amount of phosphorus that can be removed with a given amount of microorganisms. Furthermore, since these microorganisms re-release the phosphorus they have taken in due to changes in conditions such as the surrounding oxygen concentration, it is necessary to handle the sludge in a way that prevents the microorganisms (sludge) from re-releasing the phosphorus. Depending on conditions such as the processing capacity of sludge treatment equipment, phosphorus re-released from sludge may return to the treated water system (Non-Patent Document 2).

(1-B)物理化学的リン除去方法
物理化学的リン除去方法として、(a)ポリ塩化アルミニウム、塩化第二鉄等のアルミニウム系又は鉄系の凝集剤を処理水に添加することによって処理する凝集剤法と、(b)処理水中のリンをカルシウムイオン或いはアンモニウム-マグネシウムイオンと反応させ難溶性のリン酸カルシウム塩或いはリン酸アンモニウムマグネシウム塩を生成させるリン酸塩法、および(c)処理水を鉄と接触させ、鉄から溶出する鉄イオンの作用によって難溶性塩であるリン酸鉄を形成させ、これを沈殿分離するリン酸鉄法がある。
(1-B) Physicochemical phosphorus removal method As a physicochemical phosphorus removal method, (a) Treatment is performed by adding an aluminum-based or iron-based flocculant such as polyaluminum chloride or ferric chloride to the treated water. (b) a phosphate method in which phosphorus in the treated water is reacted with calcium ions or ammonium-magnesium ions to produce sparingly soluble calcium phosphate or ammonium magnesium phosphate; and (c) a phosphate method in which phosphorus in the treated water is reacted with calcium ions or ammonium-magnesium ions. There is an iron phosphate method in which iron phosphate, which is a sparsely soluble salt, is formed by the action of iron ions eluted from iron, and this is separated by precipitation.

(a)は、使用する凝集剤が化学薬品としてのコストが高いため、経済的ではないという問題、凝集沈殿物は共存している他の無機性および有機性固形物との混合物となり、リンの回収再利用が困難という問題がある(非特許文献3)。更に、鉄イオンやアルミニウムイオン以外のイオンや成分も水中に加えられてしまうという問題がある。即ち、処理対象水への鉄塩やアルミニウム塩の添加に伴い、鉄イオンまたはアルミニウムイオンと結合して鉄塩またはアルミニウム塩を形成している塩化物イオンや硫酸イオン等の対イオンも処理対象水中に添加されることとなり、処理対象水中の塩化物イオン濃度や硫酸イオン濃度が上昇し、生態系へ悪影響が生じるという問題がある(非特許文献4)。そのため、不要なイオンや成分を水中に添加する必要がなく、且つ、迅速に水中のリンを除去することができるリンの効率的な除去方法が求められている。 Problem (a) is that the coagulant used is expensive as a chemical and is therefore not economical.The coagulated precipitate becomes a mixture with other coexisting inorganic and organic solids, and the phosphorus There is a problem that recovery and reuse is difficult (Non-Patent Document 3). Furthermore, there is a problem in that ions and components other than iron ions and aluminum ions are also added to the water. In other words, as iron salts and aluminum salts are added to the water to be treated, counter ions such as chloride ions and sulfate ions that combine with iron or aluminum ions to form iron or aluminum salts are also added to the water to be treated. There is a problem that the chloride ion concentration and sulfate ion concentration in the water to be treated increase, causing an adverse effect on the ecosystem (Non-Patent Document 4). Therefore, there is a need for an efficient phosphorus removal method that does not require adding unnecessary ions or components to water and can quickly remove phosphorus from water.

(b)は、処理水中で難溶性の塩であるリン酸カルシウム塩或いはリン酸アンモニウムマグネシウム塩を析出させるために、pHを高くしてアルカリ性とする必要があること、カルシウム塩、アンモニウム塩、マグネシウム塩などの薬剤の添加が必要となり、経済的ではないという問題がある(非特許文献5~10)。 (b) is that in order to precipitate poorly soluble salts such as calcium phosphate or ammonium magnesium phosphate, the pH must be raised to make it alkaline; calcium salts, ammonium salts, magnesium salts, etc. There is a problem that it is not economical because it requires the addition of several drugs (Non-patent Documents 5 to 10).

(c)は、鉄と溶存酸素との組み合わせでの局部濃淡電池を形成させ、鉄イオンを溶出させるというメカニズムを利用しているものであるため、反応を進行させるために曝気を行なう必要があり、この曝気のための動力設備と運転費を要するという問題がある。曝気によって水中の溶存酸素濃度が高くなると、硝酸イオン等の窒素酸化物が除去されにくくなるという問題が起きる。更に、中性付近における鉄と溶存酸素との局部濃淡電池による起電圧程度ではその溶解速度が非常に小さいため、十分なリン除去効率が得られないという問題もある。 (c) utilizes a mechanism in which iron and dissolved oxygen are combined to form a local concentration cell and iron ions are eluted, so aeration is required to advance the reaction. However, there is a problem in that power equipment and operating costs are required for this aeration. When the dissolved oxygen concentration in water increases due to aeration, a problem arises in that nitrogen oxides such as nitrate ions are difficult to remove. Furthermore, since the rate of dissolution is very low at the level of the electromotive force generated by the local concentration cell of iron and dissolved oxygen near neutrality, there is also the problem that sufficient phosphorus removal efficiency cannot be obtained.

(2)硝酸や亜硝酸等の窒素酸化物を除去する従来の方法
水中の窒素酸化物の除去法は各種あるが、最終的には脱窒によって窒素ガスとして処理する方法が望ましい。
(2) Conventional methods for removing nitrogen oxides such as nitric acid and nitrite
Although there are various methods for removing nitrogen oxides from water, it is ultimately preferable to treat the water as nitrogen gas through denitrification.

(2-A) 生物学的脱窒処理方法
水中の窒素酸化物を窒素ガスとして処理する方法として生物学的脱窒処理方法が一般的によく用いられる。主な方法は、嫌気性条件下において脱窒細菌が有機物や水素などの電子供与体を利用して硝酸イオンを還元する(a)生物学的硝化脱窒法(非特許文献11)と、(b)アンモニアを部分硝化して亜硝酸にし、アンモニアと亜硝酸が混合した状態でANAMMOX細菌により窒素に還元するANAMMOX法(嫌気性アンモニア酸化、anaerobic ammonium oxidation、非特許文献12)がある。
(2-A) Biological denitrification treatment method A biological denitrification treatment method is generally used to treat nitrogen oxides in water as nitrogen gas. The main methods are (a) biological nitrification and denitrification method (Non-Patent Document 11), in which denitrifying bacteria reduce nitrate ions using organic matter and electron donors such as hydrogen under anaerobic conditions; ) There is an ANAMMOX method (anaerobic ammonium oxidation, Non-Patent Document 12) in which ammonia is partially nitrified to become nitrite, and the mixed state of ammonia and nitrite is reduced to nitrogen by ANAMMOX bacteria.

(a)が高い窒素除去率を達成するためには、pHや溶存酸素などの細菌が生育する化学的環境条件を細菌の生育に適した条件に限定し、更に反応系外からメタノールに代表される有機物や水素などの電子供与体を加える必要があり、反応条件のコントロールが難しく、更に薬剤費用がかかる。また、生物学的な脱窒素反応の反応速度が小さいために、満足な処理を行うためには反応槽の容積を大きくして、十分な反応時間を確保する必要がある。 In order to achieve a high nitrogen removal rate in (a), it is necessary to limit the chemical environment conditions for bacteria growth, such as pH and dissolved oxygen, to conditions suitable for bacterial growth, and to also remove the chemical substances from outside the reaction system, such as methanol. It is necessary to add organic substances and electron donors such as hydrogen, making it difficult to control reaction conditions and increasing drug costs. Furthermore, since the reaction rate of the biological denitrification reaction is low, in order to perform a satisfactory treatment, it is necessary to increase the volume of the reaction tank to ensure sufficient reaction time.

(b)は、ANAMMOX細菌の入手が容易ではなく、この細菌の増殖速度が小さく、反応速度も小さいという問題がある。更に、処理に際しては、アンモニアを部分硝化して亜硝酸を生成させ、アンモニアと亜硝酸の割合がおよそ6:4の混合物とする必要があるが、アンモニアの亜硝酸への部分硝化を安定的にかつ厳密にコントロールして実施することはかなり困難である。また、被処理水中の有機物濃度が高いとアンモニアと亜硝酸の混合物の窒素への還元が十分に進まないという問題がある。 The problem with (b) is that ANAMMOX bacteria are not easily available, and the growth rate and reaction rate of these bacteria are low. Furthermore, during treatment, it is necessary to partially nitrify ammonia to produce nitrous acid, creating a mixture of ammonia and nitrite in a ratio of approximately 6:4. Moreover, it is quite difficult to implement with strict control. Furthermore, if the concentration of organic matter in the water to be treated is high, there is a problem that the reduction of the mixture of ammonia and nitrite to nitrogen does not proceed sufficiently.

(2-B)物理化学的窒素除去方法
物理化学的窒素除去方法は特に浄水処理に適しており、実用化がなされているものとして「イオン交換法」、「電気透析法」および「逆浸透膜法」等があり、研究段階のものとしては「触媒法」と「電気分解法」がある。実用化されている物理化学的方法はそれぞれ処理速度が速く維持管理が比較的容易であるという利点を有しているが、原理的には溶解塩類の分離技術であり硝酸イオンを選択的に処理することが難しく、また高塩濃度廃液を排出するという課題がある。実際には多くの処理施設で廃液を海域、下水道あるいは畑地に直接または希釈して放流、排出している場合が多い(非特許文献13)。従って、水利用の観点からは優れた処理法であると見ることができるが、上述したように自然環境保全や持続可能な社会の実現という観点からは抜本的な処理技術であるとは位置付けられない。それぞれの物理化学的方法の概要は次の通りである。
(2-B) Physicochemical nitrogen removal methods Physicochemical nitrogen removal methods are particularly suitable for water purification treatment, and methods that have been put into practical use include the ion exchange method, electrodialysis method, and reverse osmosis membrane method. There are ``catalytic methods'' and ``electrolysis methods'' that are in the research stage. Each of the physicochemical methods that have been put into practical use has the advantage of being fast and relatively easy to maintain and manage, but in principle they are separation techniques for dissolved salts and selective treatment of nitrate ions. It is difficult to do so, and there is also the problem of discharging high salt concentration waste liquid. In reality, many treatment facilities often discharge or discharge waste liquid directly or diluted into the ocean, sewers, or fields (Non-Patent Document 13). Therefore, it can be seen as an excellent treatment method from the perspective of water use, but as mentioned above, it is not positioned as a fundamental treatment technology from the perspective of preserving the natural environment and realizing a sustainable society. do not have. The outline of each physicochemical method is as follows.

(a)イオン交換法
イオン交換法は強塩基性陰イオン交換樹脂により、塩素イオンと硝酸イオンを交換することにより硝酸イオンを分離除去する方法であり、多くの報告例がある(非特許文献14、15)。陰イオン交換樹脂の硝酸イオン選択性は他の陰イオン種の有無や濃度によって変化し、硝酸イオンより選択性が高く環境水中で問題となる陰イオンとしては硫酸イオンがある。地下水には通常硝酸イオンと同程度またはそれ以上の濃度で硫酸イオンが存在しているため、地下水の硫酸イオンはイオン交換法の処理性能を大きく左右することになる。また、イオン交換樹脂の再生工程は処理コストを大きく増大させる要因になる。電気透析法は陽極と陰極の間に陽イオン交換膜と陰イオン交換膜を交互に配置し直流電流を通電することで、溶液の塩濃縮および脱塩を行う方法である(非特許文献16)。この方法は陰極のスケール付着や脱塩による電気抵抗の増大が処理効率を低下させる要因となり、それらの対応措置である硫酸注入や極性転換が処理操作を煩雑にしている。
(a) Ion exchange method The ion exchange method is a method of separating and removing nitrate ions by exchanging chloride ions and nitrate ions with a strongly basic anion exchange resin, and there are many reported examples (Non-patent Document 14) , 15). The nitrate ion selectivity of anion exchange resins varies depending on the presence or absence of other anion species and their concentrations, and sulfate ions are more selective than nitrate ions and pose a problem in environmental water. Since sulfate ions normally exist in groundwater at a concentration equal to or higher than that of nitrate ions, sulfate ions in groundwater greatly affect the treatment performance of the ion exchange method. Moreover, the regeneration process of the ion exchange resin becomes a factor that greatly increases the processing cost. Electrodialysis is a method in which cation exchange membranes and anion exchange membranes are alternately arranged between an anode and a cathode and a direct current is applied to concentrate and desalt a solution (Non-Patent Document 16) . In this method, scaling on the cathode and increased electrical resistance due to desalination are factors that reduce processing efficiency, and countermeasures such as sulfuric acid injection and polarity conversion complicate processing operations.

(b)逆浸透圧法
逆浸透膜法は海水の淡水化に用いられることが多い技術であり、半透膜を介して溶液に浸透圧以上の圧力を機械的に加えることによって、溶解塩類を含まない水を取り出す方法である。従って、硝酸態窒素の処理に着目した場合にはその選択性が低く、2次処理のコストが非常に大きくなることが課題である。
(b) Reverse osmosis method Reverse osmosis membrane method is a technology often used for desalination of seawater, which removes dissolved salts by mechanically applying pressure higher than osmotic pressure to the solution through a semipermeable membrane. This is a method to extract water that is not present. Therefore, when focusing on the treatment of nitrate nitrogen, the problem is that the selectivity is low and the cost of the secondary treatment becomes extremely high.

(c)触媒法
触媒法はパラジウムや銅等の金属触媒を介して硝酸イオンを溶存水素と反応させ窒素ガスにまで還元処理する方法であり、常温、常圧下での処理が可能である。この処理技術は物理化学的方法の中で唯一硝酸態窒素を窒素ガス化する技術であり、廃液や汚泥の問題もなく非常に優れた技術になり得ると考えられる。しかし、現時点では、アンモニア性窒素の蓄積や触媒の劣化等なお検討すべき課題が多い(非特許文献17)。
(c) Catalytic method The catalytic method is a method of reducing nitrate ions to nitrogen gas by reacting them with dissolved hydrogen via a metal catalyst such as palladium or copper, and the treatment can be carried out at room temperature and pressure. This treatment technology is the only physicochemical method that converts nitrate nitrogen into nitrogen gas, and it is thought that it can be an extremely superior technology without problems with waste liquid or sludge. However, at present, there are still many issues that need to be considered, such as accumulation of ammonia nitrogen and deterioration of the catalyst (Non-Patent Document 17).

(d)電気分解法
電気分解法は、硝酸イオン還元の触媒活性に優れた電極材料と電極構造によって、塩化物イオンを電気分解して生成した次亜塩素酸によって、硝酸態窒素を窒素ガスに変換して大気に放出するため、環境に与える影響は少なく、有機炭素源が無添加の脱窒が可能である。この手法は、電気分解を応用しているため、小型化が可能、有機源の管理・補給が不要となり、負荷変動や温度変化による処理能力変動にも対応できるため、システムの維持管理が簡単という利点を有している。更に、BOD/N比が1以下の原水に対して特に有効である。しかしながら、電解に用いる電気コストと使用する触媒が高価なため、コストが膨大であり、塩化物イオンが必要であるため、淡水域では効果が低いという問題がある。
(d) Electrolysis method Electrolysis method converts nitrate nitrogen into nitrogen gas using hypochlorous acid produced by electrolyzing chloride ions using electrode materials and electrode structures with excellent catalytic activity for nitrate ion reduction. Since it is converted and released into the atmosphere, it has little impact on the environment, and denitrification can be performed without adding organic carbon sources. Since this method applies electrolysis, it can be miniaturized, does not require management or replenishment of organic sources, and can handle fluctuations in processing capacity due to load fluctuations or temperature changes, making the system easy to maintain and manage. It has advantages. Furthermore, it is particularly effective for raw water with a BOD/N ratio of 1 or less. However, since the cost of electricity used for electrolysis and the catalyst used are expensive, the cost is enormous, and since chloride ions are required, there is a problem that the effect is low in freshwater areas.

(3)リン酸と硝酸イオンを同時に除去しようとする試み
水界生態系を正常に維持する上で窒素・リン同時除去が必須なわけであるが、排水処理技術などの観点からも同時除去は必須である。現在では,湖沼流域を対象として窒素およびリンの環境基準,排水基準が定められ,海域においても検討が進められているので,対象水域によって栄養塩類の制限要因が異なったとしても,高度処理では窒素およびリンの両者を低減させる対策を施すべきである。
(3) Attempt to simultaneously remove phosphoric acid and nitrate ions Simultaneous removal of nitrogen and phosphorus is essential for maintaining the normal aquatic ecosystem, but simultaneous removal is also necessary from the perspective of wastewater treatment technology. Required. At present, environmental standards and wastewater standards for nitrogen and phosphorus have been established for lake basins, and studies are also underway for marine areas, so even if limiting factors for nutrients differ depending on the target water area, advanced treatment Measures should be taken to reduce both carbon and phosphorus.

(3-A)生物学的窒素・リン同時除去
窒素とリンを同時に除去する方法として、生物学的な手法が一般的であり、代表的な方法として、活性汚泥法、オキシデ―ションディッチ法、生物膜法、自己造粒法、包括固定化法、水棲植物植裁浄化法、土壌浄化法があるが、微生物による除去が被処理水のBOD値や反応槽内の嫌気度等に大きく影響を受けるため、安定した処理が難しいという問題がある。また、窒素やリンから生産された汚泥や植物等の有機物の処理が問題になる。
(3-A) Biological nitrogen and phosphorus simultaneous removal Biological methods are common as methods for simultaneously removing nitrogen and phosphorus, and representative methods include activated sludge method, oxidation ditch method, There are biofilm methods, self-granulation methods, comprehensive immobilization methods, aquatic plant remediation methods, and soil remediation methods, but removal using microorganisms has a large effect on the BOD value of the water to be treated and the anaerobic degree in the reaction tank. There is a problem that stable processing is difficult because of the Another problem is the treatment of organic matter such as sludge and plants produced from nitrogen and phosphorus.

(3-B)物理化学的窒素・リン同時除去
窒素とリンを同時に除去する方法として、物理化学的手法だけで成立する方法はほとんどなく、(1-A)または(2-A)と(1-B)または(2-B)との組み合わせ、すなわち、システムのどこかに生物的な手法が組み込まれている。そのため、(3-A)と同様に、安定した処理が難しいことや、窒素やリンから生産された汚泥や植物等の有機物の処理が問題になる。
(3-B) Physicochemical simultaneous removal of nitrogen and phosphorus There are almost no methods for simultaneously removing nitrogen and phosphorus that can be achieved using only physicochemical methods, and (1-A) or (2-A) and (1 -B) or a combination with (2-B), that is, a biological method is incorporated somewhere in the system. Therefore, similar to (3-A), stable treatment is difficult and treatment of organic matter such as sludge and plants produced from nitrogen and phosphorus becomes a problem.

このような状況下で、電解反応を利用して窒素とリンの同時除去を行った事例が報告されている。リンの除去は陰極材料にアルミニウムまたは鉄系の電極が用いられ、陰極材料から溶出するAl3+またはFe3+とリン酸イオンの反応による式1の沈殿反応に基づいている(非特許文献18)。

Figure 0007391366000001
Under such circumstances, cases have been reported in which nitrogen and phosphorus were simultaneously removed using electrolytic reactions. The removal of phosphorus is based on the precipitation reaction of Formula 1, which uses an aluminum or iron-based electrode as the cathode material and a reaction between Al 3+ or Fe 3+ eluted from the cathode material and phosphate ions (Non-Patent Document 18).
Figure 0007391366000001

窒素除去は以下に示す式2に代表される還元反応に基づいている(非特許文献19)。

Figure 0007391366000002
Nitrogen removal is based on a reduction reaction represented by Formula 2 shown below (Non-Patent Document 19).
Figure 0007391366000002

鉄電極を用いて電気分解を行うことによって鉄電極から溶出する鉄イオンによって(1-B)(c)のリン酸鉄法を行いつつ、(2-B)(d)の電気分解法を同時に行っているだけであるため、それぞれの方法の長所が組み合わされた素晴らしい方法ではあるが、それぞれの方法の問題点はそのまま残されている。 By performing electrolysis using an iron electrode, the iron phosphate method of (1-B) (c) is carried out by the iron ions eluted from the iron electrode, and the electrolysis method of (2-B) (d) is simultaneously carried out. Although it is a wonderful method that combines the advantages of each method, the problems of each method remain.

深瀬哲郎ら,"生物的リン除去法の機構に関する基礎的検討"水質汚濁研究,5(6),309-317(1982).Tetsuro Fukase et al., "Basic study on the mechanism of biological phosphorus removal," Water Pollution Research, 5(6), 309-317 (1982). Marais G.V.R., Loewenthal R.E. and Siebritz l.:"Observation supporting phosphate removal by biological excess uptake.", JAWRP post conference seminar on phosphate removal in biological treatment process(1982).Marais G.V.R., Loewenthal R.E. and Siebritz L.: "Observation supporting phosphate removal by biological excess uptake.", JAWRP post conference seminar on phosphate removal in biological treatment process(1982). E.P.A.:"Process Design Manual for Phosphorus Removal" , Water Pollution Control Research Series.E.P.A.: "Process Design Manual for Phosphorus Removal", Water Pollution Control Research Series. 環境機器活用事典編集委員会編:"水質汚濁防止の技術と機器"産業調査会発行(1988).Edited by the Environmental Equipment Utilization Encyclopedia Editorial Committee: "Techniques and Equipment for Water Pollution Prevention", published by the Industrial Research Group (1988). "高度処理設計マニュアル(案)"、下水道協会、(1994)."Advanced Treatment Design Manual (Draft)", Sewage Works Association, (1994). 志水信弘ら:"食料品製造業排水におけるリンの除去-あん類製造業における廃水処理の事例-" 福岡県保健環境研究所年報第28号、101-104,(2001)Nobuhiro Shimizu et al.: "Removal of phosphorus from wastewater from food manufacturing industry - Example of wastewater treatment in red bean paste manufacturing industry" Fukuoka Prefecture Health and Environment Research Institute Annual Report No. 28, 101-104, (2001) 上甲勲:"MAP晶析法によるリンと窒素の固定化・脱リンプロセス"Isao Joko: "Phosphorus and nitrogen fixation and dephosphorization process using MAP crystallization method" 大田博三:"MAP造粒脱リン法によるリン資源の回収"造水技術、22(1),64-67(1996).Hirozo Ota: "Recovery of phosphorus resources by MAP granulation dephosphorization method" Water Desalination Technology, 22(1), 64-67 (1996). 津野ら:"消化槽脱離液からのストバライトの回収に関する研究"下水道協会論文集、28(324),68-77Tsuno et al.: "Study on recovery of stobalite from digester desorbed fluid" Sewerage Association Transactions, 28(324), 68-77 阿部静夫、室須美夫:"福岡市の高度処理とMAP法の開発について"下水道協会誌、32(389),89(1995)Shizuo Abe, Mio Murosum: "Development of advanced treatment and MAP method in Fukuoka City" Journal of Japan Sewage Works Association, 32(389), 89(1995) 芳倉太郎,西尾孝之,福永勲,生物学的硝化脱窒法による排水の高度処理,生活衛生 (Seikatsu Eisei) Vol. 43 No. 2 49-64 (1999) 49Taro Yoshikura, Takayuki Nishio, Isao Fukunaga, Advanced treatment of wastewater by biological nitrification-denitrification method, Life hygiene (Seikatsu Eisei) Vol. 43 No. 2 49-64 (1999) 49 Yamagiwa, Y. et al.: Proceeding of 1st International Anammox Symposium 2011, p.217 (2011).Yamagiwa, Y. et al.: Proceeding of 1st International Anammox Symposium 2011, p.217 (2011). 財団法人 日本水道協会 (2000) 水道における硝酸性窒素及び亜硝酸性窒素対策の手引き,68.Japan Water Works Association (2000) Guide to measures against nitrate nitrogen and nitrite nitrogen in water supplies, 68. Lauch, P. and Guter, A. (1986) Ion exchange for the removal of nitrate from well water, JAWWA, May,83-88.Lauch, P. and Guter, A. (1986) Ion exchange for the removal of nitrate from well water, JAWWA, May,83-88. Clifford, D and Liu, X. (1993) Ion exchange for nitrate removal, JAWWA, April, 135-143.Clifford, D and Liu, X. (1993) Ion exchange for nitrate removal, JAWWA, April, 135-143. 富家和男, 花田文夫, 竹村昇, 藤田賢二 (1999) 電気透析法による地下水中硝酸性窒素の除去,水道協会雑誌, 68(7), 25-33.Kazuo Tomie, Fumio Hanada, Noboru Takemura, Kenji Fujita (1999) Removal of nitrate nitrogen from groundwater by electrodialysis, Journal of Japan Water Works Association, 68(7), 25-33. Horold, S., Tacke, T. and Vorlop, K. D. (1993) Catalytic removal of nitrate and nitrite from drinking water: 1. Screening for hydrogen catalysts and influence of reaction conditions on activity and selectivity, Environ. Tech., 14, 931-939.Horold, S., Tacke, T. and Vorlop, K. D. (1993) Catalytic removal of nitrate and nitrite from drinking water: 1. Screening for hydrogen catalysts and influence of reaction conditions on activity and selectivity, Environ. Tech., 14, 931 -939. 森泉雅貴ら:"リン除去技術における鉄電解法の最適電解条件の検討"水環境学会誌、23(5),279-284(2000).Masataka Morizumi et al.: "Study of optimal electrolytic conditions for iron electrolysis method in phosphorus removal technology" Journal of Japan Society for Water Environment, 23(5), 279-284 (2000). 嶋津克明:"硝酸性窒素の電気化学的還元"触媒、44(3),162-166(2002).Katsuaki Shimazu: "Electrochemical reduction of nitrate nitrogen" Catalysis, 44(3), 162-166 (2002). 中島謙一ら,鉄スクラップ量推定の為の加工スクラップ発生量の検討,日本金属学会誌,第66巻,第9号,pp.917-920, (2002).Kenichi Nakajima et al., Examination of the amount of processed scrap generated for estimating the amount of iron scrap, Journal of the Japan Institute of Metals, Vol. 66, No. 9, pp. 917-920, (2002). 日本分析化学会北海道支部, 水の分析.第4版, 化学同人(1994).Hokkaido Branch of the Japanese Society for Analytical Chemistry, Water Analysis. 4th edition, Kagaku Doujin (1994).

従来、リン酸イオンおよび硝酸イオンを同時に除去するには、生物学的な手法が用いられるのが一般的であるが、被処理水の水質や水温、反応槽内の嫌気度等に大きく影響を受けるため、安定した処理が難しく、窒素やリンから生産された汚泥や植物等の有機物の処理が問題になっていた。更に、生物学的なリン蓄積反応や脱窒素反応の反応速度が小さいために、満足な処理を行うためには反応槽の容積を大きくして、十分な反応時間を確保する必要があった。一方、物理化学的な手法だけを用いて窒素とリンを同時に除去する方法はほとんど報告されていない。その中で、鉄電極を用いた電解反応を利用して、窒素とリンの同時除去に成功した事例が報告されている。この手法は、電気分解を応用しているため、小型化が可能、有機源の管理・補給が不要となり、負荷変動や温度変化による処理能力変動にも対応できるため、システムの維持管理が簡単という利点を有している。更に、BOD/N比が1以下の原水に対して特に有効である。しかしながら、電解に用いる電力コストと使用する触媒が高価なため、コストが膨大であり、硝酸イオンを還元するために塩化物イオンが必要であるため、淡水域では効果が低いという問題があった。 Conventionally, biological methods have generally been used to remove phosphate ions and nitrate ions at the same time, but this method greatly affects the water quality and temperature of the water to be treated, the anaerobic degree in the reaction tank, etc. This makes stable treatment difficult, and the treatment of organic matter such as sludge and plants produced from nitrogen and phosphorus has become a problem. Furthermore, since the reaction rate of the biological phosphorus accumulation reaction and denitrification reaction is low, in order to perform a satisfactory treatment, it is necessary to increase the volume of the reaction tank to ensure sufficient reaction time. On the other hand, there are few reports on methods for simultaneously removing nitrogen and phosphorus using only physicochemical methods. Among them, a case has been reported in which nitrogen and phosphorus were successfully removed simultaneously using an electrolytic reaction using an iron electrode. Since this method applies electrolysis, it can be miniaturized, does not require management or replenishment of organic sources, and can handle fluctuations in processing capacity due to load fluctuations or temperature changes, making the system easy to maintain and manage. It has advantages. Furthermore, it is particularly effective for raw water with a BOD/N ratio of 1 or less. However, the cost is enormous due to the high cost of electricity used for electrolysis and the high cost of the catalyst used, and chloride ions are required to reduce nitrate ions, resulting in low effectiveness in freshwater areas.

発明の目的purpose of invention

本発明は、このような課題を解決するためになされたものであり、その目的は、河川や湖沼を富栄養化させる因子である硝酸、亜硝酸に代表される窒素酸化物およびリンを、電力や高価な触媒などにかかるコストを必要とせず、淡水と海水に関わらず高いリンの回収率と硝酸イオンの分解率が達成できる汚染水浄化方法および浄化装置を提供することである。 The present invention was made to solve these problems, and its purpose is to remove nitrogen oxides and phosphorus, such as nitric acid and nitrite, which are factors that cause eutrophication of rivers and lakes, by using electricity. To provide a contaminated water purification method and a purification device that can achieve a high recovery rate of phosphorus and a high decomposition rate of nitrate ions regardless of freshwater or seawater without requiring the cost of expensive catalysts or the like.

(1)鉄を負極とし炭素を正極とする電池が入った電池槽内で汚染水を電解水として発電させ、かつリン酸イオンを除去するための鉄イオンを溶出させ、かつ沈殿槽内でリン酸イオンをリン酸鉄として沈殿させるリン酸イオン除去および回収工程と、前記リン酸イオンを除去するための鉄イオンを溶出させる工程を電池槽で行って得られた電力を利用して汚染水を電気分解して水素を発生させる水素発生工程と、前記発生した水素により硝酸イオンを還元除去する硝酸イオン除去工程とを備える汚染水浄化方法において、汚染水の電気分解に、汚染水の電気分解による鉄イオンを酸化する工程と、当該酸化した鉄イオンの還元性有機物である茶粕と光を利用する工程により鉄イオンを還元する工程を利用しつつ、汚染水を電気分解した処理水を、電池槽に循環供給することによって、リン酸イオン及び硝酸イオンを同時に除去することが可能となるように、電池槽及び電解槽水素イオン濃度及び溶存酸素濃度を所定範囲に調整することを特徴とする汚染水浄化方法。
(1) In a battery tank containing a battery with iron as a negative electrode and carbon as a positive electrode, contaminated water is used as electrolyzed water to generate electricity, iron ions are eluted to remove phosphate ions, and phosphorus is removed in a precipitation tank. A phosphate ion removal and recovery step in which acid ions are precipitated as iron phosphate, and a step in which iron ions are eluted to remove the phosphate ions are performed in a battery tank, and the power obtained is used to clean contaminated water. In a contaminated water purification method comprising a hydrogen generation step of generating hydrogen through electrolysis, and a nitrate ion removal step of reducing and removing nitrate ions using the generated hydrogen, Using the process of oxidizing iron ions and the process of reducing iron ions by using tea lees, which is an organic substance that reduces the oxidized iron ions, and light, the treated water obtained by electrolyzing contaminated water is transferred to a battery. It is characterized by adjusting the hydrogen ion concentration and dissolved oxygen concentration in the battery tank and electrolytic tank to a predetermined range so that phosphate ions and nitrate ions can be removed simultaneously by circulating and supplying them to the tank. Contaminated water purification method.

本発明によれば、窒素酸化物およびリンを、電力や高価な触媒などにかかるコストを必要とせず、淡水と海水に関わらず高いリンの回収率と硝酸イオンの分解率が達成できる。 According to the present invention, a high recovery rate of phosphorus and a high rate of decomposition of nitrate ions can be achieved regardless of freshwater or seawater, without requiring the cost of electricity or expensive catalysts.

(2)リン酸イオン除去工程を電池槽で最初に行い、次に汚染水を電気分解して水素を発生させる水素発生工程を行い、最後に硝酸イオンを還元除去する硝酸イオン除去工程を行うことを特徴とする(1)記載の汚染水浄化方法。 (2) First perform a phosphate ion removal process in the battery tank, then perform a hydrogen generation process in which contaminated water is electrolyzed to generate hydrogen, and finally perform a nitrate ion removal process in which nitrate ions are reduced and removed. The contaminated water purification method according to (1), characterized in that:

本発明によれば、窒素酸化物およびリンを、電力や高価な触媒などにかかるコストを必要とせず、淡水と海水に関わらず高いリンの回収率と硝酸イオンの分解率が達成できる。 According to the present invention, a high recovery rate of phosphorus and a high rate of decomposition of nitrate ions can be achieved regardless of freshwater or seawater, without requiring the cost of electricity or expensive catalysts.

(3)鉄を負極とし炭素を正極とする電池および同電池が入った電池槽が、多段に接続されていることを特徴とする(1)記載の汚染水浄化方法。 (3) The contaminated water purification method according to (1), characterized in that batteries having iron as a negative electrode and carbon as a positive electrode and battery tanks containing the batteries are connected in multiple stages.

本発明によれば、窒素酸化物およびリンを、電力や高価な触媒などにかかるコストを必要とせず、淡水と海水に関わらず高いリンの回収率と硝酸イオンの分解率が達成できる。 According to the present invention, a high recovery rate of phosphorus and a high rate of decomposition of nitrate ions can be achieved regardless of freshwater or seawater, without requiring the cost of electricity or expensive catalysts.

(4)鉄を負極とし炭素を正極とする電池が入った水槽の内部で汚染水を電解水として発電させかつリン酸イオンを除去するための鉄イオンを溶出させる電池槽と、リン酸鉄として沈殿させ、リン酸イオン除去および回収する沈殿槽と、前記リン酸イオンを除去するための鉄イオンを溶出させる工程を電池槽で行って得られた電力を利用して汚染水を電気分解して水素を発生させ、前記発生した水素により硝酸イオンを還元除去する硝酸イオンを除去する電解槽とを備える汚染水浄化装置において、汚染水の電気分解に用いられる鉄イオンの還元のための還元槽が、還元性有機物である茶粕を連続的に供給可能な供給部と、使用済み還元性有機物である茶粕を連続的に排出する還元性有機物である茶粕の分離部が接続されていることを特徴とする汚染水浄化装置。 (4) A battery tank containing a battery with iron as the negative electrode and carbon as the positive electrode, in which contaminated water is used as electrolyzed water to generate electricity and iron ions are eluted to remove phosphate ions, and as iron phosphate. Contaminated water is electrolyzed using electric power obtained by performing a precipitation tank to remove and recover phosphate ions, and a battery tank to elute iron ions to remove the phosphate ions. In a contaminated water purification apparatus comprising an electrolytic cell for generating hydrogen and reducing and removing nitrate ions using the generated hydrogen, a reduction tank for reducing iron ions used for electrolysis of contaminated water is provided. , A supply part that can continuously supply tea lees, which is a reducing organic substance, is connected to a separation part for tea lees, which is a reducing organic substance, which continuously discharges used tea lees, which is a reducing organic substance. A contaminated water purification device featuring:

本発明によれば、窒素酸化物およびリンを、電力や高価な触媒などにかかるコストを必要とせず、淡水と海水に関わらず高いリンの回収率と硝酸イオンの分解率が達成できる製造装置が得られる。 According to the present invention, there is a production device for producing nitrogen oxides and phosphorus that can achieve a high recovery rate of phosphorus and a high decomposition rate of nitrate ions regardless of freshwater or seawater without requiring the cost of electricity or expensive catalysts. can get.

(5)電池槽と電解槽の間に、汚染水中のリン酸イオンを沈殿させ固液分離する沈殿槽が設けられていることを特徴とする(4)記載の汚染水浄化装置。 (5) The contaminated water purification device according to (4) , further comprising a sedimentation tank for precipitating phosphate ions in the contaminated water and separating solid and liquid between the battery tank and the electrolytic tank.

本発明によれば、窒素酸化物およびリンを、電力や高価な触媒などにかかるコストを必要とせず、淡水と海水に関わらず高いリンの回収率と硝酸イオンの分解率が達成できる製造装置が得られる。 According to the present invention, there is a production device for producing nitrogen oxides and phosphorus that can achieve a high recovery rate of phosphorus and a high decomposition rate of nitrate ions regardless of freshwater or seawater without requiring the cost of electricity or expensive catalysts. can get.

(6)電池槽の正極が電解槽の陽極に接続され、電池槽の負極が電解槽の陰極に接続されていることを特徴とする(4)記載の汚染水浄化装置。 (6) The contaminated water purification device according to (4), wherein the positive electrode of the battery tank is connected to the anode of the electrolytic tank, and the negative electrode of the battery tank is connected to the cathode of the electrolytic tank.

本発明によれば、窒素酸化物およびリンを、電力や高価な触媒などにかかるコストを必要とせず、淡水と海水に関わらず高いリンの回収率と硝酸イオンの分解率が達成できる製造装置が得られる。 According to the present invention, there is a production device for producing nitrogen oxides and phosphorus that can achieve a high recovery rate of phosphorus and a high decomposition rate of nitrate ions regardless of freshwater or seawater without requiring the cost of electricity or expensive catalysts. can get.

(7)電解槽の陰極槽に還元された鉄イオンを還元槽から供給し、電解槽で酸化された鉄イオンを還元槽に戻すよう還元槽と電解槽が接続されていることを特徴とする(4)の汚染水浄化装置。 (7) The reduction tank and the electrolytic tank are connected so that the reduced iron ions are supplied from the reduction tank to the cathode tank of the electrolytic tank, and the iron ions oxidized in the electrolytic tank are returned to the reduction tank. (4) Contaminated water purification equipment.

本発明によれば、窒素酸化物およびリンを、電力や高価な触媒などにかかるコストを必要とせず、淡水と海水に関わらず高いリンの回収率と硝酸イオンの分解率が達成できる製造装置が得られる。 According to the present invention, there is a production device for producing nitrogen oxides and phosphorus that can achieve a high recovery rate of phosphorus and a high decomposition rate of nitrate ions regardless of freshwater or seawater without requiring the cost of electricity or expensive catalysts. can get.

本発明によれば、湖沼で問題となっている富栄養の原因となるリン酸イオンと硝酸イオンを含む汚染水からをこれらの汚染源を低コストで効率よく除去可能であり、また、除去した汚染物からリンを再利用することができる、汚染水浄化方法および装置を提供することが出来る。 According to the present invention, it is possible to efficiently remove phosphate ions and nitrate ions, which are the cause of eutrophication in lakes, from contaminated water at low cost. It is possible to provide a contaminated water purification method and device that can reuse phosphorus from materials.

本発明になる汚染水浄化装置は、コンパクトかつシンプルな構造であり、電源も不要のため、水域の汚染源の状況に合わせて、適切な規模かつピンポイントで設置することができ、硝酸イオンとリン酸イオンを適時に除去できる。 The contaminated water purification device of the present invention has a compact and simple structure and does not require a power source, so it can be installed on an appropriate scale and in a pinpoint manner according to the situation of the pollution source in the water body. Acid ions can be removed in a timely manner.

本発明になる汚染水浄化方法は、(1-A)と(2-A)のように微生物活性を高くかつ安定して維持するための処理条件の厳密なコントロールの必要がなく、操作が容易であり、コンパクトなサイズで実施できる。また、(1-B)の(a)のような再生処理のための薬剤や(b)のような高価な触媒、(2-B)の(a)と(b)のような高価な凝集剤も必要としないため、プロセス全体として、低コストである。加えて、(b)のように塩化物イオンを必要としないため、淡水域での硝酸イオン除去が可能であり、(2-B)の(c)のように爆気しなくても中性付近でのリン酸除去が可能であり、(d)のように外部からの電力供給や高価な触媒および塩化物イオンが不必要であるため、淡水域と海水域に関わらず河川や湖沼等の富栄養化を持続的に防止できる。 The contaminated water purification method of the present invention does not require strict control of treatment conditions to maintain high and stable microbial activity as in (1-A) and (2-A), and is easy to operate. and can be implemented in a compact size. In addition, there are also chemicals for regeneration treatment like (a) in (1-B), expensive catalysts like (b), and expensive flocculation like (a) and (b) in (2-B). Since no chemicals are required, the process as a whole is low cost. In addition, since chloride ions are not required as in (b), nitrate ions can be removed in fresh water, and neutralization can be achieved without detonation as in (c) of (2-B). It is possible to remove phosphoric acid nearby, and as shown in (d), there is no need for an external power supply, expensive catalysts, or chloride ions, so it can be removed from rivers, lakes, etc., regardless of whether it is freshwater or seawater. Eutrophication can be prevented sustainably.

本発明になる汚染水浄化方法は、鉄廃材の新しいリサイクル法や茶粕やコーヒー粕等の生ごみの新たな活用法、回収されたリンと水素を用いた新たな産業や農業が計画できるため、途上国や地域の経済の活性化にも貢献できる。 The contaminated water purification method of the present invention enables new recycling methods for iron scrap materials, new ways to utilize raw garbage such as tea and coffee grounds, and new industries and agriculture using recovered phosphorus and hydrogen. It can also contribute to revitalizing the economies of developing countries and regions.

本発明になる汚染水浄化方法は、途上国では、鉄素材と炭素素材、炭素素材が入手困難な場合は、鉄よりもイオン化傾向が低い素材を用いれば、鉄炭素電池によるリン酸除去・回収が実施できる。更に、チタンやステンレス等の劣化しにくい電極素材と陽イオン交換膜の代替となる浸透膜や半透膜が入手できれば、低電圧電解による硝酸イオンが実施できる。 The method for purifying contaminated water according to the present invention can be used in developing countries to remove and recover phosphoric acid by using iron and carbon batteries. can be implemented. Furthermore, if electrode materials that do not easily deteriorate, such as titanium or stainless steel, and permeable membranes or semipermeable membranes that can be substituted for cation exchange membranes are available, nitrate ion electrolysis can be carried out by low-voltage electrolysis.

本発明になる汚染水浄化は、先進国では、従来の水浄化施設や浄化槽に組み込むことによって、窒素とリンの適時除去機能を安全・安価で付加できる。 In developed countries, the contaminated water purification method of the present invention can be incorporated into conventional water purification facilities and septic tanks to add nitrogen and phosphorus removal functions in a safe and inexpensive manner.

本発明によれば、水中のリン酸イオンは鉄炭素電池の鉄製の負極から溶出させた鉄イオンによって沈殿除去され、回収された沈殿物からはリン酸が回収できる。更に、鉄炭素電池で処理した後の溶液を2槽式電解装置の陰極槽に注入して、鉄炭素電池から供給される電力を用いた低電圧電解による水素製造を行うと、生成された水素によって水中の硝酸イオンが還元され、窒素ガスとして水外へ除去される。また、本発明によれば、鉄炭素電池によるリン酸イオンの除去・回収と、同電池の電力を用いた低電圧電解で生成した水素ガスによる水中の硝酸イオンの除去が適時に小規模な装置で可能であるため、低コストで持続的な富栄養化対策が可能になる。 According to the present invention, phosphate ions in water are precipitated and removed by iron ions eluted from the iron negative electrode of an iron-carbon battery, and phosphoric acid can be recovered from the recovered precipitate. Furthermore, when the solution treated with the iron-carbon battery is injected into the cathode tank of a two-tank electrolyzer and hydrogen is produced by low-voltage electrolysis using the power supplied from the iron-carbon battery, the produced hydrogen The nitrate ions in the water are reduced and removed from the water as nitrogen gas. In addition, according to the present invention, the removal and recovery of phosphate ions using an iron-carbon battery and the removal of nitrate ions in water using hydrogen gas generated by low-voltage electrolysis using the power of the battery can be carried out in a timely manner using a small-scale device. This makes it possible to take low-cost and sustainable measures against eutrophication.

現在、日本では、年間3,500万トンもの膨大な屑鉄が発生している。今後、屑鉄の発生量は増大し、国内の鉄鋼の需要量を上回ることが予想され、全ての鉄鋼をリサイクル品で賄ったとしても、屑鉄が確実に残る(非特許文献20)と言われている。 Currently, 35 million tons of scrap iron is generated annually in Japan. In the future, the amount of scrap metal generated is expected to increase and exceed the domestic demand for steel, and it is said that even if all steel is supplied with recycled products, scrap metal will definitely remain (Non-Patent Document 20). There is.

以下に、図面と式を用いて、リン酸イオンと硝酸イオンを除去する汚染水浄化方法および装置の最良の形態を説明する。 Below, the best mode of a contaminated water purification method and apparatus for removing phosphate ions and nitrate ions will be explained using drawings and formulas.

図1は、本発明になるリン酸イオンと硝酸イオンを除去する汚染水浄化方法および装置を説明する図で、11は硝酸イオン、12はリン酸イオン、13は鉄炭素電池、14は鉄製の負極、15は炭素製の正極、16は導線、17は鉄イオンとリン酸イオン12による沈殿物、18は鉄炭素電池13で処理した後の溶液、19は鉄炭素電池13から供給される電力、111は陽極槽、112は陰極槽、113は水素イオン交換膜、114は陽極、115は陰極、116は電源、117は茶粕等の還元性有機物、118は太陽光、119は還元槽、120は電解槽をそれぞれ表す。 FIG. 1 is a diagram illustrating a contaminated water purification method and apparatus for removing phosphate ions and nitrate ions according to the present invention, in which 11 is a nitrate ion, 12 is a phosphate ion, 13 is an iron-carbon battery, and 14 is an iron carbon battery. A negative electrode, 15 is a carbon positive electrode, 16 is a conducting wire, 17 is a precipitate formed by iron ions and phosphate ions 12, 18 is a solution after treatment with the iron-carbon battery 13, 19 is the power supplied from the iron-carbon battery 13 , 111 is an anode tank, 112 is a cathode tank, 113 is a hydrogen ion exchange membrane, 114 is an anode, 115 is a cathode, 116 is a power source, 117 is a reducing organic substance such as tea lees, 118 is sunlight, 119 is a reduction tank, 120 each represents an electrolytic cell.

鉄製の負極14と炭素製の正極15が導線16で直結され、鉄製の負極14と炭素製の正極15は向かい合う近接した位置に設置され、鉄炭素電池13が製作される。鉄炭素電池13は、硝酸イオン11とリン酸イオン12が含まれる水溶液の中に入れられる。鉄は中性付近ではその溶解速度が非常に小さいが、鉄を負極とし、鉄よりもイオン化傾向の低い炭素材料を正極とすることによって電池を形成し、鉄の溶解速度を大きくでき、鉄製の負極14から溶出した鉄イオンによって水中のリン酸イオン12を沈殿させ、沈殿物17を水外に分離することによって水中のリン酸イオン12が除去される。鉄炭素電池13で処理した後の溶液18を2槽式電解装置の陰極槽112に注入して、鉄炭素電池13から供給される電力19を用いた低電圧電解による水素製造を行うと、生成された水素によって水中の硝酸イオン11が還元され、窒素ガス110として水外へ除去される。 An iron-made negative electrode 14 and a carbon-made positive electrode 15 are directly connected by a conductive wire 16, and the iron-made negative electrode 14 and the carbon-made positive electrode 15 are placed in close positions facing each other, thereby producing an iron-carbon battery 13. The iron-carbon battery 13 is placed in an aqueous solution containing nitrate ions 11 and phosphate ions 12. The dissolution rate of iron is very low near neutrality, but by using iron as the negative electrode and a carbon material with a lower ionization tendency than iron as the positive electrode, the dissolution rate of iron can be increased and the dissolution rate of iron can be increased. The phosphate ions 12 in the water are precipitated by the iron ions eluted from the negative electrode 14, and the precipitates 17 are separated from the water, thereby removing the phosphate ions 12 in the water. When the solution 18 treated with the iron-carbon battery 13 is injected into the cathode tank 112 of a two-tank electrolyzer and hydrogen is produced by low-voltage electrolysis using the electric power 19 supplied from the iron-carbon battery 13, hydrogen is produced. Nitrate ions 11 in the water are reduced by the hydrogen produced and removed as nitrogen gas 110 out of the water.

陽極槽111と陰極槽112が水素イオン交換膜113によって遮られている。そして、陽極槽には陽極114が、陰極槽には陰極115が含侵している。そして、陽極114と陰極115は電源116によって電圧が印加される。 An anode tank 111 and a cathode tank 112 are blocked by a hydrogen ion exchange membrane 113. The anode tank is impregnated with an anode 114, and the cathode tank is impregnated with a cathode 115. A voltage is applied to the anode 114 and the cathode 115 by a power source 116.

還元槽119には、硝酸鉄(三価)水溶液が満たされ、3価の鉄イオンが供給され、還元性有機物である茶粕が光触媒的に働き、太陽光のエネルギーによって式3の反応を促進し、3価の鉄イオンが2価の鉄イオンに還元され、かつ水素イオンが発生する。

Figure 0007391366000003
The reduction tank 119 is filled with an aqueous solution of iron nitrate (trivalent), and trivalent iron ions are supplied, and the tea lees, which is a reducing organic substance, acts as a photocatalyst, promoting the reaction of formula 3 with the energy of sunlight. However, trivalent iron ions are reduced to divalent iron ions and hydrogen ions are generated.
Figure 0007391366000003

還元槽119で発生した水素イオンは、水素イオン交換膜113を透過し陰極槽112の中に移動し、陰極に引き寄せられ水素になる。一方、陽極槽111内では還元された2価の鉄イオンが陽極114に引き寄せられ、式4の反応が起こり、電子を奪われ3価の鉄イオンに酸化し、かつ、酸素が発生する。

Figure 0007391366000004
Hydrogen ions generated in the reduction tank 119 pass through the hydrogen ion exchange membrane 113 and move into the cathode tank 112, where they are attracted to the cathode and become hydrogen. On the other hand, in the anode tank 111, the reduced divalent iron ions are attracted to the anode 114, the reaction of formula 4 occurs, electrons are taken away, the iron ions are oxidized to trivalent iron ions, and oxygen is generated.
Figure 0007391366000004

従来の水の電解による水素製造方法は式5による水の酸化が伴うため、電圧3ボルト以上の電圧の印加が必要であったが、本発明では、陽極槽111内の茶粕等の還元性有機物117と太陽光18によって3価の鉄イオンが連続的に還元され、還元された2価の鉄イオンの連続的存在により、1ボルト以下の電圧で、水の電解が連続的に進行する。

Figure 0007391366000005
In the conventional hydrogen production method using water electrolysis, water is oxidized according to Equation 5, so it was necessary to apply a voltage of 3 volts or more. Trivalent iron ions are continuously reduced by the organic matter 117 and sunlight 18, and water electrolysis proceeds continuously at a voltage of 1 volt or less due to the continuous presence of the reduced divalent iron ions.
Figure 0007391366000005

次に、図2を用いて、本発明のリン酸イオンと硝酸イオンを除去する汚染水浄化方法および装置における鉄炭素電池の詳細な構造を説明する。図中、21はボルト、22はプラスチック製の正極固定盤、15は炭素製の正極、23は正極の集電板、24は網状のプラスチック製セパレーター、14は鉄製の負極、25は負極の集電板、26はプラスチック製の負極固定盤、27はナットをそれぞれ表す。 Next, the detailed structure of the iron-carbon battery in the contaminated water purification method and apparatus for removing phosphate ions and nitrate ions of the present invention will be explained using FIG. 2. In the figure, 21 is a bolt, 22 is a plastic positive electrode fixing plate, 15 is a carbon positive electrode, 23 is a positive electrode current collector plate, 24 is a mesh plastic separator, 14 is an iron negative electrode, and 25 is a negative electrode collector. An electric plate, 26 a negative electrode fixing plate made of plastic, and 27 a nut.

鉄炭素電池の組み立て方について図2を用いて説明する。鉄板(長さ15cm×幅4.5cm)を負極14、炭素板(長さ10cm×幅4cm)を正極15とし、負極14と正極15の間にプラスチック製の網(長さ10cm×幅4cm)を挟み、セパレーター24とし、プラスチック製の正極固定盤22とプラスチック製の負極固定盤26によって外側から挟み込み、ボルト21を通し、ナット27を締め、鉄炭素電池を組み立てた。 How to assemble an iron-carbon battery will be explained using FIG. 2. An iron plate (length 15 cm x width 4.5 cm) is used as the negative electrode 14, a carbon plate (length 10 cm x width 4 cm) is used as the positive electrode 15, and a plastic net (length 10 cm x width 4 cm) is placed between the negative electrode 14 and the positive electrode 15. was sandwiched between them, used as a separator 24, and sandwiched from the outside between a plastic positive electrode fixing plate 22 and a plastic negative electrode fixing plate 26. Bolts 21 were passed through and nuts 27 were tightened to assemble an iron-carbon battery.

負極14で使用する鉄材料としては、いわゆる普通鋼、軟鉄などを使用することができる。 As the iron material used for the negative electrode 14, so-called ordinary steel, soft iron, etc. can be used.

また、この鉄材料の形状は、特に制限はない。例えば、平板状のもの、網状のもの、穴あき平板状(パンチングメタル)のもの、棒状のもの、網状のもの、粒子状のもの、糸状のものなどいずれも使用することができる。鉄の接触面積を大きくするために、網状や穴あき平板状、粒子状のものが好ましい。 Further, the shape of this iron material is not particularly limited. For example, any material such as a flat plate, a net, a perforated flat plate (punched metal), a rod, a net, a particle, a thread, etc. can be used. In order to increase the contact area with iron, it is preferable to use a net shape, a perforated flat plate shape, or a particle shape.

負極14で使用する材料としては、鉄よりも電位の貴な材料を使用する。鉄よりも電位の貴な材料としては、炭素材料、ステンレススチール、銅などが使用することができる。炭素材料の形態は、例えば、平板状のもの、棒状のもの、繊維状のもの、織布や不織布状のものなどが利用できる。 As the material used for the negative electrode 14, a material with a nobler potential than iron is used. Carbon materials, stainless steel, copper, etc. can be used as materials with a higher potential than iron. The carbon material can be in the form of, for example, a flat plate, a rod, a fiber, a woven fabric, or a nonwoven fabric.

鉄炭素電池では、負極14と正極15が向き合った状態となるように配置することが好ましい。 In an iron-carbon battery, it is preferable to arrange the negative electrode 14 and the positive electrode 15 so that they face each other.

負極14と正極15との間隔は小さいほど電流が大きくなるために好ましいが、液の流動の容易性などを考慮すると1mm~50mmが好ましく、2mm~10mmが更に好ましい。被処理水の浴中の液の撹拌がない場合には両者の間隔を小さくし、浴中の液の撹拌がある場合には両者の間隔を大きくし、撹拌速度が大きくなるにつれて両者の間隔を大きくすることができる。 The smaller the distance between the negative electrode 14 and the positive electrode 15, the larger the current, so it is preferable, but in consideration of ease of liquid flow, etc., the distance is preferably 1 mm to 50 mm, and more preferably 2 mm to 10 mm. If there is no agitation of the liquid in the bath of the water to be treated, the gap between the two should be reduced, if there is agitation of the liquid in the bath, the gap between the two should be increased, and as the agitation speed increases, the gap between the two should be reduced. Can be made larger.

被処理水に鉄炭素電池を浸漬する場合、温度は室温でよく、特に加熱や冷却は必要としない。また、被処理水は中性領域でよいが、弱酸性や弱アルカリ性であってもよい。ただし、pHが8を超えると鉄が不動態となり水への溶解が進まなくなるので好ましくない。また、鉄炭素電池による水の処理においては物質移動を伴うので、被処理水の浴を撹拌することが好ましい。同様に、負極14と正極15と被処理水との接触面積も大きい方が好ましい。従って、負極14と正極15を多孔質状とすることが好ましい。 When the iron-carbon battery is immersed in the water to be treated, the temperature may be room temperature, and no particular heating or cooling is required. Furthermore, the water to be treated may be in a neutral range, but may also be weakly acidic or weakly alkaline. However, if the pH exceeds 8, iron becomes passive and does not dissolve in water, which is not preferable. Further, since the treatment of water using an iron-carbon battery involves mass transfer, it is preferable to stir the bath of the water to be treated. Similarly, it is preferable that the contact area between the negative electrode 14, the positive electrode 15, and the water to be treated be large. Therefore, it is preferable that the negative electrode 14 and the positive electrode 15 be porous.

次に、図3を用いて、本発明のリン酸イオンと硝酸イオンを除去する汚染水浄化方法および装置における電池槽の詳細な構造を説明する。図中、31は電池槽の流入口、32は電池槽、33は試供水、34は電解装置の陽極とつなぐ正極、35は電解装置の陰極とつなぐ負極、36は電池槽の流出口、37は第1水槽、38は第2水槽、39は第3水槽、310は第4水槽、311は第5水槽、312は第6水槽、13は鉄炭素電池、14は鉄製の負極、15は炭素製の正極、16は導線、24はセパレーターをそれぞれ表す。 Next, the detailed structure of the battery tank in the contaminated water purification method and apparatus for removing phosphate ions and nitrate ions of the present invention will be explained using FIG. 3. In the figure, 31 is the inlet of the battery tank, 32 is the battery tank, 33 is sample water, 34 is the positive electrode connected to the anode of the electrolyzer, 35 is the negative electrode connected to the cathode of the electrolyzer, 36 is the outlet of the battery tank, 37 is the first water tank, 38 is the second water tank, 39 is the third water tank, 310 is the fourth water tank, 311 is the fifth water tank, 312 is the sixth water tank, 13 is the iron carbon battery, 14 is the iron negative electrode, 15 is carbon 16 represents a conductive wire, and 24 represents a separator.

電池槽32は第1水槽37、第2水槽38、第3水槽39、第4水槽310、第5水槽311、第6水槽312に仕切られた水槽である。これらの6つの水槽のサイズは幅5cm×奥行1.5cm×高さ8cmであり、6つの水槽の容積の合計、すなわち、電池槽32の容積は約800mLである。第1水槽から第6水槽の6つの水槽に鉄炭素電池13を1基ずつ計6基入れ、隣り合う鉄炭素電池の鉄製の負極14と炭素製の正極15を銅線16によって直列に接続した。試供水33は流入口31から供給され、第1水槽37に上部から入り、第1水槽37内の鉄炭素電池13に触れた後、第2水槽38に下部から入り、第2水槽38内の鉄炭素電池13に触れた後、第3水槽39に上部から入り、第3水槽39内の鉄炭素電池13に触れた後、第4水槽310の下部から入り、第4水槽310内の鉄炭素電池13に触れた後、第5水槽311に上部から入り、第5水槽311内の鉄炭素電池13に触れた後、第6水槽312の下部から入り、第6水槽312内の鉄炭素電池13に触れた後、流出口36から処理された試供水33が排出される。 The battery tank 32 is an aquarium partitioned into a first aquarium 37 , a second aquarium 38 , a third aquarium 39 , a fourth aquarium 310 , a fifth aquarium 311 , and a sixth aquarium 312 . The size of these six water tanks is 5 cm width x 1.5 cm depth x 8 cm height, and the total volume of the six water tanks, that is, the volume of the battery tank 32 is approximately 800 mL. One iron-carbon battery 13 was placed in each of six tanks, from the first tank to the sixth tank, and the iron negative electrode 14 and carbon positive electrode 15 of the adjacent iron-carbon batteries were connected in series with a copper wire 16. . Sample water 33 is supplied from the inlet 31, enters the first water tank 37 from the top, touches the iron-carbon battery 13 in the first water tank 37, enters the second water tank 38 from the bottom, and enters the second water tank 38 from the bottom. After touching the iron-carbon battery 13, enter the third water tank 39 from above, and after touching the iron-carbon battery 13 in the third water tank 39, enter from the bottom of the fourth water tank 310, and enter the iron-carbon in the fourth water tank 310. After touching the battery 13, enter the fifth water tank 311 from above, and after touching the iron-carbon battery 13 in the fifth water tank 311, enter from the bottom of the sixth water tank 312, and enter the iron-carbon battery 13 in the sixth water tank 312. , the treated sample water 33 is discharged from the outlet 36.

[実施例1(鉄炭素電池による電力供給とリン酸除去および回収法)]
鉄板(長さ15cm×幅4.5cm)を負極14、炭素板(長さ10cm×4cm)を正極15とし、プラスチックの網をセパレーター24とした。試供水33は、麻機池の水をろ過した後、リン酸水素二ナトリウム・12水和物(NaHPO・12HO)とリン酸2水素ナトリウム2水和物(NaHPO・2HO)を等量ずつ用いて、リン酸態リン(PO-P)濃度を0.05mmol/L(麻機池の流入溝のリン酸イオン濃度の年間の最大値、平均値の約10倍)、pHを7.0に調製した。実験は、1.6Lの試供水33を毎分26mLで流入口31から送り込み、流出口36から流れ出させ、処理後の試供水33を再度、流入口31に流し込み、試供水33を4回、循環させた。電池槽に入った試供水の体積の合計は、0.8Lであるため、約30分で電池槽内の試供水が入れ替わる。リン酸態リン濃度は、モリブデン青吸光光度法(非特許文献21)によって測定し、リン酸イオンが除去された割合を示す「リン酸イオン の除去率」を式6で定義した。

Figure 0007391366000006
[Example 1 (Power supply by iron-carbon battery and phosphoric acid removal and recovery method)]
An iron plate (length 15 cm x width 4.5 cm) was used as the negative electrode 14, a carbon plate (length 10 cm x 4 cm) was used as the positive electrode 15, and a plastic net was used as the separator 24. Sample water 33 was obtained by filtering water from Maki Pond and then adding disodium hydrogen phosphate dodecahydrate (Na2HPO4・12H2O) and sodium dihydrogen phosphate dihydrate (NaH2P.O.4・2H2Phosphate (PO) was prepared using equal amounts of4-P) concentration was adjusted to 0.05 mmol/L (annual maximum value of phosphate ion concentration in the inflow ditch of Asaki Pond, about 10 times the average value) and pH was adjusted to 7.0. In the experiment, 1.6L of sample water 33 was sent through the inlet 31 at a rate of 26 mL per minute, allowed to flow out from the outlet 36, and the sample water 33 after treatment was again poured into the inlet 31. circulated. Since the total volume of the sample water that entered the battery tank was 0.8 L, the sample water in the battery tank was replaced in about 30 minutes. The phosphate phosphorus concentration was measured by molybdenum blue absorption spectrophotometry (Non-patent Document 21), and the phosphate ion concentration was measured by molybdenum blue absorption spectrophotometry (Non-Patent Document 21). 'removal rate' was defined by Equation 6.
Figure 0007391366000006

1つの鉄炭素電池13を試供水33に入れた所、解放電圧は約0.5Vであった。鉄炭素電池13を直列に6個つないだ所、約3Vの電圧が発生した。1V以上であれば、2価の鉄イオンの酸化を用いた水素生産が可能であるため、鉄炭素電池からの電力の供給による水素生産は可能であることが分かった。 When one iron-carbon battery 13 was placed in sample water 33, the open voltage was approximately 0.5V. When six iron-carbon batteries 13 were connected in series, a voltage of about 3V was generated. It was found that if the voltage is 1 V or higher, hydrogen production using oxidation of divalent iron ions is possible, and therefore hydrogen production is possible by supplying electric power from an iron-carbon battery.

リン酸イオンの除去率は循環回数が1回の時は54.4%、2回の時は71.4%、3回の時は88.5%、4回の時は94.6%であった。 The removal rate of phosphate ions was 54.4% when the number of circulations was 1, 71.4% when 2 times, 88.5% when 3 times, and 94.6% when 4 times. there were.

表1に電池水槽のpHと酸化還元電位(ORP)を示した。電池槽に流入した試供水のpHが上昇すると共に、酸化還元電位が負の値へ下降したことから、鉄炭素電池から鉄イオンが溶出したことが分かる。そのため、電池槽には、Fe2+とFe3+が存在する。Fe2+と陰イオンの溶解度積は、Fe3+の溶解度積と比較して非常に大きいため、Fe2+の沈殿はほとんど存在しないと考えられることから、Fe3+と陰イオンの反応で沈殿が生成したと判断した。Fe3+と反応して生成する沈殿物としては、Fe(OH)(s)、FePO(s)、Fe(CO(s)、Fe(SO(s)が挙がる。この4種の沈殿の中でFe(CO(s)とFe(SO(s)は溶解度積が非常に大きいため、沈殿は生成しないと考えられた。Fe(OH)(s)とFePO(s)に関する化学平衡と平衡定数から化学量論的に、FePO(s)の沈殿が生成されたとは考えられなかったため、生成した沈殿は、Fe(OH)(s)の沈殿であり、この沈殿の生成に伴って、リン酸(H3PO4 PO やHPO 2- )が共沈殿によって除去されたと考えられた。 Table 1 shows the pH and oxidation-reduction potential (ORP) of the battery water tank. It can be seen that iron ions were eluted from the iron-carbon battery because the pH of the sample water that flowed into the battery tank increased and the redox potential decreased to a negative value. Therefore, Fe 2+ and Fe 3+ are present in the battery cell. Since the solubility product of Fe 2+ and anions is much larger than that of Fe 3+ , it is thought that almost no Fe 2+ precipitate exists, indicating that the precipitate was generated by the reaction between Fe 3+ and anions. I decided that. The precipitates generated by reacting with Fe 3+ include Fe(OH) 3 (s), FePO 4 (s), Fe 2 (CO 3 ) 3 (s), and Fe 3 (SO 4 ) 2 (s). Listed. Among these four types of precipitates, Fe 2 (CO 3 ) 3 (s) and Fe 3 (SO 4 ) 2 (s) had a very large solubility product, so it was thought that no precipitates were formed. From the chemical equilibrium and equilibrium constants for Fe(OH) 3 (s) and FePO 4 (s), it was not considered stoichiometrically that a FePO 4 (s) precipitate was formed, so the formed precipitate was FePO 4 (s). (OH) 3 (s), and it is thought that along with the formation of this precipitate, phosphoric acid (H 3 PO 4 - H 3 PO 4 - and H 3 PO 4 2- ) was removed by co-precipitation. Ta.

Figure 0007391366000007
Figure 0007391366000007

この実験を15時間継続した結果、水中のリン酸イオン除去率が100%になった。沈殿物を回収し、完全に乾燥させ、0.31gの回収物を得た。回収物の0.1倍の質量である0.031gを実験に用いた試供水の0.1倍の体積である160mLの硫酸溶液(1mol/L)に入れ、300rpmで30分間撹拌した後、溶液に溶出したリン酸イオン濃度を測定した。式7によるリン酸回収率は、水中のほぼ100%のリン酸イオンが沈殿物として回収できることが確認できた。

Figure 0007391366000008
As a result of continuing this experiment for 15 hours, the removal rate of phosphate ions from water became 100%. The precipitate was collected and completely dried to obtain 0.31 g of collected material. 0.031 g, which is 0.1 times the mass of the recovered material, was placed in 160 mL of sulfuric acid solution (1 mol/L), which was 0.1 times the volume of the sample water used in the experiment, and after stirring at 300 rpm for 30 minutes, The concentration of phosphate ions eluted into the solution was measured. The phosphoric acid recovery rate according to Equation 7 confirmed that almost 100% of phosphate ions in water could be recovered as precipitates.
Figure 0007391366000008

[実施例2](鉄炭素電池から供給された電力を用いた低電圧電解で生成した水素による硝酸イオン還元除去法と鉄塩によるリン酸凝集沈殿法を同時に実施)
以下に、図面を用いて、本発明の実施例を詳細に説明する。図4は本発明のリン酸イオンと硝酸イオンを除去する汚染水浄化方法および装置の実施例を説明する図で、13は鉄炭素電池、17は鉄イオンとリン酸イオンから生成した沈殿物、111は陽極槽、112は陰極槽、113は水素イオン交換膜、114は陽極、115は陰極、118は太陽光、119は還元槽、120は電解槽、31は電池槽32の流入口、32は電池槽、33は試供水、34は電解装置の陽極とつなぐ正極、35は電解装置の陰極とつなぐ負極、36は電池槽32の流出口、37は第1水槽、38は第2水槽、39は第3水槽、310は第4水槽、311は第5水槽、312は第6水槽、41は茶粕の供給および給水のためのバルブ、42は鉄イオンと還元性有機物が混合された溶液、43は空間、44は撹拌用モーター、45は陽極槽の廃液を還元槽へ返すパイプ、46は撹拌用プロペラ、47は使用済み還元性有機物の廃棄用バルブ、48はろ過機、49は還元槽119からポンプ410へのパイプ、410は還元槽119から陽極槽111への輸液ポンプ、411はポンプ410から陽極槽111へのパイプ、412は導線、413は陰極槽の排出口、414は陰極槽の流入口、415はポンプ416と流入口414をつなぐパイプ、416は沈殿槽420内の溶液419の上澄みを陰極槽112へ送る輸液ポンプ、417は沈殿槽420とポンプ416をつなぐパイプ、418は空間、419は電池水槽32で処理された後の試供水33、420は沈殿槽、421は沈殿物17の廃棄用バルブ、422は電池水槽32の流出口36と沈殿槽420をつなぐパイプ、をそれぞれ表す。
[Example 2] (Simultaneous implementation of nitrate ion reduction and removal method using hydrogen generated by low-voltage electrolysis using electricity supplied from an iron-carbon battery and phosphoric acid coagulation precipitation method using iron salts)
Embodiments of the present invention will be described in detail below with reference to the drawings. FIG. 4 is a diagram illustrating an embodiment of the contaminated water purification method and apparatus for removing phosphate ions and nitrate ions of the present invention, 13 is an iron carbon battery, 17 is a precipitate generated from iron ions and phosphate ions, 111 is an anode tank, 112 is a cathode tank, 113 is a hydrogen ion exchange membrane, 114 is an anode, 115 is a cathode, 118 is sunlight, 119 is a reduction tank, 120 is an electrolytic tank, 31 is an inlet of the battery tank 32, 32 is a battery tank, 33 is sample water, 34 is a positive electrode connected to the anode of the electrolyzer, 35 is a negative electrode connected to the cathode of the electrolyzer, 36 is an outlet of the battery tank 32, 37 is a first water tank, 38 is a second water tank, 39 is a third tank, 310 is a fourth tank, 311 is a fifth tank, 312 is a sixth tank, 41 is a valve for supplying tea lees and water, and 42 is a solution containing a mixture of iron ions and reducing organic matter. , 43 is a space, 44 is a stirring motor, 45 is a pipe that returns waste liquid from the anode tank to the reduction tank, 46 is a stirring propeller, 47 is a valve for disposing of used reducing organic matter, 48 is a filter, and 49 is a reduction tank. A pipe from the tank 119 to the pump 410, 410 an infusion pump from the reduction tank 119 to the anode tank 111, 411 a pipe from the pump 410 to the anode tank 111, 412 a conductor, 413 an outlet for the cathode tank, 414 a cathode The inlet of the tank, 415 is a pipe that connects the pump 416 and the inlet 414, 416 is an infusion pump that sends the supernatant of the solution 419 in the precipitation tank 420 to the cathode tank 112, 417 is a pipe that connects the precipitation tank 420 and the pump 416, 418 419 is a space, 419 is the sample water 33 treated in the battery water tank 32, 420 is a sedimentation tank, 421 is a valve for disposing of the sediment 17, 422 is a pipe connecting the outlet 36 of the battery water tank 32 and the sedimentation tank 420, respectively.

本発明のリン酸イオンと硝酸イオンを除去する汚染水浄化方法および装置の主要な部分は、図4で示すように、電池槽32内でリン酸イオンを除去するための鉄イオンを溶出しながら発電する鉄炭素電池13と、陽極槽111内で2価の鉄イオンを含む水溶液中の鉄イオンの酸化によって陰極槽112内の水溶液を電解し水素イオンから水素を発生させ、陰極槽内の硝酸イオンを水素によって還元除去する電解槽120と、陽極槽111内で生成した3価の鉄イオンを還元して2価の鉄イオンに再生する還元槽119とで構成される。 The main parts of the contaminated water purification method and apparatus for removing phosphate ions and nitrate ions of the present invention are as shown in FIG. The iron-carbon battery 13 generates electricity, and the aqueous solution in the cathode tank 112 is electrolyzed by oxidation of iron ions in the aqueous solution containing divalent iron ions in the anode tank 111 to generate hydrogen from hydrogen ions, and the nitric acid in the cathode tank is It is comprised of an electrolytic cell 120 that reduces and removes ions with hydrogen, and a reduction tank 119 that reduces trivalent iron ions generated in the anode cell 111 and regenerates them into divalent iron ions.

還元槽119について、図5を用いて説明する。図5は、本発明の第2の実施例の還元槽119の詳細な構造を説明する図である。図中、119は還元槽、42は鉄イオンと還元性有機物が混合された溶液、44は撹拌用モーター、46は撹拌用プロペラ、47は使用済み還元性有機物の廃棄用バルブ、51から55は外部からの光を取り込む窓、をそれぞれ表す。 The reduction tank 119 will be explained using FIG. 5. FIG. 5 is a diagram illustrating the detailed structure of the reduction tank 119 according to the second embodiment of the present invention. In the figure, 119 is a reduction tank, 42 is a solution containing a mixture of iron ions and reducing organic matter, 44 is a stirring motor, 46 is a stirring propeller, 47 is a valve for disposing of used reducing organic matter, and 51 to 55 are Each represents a window that brings in light from the outside.

本実施例では、還元性有機物として茶粕を用い、照射する光として太陽光を用いた。還元槽119は太陽光を外部から光を取り込む窓51から55を通し取り込む。3価の鉄イオンは、太陽光を吸収しながら攪拌プロペラ46で攪拌された茶粕117と反応し、2価の鉄イオンに還元される。2価の鉄イオンと茶粕が混合された溶液42は、使用済みの茶粕は還元槽の上澄みをろ過機48で分離し、ポンプ416によって陽極槽111に導かれる。使用済みとなった茶粕は連続的に分離除去される。還元槽19の底は、使用済みの茶粕が効率よく使用済み茶粕廃棄バルブ47に向かうように、傾斜している。 In this example, tea lees were used as the reducing organic substance, and sunlight was used as the irradiation light. The reduction tank 119 takes in sunlight through windows 51 to 55 that take in light from the outside. The trivalent iron ions react with the tea lees 117 stirred by the stirring propeller 46 while absorbing sunlight, and are reduced to divalent iron ions. The solution 42 in which divalent iron ions and tea lees are mixed is separated from the used tea lees and the supernatant of the reduction tank by a filter 48, and is led to the anode tank 111 by a pump 416. Used tea lees are continuously separated and removed. The bottom of the reduction tank 19 is sloped so that the used tea lees can efficiently flow toward the used tea lees disposal valve 47.

次に、実施例の電解部について説明する。電解部の主要な部分は、陽極槽111と陰極槽112と水素イオン交換膜113からなるが、順に説明する。 Next, the electrolytic section of the example will be explained. The main parts of the electrolysis section include an anode tank 111, a cathode tank 112, and a hydrogen ion exchange membrane 113, which will be explained in order.

図4の陽極槽111の詳細について、図6を用いて説明する。図6で、45は陽極槽の廃液を還元槽に返すパイプ、411は還元槽からの2価の鉄イオンを含んだ溶液の供給用パイプ、61は陽極槽の第1室(下部)、62は陽極槽の第2室(中央部)、63は陽極槽の第3室(上部)、64はボルトを通す穴(陽極槽と陰極槽によって陽イオン交換膜を挟んで固定するためのボルトを通す穴)、をそれぞれ示す。 Details of the anode tank 111 in FIG. 4 will be explained using FIG. 6. In FIG. 6, 45 is a pipe that returns waste liquid from the anode tank to the reduction tank, 411 is a pipe for supplying the solution containing divalent iron ions from the reduction tank, 61 is the first chamber (lower part) of the anode tank, and 62 63 is the second chamber (center) of the anode tank, 63 is the third chamber (upper part) of the anode tank, and 64 is a hole for bolts (for fixing the cation exchange membrane between the anode tank and the cathode tank). holes) are shown respectively.

前述した還元槽119で形成された2価の鉄イオンを含んだ溶液が供給用パイプ411から陽極槽の下部にある第1室61に供給される。第1室61が溶液で満たされると溶液は陽極槽の中央部にある第2室62に流れ込む。第2室62の内部には鉛直方向に10本の細い流路が平行に作られており、この流路は図4の陽極14の表面を流れる位置に配置されている。そのため、第1室61から流入した溶液は第2室62の内部で図4の陽極14の表面に余すことなく触れてから、陽極槽上部にある第3室63へ流れ出る。第3室63では、第2室62の内部で分岐していた流路からの流れが集められ、陽極槽で2価の鉄イオンが酸化されて生成された3価の鉄イオンを含む溶液はパイプ45を通って、図4の還元槽119に返され、2価の鉄イオンに再生される A solution containing divalent iron ions formed in the reduction tank 119 described above is supplied from the supply pipe 411 to the first chamber 61 located at the lower part of the anode tank. When the first chamber 61 is filled with the solution, the solution flows into the second chamber 62 located in the center of the anode cell. Inside the second chamber 62, ten narrow channels are formed in parallel in the vertical direction, and these channels are arranged at positions where the flow passes over the surface of the anode 14 in FIG. Therefore, the solution flowing from the first chamber 61 completely touches the surface of the anode 14 shown in FIG. 4 inside the second chamber 62, and then flows out to the third chamber 63 located at the upper part of the anode tank. In the third chamber 63, the flow from the flow path that was branched inside the second chamber 62 is collected, and a solution containing trivalent iron ions generated by oxidizing divalent iron ions in the anode tank is collected. It passes through the pipe 45 and is returned to the reduction tank 119 in FIG. 4, where it is regenerated into divalent iron ions.

次に、図7を用いて陰極槽112を説明する。図中、413は陰極槽の排出口、414は陰極槽の流入口、71は陰極槽の第1室(下部)、72は陰極極槽の第2室(中央部)、73は陽極槽の第3室(上部)、74はボルトを通す穴をそれぞれ表す。 Next, the cathode tank 112 will be explained using FIG. In the figure, 413 is the outlet of the cathode tank, 414 is the inlet of the cathode tank, 71 is the first chamber (lower part) of the cathode tank, 72 is the second chamber (center part) of the cathode tank, and 73 is the inlet of the anode tank. In the third chamber (upper part), 74 represents holes for passing bolts.

沈殿槽420の上澄み、すなわち、リン酸イオンが除去され、硝酸イオンが残留した試供水がポンプ416によって陰極槽の流入口414から供給される。供給された試供水は陰極槽の下部にある第1室71に供給される。第1室71が溶液で満たされると水は陽極槽の中央部にある第2室72に流れ込む。第2室72の内部には蛇行する細い流路が作られており、この流路は図4の陰極115の表面を流れる位置に配置されている。そのため、第1室71から流入した溶液は第2室72の内部で図4の陰極115の表面に余すことなく触れる。陰極15の表面で生成された水素によって、陰極槽112内で試供水に含まれる硝酸イオンが還元され、窒素ガスに変換され、陰極槽112の排出口413から水と共に排出される。 The supernatant of the settling tank 420, that is, sample water from which phosphate ions have been removed and nitrate ions remain, is supplied from the inlet 414 of the cathode tank by a pump 416. The supplied sample water is supplied to the first chamber 71 located at the bottom of the cathode tank. Once the first chamber 71 is filled with solution, water flows into the second chamber 72 located in the center of the anode cell. A narrow meandering flow path is formed inside the second chamber 72, and this flow path is arranged at a position where the liquid flows over the surface of the cathode 115 in FIG. Therefore, the solution flowing from the first chamber 71 completely touches the surface of the cathode 115 shown in FIG. 4 inside the second chamber 72. Hydrogen generated on the surface of the cathode 15 reduces nitrate ions contained in the sample water in the cathode tank 112 and converts them into nitrogen gas, which is discharged from the outlet 413 of the cathode tank 112 together with the water.

次に、図8を用いて、本発明の実施例からなる水素製造装置の陽極部、陰極部および陽イオン交換膜、等からなる電解部の全体の詳細構造を説明する。図中、112は陰極槽、113は水素イオン交換膜、114は陽極、115は陰極、81はボルト、82はナットをそれぞれ表す。 Next, using FIG. 8, the detailed structure of the entire electrolytic section consisting of an anode section, a cathode section, a cation exchange membrane, etc. of a hydrogen production apparatus according to an embodiment of the present invention will be explained. In the figure, 112 represents a cathode tank, 113 represents a hydrogen ion exchange membrane, 114 represents an anode, 115 represents a cathode, 81 represents a bolt, and 82 represents a nut.

陽極114と陰極115および水素イオン交換膜113からなる電解装置の組み立て方法について、図8を用いて説明する。陽極114と陰極115には、網状の白金めっき付チタン電極(幅10cm×長さ30cm)を用いた。陽極114と陰極115は網状のチタンの周囲に板状のチタンを接合した後、白金でメッキした。陽極114と陰極115によって陽イオン交換膜113(幅10cm×長さ30cm)を挟んだ後、陰極槽114と陽極槽115によって外側から挟み込み、ボルト81を通し、ナット82を締め、電解部を組み立てた。 A method of assembling an electrolytic device consisting of an anode 114, a cathode 115, and a hydrogen ion exchange membrane 113 will be described using FIG. 8. As the anode 114 and the cathode 115, a reticular platinum-plated titanium electrode (width 10 cm x length 30 cm) was used. The anode 114 and the cathode 115 were formed by bonding a titanium plate around a titanium net and plating it with platinum. After the cation exchange membrane 113 (width 10 cm x length 30 cm) is sandwiched between the anode 114 and the cathode 115, it is sandwiched from the outside between the cathode tank 114 and the anode tank 115, the bolt 81 is passed through, and the nut 82 is tightened to assemble the electrolytic part. Ta.

次に、本実施例における各部の条件について説明する。還元槽119においては、以下の条件で行われた。 Next, the conditions of each part in this example will be explained. In the reduction tank 119, the following conditions were used.

茶葉を浸す電解液としては、硝酸鉄水溶液を用いた。Fe(III)/Fe(II)のレッドクスポテンシャルは全鉄イオン濃度やFe(III)/Fe(II)の割合、pH、陰イオン種などの影響をうける。式(1)の反応はFe(III)イオン濃度が高く、pHも高いほど進行し易い。一方、式(2)の反応は、Fe(II)イオン濃度が高く、pHは低い方がよい。どちらの反応も逆反応と平衡状態にあるため、反応速度を高め、広い範囲で平衡を移行させるためには活性の高い触媒および効率の良い光照射法が重要になる。 An aqueous iron nitrate solution was used as the electrolyte for soaking the tea leaves. The redox potential of Fe(III)/Fe(II) is affected by the total iron ion concentration, the ratio of Fe(III)/Fe(II), pH, anion species, etc. The reaction of formula (1) progresses more easily when the Fe(III) ion concentration is higher and the pH is also higher. On the other hand, in the reaction of formula (2), it is better to have a high Fe(II) ion concentration and a low pH. Both reactions are in equilibrium with the reverse reaction, so highly active catalysts and efficient light irradiation methods are important to increase the reaction rate and shift the equilibrium over a wide range.

本実施例では、電解液として、606gの硝酸鉄(III)(Fe(NO・9HO)と10Lの常温の水を用いて3価の鉄イオン濃度が0.15mol/L(150mM)の試供水を調製した。10Lの試供水と破断状態にした最長3mmである1kgの茶粕を図5の反応容器に入れた。還元槽119の容積は12.5Lである。 In this example, 606 g of iron (III) nitrate (Fe(NO 3 ) 3.9H 2 O) and 10 L of water at room temperature were used as the electrolyte, and the trivalent iron ion concentration was 0.15 mol/L ( 150mM) sample water was prepared. 10 L of sample water and 1 kg of broken tea lees with a maximum length of 3 mm were placed in the reaction container shown in FIG. 5. The volume of the reduction tank 119 is 12.5L.

光照射の方法は、できるだけ光が触媒と溶液に効率よく照射されなければいけない。本実施例では太陽光を用いた。太陽光が逃げないようにミラーやアルミホイル等を使用し、取り込み効率の高い光学系を用いる。太陽光の取り込み窓51から55の窓材には、透過率が高く、比較的安価なパイレックスを用いた。パイレックスの代わりに、透過率の高いプラスチックを用いることも出来る。 The light irradiation method must irradiate the catalyst and solution with light as efficiently as possible. In this example, sunlight was used. Use mirrors, aluminum foil, etc. to prevent sunlight from escaping, and use an optical system with high capture efficiency. Pyrex, which has high transmittance and is relatively inexpensive, was used as the window material for the sunlight intake windows 51 to 55. Plastics with high transmittance can also be used instead of Pyrex.

本実施例では、鉄イオンと茶粕が混合された溶液42をより分散させるために、撹拌用プロペラ46を撹拌用モーター44で回転攪拌した。還元槽119の底面には傾斜があり、プロペラ46の下付近に沈殿した茶粕が集まる構造になっており、プロペラ46の撹拌によって沈殿した茶粕が再び還元槽119の内部を浮遊する。プロペラ46の撹拌を止めると、沈殿した茶粕は還元槽119の底面の傾斜によって使用済み茶粕廃棄用バルブ47の付近に集まる構造になっており、使用済みの茶粕を還元槽119から取り出すことができる。そして、3価の鉄イオンを還元して生成された2価の鉄イオンを含む電解液は、茶粕と分離された後、ポンプ410で陽極槽111に送り込まれる。 In this example, in order to further disperse the solution 42 in which iron ions and tea lees were mixed, a stirring propeller 46 was rotated and stirred by a stirring motor 44 . The bottom surface of the reduction tank 119 has an inclination, so that the precipitated tea lees gather near the bottom of the propeller 46, and the precipitated tea lees are suspended inside the reduction tank 119 by stirring by the propeller 46. When the stirring of the propeller 46 is stopped, the precipitated tea lees collect near the used tea lees disposal valve 47 due to the slope of the bottom of the reduction tank 119, and the used tea lees are taken out from the reduction tank 119. be able to. Then, the electrolytic solution containing divalent iron ions generated by reducing the trivalent iron ions is separated from the tea lees and then sent to the anode tank 111 by the pump 410.

陽極槽に送りこまれた電解液は、水素イオン交換膜113によって陽極槽と陰極槽が仕切られた2槽式電解セルで式2の反応を起こす。2槽式電解セルを仕切る膜としては半透膜、透析用浸透膜、イオン交換膜や塩橋、セラミック膜などが利用できるが、水素イオンの移動度が鉄イオンの移動度に比べて充分大きい必要があるので、水素イオン交換膜が望ましく、本実施例では、水素イオン交換膜(ナフィオン、デュポン社製)を用いた。 The electrolytic solution sent to the anode tank undergoes the reaction of formula 2 in a two-tank electrolytic cell in which an anode tank and a cathode tank are partitioned by a hydrogen ion exchange membrane 113. Semipermeable membranes, dialysis membranes, ion exchange membranes, salt bridges, ceramic membranes, etc. can be used as membranes to partition a two-tank electrolytic cell, but the mobility of hydrogen ions is sufficiently larger than that of iron ions. Therefore, a hydrogen ion exchange membrane is desirable, and in this example, a hydrogen ion exchange membrane (Nafion, manufactured by DuPont) was used.

水素発生側の陰極115としては水素過電圧の小さな材料が望ましく、白金やニッケル、白金などを微量に担持したカーボン電極、白金がメッキされたチタン電極などが使用できる。本実施例では、コストを考慮し白金がメッキされたチタン電極を用いた。 As the cathode 115 on the hydrogen generation side, a material with a small hydrogen overvoltage is desirable, and platinum, nickel, a carbon electrode carrying a small amount of platinum, a titanium electrode plated with platinum, etc. can be used. In this example, titanium electrodes plated with platinum were used in consideration of cost.

一方、2価の鉄イオンの酸化を行う陽極114としては上記の電極の他に白金を担持しないカーボン電極でも使用できる。本実施例では、コストを考慮し白金がメッキされたチタン電極を用いた。 On the other hand, as the anode 114 for oxidizing divalent iron ions, in addition to the above electrodes, a carbon electrode that does not support platinum can also be used. In this example, titanium electrodes plated with platinum were used in consideration of cost.

電解電圧を下げるためには電極間距離を短くしたり、反応温度を高くしたり、電極電流密度を下げる、集電材を使うといった工夫が重要である。本実施例では、電極間距離は水素イオン交換膜の厚みとした。反応温度は、常温で行った。電極電流密度は3アンペア/平方センチにした。また、集電効果を高めるために、電極構造を図8で示すように、網状の電極の周囲に、板状の枠を設けた。 In order to lower the electrolysis voltage, it is important to take measures such as shortening the distance between the electrodes, increasing the reaction temperature, lowering the electrode current density, and using current collectors. In this example, the distance between the electrodes was the thickness of the hydrogen ion exchange membrane. The reaction temperature was room temperature. The electrode current density was 3 amps/cm2. Furthermore, in order to enhance the current collection effect, a plate-shaped frame was provided around the mesh-shaped electrode, as shown in the electrode structure shown in FIG.

電解が進行すると陽極114周辺の2価の鉄イオン濃度が減少するので、電極周辺の水溶液が撹拌される、または還元槽119と直結して常に2価の鉄イオン濃度の高い溶液が循環されるシステムが望ましい。 As electrolysis progresses, the concentration of divalent iron ions around the anode 114 decreases, so the aqueous solution around the electrode is stirred or directly connected to the reduction tank 119 to constantly circulate a solution with a high concentration of divalent iron ions. system is preferred.

硝酸イオンとリン酸イオンの同時除去方法の条件の最適化をするために、以下の実験を行った。
(実験1)
試供水33として、麻機池の水をろ過した後、硝酸カリウム(KNO)を用いて、硝酸態窒素(NO-N)濃度を2mmol/L、リン酸水素二ナトリウム・12水和物(NaHPO・12HO)とリン酸2水素ナトリウム2水和物(NaHPO・2HO)を等量ずつ用いて、リン酸態リン(PO-P)濃度を2mmol/L、pHを7.0に調製した。
電解液42として、606gの硝酸鉄(III)(Fe(NO・9HO)と10Lの常温の水を用いて3価の鉄イオン濃度が0.15mol/L(150mM)の試供水を調製した。
10Lの電解液42と破断状態にした最長3mmである1kgの茶粕を図5の還元槽119に入れ、1,000lmのLED電球を8個(紫外光は含まず、窓53と54付近の照度は約20,000lux、快晴時の太陽光の10分の1の強度)を用いて、光を照射しながら、還元槽119内を300rpmで撹拌し、2価の鉄イオンの濃度の減少を防止しつつ、ポンプ410を用いて、電解液を毎分50mLで送り、還元槽119と陽極槽111を循環させた。
同時に、試供水を毎分26mLで電池槽32に、電池槽32で処理された試供水33を電解装置412の陰極槽112に送り込み、陰極槽112で処理した試供水を再度、電池槽32に送ることによって、試供水を循環させ、硝酸態窒素、亜硝酸態窒素(NO-N)アンモニア態窒素(NH-N)、リン酸態リンの濃度の変化を測定した。硝酸は亜鉛還元-ナフチルエチレンジアミン吸光光度法(非特許文献21)、亜硝酸は、ナフチルエチレンジアミン吸光光度法(非特許文献21)、アンモニアは、インドフェノール青吸光光度法(非特許文献21)で測定した。
In order to optimize the conditions for the simultaneous removal of nitrate ions and phosphate ions, the following experiment was conducted.
(Experiment 1)
As sample water 33, after filtering the water from Maki Pond, using potassium nitrate (KNO 3 ), the nitrate nitrogen (NO 3 -N) concentration was adjusted to 2 mmol/L, and disodium hydrogen phosphate dodecahydrate ( Using equal amounts of Na 2 HPO 4.12H 2 O) and sodium dihydrogen phosphate dihydrate (NaH 2 PO 4.2H 2 O), the concentration of phosphate phosphorus (PO 4 -P) was adjusted to 2 mmol/ L, pH was adjusted to 7.0.
A sample with a trivalent iron ion concentration of 0.15 mol/L (150 mM) was prepared using 606 g of iron (III) nitrate (Fe(NO 3 ) 3.9H 2 O) and 10 L of water at room temperature as the electrolyte 42. Prepared water supply.
10 L of electrolytic solution 42 and 1 kg of broken tea lees with a maximum length of 3 mm were placed in the reduction tank 119 shown in Fig. 5, and eight 1,000 lm LED bulbs (excluding ultraviolet light) were placed near windows 53 and 54. The inside of the reduction tank 119 was stirred at 300 rpm while irradiating light using an illuminance of approximately 20,000 lux (one-tenth the intensity of sunlight on a clear day) to reduce the concentration of divalent iron ions. While preventing this, the electrolytic solution was sent at a rate of 50 mL per minute using the pump 410 to circulate between the reduction tank 119 and the anode tank 111.
At the same time, the sample water is sent to the battery tank 32 at a rate of 26 mL per minute, the sample water 33 treated in the battery tank 32 is sent to the cathode tank 112 of the electrolyzer 412, and the sample water treated in the cathode tank 112 is sent to the battery tank 32 again. The sample water was circulated by feeding the sample water, and changes in the concentrations of nitrate nitrogen, nitrite nitrogen (NO 2 -N), ammonia nitrogen (NH 4 -N), and phosphate phosphorus were measured. Nitric acid was measured by zinc reduction-naphthylethylenediamine spectrophotometry (Non-Patent Document 21), nitrite was measured by naphthylethylenediamine spectrophotometry (Non-Patent Document 21), and ammonia was measured by indophenol blue spectrophotometry (Non-Patent Document 21). did.

実験1におけるリン酸態リン濃度は、20時間でほぼ0mmol/Lになり、水中のリン酸イオンがすべて除去された。 The phosphate phosphorus concentration in Experiment 1 became approximately 0 mmol/L in 20 hours, and all phosphate ions in the water were removed.

通常、電池槽32内の試供水のpHが低い(水素イオン濃度が高い)と、つまり酸性であるほど、鉄負極14の溶解速度は大きくなり、リン酸イオンとの反応速度が大きくなることが期待される。本発明において、陰極115での水素生成をセーブしながら陰極槽112で処理された後の試供水を電池槽32に送り、試供水を循環させると、陰極槽112から水素イオンが供給され、電池槽32に供給される試供水のpHを低くすることができ、環境に負荷を与えないで、電池槽32内の試供水に含まれるリン酸イオンと反応させるための鉄イオンの溶出速度を大きくすることが可能になった。 Normally, the lower the pH of the sample water in the battery tank 32 (the higher the hydrogen ion concentration), that is, the more acidic it is, the faster the dissolution rate of the iron negative electrode 14 will be, and the faster the reaction rate with phosphate ions will be. Be expected. In the present invention, when the sample water that has been treated in the cathode tank 112 is sent to the battery tank 32 while saving hydrogen generation at the cathode 115 and the sample water is circulated, hydrogen ions are supplied from the cathode tank 112 and the battery The pH of the sample water supplied to the battery tank 32 can be lowered, and the elution rate of iron ions for reaction with the phosphate ions contained in the sample water in the battery tank 32 can be increased without imposing a burden on the environment. It became possible to do so.

通常、電池槽32内の試供水のpHが5.0に満たないと、一度、沈殿除去したリン化合物の溶解度が増加して効率的にリンを除去できなくなる。本発明において、陰極115で十分に水素生成を行いながら陰極槽112で処理された後の試供水を電池槽32に送り、試供水を循環させると、陰極槽112で水素イオンが消費され、電池槽32に供給される試供水のpHを高く(水素イオン濃度を低く)することができ、電池槽32内の試供水に含まれるリン酸イオンが沈殿しやすくなる。 Normally, if the pH of the sample water in the battery tank 32 is less than 5.0, the solubility of the phosphorus compound that has been precipitated and removed increases, making it impossible to efficiently remove phosphorus. In the present invention, when the sample water that has been treated in the cathode tank 112 is sent to the battery tank 32 and circulated while hydrogen is sufficiently generated in the cathode 115, hydrogen ions are consumed in the cathode tank 112, and the battery The pH of the sample water supplied to the tank 32 can be increased (the hydrogen ion concentration can be lowered), and the phosphate ions contained in the sample water in the battery tank 32 are more likely to precipitate.

通常、電池槽32内の試供水のpHが8.0を超えると、溶解した金属イオンが水酸化物イオンと反応して水酸化物を形成してしまうため、リン酸化合物の形成が抑制されてしまう。本発明において、陰極115での水素生成をセーブしながら陰極槽112で処理された後の試供水を電池槽32に送り、試供水を循環させると、陰極槽112から水素イオンが供給され、電池槽32に供給される試供水のpHを低くすることができ、環境に負荷を与えないで、電池槽32内の試供水に含まれる金属イオンとリン酸イオンと反応させる特に好ましいpHである7.0に調整することが可能になった。 Normally, when the pH of the sample water in the battery tank 32 exceeds 8.0, dissolved metal ions react with hydroxide ions to form hydroxide, which inhibits the formation of phosphoric acid compounds. It ends up. In the present invention, when the sample water that has been treated in the cathode tank 112 is sent to the battery tank 32 while saving hydrogen generation at the cathode 115 and the sample water is circulated, hydrogen ions are supplied from the cathode tank 112 and the battery The pH of the sample water supplied to the battery tank 32 can be lowered, and this is a particularly preferable pH value of 7, which allows the metal ions and phosphate ions contained in the sample water in the battery tank 32 to react without imposing a burden on the environment. It is now possible to adjust to .0.

実験1における硝酸態窒素濃度は、60時間で1mmol/Lになり、水中の硝酸イオンの50%が除去された。亜硝酸態窒素濃度は実験期間中、常に0mmol/Lであったが、アンモニア態窒素濃度は常に0.2mmol/Lであったことより、硝酸イオンが還元され、除去されたと考えられた。処理水の鉄イオン濃度は0mmol/Lであり、実験期間中は約1mA×1Vの電流と陰極から気体の発生が目視で確認できたため、低電圧電解による水素生成が起きていたと考えられる。 The nitrate nitrogen concentration in Experiment 1 reached 1 mmol/L in 60 hours, and 50% of the nitrate ions in the water were removed. The nitrite nitrogen concentration was always 0 mmol/L during the experiment period, but the ammonia nitrogen concentration was always 0.2 mmol/L, suggesting that nitrate ions were reduced and removed. The iron ion concentration in the treated water was 0 mmol/L, and during the experiment period, a current of about 1 mA x 1 V and generation of gas from the cathode could be visually confirmed, so it is thought that hydrogen generation was occurring due to low-voltage electrolysis.

pHが7の時において、亜硝酸イオン(NO )とアンモニウムイオン(NH )が同モル存在する条件下では、亜硝酸イオンが窒素ガス(N)に還元される場合の半反応式(式8)とアンモニウムイオン が窒素ガスへ酸化される場合の半反応式(式9)が成立し、Total equation(式10)におけるギブズの自由エネルギーは負であるため、陰極からの微量な水素ガスと電池槽から供給された還元的な電位の水質によって、水中に存在する亜硝酸イオンとアンモニウムイオン から共に窒素ガスを生成する反応が進み、硝酸イオンが除去されたことが示唆された。

Figure 0007391366000009
When the pH is 7, nitrite ions (NO2 -) and ammonium ion (NH4 +), the nitrite ion is converted into nitrogen gas (N2) and the half-reaction equation (Equation 8) and ammonium ion when reduced to The half-reaction equation (Equation 9) is established when is oxidized to nitrogen gas, and the Gibbs free energy in the total equation (Equation 10) is negative, so a small amount of hydrogen gas from the cathode and the hydrogen gas supplied from the battery tank are Nitrite ions and ammonium ions present in water are reduced due to the reducing potential of the water. It was suggested that the reaction to produce nitrogen gas proceeded and the nitrate ions were removed.
Figure 0007391366000009

通常、水中の溶存酸素濃度(DO)が高いと、水中に存在する硝酸イオンは還元されない。本発明では、電池槽32内において、鉄炭素電池13によって水中の溶存酸素が消費されるため、電池槽32からの排水を陰極槽112に送ることによって、陰極槽112内において、陰極115の表面で硝酸イオンを窒素ガスに還元することが可能になった。 Normally, when the dissolved oxygen concentration (DO) in water is high, nitrate ions present in water are not reduced. In the present invention, since dissolved oxygen in water is consumed by the iron-carbon battery 13 in the battery tank 32, by sending waste water from the battery tank 32 to the cathode tank 112, the surface of the cathode 115 in the cathode tank 112 is It became possible to reduce nitrate ions to nitrogen gas.

通常、水中の酸化還元電位(ORP)が正の値(酸化的)であると、水中に存在する硝酸イオンは還元されにくい。本発明では、電池槽32内の仕切られた第1水槽37、第2水槽38、…、第6水槽312と進むにつれて、水中の酸化還元電位が負の値でかつ下がり続けるため、電池槽32からの排水を陰極槽112に送ることによって、陰極槽112内において、陰極115の表面で硝酸イオンを窒素ガスへ高効率で還元することが可能になった。 Normally, when the oxidation-reduction potential (ORP) in water is a positive value (oxidative), nitrate ions present in water are difficult to reduce. In the present invention, the oxidation-reduction potential in the water becomes a negative value and continues to decrease as the battery tank 32 progresses through the partitioned first water tank 37, second water tank 38, ..., sixth water tank 312. By sending the wastewater from the cathode tank 112 to the cathode tank 112, it became possible to reduce nitrate ions to nitrogen gas with high efficiency on the surface of the cathode 115 in the cathode tank 112.

通常、水中の水素イオン(H)濃度が低いと、水中に存在する硝酸イオンは還元されにくい。本発明では、還元槽119内において、3価の鉄イオンが2価の鉄イオンに還元される際に、水から水素イオンが生成され、陽極槽111から水素イオン交換膜113を経由して、陰極槽112に供給されるため、中性(pHが7)付近の試供水が電池槽32に供給されたとしても、電池槽32から陰極槽112に送られた試供水の水素イオン濃度が高められ、陰極槽112内において、陰極115の表面で硝酸イオンを窒素ガスに還元することが可能になった。 Normally, when the concentration of hydrogen ions (H + ) in water is low, nitrate ions present in water are difficult to reduce. In the present invention, when trivalent iron ions are reduced to divalent iron ions in the reduction tank 119, hydrogen ions are generated from water, and are passed from the anode tank 111 through the hydrogen ion exchange membrane 113. Since the sample water is supplied to the cathode tank 112, even if sample water near neutrality (pH 7) is supplied to the battery tank 32, the hydrogen ion concentration of the sample water sent from the battery tank 32 to the cathode tank 112 is high. As a result, it became possible to reduce nitrate ions to nitrogen gas on the surface of the cathode 115 in the cathode tank 112.

(実験2)
快晴時に除去装置を麻機池で活用した。麻機池の流入溝付近で採取した水を毎分26mLで電池槽32の流入口31に流し込み、電解装置412の陰極槽112の排出口413から流れ出た処理水を再度、電池槽32に流し込み、実験1と同じ流速で循環させた。
(Experiment 2)
The removal equipment was used at Asaki Pond during clear skies. Water collected near the inflow groove of Asami Pond is poured into the inlet 31 of the battery tank 32 at a rate of 26 mL per minute, and the treated water flowing out from the outlet 413 of the cathode tank 112 of the electrolyzer 412 is poured into the battery tank 32 again. , and was circulated at the same flow rate as in Experiment 1.

処理前のリン酸態リン濃度は0.5mg/Lであった。リン酸イオンは、1回目の循環で60%以上が除去され、4回の循環の後、90%以上が除去された。処理前の硝酸態窒素濃度は1.5mg/Lであった。硝酸イオンは、2回目の循環まで、除去率は低かったが、3回目以降、徐々に高まり、4回の循環の後、約20%が除去された。 The phosphorus concentration before treatment was 0.5 mg/L. More than 60% of the phosphate ions were removed in the first cycle, and more than 90% was removed after 4 cycles. The nitrate nitrogen concentration before treatment was 1.5 mg/L. The removal rate of nitrate ions was low until the second circulation, but gradually increased after the third circulation, and about 20% was removed after four circulations.

(実験3)
巴川と駿府城のお堀で実施した場合も、同様な結果を得たことから、一般的な河川や湖沼の水を流し込むだけで、硝酸イオンとリン酸の除去が同時に可能なシステムの開発に成功したことが確認できた。
(Experiment 3)
Similar results were obtained in the Tomoe River and Sunpu Castle moats, so we decided to develop a system that can remove nitrate ions and phosphoric acid at the same time by simply pouring water from common rivers and lakes. I can confirm that it was successful.

(実験4)
浄化槽や下水処理場で処理された後の水を用いた場合における、リン酸態リン濃度は、6時間でほぼ0mmol/Lになり、水中のリン酸イオンがすべて除去された。硝酸態窒素濃度は、20時間で1mmol/L、60時間で0.2mmol/Lになり、水中の硝酸イオンの90%が除去された。亜硝酸態窒素濃度は実験期間中、常に0mmol/Lであったが、アンモニア態窒素濃度は常に0.2mmol/Lであったことより、硝酸イオンが還元され、除去されたと考えられた。実験1と同様に、処理水の鉄イオン濃度は0mmol/Lであり、実験期間中は約1mA×1Vの電流と陰極から気体の発生が目視で確認できたため、実験3においても、低電圧電解による水素生成が起きていたと考えられる。
(Experiment 4)
When using water that has been treated in a septic tank or sewage treatment plant, the concentration of phosphorus in the form of phosphate reached approximately 0 mmol/L in 6 hours, and all phosphate ions in the water were removed. The nitrate nitrogen concentration became 1 mmol/L in 20 hours and 0.2 mmol/L in 60 hours, and 90% of the nitrate ions in the water were removed. The nitrite nitrogen concentration was always 0 mmol/L during the experiment period, but the ammonia nitrogen concentration was always 0.2 mmol/L, suggesting that nitrate ions were reduced and removed. As in Experiment 1, the iron ion concentration in the treated water was 0 mmol/L, and during the experiment period a current of approximately 1 mA x 1 V and gas generation from the cathode could be visually confirmed. It is thought that hydrogen production was occurring.

実施例では、鉄板を負極、炭素板を正極とした鉄炭素電池から溶出する鉄イオンによって水中のリン酸イオンを沈殿させて除去し、収集した沈殿物からリン酸が回収された。同時に、鉄炭素電池から供給される電力を用いた水電解によって製造した水素を用いて、溶液中の硝酸イオンが還元されて除去された。加えて、硝酸イオンを還元するための水素は、太陽光と茶粕を用いた3価の鉄イオンから2価の鉄イオンへの還元と2価の鉄イオンの酸化による1V以下の低電圧水電解を組み合わせた、安全・安価かつエネルギー消費を半減させた水素製造法を用いて供給された。 In the example, phosphate ions in water were precipitated and removed by iron ions eluted from an iron-carbon battery using an iron plate as a negative electrode and a carbon plate as a positive electrode, and phosphoric acid was recovered from the collected precipitate. At the same time, nitrate ions in the solution were reduced and removed using hydrogen produced by water electrolysis using electricity supplied by an iron-carbon battery. In addition, hydrogen for reducing nitrate ions is obtained by reducing trivalent iron ions to divalent iron ions using sunlight and tea lees, and by oxidizing divalent iron ions using low voltage water of 1V or less. The hydrogen was supplied using a hydrogen production method that combines electrolysis and is safe, inexpensive, and reduces energy consumption by half.

図1は、本発明になるリン酸イオンと硝酸イオンを除去する汚染水浄化方法および装置を説明する図である。FIG. 1 is a diagram illustrating a contaminated water purification method and apparatus for removing phosphate ions and nitrate ions according to the present invention. 図2は、本発明になるリン酸イオンと硝酸イオンを除去する汚染水浄化方法および装置の詳細な構造を説明する図である。FIG. 2 is a diagram illustrating the detailed structure of the contaminated water purification method and apparatus for removing phosphate ions and nitrate ions according to the present invention. 図3は、本発明になるリン酸イオンと硝酸イオンを除去する汚染水浄化方法および装置における電池槽の詳細な構造を説明する図である。FIG. 3 is a diagram illustrating the detailed structure of the battery tank in the contaminated water purification method and apparatus for removing phosphate ions and nitrate ions according to the present invention. 図4は、本発明になるリン酸イオンと硝酸イオンを除去する汚染水浄化方法および装置の実施例を説明する図である。FIG. 4 is a diagram illustrating an embodiment of the contaminated water purification method and apparatus for removing phosphate ions and nitrate ions according to the present invention. 図5は、本発明の第2の実施例の還元槽の詳細な構造を説明する図である。FIG. 5 is a diagram illustrating the detailed structure of the reduction tank according to the second embodiment of the present invention. 図6は、本発明の第2の実施例の水素製造装置の陽極部の詳細構造を説明する図である。FIG. 6 is a diagram illustrating the detailed structure of the anode portion of the hydrogen production apparatus according to the second embodiment of the present invention. 図7は、本発明の第2の実施例からなる水素製造装置の陰極部の詳細構造を説明する図である。FIG. 7 is a diagram illustrating the detailed structure of the cathode section of the hydrogen production apparatus according to the second embodiment of the present invention. 図8は、本発明の第2の実施例からなる水素製造装置の陽極部、陰極部および陽イオン交換膜、等からなる電解装置の詳細構造を説明する図である。FIG. 8 is a diagram illustrating the detailed structure of an electrolytic device comprising an anode section, a cathode section, a cation exchange membrane, etc. of a hydrogen production apparatus according to a second embodiment of the present invention.

11 硝酸イオン
12 リン酸イオン
13 鉄炭素電池
14 鉄製の負極
15 炭素製の正極
16 導線
17 鉄イオンとリン酸イオン12から生成した沈殿物
18 鉄炭素電池13で処理した後の溶液
19 鉄炭素電池13から供給される電力
111 陽極槽
112 陰極槽
113 水素イオン交換膜
114 陽極
115 陰極
116 電源
117 茶粕等の還元性有機物
118 太陽光
119 還元槽
120 電解槽
21 ボルト
22 プラスチック製の正極固定盤
23 正極の集電板
24 網状のプラスチック製セパレーター
25 負極の集電板
26 プラスチック製の負極固定盤
27 ナット
31 電池槽の流入口
32 電池槽
33 試供水
34 電解装置の陽極とつなぐ正極
35 電解装置の陰極とつなぐ負極
36 電池槽の流出口
37 第1水槽
38 第2水槽
39 第3水槽
310 第4水槽
311 第5水槽
312 第6水槽
41 茶粕の供給および給水のためのバルブ
42 電解液(鉄イオン)と還元性有機物が混合された溶液
43 空間
44 撹拌用モーター
45 陽極槽の廃液を還元槽へ返すパイプ
46 撹拌用プロペラ
47 使用済み還元性有機物の廃棄用バルブ
48 ろ過機
49 還元槽119からポンプ410へのパイプ
410 還元槽119から陽極槽111への輸液ポンプ
411 ポンプ410から陽極槽111へのパイプ
412 導線
413 陰極槽の排出口
414 陰極槽の流入口
415 ポンプ416と流入口414をつなぐパイプ
416 沈殿槽420内の溶液419の上澄みを陰極槽112へ送る輸液ポンプ
417 沈殿槽420とポンプ416をつなぐパイプ
418 空間
419 電池槽32で処理された後の試供水33
420 沈殿槽
421 沈殿物17の廃棄用バルブ
422 電池水槽32の流出口36と沈殿槽420をつなぐパイプ
51 外部からの光を取り込む窓
52 外部からの光を取り込む窓
53 外部からの光を取り込む窓
54 外部からの光を取り込む窓
55 外部からの光を取り込む窓
61 陽極槽の第1室(下部)
62 陽極槽の第2室(中央部)
63 陽極槽の第3室(上部)
64 ボルトを通す穴
71 陰極槽の第1室(下部)
72 陰極極槽の第2室(中央部)
73 陽極槽の第3室(上部)
74 ボルトを通す穴
81 ボルト
82 ナット
11 Nitrate ion 12 Phosphate ion 13 Iron carbon battery 14 Iron negative electrode 15 Carbon positive electrode 16 Conductor 17 Precipitate generated from iron ions and phosphate ions 12 Solution 19 after treatment with iron carbon battery 13 Iron carbon battery Electric power supplied from 13 111 Anode tank 112 Cathode tank 113 Hydrogen ion exchange membrane 114 Anode 115 Cathode 116 Power supply 117 Reducing organic matter such as tea lees 118 Sunlight 119 Reduction tank 120 Electrolytic tank 21 Bolt 22 Plastic positive electrode fixing plate 23 Positive electrode current collector plate 24 Net-like plastic separator 25 Negative electrode current collector plate 26 Plastic negative electrode fixing plate 27 Nut 31 Battery tank inlet 32 Battery tank 33 Sample water 34 Positive electrode 35 connected to the anode of the electrolyzer Negative electrode 36 connected to the cathode Battery tank outlet 37 First water tank 38 Second water tank 39 Third water tank 310 Fourth water tank 311 Fifth water tank 312 Sixth water tank 41 Valve 42 for supplying tea lees and water ions) and reducing organic matter 43 Space 44 Stirring motor 45 Pipe 46 for returning waste liquid from the anode tank to the reduction tank 46 Stirring propeller 47 Disposal valve for used reducing organic matter 48 Filter 49 From the reduction tank 119 Pipe 410 to pump 410 Infusion pump 411 from reduction tank 119 to anode tank 111 Pipe 412 from pump 410 to anode tank 111 Conductor 413 Cathode tank outlet 414 Cathode tank inlet 415 Pump 416 and inlet 414 are connected Pipe 416 Infusion pump 417 that sends the supernatant of solution 419 in sedimentation tank 420 to cathode tank 112 Pipe 418 connecting sedimentation tank 420 and pump 416 Space 419 Sample water 33 after being treated in battery tank 32
420 Sedimentation tank 421 Valve for disposing of sediment 17 422 Pipe 51 connecting outlet 36 of battery water tank 32 and sedimentation tank 420 Window 52 that takes in light from outside Window 53 that takes in light from outside Window that takes in light from outside 54 Window that takes in light from the outside 55 Window that takes in light from the outside 61 First chamber of the anode tank (lower part)
62 Second chamber of anode tank (center)
63 Third chamber of anode tank (upper part)
64 Hole for passing bolt 71 First chamber of cathode tank (lower part)
72 Second chamber of cathode tank (center)
73 Third chamber of anode tank (upper part)
74 Hole for passing bolt 81 Bolt 82 Nut

Claims (7)

鉄を負極とし炭素を正極とする電池が入った電池槽内で汚染水を電解水として発電させ、かつリン酸イオンを除去するための鉄イオンを溶出させ、かつ沈殿槽内でリン酸イオンをリン酸鉄として沈殿させるリン酸イオン除去および回収工程と、前記リン酸イオンを除去するための鉄イオンを溶出させる工程を電池槽で行って得られた電力を利用して汚染水を電気分解して水素を発生させる水素発生工程と、前記発生した水素により硝酸イオンを還元除去する硝酸イオン除去工程とを備える汚染水浄化方法において、汚染水の電気分解に、汚染水の電気分解による鉄イオンを酸化する工程と、当該酸化した鉄イオンの還元性有機物である茶粕と光を利用する工程により鉄イオンを還元する工程を利用しつつ、汚染水を電気分解した処理水を、電池槽に循環供給することによって、リン酸イオン及び硝酸イオンを同時に除去することが可能となるように、電池槽及び電解槽水素イオン濃度及び溶存酸素濃度を所定範囲に調整することを特徴とする汚染水浄化方法。 Contaminated water is used as electrolyzed water to generate electricity in a battery tank containing a battery with iron as a negative electrode and carbon as a positive electrode, and iron ions are eluted to remove phosphate ions, and phosphate ions are generated in a precipitation tank. The process of removing and recovering phosphate ions to precipitate them as iron phosphate, and the process of eluting iron ions to remove the phosphate ions, are carried out in a battery tank, and the electricity obtained is used to electrolyze contaminated water. In a contaminated water purification method comprising a hydrogen generation step in which hydrogen is generated by hydrogen, and a nitrate ion removal step in which nitrate ions are reduced and removed by the generated hydrogen, iron ions from the electrolysis of the contaminated water are added to the electrolysis of the contaminated water. Using a process of oxidation and a process of reducing iron ions using tea lees, which is an organic substance that reduces the oxidized iron ions, and light, the treated water that has been electrolyzed from contaminated water is circulated to the battery tank. Contaminated water purification characterized by adjusting the hydrogen ion concentration and dissolved oxygen concentration in a battery tank and an electrolytic tank to a predetermined range so that phosphate ions and nitrate ions can be simultaneously removed by supplying Method. リン酸イオン除去および回収工程を電池槽と沈殿槽で最初に行い、次に汚染水を電気分解して水素を発生させる水素発生工程を行い、最後に硝酸イオンを還元除去する硝酸イオン除去工程を電解槽で行うことを特徴とする請求項1記載の汚染水浄化方法。 The phosphate ion removal and recovery process is first carried out in the battery tank and precipitation tank, then the hydrogen generation process in which contaminated water is electrolyzed to generate hydrogen, and finally the nitrate ion removal process is carried out to reduce and remove nitrate ions. The contaminated water purification method according to claim 1, characterized in that the method is carried out in an electrolytic cell. 鉄を負極とし炭素を正極とする電池および同電池が入った電池槽が、多段に接続されていることを特徴とする請求項1記載の汚染水浄化方法。 2. The contaminated water purification method according to claim 1, wherein batteries having iron as a negative electrode and carbon as a positive electrode and battery tanks containing the batteries are connected in multiple stages. 鉄を負極とし炭素を正極とする電池が入った水槽の内部で汚染水を電解水として発電させかつリン酸イオンを除去するための鉄イオンを溶出させる電池槽と、リン酸鉄として沈殿させ、リン酸イオン除去および回収する沈殿槽と、前記リン酸イオンを除去するための鉄イオンを溶出させる工程を電池槽で行って得られた電力を利用して汚染水を電気分解して水素を発生させ、前記発生した水素により硝酸イオンを還元除去する硝酸イオンを除去する電解槽とを備える汚染水浄化装置において、汚染水の電気分解に用いられる鉄イオンの還元のための還元槽が、還元性有機物である茶粕を連続的に供給可能な供給部と、使用済み還元性有機物である茶粕を連続的に排出する還元性有機物である茶粕の分離部が接続されていることを特徴とする汚染水浄化装置。 A battery tank containing a battery with iron as the negative electrode and carbon as the positive electrode, which generates electricity using contaminated water as electrolyzed water, and elutes iron ions to remove phosphate ions, and precipitates them as iron phosphate. A precipitation tank is used to remove and recover phosphate ions, and a battery tank is used to elute iron ions to remove the phosphate ions.Using the electricity obtained, contaminated water is electrolyzed to generate hydrogen. In the contaminated water purification apparatus, the reduction tank for reducing iron ions used in the electrolysis of contaminated water has a reducing property. A supply section that can continuously supply tea lees, which is an organic substance, is connected to a separation section for tea lees, which is a reducing organic substance, and which continuously discharges used tea lees, which is a reducing organic substance. Contaminated water purification equipment. 電池槽と電解槽の間に、汚染水中のリン酸イオンを沈殿させ固液分離する沈殿槽が設けられていることを特徴とする請求項4記載の汚染水浄化装置。 5. The contaminated water purification device according to claim 4, further comprising a precipitation tank provided between the battery tank and the electrolytic tank to precipitate phosphate ions in the contaminated water and separate solid and liquid. 電池槽の正極が電解槽の陽極に接続され、電池槽の負極が電解槽の陰極に接続されていることを特徴とする請求項4記載の汚染水浄化装置。 5. The contaminated water purification device according to claim 4, wherein the positive electrode of the battery tank is connected to the anode of the electrolytic tank, and the negative electrode of the battery tank is connected to the cathode of the electrolytic tank. 電解槽の陰極槽に還元された鉄イオンを還元槽から供給し、電解槽で酸化された鉄イオンを還元槽に戻すよう還元槽と電解槽が接続されていることを特徴とする請求項4記載の汚染水浄化装置。
Claim 4 characterized in that the reduction tank and the electrolytic cell are connected so that the reduced iron ions are supplied from the reduction tank to the cathode cell of the electrolytic cell and the iron ions oxidized in the electrolytic cell are returned to the reduction tank. The contaminated water purification device described.
JP2019232456A 2019-12-24 2019-12-24 Contaminated water purification method and device for removing phosphate ions and nitrate ions Active JP7391366B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019232456A JP7391366B2 (en) 2019-12-24 2019-12-24 Contaminated water purification method and device for removing phosphate ions and nitrate ions

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019232456A JP7391366B2 (en) 2019-12-24 2019-12-24 Contaminated water purification method and device for removing phosphate ions and nitrate ions

Publications (2)

Publication Number Publication Date
JP2021100744A JP2021100744A (en) 2021-07-08
JP7391366B2 true JP7391366B2 (en) 2023-12-05

Family

ID=76651155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019232456A Active JP7391366B2 (en) 2019-12-24 2019-12-24 Contaminated water purification method and device for removing phosphate ions and nitrate ions

Country Status (1)

Country Link
JP (1) JP7391366B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114804304A (en) * 2022-05-06 2022-07-29 泉州师范学院 Method for recovering phosphorus in sewage by electrolysis
US11502323B1 (en) 2022-05-09 2022-11-15 Rahul S Nana Reverse electrodialysis cell and methods of use thereof
US11502322B1 (en) 2022-05-09 2022-11-15 Rahul S Nana Reverse electrodialysis cell with heat pump
CN115465923B (en) * 2022-07-28 2024-02-13 湖南大学 Method for treating nitrate wastewater by copper-nickel alloy three-dimensional composite electrode loaded with copper hydroxide
US11855324B1 (en) 2022-11-15 2023-12-26 Rahul S. Nana Reverse electrodialysis or pressure-retarded osmosis cell with heat pump
US20240200203A1 (en) * 2022-12-15 2024-06-20 Wisconsin Alumni Research Foundation Electrochemical phosphate removal and recovery cells

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000334465A (en) 1999-05-26 2000-12-05 Masaaki Nagakura Device for removing nitrogen and phosphorus in waste water
JP2004066223A (en) 2002-06-10 2004-03-04 Shunji Nishi Electrolyte waste water treatment device, electrode used for the device and power generation device
JP2011115728A (en) 2009-12-04 2011-06-16 Masakazu Kuroda Method of removing nitrogen and phosphorus in water and coloring of water

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000334465A (en) 1999-05-26 2000-12-05 Masaaki Nagakura Device for removing nitrogen and phosphorus in waste water
JP2004066223A (en) 2002-06-10 2004-03-04 Shunji Nishi Electrolyte waste water treatment device, electrode used for the device and power generation device
JP2011115728A (en) 2009-12-04 2011-06-16 Masakazu Kuroda Method of removing nitrogen and phosphorus in water and coloring of water

Also Published As

Publication number Publication date
JP2021100744A (en) 2021-07-08

Similar Documents

Publication Publication Date Title
JP7391366B2 (en) Contaminated water purification method and device for removing phosphate ions and nitrate ions
Al-Qodah et al. Combined electrocoagulation processes as a novel approach for enhanced pollutants removal: A state-of-the-art review
Tee et al. Review on hybrid energy systems for wastewater treatment and bio-energy production
Şengil Treatment of dairy wastewaters by electrocoagulation using mild steel electrodes
CN101198550B (en) Electrodialysis reversal and electrochemical wastewater treatment method of compound containing nitrogen
AlJaberi et al. Can electrocoagulation technology be integrated with wastewater treatment systems to improve treatment efficiency?
Nouri et al. Application of electrocoagulation process in removal of zinc and copper from aqueous solutions by aluminum electrodes
Xiang et al. Innovative treatment of organic contaminants in reverse osmosis concentrate from water reuse: a mini review
US10662087B2 (en) Electrochemical system and method for the treatment of water and wastewater
Nidheesh et al. Removal of nutrients and other emerging inorganic contaminants from water and wastewater by electrocoagulation process
US20090008267A1 (en) Process and method for the removal of arsenic from water
Almukdad et al. Unlocking the application potential of electrocoagulation process through hybrid processes
Hamdan et al. An electrocoagulation column (ECC) for groundwater purification
JP2014504205A (en) Carbon bed electrolyzer for waste liquid treatment and its process
CN106800356A (en) A kind of advanced treatment of wastewater regeneration device based on biochemical and electrolysis tech
Alam et al. A critical review on treatment of saline wastewater with emphasis on electrochemical based approaches
CN107055937A (en) A kind of advanced treatment of wastewater regeneration method based on biochemical and electrolysis tech
Mahvi et al. Removal of cadmium from industrial effluents by electrocoagulation process using aluminum electrodes
Lahav et al. Potential applications of indirect electrochemical ammonia oxidation within the operation of freshwater and saline-water recirculating aquaculture systems
WO2011155281A1 (en) Freshwater-generating device, and freshwater-generating method
Abdel-Fatah et al. Integrated treatment of municipal wastewater using advanced electro-membrane filtration system
CN101269898B (en) Advanced treatment apparatus for printing and dyeing wastewater
He et al. Research progress on removal methods of Cl-from industrial wastewater
Brillas et al. Hybrid and sequential chemical and electrochemical processes for water decontamination
CN113003845A (en) Zero-emission treatment process and system for sewage with high sulfate content and high COD (chemical oxygen demand)

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20200109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201029

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221112

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20221112

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20221112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230530

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230815

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231017

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231115

R150 Certificate of patent or registration of utility model

Ref document number: 7391366

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150